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Die Traglasttheorie der Statik als mathematisches Modell

Von J. Betten, Aachen, Mitteilung aus dem Institut fiir Werkstoffkunde der RWTH Aachen

In dem vorliegenden Aufsatz wird gezeigt, dass die Trag-
lasttheorie als mathematisches Modell aufgefasst werden kann.
Dazu werden zundchst im Sinne der mathematischen Logik der
Begriff einer mathematischen Theorie, insbesondere das Wesen
einer axiomatisierten Theorie, und der Modellbegriff néher
erortert.

Das mathematische Modell der Traglasttheorie beruht auf
dem Prinzip der virtuellen Verschiebung an der Versagensgrenze
als Axiom. Daraus lassen sich die Traglastsiitze ableiten, die eine
Eingabelung der Traglast durch eine obere und untere Schranke
ermoglichen (Schrankenmethode). Zum mathematischen Modell
der Traglasttheorie gehort schliesslich noch die Gruppe der Vor-
aussetzungen, die einerseits iiber den erforderlichen Rechenauf-
wand zur Ermittlung der Tragféihigkeit entscheidet und anderer-
seits die Giite des Modells bestimmt.

Allgemeines iiber den Modellbegriff

Der Begriff des Modells wird hdufig auf anschauliche, mit-
unter verkleinerte bzw. vergrosserte Darstellungen angewandt.
In diesem Sinne wird etwa der Architekt das Modell eines aus-
zufiihrenden Bauwerks herstellen. Ein dhnliches Beispiel ist ein
Relief als Modell einer Landschaftsoberfliche. Kein Modell
jedoch wird alle Eigenschaften der darzustellenden Wirklichkeit
vollstéindig wiedergeben. Das Modell ist nur Modell in bezug
auf bestimmte Eigenschaften und Relationen [1].

In dhnlicher Weise haben die empirischen Wissenschaften
Modelle entwickelt, die nur in bezug auf bestimmte Relationen
der darzustellenden Erfahrungswirklichkeit mit dieser unter
bestimmten Voraussetzungen iibereinstimmen [2]. So gilt z.B.
das Keplersche Gesetz, nach dem sich die Quadrate der Um-
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laufzeiten der Planeten wie die Kuben ihrer grossen Halb-
achsen verhalten, nur ndherungsweise, da die Massen der
Planeten relativ zur Sonnenmasse unberiicksichtigt bleiben.
Weiterhin beinhaltet das erste Keplersche Gesetz, nach dem
sich die Planeten auf Ellipsenbahnen um die Sonne (als einen
Brennpunkt) bewegen, ein anschauliches Modell des Sonnen-
systems. Ebenso beruhen vielfach Atomtheorien, wie z.B. die
von Rutherford, auf anschaulichen Modellen.

Der Modellbegriff steht somit fiir die gegeniiber der Wirk-
lichkeit vereinfachten, idealisierten Vorstellung einer physika-
lischen Gegebenheit: Das Modell ist ein idealisiertes Abbild
der Wirklichkeit. Es wird entscheidend prizisiert durch die
grundlegenden Annahmen und Voraussetzungen des darauf
gestiitzten methodischen Rechenverfahrens (Algorithmus) [3].

Mathematische Theorie und mathematisches Modell

Mathematische Modelle werden in mathematischen Theo-
rien, meist axiomatisierten Theorien, benutzt. Die Frage «Was
ist eine mathematische Theorie?» ist eine metamathematische
Frage [4].

Theorie heisst urspriinglich soviel wie Betrachtung (9cc-
pew = anschauen). Jedoch hat sich die Auffassung des Begriffs
«Theorie» von der Antike (Aristoteles) iiber das Mittelalter
(Pascal) bis zur Jetztzeit (Bolzano, Tarski) gewandelt. Man
unterscheidet den klassischen und den modernen Begriff einer
mathematischen Theorie [5].

Der klassische Begriff einer mathematischen Theorie geht
auf Aristoteles zuriick und wurde von Pascal (1655) neu formu-
liert. Nach der mathematischen Methode von Pascal definiert
man alles, was nicht undefinierbar ist, und beweist alles, was
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nicht unbeweisbar ist. Worter oder Redeweisen sind dann un-
definierbar, wenn ihre Bedeutungen so klar sind, dass sie einer
Prézisierung weder fahig sind noch bediirfen. Fine Aussage
soll als unbeweisbar gelten, wenn die durch sie ausgedriickte
Wahrheit so evident ist, dass sie eines Beweises weder fihig
noch bediirftig ist. In der klassischen Theorie werden die Aus-
sagen in der Pascalschen Sprache formuliert, die sich aus Ur-
wdrtern (undefinierbar) und ihren Derivaten (von Urwértern
ableitbar) zusammensetzt. Die Sidtze einer mathematischen
Theorie im Pascalschen Sinne zerfallen ebenfalls in zwei Klas-
sen: in die Klasse der den Urwértern entsprechenden Grund-
sdtze oder Prinzipien (bzw. Axiome) und in die Klasse ihrer
Derivate, die aus den Grundsitzen ableitbar sind und als
Lehrsditze bezeichnet werden. Grundsitze sind unbeweisbar,
d.h., sie sind eines Beweises weder fihig noch bediirftig. Da-
gegen missen alle Lehrsédtze einer mathematischen Theorie mit
Hilfe der Grundsitze beweisbar sein.

Der moderne Begriff einer mathematischen Theorie geht
auf Bolzano (1837) und Tarski (1935) zuriick. Darunter ver-
steht man den «Inbegriff aller mathematischen Wahrheiten»,
die in einer geeigneten Sprache (Bolzano-Sprache) dieser
Theorie dargestellt werden konnen. Alle Sitze in der mathe-
matischen Bolzano-Sprache sind axiomatisch-deduktiv erklirt,
d.h. als die Folgerungen (Konsequenzen) einer endlichen
Menge mathematischer Aussageformen. Das fiihrt auf den
mathematischen Folgerungsbegriff [6]. Somit sind auch im
Bolzanoschen Sinne mathematische Theorien axiomatisiert,
d.h., in ihrer Darstellung werden gewisse Sitze dieser Theorie
als Axiome an den Anfang gestellt, und zwar derart, dass alle
librigen Sétze (Theoreme bzw. Derivate) der Theorie aus den
Axiomen (Axiomensystem) gefolgert bzw. abgeleitet werden
konnen. Der wesentliche Unterschied zwischen der klassischen
und modernen Auffassung einer mathematischen Theorie liegt
in den Anforderungen, die an ein Axiomensystem gestellt
werden. Entgegen der klassischen Auffassung brauchen Axiome
im modernen Sinne nicht evident zu sein [7]. Axiome werden als
Aussagen verstanden, die Beziehungen zwischen den Elementen
vorgegebener Mengen festlegen. Sie sind nur brauchbar, wenn
sich aus ihnen keine Widerspriiche herleiten lassen. Ein Axio-
mensystem ist widerspruchsvoll, wenn es zwei Theoreme der
Form «Ti» und « | Ty» gibt. Im anderen Falle ist es wider-
spruchsfrei. Das Postulat der Widerspruchsfreiheit (logische
Wabhrheit) eines gegebenen Axiomensystems wird durch die
Konstruktion eines logischen Modells nachgewiesen, d.h., die
Widerspruchsfreiheit eines Systems ist gesichert durch ein
mathematisches Modell dieses Systems.

In den bisherigen Ausfiihrungen sind die wesentlichen
Merkmale (Axiome, Derivate) mathematischer Theorien im
klassischen und modernen Sinne skizziert. Dabei wurde auf
eine dritte Gruppe, ndmlich die der Annahmen und Voraus-
setzungen, die auch zum wesentlichen Inhalt eines mathemati-
schen Modells gehéren, nicht niher eingegangen. Um die ma-
thematische Losung insbesondere technischer Probleme zu er-
moglichen, werden Modelle zugrunde gelegt, die Gruppen von
sinnvollen Annahmen enthalten. Die Annahmen bestimmen
entscheidend die Giite eines Modells: Es ist um so besser, je
weniger weit sich die Annahmen von der Wirklichkeit ent-
fernen. Um bessere Ubereinstimmung mit Messergebnissen
(hdufig mit der Wirklichkeit identifiziert!) zu erhalten, konnen
die in den Losungen auftretenden Parameter bzw. Freiwerte
korrigiert werden, so dass sie nicht als physikalische Konstanten
und Stoffwerte angesehen werden konnen. Aus diesem Grunde
werden die Modelle immer weiter verfeinert, d.h., man passt
die Annahmen immer mehr der Wirklichkeit an, muss aber die
dadurch meist auftretenden mathematischen Schwierigkeiten
in Kauf nehmen. Dieser Aufwand lohnt sich insbesondere,
wenn dadurch die eingefiihrten Freiwerte den Charakter eines
anpassbaren Parameters verlieren und vielmehr physikalische
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Konstanten oder Stoffwerte widerspiegeln. Diese Kennwerte
konnen dann und nur dann wnabhéiingigen Messungen (Grund-
versuchen) entnommen und in die gefundenen (aufgestellten)
Beziehungen eingesetzt werden.

Andererseits kann gerade durch die Verfeinerung eines
Modells eine zunéchst als vermeintliche physikalische Kon-
stante oder Stoffeigenschaft eingefiihrte Grosse immer mehr
diesen Charakter verlieren und den eines anpassbaren Para-
meters annehmen. Ein Beispiel ist der von Siebel [9] bei ele-
mentaren Berechnungen in der Umformtechnik als Reibungs-
beiwert im Coulombschen Sinne benutzte Koeffizient w, der
sich mit zunehmender Erweiterung der Rechenmodelle von
Formgebungsverfahren mehr als verfahrensabhingiger anpass-
barer Parameter und weniger als fiir verschiedene Werkstoff-
paarungen gebildeter Reibungskoeffizient erwiesen hat [10].

Traglasttheorie und mathematisches Modell

Die Traglasttheorie bemiiht sich mit geringem Rechenauf-
wand um Aussagen iiber das mechanische Verhalten von Trag-
werken. Sie gestattet eine einfache Bestimmung der Tragfihig-
keit bzw. der Traglast und gibt Einblick in den wahrscheinlichen
Bruchmechanismus.

Voraussetzungen in der Traglasttheorie

Die Gruppe der Annahmen und Voraussetzungen in der
Traglasttheorie ist im wesentlichen durch folgende Punkte ge-
geben [8]:

1) Die dusseren Belastungen (im allgemeinen Krifte P; und
Momente M;) sollen langsam, stetig und proportional an-
wachsen (proportionale Belastung zu jedem Zeitpunkt 7):

(la;b) Pi (r)/P; (t) = =i = const. bzw.
M; (1) /M; (f) = @i = const.,

so dass die Angabe irgendeiner beliebigen Kraft P; oder eines
Momentes M; ausreicht, um den Belastungszustand eindeutig
zu beschreiben. Der grosste Wert aller P; (bzw. M;) im Augen-
blick des Zusammenbruchs ist die Traglast P» (bzw. das Trag-
moment Mr), die somit den Versagenszustand eindeutig be-
schreibt:

(2a;b) max (P)) = Pr bzw. max. (M;) = Mnr

2) Vom Werkstoff wird idealplastisches Verhalten vorausge-
setzt (Prandtl-Reuss-Korper ohne Verfestigung). Fiir Trag-
werke aus verfestigendem Werkstoff ist keine Traglast definiert.
Zur Beurteilung der Tragfidhigkeit eines Tragwerkes aus ver-
festigendem Werkstoff ist daher eine Angabe iiber zulissige
Deformationen notwendig.

3) Ausbildung einer begrenzten Anzahl von Fliessgelenken,
Fliessgelenklinien oder Fliessbereichen, in denen die Schnitt-
lasten bei Steigerung der dusseren Lasten konstant bleiben.

4) Bei Erreichen der Traglast P haben sich hinreichend viele
Fliessstellen gebildet, um das Tragwerk zu einem «Mechanis-
mus» zu machen, der durch Angabe einer einzigen Verschiebung
kinematisch bestimmt ist. Mit der Entstehung eines neuen
Fliessgelenkes wihrend der Belastung des Tragwerkes nimmt
der Grad der statischen Untestimmtheit jeweils um Eins ab,
d.h., ein n-fach statisch unbestimmtes System bricht zusammen,
wenn sich n - 1 Fliessgelenke gebildet haben (vollstindiger
Bruchmechanismus). Das System wird dann statisch bestimmt
(besser: statisch bestimmbar), d.h., die statischen Grundglei-
chungen reichen zur Bestimmung der Traglast aus.

5) Bis zum Erreichen der Traglast Pr seien die Verformungen
so klein, dass die geometrischen Anderungen des Tragwerkes
weder in die Gleichgewichtsbedingungen noch in die Randbe-
dingungen eingehen ( Theorie erster Ordnung.) Gleichgewichts-
und Randbedingungen werden daher anstatt auf den verform-
ten Korper stets auf den noch unverformten Korper bezogen.
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Gruppe I

Prinzipien , Grundsdtze

Axiome :

z.B. Prinzip der virtuellen
der Versagensgrenze

l
Gruppe I

Verschiebung an

Derivate: Lehrsdtze => Methoden Kalkiile Mathematisches
z.B. Traglastsdtze => Schrankenmethode Mode l |
Ermdglichung oder Vereinfachung einer Lgsung J'L

J.L strenge Ldsung im

Rahmen des Modells
Gruppe m-l

Voraussetzungen: Einzelannahmen, Hypothesen
z.B. Oy = Of = konst. ; Fliessgelenkhypothese L
Bild 1. Traglasttheorie als mathematisches Modell der Statik

6) Die Instabilitdt durch Knicken und Beulen muss gesondert
untersucht werden und kann die Tragfdhigkeit begrenzen.

Die Voraussetzungen 3), 4) und 5) enthalten die Fliess-
gelenkhypothese!

Sétze der Traglasttheorie
Satz 1:

Die einem statisch zuldissigen Spannungsfeld entsprechende
dussere Last(gruppe) Ps ist kleiner als die Traglast Pr

(3a) Ps < Pr

Satz 2:

Die einem kinematisch zuldssigen, aber statisch unzulis-
sigen Geschwindigkeitsfeld oder Bruchmechanismus entspre-
chende &dussere Last(gruppe) Px ist grosser als die Traglast Pr:

(3b) Pk > Pqr
Mithin lassen sich beide Sétze durch die Ungleichung
4 Ps<Pr<Px

zusammenfassen. Als Folgesatz gilt:

Die zu einem statisch zuléssigen und kinematisch moglichen
Bruchmechanismus gehorige Gruppe der dusseren Krifte ist
die Traglastgruppe.

Ein statisch zuldssiges Spannungsfeld liegt dann vor, wenn
die Gleichgewichtsbedingungen, die statischen Randbedingun-
gen und im plastischen Bereich die Fliessbedingungen erfiillt
sind. Dagegen brauchen beim kinematisch zuldssigen Ge-
schwindigkeitsfeld die Gleichgewichtsbedingung nicht erfiillt
zu sein, wenn nur die Kompatibilititsbedingungen, die kine-
matischen Randbedingungen und die Kontinuititsbedingungen
eingehalten werden.

Die formulierten Sdtze der Traglasttheorie grenzen die
Traglast Pr durch eine untere Schranke Ps und eine obere
Schranke Px gemiss der Ungleichung (4) ein. Dabei gewinnt
man die untere bzw. die obere Schranke aus einem «erratenen»
statisch zuldssigen Spannungsfeld bzw. kinematisch zuldssigen
Geschwindigkeitsfeld. Somit kann auf der Basis der Traglast-
sitze die strenge Ldsung nach oben und unten abgeschitzt
werden. Dieses sogenannte Schrankenverfahren bietet ins-
besondere auch in der Kontinuumsmechanik Vorteile: Eine
strenge Losung, zu der das statisch zuldssige Spannungsfeld
und das kinematisch zulissige Geschwindigkeitsfeld gehoren,
kann z.B. iiber die Plastizititstheorie meist nur unter er-
heblichem mathematischem Aufwand gefunden werden, wenn
tiberhaupt eine strenge Losung in analytisch geschlossener
Form moglich ist. Um diese Schwierigkeiten zu umgehen,
benutzt man u.a. die Schrankenmethode.

Die untere und die obere Schranke konnen auch allgemein
iiber Leistungsbetrachtungen aus angenommenem Spannungs-
und Geschwindigkeitsfeld im kritischen Querschnitt eines Trag-
werkes gefunden werden. Die Grundlage hierzu sind folgende
Sdtze:

1) Von sdmtlichen angenommenen statisch zuldssigen Span-
nungsfeldern liefert das wirklich vorhandene ein Maximum der
Verformungsleistung Ls.

2) Von samtlichen kinematisch zuldssigen Geschwindigkeits-
feldern ergibt das wirklich vorhandene ein Minimum an Ver-
formungsleistung L.

Mithin gilt:

| Ly = max. (Ls) und Lz = min. (Lx)
| bzw. Ls < Lr < Lx

)

Wie weit der Bereich ist, in dem die strenge Losung liegt,
hédngt von der Wahl des angenommenen Spannungs- und
Geschwindigkeitsfeldes ab. Je grosser der Rechenaufwand ist,
den man in Kauf nimmt, um so enger liegen die Grenzwerte
beieinander. Die strenge Losung ist dann gegeben, wenn obere
und untere Schranke zusammenfallen. In [8] wird ein Beispiel
zum Schrankenverfahren durchgerechnet.

Axiom der Traglasttheorie

Die erwdhnten Traglastséitze sind als Lehrsidtze oder Theo-
reme aufzufassen, die man aus dem Grundsatz bzw. der Grund-
gleichung der Traglasttheorie ableiten kann. Als Grundsatz
bzw. Grundgleichung wird der Traglasttheorie das Prinzip der
virtuellen Verschiebung an der Versagensgrenze vorangestellt,
das folgendermassen formuliert werden kann:

n

6) 340 = [(P2)i3(Va) — ), (M*);8 ;=0

Jj=1

Darin bedeuten 8 A(¢) die virtuelle Arbeit, (Pr): die Trag-
lastgruppe (Einzelkréifte, Lastverteilungen, allgemeine dussere
Belastungen an der Versagensgrenze), (M «*); die in den Fliess-
gelenken angebrachten Schnittmomente im Versagenszustand
und 8 (¥'r): bzw. 3 o; virtuelle Verschiebungen bzw. virtuelle
Verdrehungen, [ Stieltjes-Integral.

Der erste Term auf der rechten Seite in Gl. (6) umfasst
alle dusseren Belastungen, wihrend die zweite Summe iiber
Schnittgrossen im Innern des Korpers erstreckt wird.

Das Prinzip der virtuellen Verschiebung ist ein Axiom,
nach dem ein mechanisches System sich im Gleichgewicht be-
findet, wenn die Gesamtarbeit der eingeprigten Krifte fiir
jede (denkbar) mogliche Verschiebung verschwindet. Das
Prinzip umgeht die Gleichgewichtsbedingungen.

Im Sinne der mathematischen Logik ist die Traglasttheorie
eine axiomatische Theorie. Als Axiom wird das Prinzip der
virtuellen Verschiebung an der Versagensgrenze benutzt. Die
daraus ableitbaren Lehrsidtze bzw. Theoreme sind die Trag-
lastsitze, die eine Eingabelung der Traglast nach der Schranken-
methode gestatten. Die Fliessgelenkhypothese gehort zur Grup-
pe der Annahmen in der Traglasttheorie.

Somit kann die Traglasttheorie als mathematisches Modell
inder Statik (Bild 1) [11] aufgefasst werden, das eine Beschrei-
bung des funktionellen Versagens von Tragwerken gestattet.
Im Rahmen dieses Modells sind alle nach dem Traglastver-
fahren ermittelten Ergebnisse strenge Lisungen.
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Die Verlustanalyse als Mittel zur Bemessung des Spiraleintrittdurchmessers

von Wasserturbinen

Von Prof. J. Osterwalder, Darmstadt

Zusammenfassung

Bei der Projektierung von Wasserkraftanlagen ist man be-
strebt, die Hauptabmessungen und insbesondere die Breite der
jeweiligen Spirale klein zu halten, da dieses Mass den Abstand
von Turbine zu Turbine (Achsabstand) und somit die Bau-
kosten erheblich beeinflussen kann. Bei der Festlegung der
Stromungsquerschnitte und des Eintrittdurchmessers Dz ist
aber auch darauf zu achten, dass unzuldssige Verluste vermieden
werden. Im vorliegenden Beitrag werden die Spiralverluste ab-
geleitet und formelmassig angegeben; es ldsst sich damit der
Durchmesser Dg fiir einen bestimmten, als zuldssig erachteten
Verlust berechnen und fiir Turbinen verschiedener Schnell-

ldufigkeit angeben.
%

Der Beitrag veranschaulicht die Bedeutung der Verlust-
analyse als Mittel zur Bemessung von Turbinenspiralen mit
kreisformigen Stromungsquerschnitten. Zur Vereinfachung der
Problemstellung werden folgende Annahmen getroffen:

— Lineare Abhéngigkeit des Spiralquerschnittes 4, vom Zen-
triwinkel ¢, was in vielen Féllen den Tatsachen entspricht
(Bild 1).

— In allen Querschnitten A, herrscht die gleiche mittlere
Geschwindigkeit (¢, = cz = konst.), was bei umfangs-
symmetrischer Abstromung durch die Stiitzschaufelkanéle
und dem erwihnten linearen Verlauf 4, ~ ¢ zutrifft.

— Die Stromungsverluste werden in Anlehnung an die Wider-
standsgesetze der Rohrstromung ermittelt, wobei der Rei-
bungsbeiwert i als ein fiir die Spiralenstromung reprisen-
tativer Mittelwert anzusehen ist.

Unter diesen Voraussetzungen konnen die bezogenen
Spiralverluste wie folgt hergeleitet werden:

dH v — E,,,{ 5 dl _ ce? 3 R, dy
2g D 2g Dy,
R,/, _ aD. +0,5 D'f, <. qu i 0’5
D, D, D,
R D, (2 m)t/2
b R L Ll
Dy, Dg @l/2
N ce? a D1 (2 )12 l
dHy = P PN [ Ds o\ + 0,5] de
Hy
= Ker? -
H
¢=2n p=2n
aDi(2m)vz [ i
e~ Y2do + 0,5 dog
DI'.'

=0 ¢ =0
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Anhand von Formel (1) kann der Verlust einer gegebenen
Turbine mit bekannten Daten Q, H, D1, D, a wie folgt er-
mittelt werden:

Beispiel: Kaplan-Spiralturbine mit 6 Laufschaufeln bei Vollast

D
il 0,82; a = 0,756;
Dk
)
o= =030
Qll Dlz (ng)l/Z
N = 0,014
cE 40
Kege = = ;o
@gH)* =Dy (g H)P
2L Ee . .
o= (De[D1)* D1* (2 g H)'Y?
4 * D1Y* " 4403
Kew = T2 (7) =222 0,820,256
T De b
Hy

= 0,2562-0,014 - = - (4-0,756 - 0,82 + 1) = 0,01

Mit Formel (1) ldsst sich ferner der bezogene Spiraldurch-
messer Dg/D: fir einen bestimmten, als tragbar erachteten

Bild 1.

Schematische Darstellung des Spiralgehiiuses einer Fran-
cisturbine mit Angabe der verwendeten Rechnungsgrossen
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