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Die Traglasttheorie der Statik als mathematisches Modell
Von J. Betten, Aachen, Mitteilung aus dem Institut für Werkstoffkunde der RWTH Aachen DK 624.04

In dem vorliegenden Aufsatz wird gezeigt, dass die
Traglasttheorie als mathematisches Modell aufgefasst werden kann.
Dazu werden zunächst im Sinne der mathematischen Logik der
Begriff einer mathematischen Theorie, insbesondere das Wesen
einer axiomatisierten Theorie, und der Modellbegriff näher
erörtert.

Das mathematische Modell der Traglasttheorie beruht auf
dem Prinzip der virtuellen Verschiebung an der Versagensgrenze
als Axiom. Daraus lassen sich die Traglastsätze ableiten, die eine
Eingabelung der Traglast durch eine obere und untere Schranke
ermöglichen (Schrankenmethode). Zum mathematischen Modell
der Traglasttheorie gehört schliesslich noch die Gruppe der
Voraussetzungen, die einerseits über den erforderlichen Rechenaufwand

zur Ermittlung der Tragfähigkeit entscheidet und andererseits

die Güte des Modells bestimmt.

Allgemeines Über den Modellbegriff
Der Begriff des Modells wird häufig auf anschauliche,

mitunter verkleinerte bzw. vergrösserte Darstellungen angewandt.
In diesem Sinne wird etwa der Architekt das Modell eines
auszuführenden Bauwerks herstellen. Ein ähnliches Beispiel ist ein
Relief als Modell einer Landschaftsoberfläche. Kein Modell
jedoch wird alle Eigenschaften der darzustellenden Wirklichkeit
vollständig wiedergeben. Das Modell ist nur Modell in bezug
auf bestimmte Eigenschaften und Relationen [1 ].

In ähnlicher Weise haben die empirischen Wissenschaften
Modelle entwickelt, die nur in bezug auf bestimmte Relationen
der darzustellenden Erfahrungswirklichkeit mit dieser unter
bestimmten Voraussetzungen übereinstimmen [2]. So gilt z.B.
das Keplersche Gesetz, nach dem sich die Quadrate der Um-

laufzeiten der Planeten wie die Kuben ihrer grossen
Halbachsen verhalten, nur näherungsweise, da die Massen der
Planeten relativ zur Sonnenmasse unberücksichtigt bleiben.
Weiterhin beinhaltet das erste Keplersche Gesetz, nach dem
sich die Planeten auf Ellipsenbahnen um die Sonne (als einen
Brennpunkt) bewegen, ein anschauliches Modell des Sonnensystems.

Ebenso beruhen vielfach Atomtheorien, wie z.B. die
von Rutherford, auf anschaulichen Modellen.

Der Modellbegriff steht somit für die gegenüber der
Wirklichkeit vereinfachten, idealisierten Vorstellung einer physikalischen

Gegebenheit: Das Modell ist ein idealisiertes Abbild
der Wirklichkeit. Es wird entscheidend präzisiert durch die
grundlegenden Annahmen und Voraussetzungen des darauf
gestützten methodischen Rechenverfahrens (Algorithmus) [3].

Mathematische Theorie und mathematisches Modell
Mathematische Modelle werden in mathematischen Theorien,

meist axiomatisierten Theorien, benutzt. Die Frage «Was
ist eine mathematische Theorie?» ist eine metamathematische
Frage [4].

Theorie heisst ursprünglich soviel wie Betrachtung (ôeoi-
peiv anschauen). Jedoch hat sich die Auffassung des Begriffs
«Theorie» von der Antike (Aristoteles) über das Mittelalter
(Pascal) bis zur Jetztzeit (Bolzano, Tarski) gewandelt. Man
unterscheidet den klassischen und den modernen Begriff einer
mathematischen Theorie [5].

Der klassische Begriff einer mathematischen Theorie geht
auf Aristoteles zurück und wurde von Pascal (1655) neu formuliert.

Nach der mathematischen Methode von Pascal definiert
man alles, was nicht undefinierbar ist, und beweist alles, was
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nicht unbeweisbar ist. Wörter oder Redeweisen sind dann
undefinierbar, wenn ihre Bedeutungen so klar sind, dass sie einer
Präzisierung weder fähig sind noch bedürfen. Eine Aussage
soll als unbeweisbar gelten, wenn die durch sie ausgedrückte
Wahrheit so evident ist, dass sie eines Beweises weder fähig
noch bedürftig ist. In der klassischen Theorie werden die
Aussagen in der Pascalschen Sprache formuliert, die sich aus Ur-
wörtern (undefinierbar) und ihren Derivaten (von Urwörtern
ableitbar) zusammensetzt. Die Sätze einer mathematischen
Theorie im Pascalschen Sinne zerfallen ebenfalls in zwei Klassen:

in die Klasse der den Urwörtern entsprechenden Grundsätze

oder Prinzipien (bzw. Axiome) und in die Klasse ihrer
Derivate, die aus den Grundsätzen ableitbar sind und als
Lehrsätze bezeichnet werden. Grundsätze sind unbeweisbar,
d.h., sie sind eines Beweises weder fähig noch bedürftig.
Dagegen müssen alle Lehrsätze einer mathematischen Theorie mit
Hilfe der Grundsätze beweisbar sein.

Der moderne Begriff einer mathematischen Theorie geht
auf Bolzano (1837) und Tarski (1935) zurück. Darunter
versteht man den «Inbegriff aller mathematischen Wahrheiten»,
die in einer geeigneten Sprache (Bolzano-Sprache) dieser
Theorie dargestellt werden können. Alle Sätze in der
mathematischen Bolzano-Sprache sind axiomatisch-deduktiv erklärt,
d.h. als die Folgerungen (Konsequenzen) einer endlichen
Menge mathematischer Aussageformen. Das führt auf den
mathematischen Folgerungsbegriff [6]. Somit sind auch im
Bolzanoschen Sinne mathematische Theorien axiomatisiert,
d.h., in ihrer Darstellung werden gewisse Sätze dieser Theorie
als Axiome an den Anfang gestellt, und zwar derart, dass alle
übrigen Sätze (Theoreme bzw. Derivate) der Theorie aus den
Axiomen (Axiomensystem) gefolgert bzw. abgeleitet werden
können. Der wesentliche Unterschied zwischen der klassischen
und modernen Auffassung einer mathematischen Theorie liegt
in den Anforderungen, die an ein Axiomensystem gestellt
werden. Entgegen der klassischen Auffassung brauchen Axiome
im modernen Sinne nicht evident zu sein [7]. Axiome werden als
Aussagen verstanden, die Beziehungen zwischen den Elementen
vorgegebener Mengen festlegen. Sie sind nur brauchbar, wenn
sich aus ihnen keine Widersprüche herleiten lassen. Ein
Axiomensystem ist widerspruchsvoll, wenn es zwei Theoreme der
Form «71t» und « I Ti» gibt. Im anderen Falle ist es
widerspruchsfrei. Das Postulat der Widerspruchsfreiheit (logische
Wahrheit) eines gegebenen Axiomensystems wird durch die
Konstruktion eines logischen Modells nachgewiesen, d.h., die
Widerspruchsfreiheit eines Systems ist gesichert durch ein
mathematisches Modell dieses Systems.

In den bisherigen Ausführungen sind die wesentlichen
Merkmale (Axiome, Derivate) mathematischer Theorien im
klassischen und modernen Sinne skizziert. Dabei wurde auf
eine dritte Gruppe, nämlich die der Annahmen und
Voraussetzungen, die auch zum wesentlichen Inhalt eines mathematischen

Modells gehören, nicht näher eingegangen. Um die
mathematische Lösung insbesondere technischer Probleme zu
ermöglichen, werden Modelle zugrunde gelegt, die Gruppen von
sinnvollen Annahmen enthalten. Die Annahmen bestimmen
entscheidend die Güte eines Modells : Es ist um so besser, je
weniger weit sich die Annahmen von der Wirklichkeit
entfernen. Um bessere Übereinstimmung mit Messergebnissen
(häufig mit der Wirklichkeit identifiziert!) zu erhalten, können
die in den Lösungen auftretenden Parameter bzw. Freiwerte
korrigiert werden, so dass sie nicht als physikalische Konstanten
und Stoffwerte angesehen werden können. Aus diesem Grunde
werden die Modelle immer weiter verfeinert, d.h., man passt
die Annahmen immer mehr der Wirklichkeit an, muss aber die
dadurch meist auftretenden mathematischen Schwierigkeiten
in Kauf nehmen. Dieser Aufwand lohnt sich insbesondere,
wenn dadurch die eingeführten Freiwerte den Charakter eines
anpassbaren Parameters verlieren und vielmehr physikalische

Konstanten oder Stoffwerte widerspiegeln. Diese Kennwerte
können dann und nur dann unabhängigen Messungen
(Grundversuchen) entnommen und in die gefundenen (aufgestellten)
Beziehungen eingesetzt werden.

Andererseits kann gerade durch die Verfeinerung eines
Modells eine zunächst als vermeintliche physikalische
Konstante oder Stoffeigenschaft eingeführte Grösse immer mehr
diesen Charakter verlieren und den eines anpassbaren
Parameters annehmen. Ein Beispiel ist der *Si Siebel [9] bei
elementaren Berechnungen in der Umformtechnik als Reibungsbeiwert

im Coulombschen Sinne benutzte Koeffizient ¦-, der
sich mit zunehmender ErwehÜffiung der Rechenmodelle von
Formgebungsverfahren mehr als verfahrensabhängiger anpassbarer

Parameter und weniger als für verschiedene Werkstoffpaarungen

gebildeter Reibungskoeffizient erwiesen hat [10].

Traglasttheorie und mathematisches Modell
Die Traglasttheorie bemüht sich mit geringem Rechenaufwand

um Aussagen über das mechanische Verhalten von
Tragwerken. Sie gestattet eine einfache Bestimmung der Tragfähigkeit

bzw. der Traglas^^^Sbt Einblick in den wahrscheinlichen
Bruchmechanismus.

Voraussetzungen in der Traglasttheorie
Die Gruppe der Annahmen und Voraussetzungen in der

Traglasttheorie ist im wesentlichen durch folgende Punkte
gegeben [8]:
1) Die äusseren Belastungen (im allgemeinen Kräfte Pt und
Momente Mi) sollen langsam, stetig und proportional
anwachsen (proportionale Belastung zu jedem Zeitpunkt f)*

(1 a; b) Pt (0/P/ (0 -1« const, bzw.
Mt (t)/M) (0 u.1] const.,

so dass die Angabe irgendeiner beliebigen Kraft Pi oder eines
Momentes Mi ausreicht, um den Belastungszustand eindeutig
zu beschreiben. Der grösste Wert aller Pt (bzw. Mi) im Augenblick

des Zusammenbruchs ist die Traglast Pt (bzw. das
Tragmoment Mt), die somit den Versagenszustand eindeutig
beschreibt :

(2 a; b) max (Pt) Pt bzw. max. (Mi) Mt
2) Vom Werkstoff wird idealplastisches Verhalten vorausgesetzt

(Prandtl-Reuss-Körper ohne Verfestigung). Für
Tragwerke aus verfestigendem Werkstoff ist keine Traglast definiert.
Zur Beurteilung der Tragfähigkeit eines Tragwerkes aus
verfestigendem Werkstoff ispäaher eine Angabe über zulässige
Deformationen notwendig.

3) Ausbildung einer begrenzten Anzahl von Fliessgelenken,
Fliessgelenklinien oder Fliessbereichen, in denen die Schnittlasten

bei Steigerung der äusseren Lasten konstant bleiben.

4) Bei Erreichen der Traglast Pt haben sich hinreichend viele
Fliessstellen gebildet, um das Tragwerk zu einem «Mechanismus»

zu machen, der durch Angabe einer einzigen Verschiebung
kinematisch bestimmt ist. Mit der Entstehung eines neuen
Fliessgelenkes während der Belastung des Tragwerkes nimmt
der Grad der statischen UnbeÄmmtheit jeweils um Eins ab,
d.h., ein «-fach statisch unbestimmtes System bricht zusammen,
wenn sich n + 1 Fliessgelenke gebildet haben (vollständiger
Bruchmechanismus). Das System wird dann statisch bestimmt
(besser: statisch bestimmbar), d.h., die statischen Grundgleichungen

reichen zur Bestimmung der Traglast aus.

5) Bis zum Erreichen der Traglast Pt seien die Verformungen
so klein, dass die geometrischen Änderungen des Tragwerkes
weder in die Gleichgewichtsbedingungen noch in die
Randbedingungen eingehen Theorie erster Ordnung.) Gleichgewichtsund

Randbedingungen werden daher anstatt auf den verformten

Körper stets auf den noch unverformten Körper bezogen.
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Gruppe I
Axiome : Prinzipien Grundsätze

z. B. Prinzip der virtuellen Verschiebung on
der Versagensgrenze

Gruppe II
Derivate : Lehrsätze =#¦ Methoden Kalküle

z. B. Traglastsätze =^ Schrankenmethode

ErmSglicImng oder Vereinfachung einer Ltfsunq

Gruppe m

Voraussetzungeni Einzelannohmen, Hypothesen

z.B. 6v * Öp » konst. ; Fliessgelenkhypothese

Mathematisches

Model I

strenge Lösung im

Rahmen des Modells

Bild 1. Traglasttheorie als mathematisches Modell der Statik

6) Die Instabilität durch Knicken und Beulen muss gesondert
untersucht werden und kann die Tragfähigkeit begrenzen.

Die Voraussetzungen 3), 4) und 5) enthalten die
Fliessgelenkhypothese

Sätze der Traglasttheorie
Satz 1:

Die einem statisch zulässigen Spannungsfeld entsprechende
äussere Last(gruppe) Ps ist kleiner als die Traglast Pt
(3a) Ps < Pt
Satz 2:

Die einem kinematisch zulässigen, aber statisch unzulässigen

Geschwindigkeitsfeld oder Bruchmechanismus entsprechende

äussere Last(gruppe) Pk ist grösser als die Traglast Pt:
(3b) Pk > Pt

Mithin lassen sich beide Sätze durch die Ungleichung

(4) Ps <Pt < Pk

zusammenfassen. Als Folgesatz gut :

Die zu einem statisch zulässigen und kinematisch möglichen
Bruchmechanismus gehörige Gruppe der äusseren Kräfte ist
die Traglastgruppe.

Ein statisch zulässiges Spannungsfeld liegt dann vor, wenn
die Gleichgewichtsbedingungen, die statischen Randbedingungen

und im plastischen Bereich die Fliessbedingungen erfüllt
sind. Dagegen brauchen beim kinematisch zulässigen Ge-
schwindigkeitsfeld die Gleichgewichtsbedingung nicht erfüllt
zu sein, wenn nur die Kompatibilitätsbedingungen, die
kinematischen Randbedingungen und die Kontinuitätsbedingungen
eingehalten werden.

Die formulierten Sätze der Traglasttheorie grenzen die
Traglast Pt durch eine untere Schranke Ps und eine obere
Schranke Pk gemäss der Ungleichung (4) ein. Dabei gewinnt
man die untere bzw. die obere Schranke aus einem «erratenen»
statisch zulässigen Spannungsfeld bzw. kinematisch zulässigen
Geschwindigkeitsfeld. Somit kann auf der Basis der Traglastsätze

die strenge Lösung nach oben und unten abgeschätzt
werden. Dieses sogenannte Schrankenverfahren bietet
insbesondere auch in der Kontinuumsmechanik Vorteile: Eine
strenge Lösung, zu der das statisch zulässige Spannungsfeld
und das kinematisch zulässige Geschwindigkeitsfeld gehören,
kann z.B. über die Plastizitätstheorie meist nur unter
erheblichem mathematischem Aufwand gefunden werden, wenn
überhaupt eine strenge Lösung in analytisch geschlossener
Form möglich ist. Um diese Schwierigkeiten zu umgehen,
benutzt man u.a. die Schrankenmethode.

Die untere und die obere Schranke können auch allgemein
über Leistungsbetrachtungen aus angenommenem Spannungsund

Geschwindigkeitsfeld im kritischen Querschnitt eines
Tragwerkes gefunden werden. Die Grundlage hierzu sind folgende
Sätze:

1) Von sämtlichen angenommenen statisch zulässigen
Spannungsfeldern liefert das wirklich vorhandene ein Maximum der
Verformungsleistung Ls.
2) Von sämtlichen kinematisch zulässigen Geschwindigkeitsfeldern

ergibt das wirklich vorhandene ein Minimum an
Verformungsleistung Lk.

(5)

Mithin gilt:

f Lt max. (Ls) und Lt
\ bzw. Ls 5é Lt *S Lk

(Lk)

Wie weit der Bereich ist, in dem die strenge Lösung liegt,
hängt von der Wahl des angenommenen Spannungs- und
Geschwindigkeitsfeldes ab. Je grösser der Rechenaufwand ist,
den man in Kauf nimmt, um so enger liegen die Grenzwerte
beieinander. Die strenge Lösung ist dann gegeben, wenn obere
und untere Schranke zusammenfallen. In [8] wird ein Beispiel
zum Schrankenverfahren durchgerechnet.

Axiom der Traglasttheorie
Die erwähnten Traglastsätze sind als Lehrsätze oder Theoreme

aufzufassen, die man aus dem Grundsatz bzw. der
Grundgleichung der Traglasttheorie ableiten kann. Als Grundsatz
bzw. Grundgleichung wird deiÄraglasttheorie das Prinzip der
virtuellen Verschiebung an der Versagensgrenze vorangestellt,
das folgendermassen formuliert werden kann:

n

(6) 8 /(<-> / (PT)i 8(Vt)i - Y, (Mt*)} 8 <p/ 0

Darin bedeuten 8 Aw die virtuelle Arbeit, (Pt)j die
Traglastgruppe (Einzelkräfte, Lastverteüungen, allgemeine äussere
Belastungen an der Versagensgrenze), (Mt*)] die in den
Fliessgelenken angebrachten Schnittmomente im Versagenszustand
und 8(Vr)i bzw. 8 <p- virtuelle Verschiebungen bzw. virtuelle
Verdrehungen, J" Stieltjes-lntegcal.

Der erste Term auf der rechten Seite in Gl. (6) umfasst
alle äusseren Belastungen, während die zweite Summe über
Schnittgrössen im Innern des Körpers erstreckt wird.

Das Prinzip der virtuellen Verschiebung ist ein Axiom,
nach dem ein mechanisches System sich im Gleichgewicht
befindet, wenn die Gesamtarbeit der eingeprägten Kräfte für
jede (denkbar) mögliche Verschiebung verschwindet. Das
Prinzip umgeht die Gleichgewidmtsbedingungen.

Im Sinne der mathematischen Logik ist die Traglasttheorie
eine axiomatische Theorie. Als Axiom wird das Prinzip der
virtuellen Verschiebung an der Versagensgrenze benutzt. Die
daraus ableitbaren Lehrsätze bzw. Theoreme sind die
Traglastsätze, die eine Eingabelung der Traglast nach der Schrankenmethode

gestatten. Die Fliessgelenkhypothese gehört zur Gruppe

der Annahmen in der Traglasttheorie.
Somit kann die Traglasttheorie als mathematisches Modell

in der Statik (Bild 1) [11] aufgefasst werden, das eine Beschreibung

des funktionellen Versagens von Tragwerken gestattet.
Im Rahmen dieses Modells sind alle nach dem Traglastverfahren

ermittelten Ergebnisse strenge Lösungen.
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Die Verlustanalyse als Mittel zur Bemessung des Spiraleintrittdurchmessers
von Wasserturbinen dk621.224

Von Prof. J. Osterwalder, Darmstadt

Zusammenfassung

Bei der Projektierung von Wasserkraftanlagen ist man
bestrebt, die Hauptabmessungen und insbesondere die Breite der
jeweiligen Spirale klein zu halten, da dieses Mass den Abstand
von Turbine zu Turbine (Achsabstand) und somit die
Baukosten erheblich beeinflussen kann. Bei der Festlegung der
Strömungsquerschnitte und des Eintrittdurchmessers De ist
aber auch daraufzu achten, dass unzulässige Verluste vermieden
werden. Im vorliegenden Beitrag werden die Spiralverluste
abgeleitet und formelmässig angegeben; es lässt sich damit der
Durchmesser De für einen bestimmten, als zulässig erachteten
Verlujft berechnen und für Turbinen verschiedener Schnell-
läufigkeit angeben.

*

Der Beitrag veranschaulicht die Bedeutung der Verlustanalyse

als Mittel zur Bemessung von Turbinenspiralen mit
kreisförmigen Strömungsquerschnitten. Zur Vereinfachung der
Problemstellung werden folgende Annahmen getroffen:

- Lineare Abhängigkeit des Spiralquerschnittes Av vom
Zentriwinkel 9, was in vielen Fällen den Tatsachen entspricht
(Bild 1).

- In allen Querschnitten A? herrscht die gleiche mittlere
Geschwindigkeit (cv ce konst.), was bei umfangs-
symmetrischer Abströmung durch die Stützschaufelkanäle
und dem erwähnten linearen Verlauf Aa zutrifft.

- Die Strömungsverluste werden in Anlehnung an die
Widerstandsgesetze der Rohrströmung ermittelt, wobei der
Reibungsbeiwert X als ein für die Spiralenströmung repräsentativer

Mittelwert anzusehen fiErSÜ

Unter diesen Voraussetfpngen können die bezogenen
Spiralverluste wie folgt hergeleitet werden:

dHv
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2g
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Dm

es'
~2g

Rq> dv

Dm
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a Di + 0,5 Dv a Di
1l\Ö.

0,5

M a Di (2 -r)»/*

Dw

dHv

Hv
H

De 91
0,5

2g

KcB2X

aDi(2nyi
De 91/2

+ 0,5 d<f

a Di (2 n-)1'-

De '
q> 2n tp 2n

I <r*'2 d<? + / 0,5 d<?

if 0 P.**0_.

(1)

Hv
H

Hv
~H~

KcB2*
a Di (2 vi)1'2 (2-t)1/2

De De

AaDi
Kos2 X TT + 1

De

Anhand von Formel (1) kann der Verlust einer gegebenen
Turbine mit bekannten Daten Q, H, Di, De, a wie folgt
ermittelt werden:

Beispiel: Kaplan-Spiralturbine mit 6 Laufschaufeln bei Vollast

Di
0,82; a 0,756;

De

Qu*
Q

Di1 (2 g H)1'2

X 0,014

KcB
CB 4ß

(2 g H)1'2 i De2 (2 g H)1'2

4ß
n (De/Di)2 Di2 (2 g Hyi2

4 Ou* /Di\2 4*0,3
KcB — I- -I — • 0.822 ¦ 0,256

*r \ De J 7t

Hv
~H~ 0,2562 • 0,014 • -t • (4 • 0,756 • 0,82 + 1)

Mit Formel (1) lässt sich ferner der bezogene Spiraldurchmesser

DbJDi ipr einen bestimmten, als tragbar erachteten

v--o
Am

<¦£

2Jt

wua
<"JSf' °<p'°£-(-?f>*

Bild 1. Schematische Darstellung des Spiralgehäuses einer
Francisturbine mit Angabe der verwendeten Rechnungsgrössen
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