Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 90 (1972)

Heft: 43

Artikel: Hangar für Grossraumflugzeuge in Tokio, Anheben des Daches

Autor: Sommer, Peter

DOI: https://doi.org/10.5169/seals-85340

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Tabelle 1: Richtwerte für die zu erwartenden Beton- und Mörteleigenschaften.

Mischungs- verhältnis	Sieb- linie	Beschleu- niger in	Erstarrung in sec.		Druckfestigkeiten in kp/cm² nach		
Zement: Zuschlag- stoff in		% vom Ze- mentge- wicht			6 h	12 h	24 h
Gewichtsteilen			Beginn	Ende			
1:3	für	2	30	60	20	60	85
1:3	Mörtel	3	25	50	30	90	110
1:5	für	2	60	300	22	56	75
1:5	Beton	3	sofort	60	33	82	100

unbedeutend ist. Dagegen werden bei Massenspritzbeton mit wenigen Ausnahmen pulverförmige Präparate eingesetzt, da hierbei die Wirtschaftlichkeit in keinem Verhältnis zu den oben erwähnten Mängeln steht.

Wie alle Produkte, die das Erstarren von Zement beeinflussen, reagieren auch die Beschleuniger auf Aluminatbasis nicht bei jedem Zement in der gleichen Weise, so dass die notwendige Zugabemenge für eine bestimmte Erstarrungsund Erhärtungszeit durch geeignete Vorversuche ermittelt werden muss. Geeignete Bindemittel sind Portlandzemente, Eisenportlandzemente und Hochofenzemente, wobei den Portlandzementen der Vorzug gegeben werden soll. Nicht verwendet werden können Tonerde- und Sulfathüttenzemente. Richtwerte für die zu erwartenden Beton- und Mörteleigenschaften in bezug auf die weichen und erhärteten Mischungen beim Einsatz eines Portlandzementes mittlerer Mahlfeinheit sind aus Tabelle 1 ersichtlich.

Abschliessend sei noch angeführt, dass alkalische Beschleuniger mehr oder weniger grosse Mengen wasserlöslicher Salze in Beton- oder Mörtelmischungen einbringen. Bei Anwe-

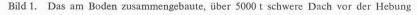
senheit von Wasser oder Feuchtigkeit ist deren Lösung im Laufe der Zeit möglich. Treten diese Lösungen über das Kapillarsystem nach aussen und kann das Wasser verdunsten, so kommt es zu Aussinterungen. Wenn ein derartiger Spritzbeton keine Überdeckung mit einem weiteren Beton oder feuchtem Erdreich erhält, empfiehlt es sich besonders bei hohen Dosierungen zusätzlich eine beschleunigerfreie Deckschicht aufzubringen. - Bei der Anwendung nicht alkalischer Beschleuniger, die meist auf Chloridbasis hergestellt werden, treten derartige Erscheinungen nicht oder nur in geringfügigem Masse auf. Diese Produkte sind ungeeignet für das Abdichten von wasserüberrieselnden oder stark feuchten Flächen. Sie zeigen auch ein anderes Erstarrungs- und Erhärtungsverhalten und werden deshalb allgemein nur dann verwendet, wenn dickere Spritzbetonschichten aufzutragen sind und diese in einzelnen Lagen von 2 bis 3 cm in Zeitabständen von zum Beispiel 6 bis 24 Stunden aufgebracht werden können. Chloridhaltige Beschleuniger unterscheiden sich also grundsätzlich von den alkalischen Produkten durch längere Erstarrungszeiten. Sie bringen aber dafür hohe Früh- und Endfestigkeiten.

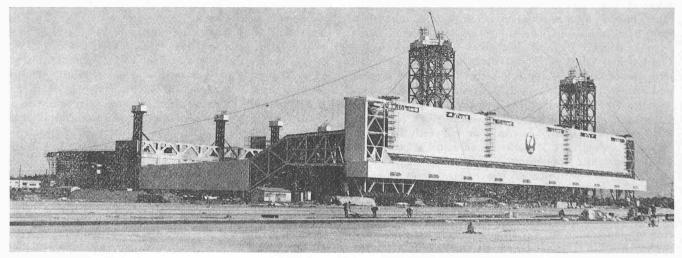
Literaturverzeichnis

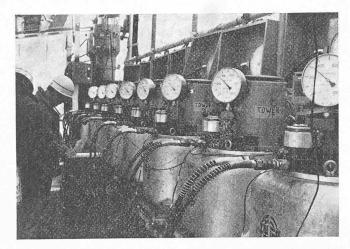
- [1] G. Benz: Erstarrungs- und Erhärtungsbeschleuniger für Beton. «Bau und Bauindustrie», H. 7/71 (1971).
- [2] G. Benz: Erfahrungen mit Zusatzmitteln f
 ür Torkretbeton. «Baupraxis», H. 10 (1959), S. 447–449.
- [3] I. Spang und K. Zimmermann: Der Neubau des Schwaikheimer Tunnels. «Strassen- und Tiefbau», H. 6 und 7 (1967).
- [4] Chemische Fabrik Grünau, Illertissen/Bayern: Werkschrift: Schwaikheimer Tunnel (1968).

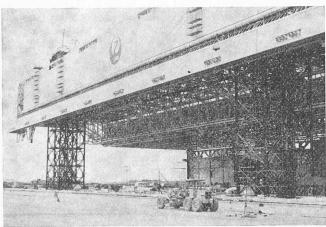
Adresse des Verfassers: Dr. G. Benz, Bau-Chemie AG Basel, Rütlistrasse 50, 4051 Basel.

Hangar für Grossraumflugzeuge in Tokio, Anheben des Daches

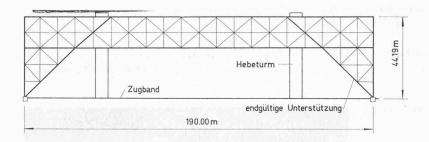

Von P. Sommer, Bolligen


DK 72.012.351:629.139.2


Etwa 50 km östlich des Stadtzentrums entsteht der neue Flughafen von Tokio. Er ist für einen «Umsatz» von jährlich 16 Mio Passagieren und 1,4 Mio t Fracht ausgelegt. Die erste Ausbaustufe, umfassend eine Piste von 4000×60 m, das eine Aufnahmegebäude und die für den Betrieb notwendigen Einrichtungen und Anlagen, geht der Vollendung entgegen. Betriebsaufnahme ist auf Ende dieses Jahres vorgesehen.


Vom riesigen Hangarkomplex ist gegenwärtig ein verhältnismässig bescheidener Teil im Bau. Er umfasst eine stützenfreie Flugzeughalle im Ausmass von 90×190 m und ein daran angebautes Werkstatt- und Bürogebäude. Die Halle bietet gleichzeitig Platz für zwei B-747 und eine DC-8 oder andere Flugzeugkombinationen.

Das Dach in Stahl-Fachwerkkonstruktion wurde mitsamt Dachhaut, Fassadenverkleidung, Kranbahnträgern und



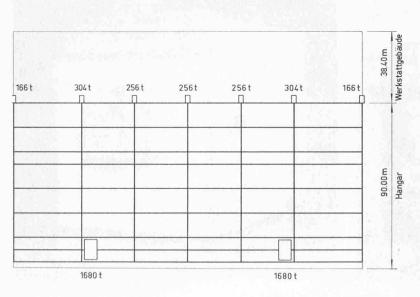

 $\operatorname{Bild} 2.$ Die elektrischen Hochdruckpumpen für die acht Heber auf einem torseitigen Turm

Bild 3. Das Dach nahe seiner Endlage.

Bild 4. Vier VSL-Heber für insgesamt 840 t Hublast. Die oben heraustretenden Litzenbündel biegen um und hangen neben der Arbeitsplattform nach unten. Sie brauchen nicht fortwährend abgeschnitten zu werden

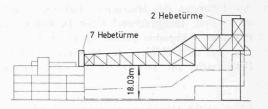


Bild 5. Struktur und Hebelasten. Links oben Ansicht, rechts Schnitt, links unten Grundriss

Tabelle 1. Die beiden VSL-Hebertypen

	VSL-H	VSL-Hebertyp		
	330	200		
Kolbenquerschnitt cm ²	695	500		
Anzahl 1/2" Litzen	31	19		
Anzahl in den grossen Hebetürmen	8			
Anzahl in den kleinen Hebetürmen (ausg. Ech	ktürme) 1			
Anzahl in den kleinen Ecktürmen		1		
Gesamtzahl der eingesetzten Heber	21	2		

Leitungen am Boden zusammengebaut und als Ganzes um 18 m in die endgültige Lage gehoben.

Das Hochziehen erfolgte von provisorischen Hebetürmen aus, nämlich zwei grossen auf der Torseite und sieben «kleinen», welche auf dem angrenzenden Werkstattgebäude errichtet wurden.

Als Hebevorrichtung gelangte das schweizerische VSL-Litzen-Hebesystem zur Anwendung, eine Weiterentwicklung des VSL-Beton-Vorspannsystemes. Bündel aus Stahllitzen sind die Zugelemente. Sie werden am Hebegut verankert und führen durch feststehende hydraulische Pressen hindurch. Die Pressen, welche mit Klemmvorrichtungen für die Litzen ausgerüstet sind, bewegen diese Bündel und damit die daran angehängte Last schrittweise empor.

Zwei verschieden grosse Hebertypen gelangten zum Einsatz (Tabelle 1).

Jeder Presse wurde eine Pumpe mit entsprechender Fördermenge zugeordnet. Die Motoren der Pumpen liessen sich zentral aus einem Kontrollraum steuern. Die Hubwege der Hebepunkte wurden dort fortwährend elektrisch registriert und ausgewertet.

Mit einer gut auf die Steuer- und Kontrollaufgaben vorbereiteten Mannschaft konnte die folgende Leistung erbracht werden:

29. Januar 1972: Heben um 1,92 m, um Einbau der Kranträger usw. zu ermöglichen;

22. Februar: Heben um 0,17 m;

23. bis 25. Februar: Heben um 15.94 m;

ergibt eine Hubhöhe von 18,03 m. Das Hebegewicht betrug 5068 t.

Nicht zuletzt mag auch die kurze Gesamtbauzeit erstaunen, wenn man bedenkt, dass das durch den Unternehmer abgeänderte Projekt erst im April 1971 genehmigt worden ist. Das offizielle Projekt sah Montage an Ort und Stelle vor.

Bauherr: Japan Airlines, Tokio.

singer AG, Bern.

Bauingenieur: Dr. Z. Tsuboi and Tôkyu Structural Engineering

Co., Tokio.

Unternehmung: Arbeitsgemeinschaft Taisei Construction Company

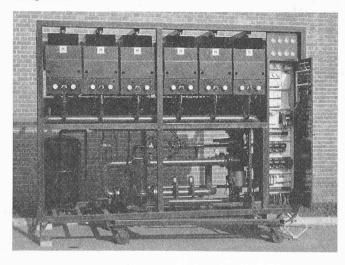
und Tokyo Construction Company, beide Tokio.

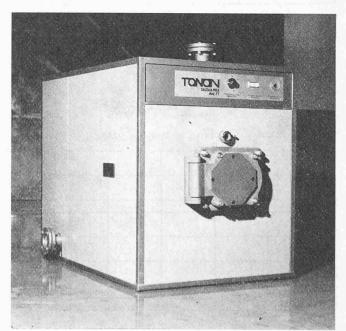
Hebefirma: Taisei Construction Company, Lizenznehmerin von Losinger AG, Bern, für das VSL-Hebesystem.

Adresse des Verfassers: Peter Sommer, dipl. Bauing. ETH, Lo-

Heizung, Lüftung, Klima in Frankreich

DK 628.8


Vom 2. bis 8. Juni 1972 fand im Ausstellungsgelände an der Porte de Versailles in Paris die *Interclima 72* statt. Mit 51 000 m² Ausstellungsfläche und 500 Ausstellern aus zwanzig Ländern ist die Interclima einer der wichtigsten Ausstellungen des Heizungs-, Lüftungs- und Klimasektors in Europa. Entsprechend ihrer Bedeutung wurde sie von Präsident Pompidou persönlich eröffnet.


Auf dem Gebiete der Heizung und Klimatisierung ist Frankreich ein relativ wenig entwickeltes Land. Von 19 400 000 französischen Wohnungen verfügten 1971 nur 42 % über eine Zentralheizung; 1962 waren es erst 17 %. Hier liegt ein gewaltiger Nachholbedarf, dem sich das Angebot anpasst: An der Interclima war eine ausserordentlich grosse Anzahl von Herstellern von Radiatoren, Klimakonvektoren usw. vertreten.

Auf dem französischen Markt sind fast alle Grossen Europas und, was den Klimasektor angeht, auch der USA vertreten. Deshalb waren an der Interclima teilweise auch

Bild 1, rechts. Hochleistungsüberdruck-Kessel für die Verwendung von Öl-, Gas- oder Öl/Gasbrennern

Bild 2. Einer an der Interclima gezeigten Monoblocks mit Gasdurchlaufheizern, die in Kaskade geschaltet sind, mit Steuerung, Expansionsgefäss usw.

