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90.Jahrgang Heft 3

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER

SCHWEIZERISCHE BAUZEITUNG

AKADEMISCHEN

20.Januar 1972

TECHNISCHEN VEREINE, 8021 ZURICH, POSTFACH 630

Das Flachentragwerksprogramm von STRIP

Von John P.Wolf, Ziirich

DK 624.02.001.2

Vortrag, gehalten am 12. November 1970 anlésslich der Tagung «Anwendung der Finiten Elemente in der Industrie» der Fachgruppe der

Ingenieure der Industrie (FIl) des SIA

1 Einleitung

STRIP (STRuctural Integrated Programs) ist von den
beiden Firmen Digital AG in Ziirich und Nordisk ADB AB
in Stockholm in den Jahren 1966 bis 1969 geschaffen worden.
Es besteht aus drei nach gleichen Grundsitzen aufgebauten
integrierten Programmen. Das erste berechnet ebene, das
zweite rdaumliche Stabkonstruktionen und das dritte, Step-S
genannt, Flidchentragwerke (Scheiben, Platten, Membrane,
Schalen). Fiir jedes liegt ein ausfiihrliches Beniitzungshand-
buch [1, 2, 3] vor, welches die Eingabe und die Deutung der
Ergebnisse beschreibt sowie eine Zusammenfassung der Theorie
samt deren Voraussetzungen enthilt. Der Ubersichtsartikel [4]
widmet sich STRIP’s problemorientierter Eingabe und Resul-
tatdarstellung und umfasst neben gewissen programmtechni-
schen Gesichtspunkten eine Ubersicht der 1osbaren statischen
Aufgaben mit Beispielen und theoretischen Hinweisen. STRIP
ist im Januar 1968 den schwedischen Ingenieuren vorgestellt
worden; im Herbst des gleichen Jahres ist dariiber vor der
Fachgruppe der Ingenieure fiir Briickenbau und Hochbau
(FGBH) des Schweizerischen Ingenieur- und Architekten-
Vereins (SIA) [5] berichtet worden.

Der vorliegende Beitrag ist als Ergdnzung der Ausfiih-
rungen liber das Flichentragwerksprogramm in [4] gedacht;
auf die beiden umfassenden Stabtragwerksprogramme wird
hier nicht eingegangen. STRIP macht von der Methode der
Finiten Elemente Gebrauch, welche unter anderem die Berech-

nung allgemeiner Flichentragwerke ermoglicht. Die Grund-
lagen des verwendeten sogenannten (Spannungsansatz) Hy-
briden Modelles sollen im folgenden kurz dargestellt werden.
Die mit verschiedenen Elementeinteilungen erreichbare Genau-
igkeit wird fiir zum Teil Singularitdten aufweisende Fldchen-
tragwerke, deren theoretische Losungen bekannt sind, dar-
gestellt und mit derjenigen der beiden «reinen» Finiten
Elemente, dem vertriglichen Deformations- und dem Gleich-
gewichtsmodell, verglichen. Anschliessend folgen die Ergebnisse
dreier praktischer Beispiele, einer Briickenplatte, eines Hohl-
kastens und einer Hyparschale. Sie werden entweder theore-
tischen Werten oder Messergebnissen aus Modellversuchen
gegeniibergestellt.

STRIP eignet sich auch fiir die statische Analyse grosser
komplizierter Konstruktionen. Kiirzlich ist ein Fldchentrag-
werk mit 3000 Knoten berechnet worden, was zu einem
Gleichungssystem mit in der Grossenordnung von 10000
Unbekannten fiihrt.

2 Theoretische Hinweise

STRIP verwendet ein (Spannungsansatz) Hybrides
Modell, welches im Sommer 1966, ausgehend von Pians erstem
Artikel [6], weiterentwickelt worden ist. Seither sind dariiber
verschiedene Publikationen erschienen [7 bis 14]. Im folgen-
den sollen die Annahmen des Hybriden Modelles kurz bespro-
chen und die Zusammenhinge zu den beiden «reinen», dem

Bild 1.
unabhiingiger fiir die Deformationen lings des Randes gewiihlt, die mit denjenigen des Nachbarelementes iibereinstimmen
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Im Hybriden-Modell wird ein Ansatz fiir die Schnittkrifte, welche im Gleichgewicht sind und ein anderer davon véllig
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vertriglichen Deformations- und dem Gleichgewichtsmodell
aufgezeigt werden. Es wird im Wesentlichen der Darstellung
in [3, S. 167-184] gefolgt, wobei das Plattenbiegungselement
zur Erlduterung verwendet werden soll.

Wie in einem Gleichgewichtsmodell (siehe zum Beispiel
[15]) wird von einem Schnittkraftansatz tiber das Finite Element
ausgegangen, der die (im allgemeinen inhomogenen) Differen-
tialgleichungen des Gleichgewichts in jedem Punkt innerhalb
des Elementes erfiillt. Fiir das Plattenelement nach Bild 1
kann zum Beispiel folgender quadratischer Schnittkraftansatz
verwendet werden (Vereinfachung: Element unbelastet):

me(x,y) =P+ B x + Py + B x>+ s xy+ By
my (X, ) =Py + Bs*x + oy + fro - X* + fr-xy + fia 03
May (X, ¥) = Bis + Pra*x + Pis ¥y + Prig* x> —

—(Bs + B xy + B1a-¥?

Die 17 8 stellen unbekannte Koeffizienten dar. x—y ist ein
lokales Elementkoordinatensystem (siehe Bild 1). Die beiden
Querkrifte g. und g, folgen aus den zwei Momentengleich-
gewichtsbedingungen:

Gz (X,¥) = Mz, x + May, y = By + fis + (Bs — 1) " x +
+ (Bs + 281) 7
Gy (X, Y) = May, 2 + My, y = B5 + Prs + (Brs + 2 B16) " x +
+ (— st Biz) "

die Komponentenbedingung
Gy z + Qus y = M2y 22 + My, yy + 2 May, 2y =0

ist identisch erfillt.

In den Schnittkraftansatz der Elemente am Rande der
Konstruktion und ldngs Fugen konnen statische Randbedin-
gungen eingefiihrt werden. Von dieser Moglichkeit kann in
STRIP in allen Fillen Gebrauch gemacht werden. Wie weiter
unten ausgefiihrt, kann dadurch die fiir eine bestimmte Ele-
menteinteilung erreichbare Genauigkeit in vielen Fallen gestei-
gert werden (siehe Bilder 5 und 10). Wenn zum Beispiel der
Rand 1-2 (Bild 1) frei drehbar gelagert ist (mn = my = 0),
verschwinden f,, f; und f,,. Es treten in diesem Fall nur noch
14 p auf. Ein Algorithmus, welcher allgemeine statische Be-
dingungen lings beliebig gerichteter Rénder in den Schnitt-
kraftansatz einbaut, ist in [47] beschrieben.

Der angenommenen Schnittkraftverteilung ist im allge-
meinen kein Deformationsfeld, in unserem Beispiel die verti-
kale Verschiebung w, iiber das Element zugeordnet, das heisst,
die Schnittkraftdeformationsbeziehungen konnen nicht inte-
griert werden.

ms= —D- (W, zz +V-W ),
my = —D- (W, yy TV W, x:r),
Er
mey=— (1 —v):D-wzy | 7 el
o 12 (1 — v?)

oder anders ausgedriickt, die Vertraglichkeitsbedingung ist
nicht erfiillt:

Mz, yy — Y * Mzy 22 + My, z2 -

= 2(] +V)'I77,ry,:ty :2/1‘4 ’f'-?-[))o '*‘ 2/310‘*'2512 #F* O

Vo My, yy —

Zusitzlich wird im Hybriden Modell ein von der ange-
nommenen Schnittkraftverteilung ganz unabhingiger Ansatz
fiir die Deformation lings des Randes des Elementes einge-
fihrt. Er wird so gewihlt, dass jeder Punkt des Randes
benachbarter Elemente die gleiche Verformung erhilt, wenn
die Deformationen in den Knotenpunkten iibereinstimmen.
Das gleiche wird fiir die vertriglichen Deformationsmodelle
gefordert. Es ist aber bedeutend schwieriger, Deformations-
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ansitze mit zusitzlichen Anforderungen [15] liber das Ele-
ment, und nicht nur lings des Randes, zu wéhlen, besonders
wenn, wie im Falle der Plattenbiegung, die Durchbiegung und
die Querneigung (Rotation), welche beide in der Trennlinie
zweier Elemente keine Spriinge aufweisen diirfen, auf Grund
der Kirchhoffschen Annahmen miteinander verkniipft sind.
Im Plattenelement (Bild 1) werden in jeder Ecke drei Defor-
mationsfreiheitsgrade, eine Durchbiegung und zwei Rotationen,
eingefiihrt. Die Verformungen eines Knotens fiihren nur zu
Deformationen ldngs der beiden anschliessenden Rénder. Die
Durchbiegung w (Bild 1, rechts oben) im Knoten 2 fiihrt zu
kubischen Durchbiegungsparabeln (Knoten 2: Durchbiegung
= w, Rotation = 0; Knoten 1 und 3: Durchbiegung = Rota-
tion = 0) und verschwindenden Querneigungen (Rotationen).
Die Knotenrotation 6 wird vektoriell in eine Komponente
senkrecht und eine parallel zum betrachteten Rand, zum Bei-
spiel Seite 2-3, zerlegt (Bild 1, unten). Jene hat eine kubische
Durchbiegungsparabel (Knoten 2: Rotation = Komponente,
Durchbiegung = 0; Knoten 3: Durchbiegung = Rotation
= 0) ohne Querneigung zur Folge; die andere Komponente
fiihrt zu einer linear abnehmenden Querneigung (Knoten 2:
Querneigung = Komponente; Knoten 3: Querneigung = 0)
ohne Durchbiegung. Die Verformungen w, 6x, 6y des Kno-
tens 2 verursachen zum Beispiel die folgende Durchbiegung
w;-, und Querneigung 0n,-, (= 0x,-,) ldngs des beziiglich des
lokalen Elementkoordinatensystemes x, y besonders orientier-
ten Randes 1-2.

wi-2 (§) = [3 (i>2 -2 (757)3 :| W+
a a

S
em—z (S) = 7(17 ¥ ex.

Die Durchbiegung lings eines beliebigen Randes stellt eine
kubische Parabel dar, deren vier Koeffizienten durch die
Durchbiegung und die Rotation mit einem Vektor senkrecht
zum Rand der beiden anschliessenden Knoten festgelegt wer-
den; die Querneigung verlduft linear und ist durch die Rota-
tion, deren Vektor parallel zum Rand verlduft, der beiden
Knoten bestimmt.

Da die Knoten nicht wie in Gleichgewichtsmodellen so
gewidhlt worden sind, dass die in der Trennfliche zweier
benachbarter Elemente wirkenden Schnittkrédfte kontinuier-
lich sind, treten lings Rdndern Schnittkraftsspriinge auf; die
Gleichgewichtsbedingungen sind im Hybriden Modell, trotz
sich im Gleichgewicht befindenden Schnittkréiften tiber das
Element, nur makroskopisch erfiillt. Es ist zu beachten, dass
in Gleichgewichtsmodellen die Gleichgewichtsbedingungen
zwar mikroskopisch erfiillt sind, dass aber das Schnittkraft-
feld nicht stetig ist, da die Schnittkridfte lings eines Randes,
aber in einer dazu senkrechten Fldche wirkend, von einem
Element zum andern Spriinge aufweisen. Die Anzahl Frei-
heitsgrade ist im allgemeinen kleiner als fiir das Gleichge-
wichtsmodell mit gleichem Schnittkraftansatz [16, S. 101].
Dadurch, dass die Anzahl Terme des Deformations- und
Schnittkraftansatzes unabhidngig voneinander gewihlt werden
konnen, werden die in gewissen Gleichgewichtsmodellen auf-
tretenden Instabilititen vermieden [10].

Durch die Anwendung einer abgednderten Form des
Prinzipes des Minimums der komplementdren Energie (Prin-
zip der virtuellen Krifte) werden die Steifigkeits-, die Schnitt-
kraftdeformations- und die Lastmatrixen bestimmt [6, 10, 11,
12]. Es zeigt sich dabei, dass die gewihlten Deformationen
lings der Ridnder als « Gewichte» in der Integration der Rand-
+ 20. Januar 1972
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Bild 2. Darstellung der in den verschiedenen
Finiten Elementen exakt (Indikation Ja) und
nur durch die Energieprinzipien im Mittel
(Indikation Nein) erfiillten physikalischen
Eigenschaften. Das Hybride Modell ist wei-

cher als das zu steife vertrigliche Deforma-
tionsmodell mit gleichem Randdeformations-
ansatz und steifer als das zu weiche mit dem
gleichen Schnittkraftansatz versehene Gleich-
gewichtsmodell (aus [12])
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schnittkréfte zu konzentrierten verallgemeinerten Kriften auf-
treten; die Unabhéngigkeit der Randschnittkrifte von den
Randdeformationen wirkt sich dabei giinstig auf die Genauig-
keit aus. In [11] wird ein Variationsprinzip angegeben; die
Konvergenz wird streng bewiesen. Es zeigt sich dabei, dass
die Konvergenz auch dann eintritt, wenn der Schnittkraft-
ansatz den statischen Randbedingungen nicht Rechnung tragt.
In Bild 2, welches dem Beitrag [12] entnommen worden ist,
sind die Eigenschaften des Hybriden Modelles zusammen-
fassend dargestellt und mit denjenigen des vertriglichen
Deformations- und des Gleichgewichtsmodelles verglichen
worden. De Veubeke hat gezeigt [15], dass fiir das vertrdgliche
Deformationsmodell bzw. das Gleichgewichtsmodell, die
Forménderungsarbeit oder was auf das gleiche herauskommt,
das Produkt aller Lasten und Verschiebungen der angeniher-
ten Losung kleiner bzw. grosser als diejenige der genauen
Losung ausfillt; das Ergebnis wird zu steif bzw. zu weich.
Mit dem Hybriden Modell kann das Ergebnis zu weich oder
zu steif ausfallen. Es zeigt sich aber, dass das Hybride Modell
eine Losung liefert, welche einerseits steifer ist als die zu
weiche des Gleichgewichtsmodelles mit gleichem Schnittkraft-
ansatz und anderseits weicher ausfillt als die zu steife des ver-
traglichen Deformationsmodelles mit gleichem Randdeforma-
tionsansatz. Im folgenden wird eine anschauliche Begriindung
gegeben; der genaue Beweis ist in [14] enthalten.

In einem Gleichgewichtsmodell bestimmt der Schnitt-
kraftansatz die verallgemeinerten Krifte und damit die ver-
allgemeinerten Deformationen. Das Hybride Modell mit
gleichem Schnittkraftansatz ist sicher steifer, weil die unab-
hingig davon vorgeschriebenen Randdeformationen eingehal-
ten werden miissen (Bild 2).

In einem Deformationsmodell konnen interne Knoten
eingefiihrt werden, ohne die Deformation lings des (urspriing-
lichen) Randes zu dndern. Sie konnen mittels des statischen
Kondensierungsprozesses ausgeschieden werden [zum Bei-
spiel 17]. Die Abweichungen in den internen Gleichgewicht-
bedingungen werden dadurch kleiner. Die Losung nidhert sich
der genauen; sie wird weicher. Werden unendlich viele Knoten
gewihlt, so werden die internen Gleichgewichtbedingungen
erfiillt (siehe Bild 2). Falls in einem Hybriden Modell die An-
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zahl der Spannungskoeffizienten erhoht wird, nimmt der
Fehler in der Vertréglichkeitsbedingung ab. Die Losung wird
steifer. Werden unendlich viele Spannungskoeffizienten ein-
gefiihrt, so wird die Vertraglichkeitsbedingung erfiillt; ein
Deformationsfeld besteht. Wenn zusétzlich noch die Rand-
deformation des Hybriden Modelles mit unendlich vielen
Schnittkraftkoeffizienten mit derjenigen des vertrdglichen
Deformationsmodelles iibereinstimmt und dieses durch un-
endlich viele interne Knoten gebildet worden ist, fallen beide
Losungen zusammen (siehe Bild 2). Daraus ergibt sich, dass
das Hybride Modell (mit einer endlichen Anzahl von Span-
nungskoeffizienten) weicher ausfillt als das vertrdgliche
Deformationsmodell mit gleicher Randdeformation.

% theoretisch
e NEE: .
! d drehbar
1,16 — gelagert
| | n=1
L |
Einzellast
n=2
v=03
n=4
080 SHCT (LCCT -9) n=8
— 3 Freiheitsgrade pro Knoten
076 ----7 zusdtzliche Freiheitsgrade
| pro Quadrat eliminiert
072 n
1 2 4 8

Elementeinteilung

Bild 3. Das Hybride Modell schneidet in der Konvergenz der ver-
tikalen Durchbiegung (und damit in diesem Fall der Forminde-
rungsenergie) unter der Einzellast, auf einer frei drehbar gelagerten
Platte wirkend, von den untersuchten Finiten Elementen mit drei
Freiheitsgraden pro Knoten fiir verschiedene Elementeinteilungen
am besten ab
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3 Genauigkeitsuntersuchungen

Als erstes Beispiel (Bild 3) wird die frei drehbar gelagerte
quadratische Platte unter einer Einzellast im Zentrum betrach-
tet. Die Durchbiegung unter der Last stellt in diesem einfachen
Fall ein Mass fiir die Formédnderungsarbeit dar. Im Hybriden
Modell wird die statische Randbedingung m. = 0 in den
Schnittkraftansatz jener Finiter Elemente eingebaut, welche
an den frei drehbar gelagerten Rand grenzen (siche Ab-
schnitt 2). Die Durchbiegung ist dimensionslos fiir die in
Bild 3 angegebenen Elementeinteilungen aufgetragen. Die
Durchbiegung (und damit die Forménderungsarbeit) fallt fiir
das Hybride Modell mit quadratischen Elementen H-12 zum
Teil zu gross (Elementeinteilung n» = 1), zum Teil zu klein
(n = 2, n = 4) aus. Zum Vergleich sind die Ergebnisse anderer
Finiter Elemente mit drei Freiheitsgraden pro Knoten auf-
getragen. Mit HCT [18] ist ein vertrdgliches dreieckiges Defor-
mationsmodell bezeichnet; Q-19 [19] steht fiir ein quadrati-
sches, welches durch Zusammenfiigen von vier Dreiecken mit
anschliessender Ausscheidung von sieben Freiheitsgraden (sta-
tischer Kondensierungsprozess) gebildet worden ist. Z [20]
bzw. ACM [18, 21] kennzeichnet ein unvertrigliches drei-
eckiges bzw. quadratisches Deformationsmodell. Diese konver-
gieren aber nicht notwendigerweise von der steifen Seite her.
M [22] stellt ein auf Grund physikalischer Uberlegungen er-
mitteltes Element dar. Von allen Finiten Elementen mit drei
Freiheitsgraden pro Knoten schneidet das Hybride am besten
ab.

Um den Vergleich auch mit andern Finiten Elementen
durchfiihren zu konnen, wird in Bild 4 als Abszisse die Anzahl
der Gleichungen vor Einfiihren der geometrischen Rand-
bedingungen, ein Mass fiir den Rechenaufwand, gewibhlt.
Neben den Ergebnissen der Finiten Elemente mit drei Frei-
heitsgraden pro Knoten HCT [18] und Q-19 [19] werden die-
jenigen weiterer vertriglicher Deformationsmodelle eingefiihrt,
welche Knotenpunkte auch in der Mitte der Seiten LCCT-12
[19], CQ [23], hohere Ableitung in den Knoten als Freiheits-

grade Q-16 [24], T-18 [25] oder beides zusammen T-21 [25,
26, 27] aufweisen. Die Anordnung der Freiheitsgrade ist in
Bild 4 enthalten. Die Ergebnisse des Gleichgewichtmodelles
mit linearer Momentenverteilung EQT [28] sowie zweier
gemischter Modelle, welche sich auf das Reissnersche Prinzip
griinden, M-6 [29] mit konstanter Momenten- und linearer
Durchbiegungsverteilung und M-12 [30] mit linearer Momen-
ten- und quadratischer Durchbiegungsverteilung sind ebenfalls
dargestellt. Neben dem STRIP-Modell H-12 wird ein weiteres
Hybrides Modell H-16 [12] herangezogen, welches ebenfalls
mit einer quadratischen Momentenverteilung arbeitet, aber
fiir das nicht nur die Durchbiegung w, sondern auch die
Querneigung (Rotation) 6, lings des Randes kubisch gewéhlt
worden ist. Fiir dieses Hybride Modell ist die statische Rand-
bedingung nicht in den Schnittkraftsansatz eingebaut worden.
Die Hybriden Modelle erreichen ungefidhr die gleiche Genauig-
keit wie die vertrdglichen Deformationsmodelle mit einem
Polynom fiinften Grades T-18 und T-21; alle andern ergeben
fiir eine bestimmte Anzahl Gleichungen schlechtere Ergebnisse.
Wihlt man als zutreffenderes Mass fiir den Rechenaufwand
die Anzahl wesentlicher Operationen widhrend des Losens des
Gleichungssystems, welche sich als Produkt der Anzahl Un-
bekannten und dem Quadrat der Bandbreite ergibt, schneidet
H-12 besser als T-18 ab (siche Bild 4, Mitte unten). Es ver-
dient, festgehalten zu werden, dass das (Spannungsansatz)
Hybride Modell ohne Einbau der statischen Randbedingungen
fir den betrachteten Fall praktisch gleiche Resultate ergibt
wie das (Deformationsansatz) Hybride Modell [31], welches
mit einem Deformationsansatz iiber das Element und einem
davon unabhingig gewédhlten Verformungs- und Schnittkraft-
ansatz lings des Randes arbeitet.

Eine Kragscheibe [3, siche Seiten 187-188] ist mit nur
vier Hybriden Elementen fiir eine vertikale parabolisch an-
greifende Last und ein «linear verteiltes» Biegemoment mit
und ohne Beriicksichtigung der statischen Randbedingungen
berechnet worden (Bild 5). Die genauen Werte der Elastizitéits-
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Bild 5. Das Einfithren statischer Randbedingungen im Hybriden
Modell, d.h. deren Einbau in den Schnittkraftansatz, verbessert im
Falle der Kragscheibe die Ergebnisse

theorie sind angegeben (je nach der Formulierung der Rand-
bedingungen im Einspannquerschnitt ergeben sich im einen
Lastfall verschiedene Durchbiegungen). Es zeigt sich, dass der
Einbau der statischen Randbedingungen und damit eine
Anderung des Schnittkraftansatzes (siehe Abschnitt 2) die
erhaltenen Durchbiegungen und Spannungen stark verbessert.
Die in STRIP verwendeten Schnittkraft- und Randdeforma-
tionsansitze der Scheibe sind in [3, Seite 172ff.] angegeben.
Das Moment der Platte unter einer Einzellast wird un-
endlich gross. Diese Singularitit hat sich auf die Genauigkeit
der Durchbiegung nicht ausgewirkt (Bilder 3 und 4). Als
weiteres Beispiel mit einer Singularitit wird die frei drehbar
gelagerte schiefe Platte unter einer verteilten Belastung be-
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56 z gelagert B
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\, P
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Bild 7. Hauptmomente im Zentrum der gleichférmig belasteten,
frei drehbar gelagerten schiefen Platte in Abhéngigkeit der An-
zahl Gleichungen. Das Hybride Modell mit statischen Randbe-
dingungen schneidet, verglichen mit einem vertriiglichen Defor-
mations- und einem Gleichgewichtsmodell, am besten ab; selbst
fiir sehr grobe Elementeinteilungen sind die Ergebnisse gut
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Bild 6. Vergleich der vertikalen Durchbiegung im Zentrum einer
gleichformig belasteten, frei drehbar gelagerten schiefen Platte als
Funktion der Anzahl Gleichungen fiir das Hybride Modell mit sta-
tischen Randbedingungen, fiir ein vertriigliches Deformations- und
fiir ein Gleichgewichtsmodell

trachtet. Nach der Kirchhoffschen Plattentheorie werden die
Momente in der stumpfen Ecke (siehe Bild 8) unendlich gross
[32, 33]. Diese Singularitdt ist ausgeprdgt; selbst in der
Plattentheorie nach Reissner wird eines der Hauptmomente
noch unendlich, falls die gleichen Randbedingungen eingefiihrt
werden [16, Seite 186]. Eine exakte Losung liegt nicht vor;
die von L.S.D.Morley [34], welche eine Entwicklung in eine
Reihe verwendet, deren Koeffizienten mittels der Methode
der kleinsten Quadrate bestimmt worden sind, ist sehr genau.
Im folgenden wird untersucht, wie das Hybride Modell STRIP,
das vertrigliche Deformationsmodell CQ [23] und das Gleich-
gewichtsmodell EQT [28] auf die Singularitit reagieren.

Fiinf Einteilungen der Elemente, welche Parallelogramme
sind, sind fiir das Hybride Modell verwendet worden (Bild 6).
Als statische Randbedingung ist das Biegemoment m» = 0

m
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Bild 8. Verlauf der Hauptmomente vom Zentrum zur
stumpfen Ecke der gleichférmig belasteten, frei dreh-
bar gelagerten Platte. Das Hybride Modell mit stati-
schen Randbedingungen gibt die Singularitit in der
stumpfen Ecke gut wieder, verglichen mit einem
Gleichgewichts- und vor allem einem vertriiglichen
Deformationsmodell
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ldngs des frei drehbar gelagerten Randes in den Schnittkraft-
ansatz der Randelemente eingebaut worden. Dies ist in die-
sem Beispiel wichtig [47]. In Bild 6 ist die Durchbiegung
und in Bild 7 sind die Hauptmomente in der Mitte der
Platte als Funktion der Anzahl Gleichungen vor Einfiihren
der geometrischen Randbedingungen aufgetragen, wobei eine
dimensionslose Darstellung gewihlt worden ist. Die Ergeb-
nisse der Modelle EQT und CQ sind [16] entnommen.
Sie sprechen fiir sich selbst. Die Singularitit wirkt sich
selbst bei der feinsten Elementeinteilung des vertrdglichen
Deformationsmodelles, einem Netz 14 % 14 mit 1095 Unbe-
kannten, noch stark auf die Ergebnisse im Zentrum der Platte

Bild 9. Durchbiegung in der Mitte des freien Randes
eines Zylinderdaches, mit zwei frei drehbaren und zwei
freien Randern unter Eigengewicht in Abhingigkeit der
Anzahl Gleichungen. Das Hybride Modell mit ebener
Mittelflache ergibt fiir grobe Elementeinteilungen be-
deutend bessere Ergebnisse als vertrigliche Deforma-
tionsmodelle mit ebenfalls ebener oder sogar gekriimm-
ter Mittelflaiche

71— exakt (schwach gekriimmte Schale)

O Hybrides Modell STRIP
v andere ebene Elemente

O gekriimmte Elemente

aus, welches von der stumpfen Ecke weit entfernt ist. In Bild 8
wird untersucht, wie die Methode der Finiten Elemente die
Singularitdt selbst anndhert. Die Hauptmomente lings der
Strecke vom Zentrum zur stumpfen Ecke sind fiir CQ (Netz-
einteilung 14 x 14, 1095 Unbekannte), EQT (Netzeinteilung
6 x 6, 481 Unbekannte) und fiir das Hybride STRIP-Modell
(Netzeinteilung 16 x 16, 867 Unbekannte) aufgetragen worden.
Das Hybride Modell schneidet am besten ab. Fiir das ver-
triagliche Deformationsmodell treten im Bereich der stumpfen
Ecke grosse Momentenwerte m. auf. Die Spriinge lidngs
Réndern der Finiten Elemente sind sehr gross; der Mittel-
wert ergibt sogar das falsche Vorzeichen!
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Bild 10. Durchbiegung unter zwei
Einzellasten, die auf einen frei
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Elementeinteilung Anzohl  vertriiglichen Deformationsmodel-
Gleichungen les mit gekriitmmter Mittelfliche
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Schalen mit doppelt gekriimmter Mittelfliche konnen
mit ebenen Finiten Elementen berechnet werden. Das einzelne
Element weist einen Scheiben- und Plattenteil auf, die unab-
hingig voneinander wirken. Die Kopplung geschieht nur in
den Knoten. Es stellt sich die Frage, ob die Ergebnisse der auf
diese Weise berechneten Schalen fiir eine immer feiner werdende
Elementeinteilung zu den genauen Werten konvergieren. In
[35] wird gezeigt, dass ein Bogen, der polygonal angenédhert
worden ist, im Grenzfall unendlich kleiner Balkenelemente
sich richtig verhilt. Werden die in der Gleichgewichtsbedin-
gung der Finiten Elemente auftretenden unbekannten Defor-
mationen mittels einer Taylorentwicklung durch die Verfor-
mungen und deren Ableitungen des zentralen Punktes ausge-
driickt, so entsteht fiir den Grenziibergang die Differential-
gleichung des Bogens mit gekriimmter Achse; der Diskreti-
sierungsfehler verschwindet. Werden Schalentragwerke mittels
ebener Finiter Elemente berechnet, ergibt sich neben der ein-
facheren Formulierung auch der Vorteil, dass die in Elemen-
ten mit gekriimmter Mittelfliche auftretende Schwierigkeit der
Beriicksichtigung der Terme der starren Bewegung vermieden
werden kann. Als Nachteil tritt als zusidtzlicher Diskretisie-
rungsfehler die Abweichung der Mittelebene der Finiten
Elemente von derjenigen der Schale auf. STRIP verwendet
fiir die Berechnung von Schalen und Membrane ebene Ele-
mente.

Ein Zylinderdach, welches an den beiden Enden frei dreh-
bar gelagert und sonst frei ist, ist fiir Eigengewicht berechnet
worden (Bild 9). Dank der Symmetrie muss nur ein Viertel
untersucht werden. Die drei fiir das Hybride Modell verwen-
deten Elementeinteilungen sind mit den statischen Randbe-
dingungen angegeben. In Bild 9 ist die vertikale Durchbiegung
in der Mitte des freien Randes in Abhéngigkeit der Anzahl
Gleichungen vor Einfithren der geometrischen Randbedingun-
gen angegeben. Der genaue Wert, bestimmt auf Grund der
Theorie der schwach gekriimmten Schale [36] und der voll-
standigen Schalentheorie [37], ist ebenfalls dargestellt. Zum
Vergleich sind die in der Literatur angegebenen Resultate ver-
schiedener Finiter Elemente aufgetragen, geordnet nach ebenen
und gekriimmten Mittelflichen [38, 39].

Bild 11.
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Bild 12. Verlauf der Biegemomente im in Bild 11 angegebenen
Schnitt der Eisenbahnbriicke sowie Reaktionskrifte infolge Eigen-
gewicht. Die Ubereinstimmung mit dem Ergebnis einer Messung
aus einem Modellversuch ist gut

Ein frei drehbar gelagerter Zylinder unter zwei Einzellasten,
die sich im Gleichgewicht befinden, ist fiir verschiedene in
Bild 10 dargestellte Elementeinteilungen mit STRIP unter-
sucht worden. Eine Analyse mit und ohne Einbau der stati-
schen Randbedingungen in den Schnittkraftansatz der Rand-
elemente ist durchgefiihrt worden. Statische Randbedingungen
sind wie angegeben eingefiihrt worden; ldngs der beiden Seiten
des Finiten Elementes, welche der Last benachbart sind, ist
der normale Schnittkraftansatz verwendet worden. Dadurch
wird eine zutreffende Einleitung der Last ermoglicht. Der
genaue Wert der Durchbiegung unter der Last ist [40] ent-
nommen. Das gleiche Beispiel ist von S.W.Key und Z. E. Bei-
singer [41] mit ihrem voll vertrdglichen Deformationsmodell,
das mit einer gekriimmten Mittelfliche arbeitet, der starren

Grundriss, Lagerungsbedingungen und Elementeinteilung (Rechtecke, Dreiecke

und gleichseitige Trapeze) einer Eisenbahnbriickenplatte variabler Stidrke
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Bild 13. Dreizelliger Kasten-
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Bewegung Rechnung trigt und eine allgemeine Geometrie zu-
lasst, untersucht worden. In Bild 10 ist die Durchbiegung
unter der Einzellast als Funktion der Elementeinteilung und
der Anzahl Gleichungen angegeben. Es ergibt sich, dass die
beiden Berechnungen mit dem Hybriden Modell mit ebener
Mittelfliche, was den Rechenaufwand, gemessen an der An-
zahl Gleichungen betrifft, besser abschneiden als das vertrag-
liche Deformationsmodell mit gekriimmter Mittelfliche. Wiirde
der Rechenaufwand an der Anzahl Operationen in der Losung
des Gleichungssystemes, wie in Bild 4, gemessen, wire diese
Tendenz noch ausgeprégter. Ein anderer Vergleich ist in [42]
enthalten. Es zeigt sich, dass das Einfiihren der statischen
Randbedingungen sich giinstig auf die Genauigkeit auswirkt,
was auch bei feiner werdender Elementeinteilung erhalten
bleibt. Die Elementeinteilung 8 X 8 mit 486 Gleichungen er-
gibt mit statischen Randbedingungen einen Wert von 0,0121;
dieser wird ohne Anderung des Schnittkraftansatzes erst bei

Finite Elemente Schale
analytisch

(Fourier - Reihe )

Schale

a

|
|
|
{
|
|
'

Bild 14. Vergleich der Quermomentenverteilung in Feldmitte des
Hohlkastentrigers, bestimmt mittels einer Finiten Element-Berech-
nung und aus einer Fourierreihe
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einer Elementeinteilung 20 x< 20 mit 2646 Gleichungen erreicht
(in Bild 10 nicht dargestellt).

4 Praktische Beispiele

Die in Bild 11 gezeigte Eisenbahnbriicke (Projektverfasser
und Modellversuch: Ing.-Biiro H. Hossdorf, Basel) wird als
Platte berechnet. Sie weist im ungefdhr trapezformigen Teil
eine konstante Stirke auf, welche iiber den dreieckformigen
Bereich linear abfillt. Abgesehen von einer kurzen elastisch
eingespannten Begrenzung ist der Rand tiberall frei; Einzel-
stiitzen kommen ebenfalls vor. Die Elementeinteilung, welche
der verdnderlichen Stirke der Briicke Rechnung trigt, besteht
aus Rechtecken, Dreiecken und gleichschenkligen Trapezen.
Im in Bild 11 angegebenen Schnitt ist in Bild 12 die Momen-
tenverteilung fiir Eigengewicht dargestellt. Sie stimmt gut mit
dem Wert aus dem Modellversuch tiberein. Die Reaktions-
kréfte sind ebenfalls angegeben.

—— Finite Elemente Schale

Finite Elemente Membran
analytisch (Fourier Reihe) Schale
Balken (gemischte Torsion)

im

Bild 15. Die Ubereinstimmung der Normalspannungen Ein-
spannquerschnitt des Hohlkastentriagers der Finiten Element-Berech-
nung als Schale mit jenen aus einer Fourierreihe ist gut. Zum Ver-
gleich ist das Ergebnis der Berechnung mit Finiten Elementen als
Membran und dasjenige der Balkentheorie mit gemischter Torsion
aufgetragen

+ 20. Januar 1972
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Bild 17. Hyparschalendach Hamburg, welches aus zwei aneinander gelehnten hyperbolischen Paraboloidschalen mit Randtrigern besteht und
auf drei Stiitzen ruht. Der Abstand der beiden #usseren Stiitzen A und A’ (s. auch Bild 18) betriigt 95,72 m; im Vordergrund befindet sich der

Hochpunkt D (aus [45])

Als néchstes Beispiel wird eine dreizellige Kastenkonstruk-
tion betrachtet, die am einen Ende eingespannt und am ande-
ren frei drehbar gelagert ist (Bild 13). Eine kurze Streckenlast
greift in Feldmitte auf einem der dusseren Lingstrdger an.
Von A.C. Scordelis [43] liegt eine auf Grund der vollstindigen
Faltwerktheorie (Scheiben- und Plattenwirkung in beiden
Richtungen) bestimmte Losung vor. In dieser wird auf die
Arbeit von J.E.Goldberg und H.L.Leve [44] abgestellt.
99 Fourier-Terme, davon 50 von null verschieden, wurden ver-
wendet. Die Konstruktion ist mittels STRIP als Schale und
als Membran berechnet worden. Die Elementeinteilung ist in

—— Finite Elemente Schale
-=—- Finite Elemente Membran
analytisch (Fourier Reihe) Schale
- Balken (gemischte Torsion)

Bild 16. Die Ubereinstimmung der Normalspannungen in der
Feldmitte des Hohlkastentrigers der Finiten Element-Berech-
nung als Schale mit jenen aus einer Fourierreihe ist gut. Zum
Vergleich ist das Ergebnis der Finiten Element-Berechnung als
Membran und dasjenige der Balkentheorie mit gemischter Tor-
sion aufgetragen

Schweizerische Bauzeitung + 90. Jahrgang Heft 3 - 20. Januar 1972

Bild 13 dargestellt; in der Nihe der Einspannstelle und der
Lasteinleitung ist sie der zu erwartenden Spannungsgradienten
wegen in der Lingsrichtung enger gewdhlt worden. Bild 14
zeigt die Quermomentenverteilung der Schalenberechnung in
der Feldmitte: die Ubereinstimmung mit der analytischen
Losung (Fourier-Reihe) ist mit Ausnahme des Lasteinleitungs-
punktes sehr gut. Die Verteilung der Normalspannung in der
Mittelfliche ist im Einspannquerschnitt (Bild 15) und in Feld-
mitte (Bild 16), je getrennt fiir den Konstruktionstyp Schale
und Membran, aufgezeichnet. Sie ist nicht mehr linear; die
Léangstriger zichen wie erwartet Spannungen an (mittragende

23,91

29,58

a)

A A
b) 8
(o} D c
A
c) A 8
Bild 18. Ubersichtsplan des Hyparschalendaches. a) Grundriss,

b) Ansicht von B, ¢) Ansicht von D, d) Ansicht von A bzw. A’
(aus [45])




Breite). Die analytischen Ergebnisse liegen nahe bei den Er-
gebnissen der Methode der Finiten Elemente als Schale. Zum
Vergleich sind die Werte der Balkentheorie aufgezeichnet,
welche die Erhaltung der Querschnittsform voraussetzt. Die
St. Venantsche- und die Wolbkrafttorsion werden erfasst. Wie
vorauszusehen ist, werden stark verschiedene Ergebnisse er-
halten. Die Vernachldssigung der Profilverformung und vor
allem des Deformationseinflusses der sekundiren Wolbschub-
spannungen ist im Gegensatz zu offenen Querschnitten (siche
[4, Bild 15] und [3, Seiten 204-212]) unzulissig.

Als letztes Beispiel soll die mit STRIP durchgefiihrte
Nachberechnung des Hyparschalendaches des Hallenbades
Hamburg Sechslingspforte (Konstruktion und Statik: Leon-
hardt und Andrd, Gemeinschaft Beratender Ingenieure, Stutt-
gart) betrachtet werden. Der Entwurf und das Tragverhalten
sind ausfiihrlich in [45] beschrieben. Das Dach besteht aus
zwei aneinander gelehnten hyperbolischen Paraboloidschalen,
welche nur in drei Punkten gelagert sind (siehe Bilder 17 und
18). Die Randtrdger sind nicht kontinuierlich gestiitzt, sondern

—=——  Finite Elemente

-—==-—— Modellversuch
4770
702 ’
|
B- 803 002 003 004 403 Messpunkinummer A

Bild 20. Vergleich der Hauptnormalkraft »; [kg/cm] in der eigent-
lichen Schale lings der Linie BA fiir den Lastfall Eigengewicht
bestimmt aus der Berechnung mit Finiten Elementen und aus dem
Modellversuch
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Bild 19. Elementeinteilung der
eigentlichen Schale und der
Randtridger. Beim Ubergang
des Voll- zum Hohlquerschnitt
sind die Ecken der Finiten
Elemente der Ober- und Un-
terseite des Randtrigers ex-
zentrisch an die in der Fort-
setzung der Mittelfliche der
Schale liegenden Knoten des
Vollquerschnittes angeschlos-
sen worden

kragen frei aus. Thre Achsen folgen der Schalenmittelfléiche.
Die dreieckférmig ausgebildeten Randtriger ermdglichen
einen stetigen Ubergang zur Schale (siche Bild 19). Sie sind
somit verwunden und weisen variable Abmessungen auf (Voll-
und Hohlquerschnitt).

Da in der Berechnung der Finiten Elemente nur zur
Falte BD symmetrische Lastfille erfasst worden sind, ist die
Analyse auf die Hilfte der Konstruktion beschrinkt worden.
Beliebige Belastungen konnten mittels des Belastungsumord-
nungsprinzipes in einen symmetrischen und antimetrischen
Anteil aufgespalten werden. Dieser konnte mit dem gleichen
Ersatzsystem (Elementeinteilung) verarbeitet werden, wobei
die Symmetriebedingungen lings der Falte BD durch anti-

——— Finite Elemente
-—————  Modellversuch
-———-——- Finite Elemente
~-—a=—-= Modellversuch

Unterseite

Oberseite

Oberseite

e
SRR
Unterseite

Oberseite

Unterseite

Bild 21.  Vergleich der Normalspannungen in Lingsrichtung an der
Unter- und Oberseite des Randtriigers [kg/cm?2] lings der Falte BD
fiir den Lastfall Eigengewicht bestimmt aus der Berechnung mit
Finiten Elementen und aus dem Modellversuch

Schweizerische Bauzeitung - 90. Jahrgang Heft 8 « 20. Januar 1972




metrische zu ersetzen waren. Bild 19 zeigt die verwendete
Elementeinteilung. Die Randtréiger sind ebenfalls in Flachen-
tragwerkelemente aufgelost worden. Beim Ubergang des Voll-
zum Hohlquerschnitt sind die Ecken der Finiten Elemente der
Ober- und Unterseite des Randtragers exzentrisch an die in
der Fortsetzung der Mittelfliche der eigentlichen Schale liegen-
den Knoten des Vollquerschnittes angeschlossen worden. Die
in Bild 19 nicht angegebenen Stiitzen sind durch Balkenele-
mente erfasst worden. 754 Knotenpunkte und 792 Elemente
sind eingefiihrt worden. Das am Schluss anfallende Glei-
chungssystem nach Einfithren der geometrischen Randbedin-
gungen weist 4457 Unbekannte auf; die (halbe) Bandbreite
betragt 245.

Ein ausgedehnter Modellversuch ist im Institut fiir
Modellstatik der Universitat Stuttgart (Leitung Prof. Dr. R. K.
Miiller) durchgefiihrt worden [46]. Das Kunststoffmodell im
Massstab 1:26,67 (grosste Abmessung = Abstand der beiden
Tiefpunkte A und A’ [Bild 18] = 4m) hat neben der Ermitt-
lung der fiir die endgiiltige Bemessung bendtigten Schnitt-
grossen auch fiir eine Priifung der dsthetischen Wirkung der
Schale gedient.

Die Ergebnisse der Berechnung mit Finiten Elementen
sind mit denjenigen des Modellversuches fiir den Lastfall
Eigengewicht dargestellt worden. In Bild 20 bzw. 21 ist die
Hauptnormalkraft z; in der eigentlichen Schale ldngs der
Linie BA bzw. die Normalspannung in Léngsrichtung an der
Ober- und Unterseite des Randtrédgers lings der Falte BD auf-
getragen. Die Messergebnisse sind den Bildern 22 bzw. 18 in
[46] entnommen; die gleichen Nummern fiir die Messpunkte
sind verwendet worden. Der allgemeine Verlauf der Ergebnisse
ist der gleiche. An gewissen Stellen ist die Ubereinstimmung
gut. So betrdgt in der Mitte der Einzelschale (Schnittpunkt
der beiden Diagonalen AB und CD) die Hauptnormalkraft der
Finiten Elementberechnung, bestimmt als Mittelwert der Er-
gebnisse in den Zentren der anschliessenden Finiten Elemente
(Bild 19), 387,0 kg/cm. Der gemessene Wert belduft sich auf
394,7 kg/cm (siehe Bild 20, Messpunktnummer 0,03).

Adresse des Verfassers: John P.Wolf, dipl. Ing. ETH, SIA, i. Fa.
Digital AG, Leonhardshalde 21, 8001 Ziirich.
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Ein Institut fir Umweltwissenschaft in Olten?

Kiirzlich war der Tagespresse die Stellungnahme des
Kantons Solothurn zur Vorbereitung eines neuen ETH-
Gesetzes zu entnehmen. Sie erfolgte in Beantwortung eines
Fragebogens, den das Eidgenossische Departement des In-
nern im Oktober 1970 lanciert hatte.

In einem zweiten Teil der Antwort an das Departement
des Innern befasst sich die Solothurner Regierung mit den
hochschulpolitischen Bestrebungen des Kantons Solothurn.
Erstmals wurden die solothurnischen Behorden im Friihling
1968 mit diesem Fragenkreis konfrontiert. Damals wurde
die Regierung aufgefordert, die Moglichkeit zu priifen, ob
nicht die damals in Auflosung begriffene Hochschule fiir
Gestaltung in Ulm vom Kanton Solothurn hitte iibernom-
men werden konnen. Diese Ubernahme wurde abgelehnt,
gleichzeitig wurde aber eine kantonale Kommission fiir
Hochschulfragen gegriindet. Diese Kommission nannte fiinf
Fachbereiche, die im Hinblick auf die Griindung einer Spe-
zialhochschule (interdisziplinire Forschung, nur Postgra-
duate-Studium) weiter zu verfolgen wiren. 1970 wurden
die Kontakte mit den Kantonen Aargau und Luzern inten-
siviert. Man wollte so die Koordination von Neugriindungs-
projekten von Hochschulen sicherstellen. Parallel dazu soll-
ten Miglichkeiten einer allfilligen Zusammenarbeit mit
der Universitit Bern, vorzugsweise im Rahmen eines ge-
meinsamen bildungswissenschaftlich-pidagogischen Projektes
Aargau/Bern/Solothurn, weiter verfolgt werden.

Die Abklarungen der Kommission zeigten weiter, dass
im Kanton Solothurn in erster Linie das Projekt «Umwelt-

Studie uber die Energieversorgung von Grosssiedlungen

Zwischen der stidlichen Stadtgrenze von Ziirich- und
dem {berbauten Dorfkern von Adliswil wird eine Gross-
siedlung geplant, die unter dem Namen «Jolievilley bekannt
ist und auf rund 70 Hektaren eines noch weitgehend un-
bebauten Gebietes neben etwa 2500 Wohnungen fiir 9000
bis 10 000 Einwohner ein Grosshotel sowie ein Einkaufs-
zentrum mit Biirogebaude, Kiiche, Schulen und Sportanla-
gen umfasst. Die Frage, auf welche Art eine solche Sied-
lung am wirtschaftlichsten mit Energie fiir Heizung und
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wissenschafteny voranzutreiben sei. Damit eréffne sich dem
Kanton die Aussicht, einen sinnvollen Beitrag an das schwei-
zerische Hochschulwesen leisten zu kdnnen.

Der Stand der Abklirungen

Im Herbst 1970 fand an der ETH ein Symposium tiber
Probleme des Umweltschutzes statt. Damals wurde eine
Arbeitsgruppe fiir Fragen des Umweltschutzes gegriindet.
Diese Gruppe ist der Meinung, dass die Probleme des Um-
weltschutzes auch Gegenstand des Forschungsgebietes eines
ETH-Instituts und eines Nachdiplomstudiums sein konnten.
Im Friihling 1971 fand ein Gespriach zwischen der Arbeits-
gruppe fir Fragen des Umweltschutzes und dem Vorsteher
des Erziehungsdepartementes des Kantons Solothurn statt.
Die Arbeitsgruppe bejaht das dringende Bediirfnis nach
einem Institut fiir Umweltwissenschaften. Das Institut be-
diirfe einer festen Verankerung innerhalb der bereits be-
stehenden Hochschulen unseres Landes, sollte indessen nicht
direkt in eine Hochschule eingegliedert werden. Daher sei
eine Stellung anzustreben, wie sie etwa die Annexanstalten
der ETH innehaben. In der Arbeitsgruppe war man der
Meinung, ein Institut fiir Umweltwissenschaften konne
seinen Standort im Kanton Solothurn haben, vorzugsweise
in der verkehrsgiinstig gelegenen Region Olten.

Es sei nicht ausgeschlossen, so stellt der solothurnische
Regierungsrat schliesslich fest, dass eine solche Institution
von Hochschulrang mit Standort im Raume Olten sehr wohl
Kern einer dritten ETH werden konnte.
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Brauchwarmwasser zu versorgen sei, hat Planer, Behorden
und Versorgungsunternehmen von Anfang an beschiftigt,
weil anzunehmen ist, dass dhnliche Bauvorhaben immer
mehr das Bild neuer Siedlungsgebiete in der Schweiz pri-
gen werden.

Der Wunsch nach einer umfassenden Beurteilung aller
Maoglichkeiten der Energieversorgung unter Beriicksichtigung
der heute verfiigbaren Energietrager fiihrte im Sommer
1970 zur Bildung des «Studienkonsortiums Energieversor-
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