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Das Flächentragwerksprogramm von STRIP DK 624.02.001.2

Von John P.Wolf, Zürich

Vortrag, gehalten am 12. November 1970 anlässlich der Tagung «Anwendung der Finiten Elemente in der Industrie» der Fachgruppe der

Ingenieure der Industrie (FII) des SIA

1 Einleitung
STRIP (STRuctural Integrated Programs) ist von den

beiden Firmen Digital AG in Zürich, und Nordisk ADB AB
in Stockholm in den Jahren 1966 bis 1969 geschaffen worden.
Es besteht aus drei nach gleichen Grundsätzen aufgebauten
integrierten Programmen. Das erste berechnet ebene, das

zweite räumliche Stabkonstruktionen und das dritte, Step-S

genannt, Flächentragwerke (Scheiben, Platten, Membrane,
Schalen). Für jedes liegt ein ausführliches Benützungshandbuch

[1, 2, 3] vor, welches die Eingabe und die Deutung der
Ergebnisse beschreibt sowie eine Zusammenfassung der Theorie
samt deren Voraussetzungen enthält. Der Übersichtsartikel [4]
widmet sich STRIP'S problemorientierter Eingabe und
Resultatdarstellung und umfasst neben gewissen programmtechnischen

Gesichtspunkten eine Übersicht der lösbaren statischen

Aufgaben mit Beispielen und theoretischen Hinweisen. STRIP
ist im Januar 1968 den schwedischen Ingenieuren vorgestellt
worden; im Herbst des gleichen Jahres ist darüber vor der

Fachgruppe der Ingenieure für Brückenbau und Hochbau
(FGBH) des Schweizerischen Ingenieur- und Architekten-
Vereins (SIA) [5] berichtet worden.

Der vorliegende Beitrag ist als Ergänzung der Ausführungen

über das Flächentragwerksprogramm in [4] gedacht;
auf die beiden umfassenden Stabtragwerksprogramme wird
hier nicht eingegangen. STRIP macht von der Methode der
Finiten Elemente Gebrauch, welche unter anderem die Berech¬

nung allgemeiner Flächentragwerke ermöglicht. Die Grundlagen

des verwendeten sogenannten (Spannungsansatz)
Hybriden Modelies sollen im folgenden kurz dargestellt werden.
Die mit verschiedenen Elementeinteilungen erreichbare Genauigkeit

wird für zum Teil Singularitäten aufweisende
Flächentragwerke, deren theoretische Lösungen bekannt sind,
dargestellt und mit derjenigen der beiden «reinen» Finiten
Elemente, dem verträglichen Deformations- und dem
Gleichgewichtsmodell, verglichen. Anschliessend folgen die Ergebnisse
dreier praktischer Beispiele, einer Brückenplatte, eines
Hohlkastens und einer Hyparschale. Sie werden entweder theoretischen

Werten oder Messergebnissen aus Modellversuchen
gegenübergestellt.

STRIP eignet sich auch für die statische Analyse grosser
komplizierter Konstruktionen. Kürzlich ist ein Flächentrag-
werk mit 3000 Knoten berechnet worden, was zu einem

Gleichungssystem mit in der Grössenordnung von 10000

Unbekannten führt.

2 Theoretische Hinweise

STRIP verwendet ein (Spannungsansatz) Hybrides
Modell, welches im Sommer 1966, ausgehend von Pians erstem
Artikel [6], weiterentwickelt worden ist. Seither sind darüber
verschiedene Publikationen erschienen [7 bis 14]. Im folgenden

sollen die Annahmen des Hybriden Modelles kurz besprochen

und die Zusammenhänge zu den beiden «reinen», dem
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Bild 1. Im Hybriden-Modell wird ein Ansatz für die Schnittkräfte, welche im Gleichgewicht sind und ein anderer davon völlig
unabhängiger für die Deformationen längs des Randes gewählt, die mit denjenigen des Nachbarelementes Übereinstimmen
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verträglichen Deformations- und dem Gleichgewichtsmodell
aufgezeigt werden. Es wird im Wesentlichen der Darstellung
in [3, S. 167-184] gefolgt, wobei das Plattenbiegungselement
zur Erläuterung verwendet werden soll.

Wie in einem Gleichgewichtsmodell (siehe zum Beispiel
[15]) wird von einem Schnittkraftansatz über das Finite Element

ausgegangen, der die (im allgemeinen inhomogenen)
Differentialgleichungen des Gleichgewichts in jedem Punkt innerhalb
des Elementes erfüllt. Für das Plattenelement nach Bild 1

kann zum Beispiel folgender quadratischer Schnittkraftansatz
verwendet werden (Vereinfachung: Element unbelastet):

mx (x, y) ß, + ß2 • x + ß3 -y + ßt • x2 + ß5 ¦ xy + ß6 • y2,

my(x.y) ß7 + ßB -x -hße-y + ßi0-x2 + ßi2 -xy + ß12 -y2,

mXy (x, y) ß13 + ßlt • x + ßls • y mß16 • x2 -

Die 17 ß stellen unbekannte Koeffizienten dar. x-y ist ein
lokales Elementkoordinatensystem (siehe Bild 1). Die beiden
Querkräfte qx und qv folgen aus den zwei Momentengleich-
gewichtsbedingungen:

qx (x, y) mx,x + mxv, v — ß2 + ß15 + (ß_, - ß12) ¦ x +
+ <ßs + 2ß1,)-y,

Qv (x, y) mXy, x + my, y ß9 + ßlt + (ßlt + 2 ß16) ¦ x +
X (-ß< + ßl2) ¦ y,

die Komponentenbedingung

qx, x + qv, 2mx 0

ist identisch erfüllt.
In den Schnittkraftansatz der Elemente am Rande der

Konstruktion und längs Fugen können statische Randbedingungen

eingeführt werden. Von dieser Möglichkeit kann in
STRIP in allen Fällen Gebrauch gemacht werden. Wie weiter
unten ausgeführt, kann dadurch die für eine bestimmte
Elementeinteilung erreichbare Genauigkeit in vielen Fällen gesteigert

werden (siehe Bilder 5 und 10). Wenn zum Beispiel der
Rand 1-2 (Bild 1) frei drehbar gelagert ist (mn my 0),
verschwinden ßn, ßs und ß10. Es treten in diesem Fall nur noch
14 ß auf. Ein Algorithmus, welcher allgemeine statische
Bedingungen längs beliebig gerichteter Ränder in den
Schnittkraftansatz einbaut, ist in [47] beschrieben.

Der angenommenen Schnittkraftverteilung ist im
allgemeinen kein Deformationsfeld, in unserem Beispiel die vertikale

Verschiebung w, über das Element zugeordnet, das heisst,
die Schnittkraftdeformationsbeziehungen können nicht
integriert werden.

mx — D • (W, XX + V • W, yy),

mV — D ¦ (W, yy + V W, xx),

mx (1 — v)-D • w, xy, D
Et3

12 (1 - v2)

oder anders ausgedrückt, die Verträglichkeitsbedingung ist
nicht erfüllt:

mx, yy — v • mx, xx + my, xx — v • my, yy —

-2(1 +v)-mxy,xV=2ß<+2ß6 + 2ß10 + 2ß12 # 0.

Zusätzlich wird im Hybriden Modell ein von der
angenommenen Schnittkraftverteilung ganz unabhängiger Ansatz
für die Deformation längs des Randes des Elementes eingeführt.

Er wird so gewählt, dass jeder Punkt des Randes
benachbarter Elemente die gleiche Verformung erhält, wenn
die Deformationen in den Knotenpunkten übereinstimmen.
Das gleiche wird für die verträglichen Deformationsmodelle
gefordert. Es ist aber bedeutend schwieriger, Deformations¬

ansätze mit zusätzlichen Anforderungen [15] über das

Element, und nicht nur längs des Randes, zu wählen, besonders

wenn, wie im Falle der Plattenbiegung, die Durchbiegung und
die Querneigung (Rotation), welche beide in der Trennlinie
zweier Elemente keine Sprünge aufweisen dürfen, auf Grund
der Kirchhoffschen Annahmen miteinander verknüpft sind.
Im Plattenelement (Bild 1) werden in jeder Ecke drei Defor-
mationsfreiheitsgrade, eine Durchbiegungund zwei Rotationen,
eingeführt. Die Verformungen eines Knotens führen nur zu
Deformationen längs der beiden anschliessenden Ränder. Die
Durchbiegung w (Bild 1, rechts oben) im Knoten 2 führt zu
kubischen Durchbiegungsparabeln (Knoten 2: Durchbiegung

w, Rotation 0; Knoten 1 und 3: Durchbiegung Rotation

0) und verschwindenden Querneigungen (Rotationen).
Die Knotenrotation 6 wird vektoriell in eine Komponente
senkrecht und eine parallel zum betrachteten Rand, zum
Beispiel Seite 2-3, zerlegt (Bild 1, unten). Jene hat eine kubische
Durchbiegungsparabel (Knoten 2: Rotation Komponente,
Durchbiegung 0; Knoten 3: Durchbiegung Rotation

0) ohne Querneigung zur Folge; die andere Komponente
führt zu einer linear abnehmenden Querneigung (Knoten 2:
Querneigung Komponente; Knoten 3: Querneigung 0)
ohne Durchbiegung. Die Verformungen w, Qx, Qy des Knotens

2 verursachen zum Beispiel die folgende Durchbiegung
Wj-2 und Querneigung 0n,-2 6^-1-2) längs des bezüglich des

lokalen Elementkoordinatensystemes x, y besonders orientierten

Randes 1-2.

JVl-2 {s)

e„i-2 (s)

'T " 2 7
fl-e«

Die Durchbiegung längs eines beliebigen Randes stellt eine
kubische Parabel dar, deren vier Koeffizienten durch die
Durchbiegung und die Rotation mit einem Vektor senkrecht
zum Rand der beiden anschliessenden Knoten festgelegt werden;

die Querneigung verläuft linear und ist durch die Rotation,

deren Vektor parallel zum Rand verläuft, der beiden
Knoten bestimmt.

Da die Knoten nicht wie in Gleichgewichtsmodellen so

gewählt worden sind, dass die in der Trennfläche zweier
benachbarter Elemente wirkenden Schnittkräfte kontinuierlich

sind, treten längs Rändern Schnittkraftssprünge auf; die
Gleichgewichtsbedingungen sind im Hybriden Modell, trotz
sich im Gleichgewicht befindenden Schnittkräften über das

Element, nur makroskopisch erfüllt. Es ist zu beachten, dass

in Gleichgewichtsmodellen die Gleichgewichtsbedingungen
zwar mikroskopisch erfüllt sind, dass aber das Schnittkraftfeld

nicht stetig ist, da die Schnittkräfte längs eines Randes,
aber in einer dazu senkrechten Fläche wirkend, von einem
Element zum andern Sprünge aufweisen. Die Anzahl
Freiheitsgrade ist im allgemeinen kleiner als für das
Gleichgewichtsmodell mit gleichem Schnittkraftansatz [16, S. 101].
Dadurch, dass die Anzahl Terme des Deformations- und
Schnittkraftansatzes unabhängig voneinander gewählt werden
können, werden die in gewissen Gleichgewichtsmodellen
auftretenden Instabilitäten vermieden [10].

Durch die Anwendung einer abgeänderten Form des

Prinzipes des Minimums der komplementären Energie (Prinzip

der virtuellen Kräfte) werden die Steifigkeits-, die Schnitt-
kraftdeformations- und die Lastmatrixen bestimmt [6, 10, 11,

12]. Es zeigt sich dabei, dass die gewählten Deformationen
längs der Ränder als «Gewichte» in der Integration der Rand-
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Büd 2. Darstellung der in den verschiedenen
Finiten Elementen exakt (Indikation Ja) und
nur durch die Energieprinzipien im Mittel
(Indikation Nein) erfüllten physikalischen
Eigenschaften. Das Hybride Modell ist
weicher als das zu steife verträgliche
Deformationsmodell mit gleichem Randdeformationsansatz

und steifer als das zu weiche mit dem
gleichen Schnittkraftansatz versehene
Gleichgewichtsmodell (aus [12])
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schnittkräfte zu konzentrierten verallgemeinerten Kräften
auftreten; die Unabhängigkeit der Randschnittkräfte von den
Randdeformationen wirkt sich dabei günstig auf die Genauigkeit

aus. In [11] wird ein Variationsprinzip angegeben; die
Konvergenz wird streng bewiesen. Es zeigt sich dabei, dass
die Konvergenz auch dann eintritt, wenn der Schnittkraftansatz

den statischen Randbedingungen nicht Rechnung trägt.
In Bild 2, welches dem Beitrag [12] entnommen worden ist,
sind die Eigenschaften des Hybriden Modelles zusammenfassend

dargestellt und mit denjenigen des verträglichen
Deformations- und des GlÄigewichtsmodellelSverglichen
worden. De Veubeke hat gezeigt [15], dass für das verträgliche
Deformationsmodell bzw. das Gleichgewichtsmodell, die
Formänderungsarbeit oder was auf das gleiche herauskommt,
das Produkt aller Lasten und Verschiebungen der angenäherten

Lösung kleiner bzw. grösser als diejenige der genauen
Lösung ausfällt; das Ergebnis wird zu steif bzw. zu weich.
Mit dem Hybriden Modell kann das Ergebnis zu weich oder
zu steif ausfallen. Es zeigt sich aber, dass das Hybride Modell
eine Lösung liefert, welche einerseits steifer ist als die zu
weiche des Gleichgewichtsmodelles mit gleichem Schnittkraftansatz

und anderseits weicher ausfällt als die zu steife des
verträglichen Deformationsmodelles mit gleichem Randdeformationsansatz.

Im folgenden wird eine anschauliche Begründung
gegeben; der genaue Beweis ist in [14] enthalten.

In einem Gleichgewichtsmodell bestimmt der
Schnittkraftansatz die verallgemeinerten Kräfte und damit die v||||
allgemeinerten Deformarabnen. Das Hybride Modell mit
gleichem Schnittkraftansatz ist sicher steifer, weil die
unabhängig davon vorgeschriebenen Randdeformationen eingehalten

werden müssen (Bild 2).
In einem Deformationsmodell können interne Knoten

eingeführt werden, ohne die Deformation längs des (ursprünglichen)

Randes zu ändern. Sie können mittels des statischen
Kondensierungsprozesses ausgeschieden werden [zum
Beispiel 17]. Die Abweichungen in den internen Gleichgewichtbedingungen

werden dadurch kleiner. Die Lösung nähert sich
der genauen; sie wird weicher. Werden unendlich viele Knoten
gewählt, so werden die internen Gleichgewichtbedingungen
erfüllt (siehe Bild 2). Falls in einem Hybriden Modell die An¬

zahl der Spannungskoeffizienten erhöht wird, nimmt der
Fehler in der Verträglichkeitsbedingung ab. Die Lösung wird
steifer. Werden unendlich viele Spannungskoeffizienten
eingeführt, so wird die Verträglichkeitsbedingung erfüllt; ein
Deformationsfeld besteht. Wenn zusätzlich noch die
Randdeformation des Hybriden Modelles mit unendlich vielen
Schnittkraftkoeffizienten mit derjenigen des verträglichen
Deformationsmodelles übereinstimmt und dieses durch
unendlich viele interne Knoten gebildet worden ist, fallen beide
Lösungen zusammen (siehe Bild 2). Daraus ergibt sich, dass
das Hybride Modell (mit einer endlichen Anzahl von
Spannungskoeffizienten) weicher ausfällt als das verträgliche
Deformationsmodell mit gleicher Randdeformation.

theoretisch
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Bild 3. Das Hybride Modell schneidet in der Konvergenz der
vertikalen Durchbiegung (und damit in diesem Fall der
Formänderungsenergie) unter der Einzellast, auf einer frei drehbar gelagerten
Platte wirkend, von den untersuchten Finiten Elementen mit drei
Freiheitsgraden pro Knoten für verschiedene Elementeinteilungen
am besten ab
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3 Genauigkeitsuntersuchungen

Als erstes Beispiel (Bild 3) wird die frei drehbar gelagerte
quadratische Platte unter einer Einzellast im Zentrum betrachtet.

Die Durchbiegung unter der Last stellt in diesem einfachen
Fall ein Mass für die Formänderungsarbeit dar. Im Hybriden
Modell wird die statische Randbedingung mn 0 in den
Schnittkraftansatz jener Finiter Elemente eingebaut, welche
an den frei drehbar gelagerten Rand grenzen (siehe
Abschnitt 2). Die Durchbiegung ist dimensionslos für die in
Bild 3 angegebenen Elementeinteilungen aufgetragen. Die
Durchbiegung (und damit die Formänderungsarbeit) fällt für
das Hybride Modell mit quadratischen Elementen H-12 zum
Teil zu gross (Elementeinteilung n 1), zum Teil zu klein
(n 2, n 4) aus. Zum Vergleich sind die Ergebnisse anderer
Finiter Elemente mit drei Freiheitsgraden pro Knoten
aufgetragen. Mit HCT [18] ist ein verträgliches dreieckiges
Deformationsmodell bezeichnet; Q-19 [19] steht für ein quadratisches,

welches durch Zusammenfügen von vier Dreiecken mit
anschliessender Ausscheidung von sieben Freiheitsgraden
(statischer Kondensierungsprozess) gebildet worden ist. Z [20]
bzw. ACM [18, 21] kennzeichnet ein unverträgliches
dreieckiges bzw. quadratisches Deformationsmodell. Diese konvergieren

aber nicht notwendigerweise von der steifen Seite her.
M [22] stellt ein auf Grund physikalischer Überlegungen er-
mitteltes Element dar. Von allen Finiten Elementen mit drei
Freiheitsgraden pro Knoten schneidet das Hybride am besten
ab.

Um den Vergleich auch mit andern Finiten Elementen
durchführen zu können, wird in Bild 4 als Abszisse die Anzahl
der Gleichungen vor Einführen der geometrischen
Randbedingungen, ein Mass für den Rechenaufwand, gewählt.
Neben den Ergebnissen der Finiten Elemente mit drei
Freiheitsgraden pro Knoten HCT [18] und Q-19 [19] werden
diejenigen weiterer verträglicher Deformationsmodelle eingeführt,
welche Knotenpunkte auch in der Mitte der Seiten LCCT-12
[19], CQ [23], höhere Ableitung in den Knoten als Freiheits¬

grade Q-16 [24], T-18 [25] oder beides zusammen T-21 [25,
26, 27] aufweisen. Die Anordnung der Freiheitsgrade ist in
Bild 4 enthalten. Die Ergebnisse des Gleichgewichtmodelles
mit linearer MomentenVerteilung EQT [28] sowie zweier
gemischter Modelle, welche sich auf das Reissnersche Prinzip
gründen, M-6 [29] mit konstanter Momenten- und linearer
Durchbiegungsverteilimg und M-12 [30] mit linearer Momenten-

und quadratischer Durchbiegungsverteilung sind ebenfalls
dargestellt. Neben dem STRIP-Modell H-12 wird ein weiteres
Hybrides Modell H-16 [12] herangezogen, welches ebenfalls
mit einer quadratischen Momentenverteilung arbeitet, aber
für das nicht nur die Durchbiegung w, sondern auch die
Querneigung (Rotation) 8n längs des Randes kubisch gewählt
worden ist. FütSeses Hybride Modell ist die statische
Randbedingung nicht in den Schnittkraftsansatz eingebaut worden.
Die Hybriden Modelle erreichen ungefähr die gleiche Genauigkeit

wie die verträglichen Deformationsmodelle mit einem
Polynom fünften Grades T-18 und T-21; alle andern ergeben
für eine bestimmte Anzahl Gleichungen schlechtere Ergebnisse.
Wählt man als zutreffenderes Mass für den Rechenaufwand
die Anzahl wesentlicher Opermonen während des Lösens des

Gleichungssystems, welche sich als Produkt der Anzahl
Unbekannten und dem Quadrat der Bandbreite ergibt, schneidet
H-12 besser als T-18 ab (siehe Bild 4, Mitte unten). Es
verdient, festgehalten zu werden, dass das (Spannungsansatz)
Hybride Modell ohne Einbau der statischen Randbedingungen
für den betrachteten Fall praktisch gleiche Resultate ergibt
wie das (Deformationsansatz) Hybride Modell [31], welches
mit einem Deformationsansatz über das Element und einem
davon unabhängig gewählten Verformungs- und Schnittkraftansatz

längs des Randes arbeitet.

Eine Kragscheibe [3, siehe Seiten 187-188] ist mit nur
vier Hybriden Elementen für eine vertikale parabolisch
angreifende Last und ein «linear verteiltes» Biegemoment mit
und ohne Berücksichtigung der statischen Randbedingungen
berechnet worden (Bild 5). Die genauen Werte der Elastizitäts-
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Bild 4. Vergleich der
vertikalen Durchbiegung unter
einer Einzellast, auf einer frei
drehbar gelagerten Platte
wirkend, in Abhängigkeit der
Anzahl Gleichungen für
verschiedenste Finite Elemente
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Bild 5. Das Einführen statischer Randbedingungen im Hybriden
Modell, d. h. deren Einbau in den iS§hnittkraftansatz, verbessert im
Falle der Kragscheibe die Ergebnisse

theorie sind angegeben (Je nach der Formulierung der
Randbedingungen im Einspannquerschnitt ergeben sich im einen
Lastfall verschiedene Durchbiegungen). Es zeigt sich, dass der
Einbau der statischen Randbedingungen und damit eine

Änderung des Schnittkraftansatzes (siehe Abschnitt 2) die
erhaltenen Durchbiegungen und Spannungen stark verbessert.

Die in STRIP verwendeten Schnittkraft- und Randdeformationsansätze

der Scheibe sind in [3, Seite 172ff.] angegeben.
Das Moment der Platte unter einer Einzellast wird

unendlich gross. Diese Singularität bat sich auf die Genauigkeit
der Durchbiegung nicht ausgewirkt (Büder 3 und 4). Als
weiteres Beispiel mit einer Singularität wird die frei drehbar
gelagerte schiefe Platte unter einer verteilten Belastung be-
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Bild 7. Hauptmomente im Zentrum der gleichförmig belasteten,
frei drehbar gelagerten schiefen Platte in Abhängigkeit der
Anzahl Gleichungen. Das Hybride Modell mit statischen
Randbedingungen schneidet, verglichen mit einem verträglichen
Deformations- und einem Gleichgewichtsmodell, am besten ab; selbst

fUr sehr grobe Elementeinteilungen sind die Ergebnisse gut
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Bild 6. Vergleich der vertikalen Durchbiegung im Zentrum einer
gleichförmig belasteten, frei drehbar gelagerten schiefen Platte als
Funktion der Anzahl Gleichungen für das Hybride Modell mit
statischen Randbedingungen, für ein verträgliches Deformations- und
für ein Gleichgewichtsmodell

trachtet. Nach der Kirchhoffschen Plattentheorie werden die
Momente in der stumpfen Ecke (siehe Bild 8) unendlich gross
[32, 33]. Diese Singularität ist ausgeprägt; selbst in der
Plattentheorie nach Reissner wird eines der Hauptmomente
noch unendlich, falls die gleichen Randbedingungen eingeführt
werden [16, Seite 186]. Eine exakte Lösung liegt nicht vor;
die von L.S.D.Morley [34], welche eine Entwicklung in eine

Reihe verwendet, deren Koeffizienten mittels der Methode
der kleinsten Quadrate bestimmt worden sind, ist sehr genau.
Im folgenden wird untersucht, wie das Hybride Modell STRIP,
das verträgliche Deformationsmodell CQ [23] und das

Gleichgewichtsmodell EQT [28] auf die Singularität reagieren.
Fünf Einteilungen der Elemente, welche Parallelogramme

sind, sind für das Hybride Modell verwendet worden (Bild 6).

Als statische Randbedingung ist das Biegemoment mn 0

0.02

gleichgewichtsmodell EQT

Erträgliches Deformationsmodell CQ l>A
Hybrides Modell STRIP

r^ sehnalyt
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r a L V-T^\
Krv^025 V\T^

=1 30"
rn_i
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Bild 8. Verlauf der Hauptmomente vom Zentrum zur
stumpfen Ecke der gleichförmig belasteten, frei drehbar

gelagerten Platte. Das Hybride Modell mit
statischen Randbedingungen gibt die Singularität in der
stumpfen Ecke gut wieder, verglichen mit einem
Gleichgewichts- und vor allem einem verträglichen
Deformationsmodell
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Anzahl Gleichungen. Das Hybride Modell mit ebener
Mittelfläche ergibt für grobe Elementeinteilungen
bedeutend bessere Ergebnisse als verträgliche
Deformationsmodelle mit ebenfalls ebener oder sogar gekrümmter
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längs des frei drehbar gelagerten Randes in den Schnittkraftansatz

der Randelemente eingebaut worden. Dies ist in
diesem Beispiel wichtig [47]. In Bild 6 ist die Durchbiegung
und in Bild 7 sind die Hauptmomente in der Mitte der
Platte als Funktion der Anzahl Gleichungen vor Einführen
der geometrischen Randbedingungen aufgetragen, wobei eine
dimensionslose Darstellung gewählt worden ist. Die Ergebnisse

der Modelle EQT und CQ sind [16] entnommen.
Sie sprechen für sich selbst. Die Singularität wirkt sich
selbst bei der feinsten Elementeinteilung des verträglichen
Deformationsmodelles, einem Netz 14 x 14 mit 1095
Unbekannten, noch stark auf die Ergebnisse im Zentrum der Platte

aus, welches von der stumpfen Ecke weit entfernt ist. In Bild 8

wird untersucht, wie die Methode der Finiten Elemente die
Singularität selbst annähert. Die Hauptmomente längs der
Strecke vom Zentrum zur stumpfen Ecke sind für CQ
(Netzeinteilung 14 x 14, 1095 Unbekannte), EQT (Netzeinteilung
6 x 6, 481 Unbekannte) und für das Hybride STRIP-Modell
(Netzeinteilung 16x16, 867 Unbekannte) aufgetragen worden.
Das Hybride Modell schneidet am besten ab. Für das
verträgliche Deformationsmodell treten im Bereich der stumpfen
Ecke grosse Momentenwerte mx auf. Die Sprünge längs
Rändern der Finiten Elemente sind sehr gross; der Mittelwert

ergibt sogar das falsche Vorzeichen!
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BUd 10. Durchbiegung unter zwei
Einzellasten, die auf einen frei
drehbar gelagerten Zylinder
wirken. Die Ergebnisse des Hybriden
Modelles (ebene Mittelfläche) mit
Schnittkraftsrandbedingungen sind
genauer als jene des gleichen
Modelles ohne; diese schneiden aber
besser ab als die Ergebnisse eines
verträglichen Deformationsmodelles

mit gekrümmter Mittelfläche
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Schalen mit doppelt gekrümmter Mittelfläche können
mit ebenen Finiten Elementen berechnet werden. Das einzelne
Element weist einen Scheiben- und Plattenteil auf, die
unabhängig voneinander wirken. Die Kopplung geschieht nur in
den Knoten. Es stellt sich die Frage, ob die Ergebnisse der auf
diese Weise berechneten Schalen für eine immer feiner werdende

Elementeinteilung zu den genauen Werten konvergieren. In
[35] wird gezeigt, dass ein Bogen, der polygonal angenähert
worden ist, im Grenzfall unendlich kleiner Balkenelemente
sich richtig verhält. Werden die in der Gleichgewichtsbedingung

der Finiten Elemente auftretenden unbekannten
Deformationen mittels einer Taylorentwicklung durch die
Verformungen und deren Ableitungen des zentralen Punktes
ausgedrückt, so entsteht für den Grenzübergang die Differentialgleichung

des Bogens mfisgekrümmter Achse; der Diskreti-
sierungsfehler verschwindet. Werden Schalentragwerke mittels
ebener Finiter Elemente berechnet, ergibt sich neben der
einfacheren Formulierung auch der Vorteil, dass die in Elementen

mit gekrümmter Mittelfläche auftretende Schwierigkeit der
Berücksichtigung der Terme der starren Bewegung vermieden
werden kann. Als Nachteil tritt als zusätzlicher Diskretisie-
rungsfehler die Ab|l|ichung der Mittelebene der Finifp»
Elemente von derjenigen der Schale aäjfl STRIP verwendet
für die Berechnung von Schalen und Membrane ebene
Elemente.

Ein Zylinderdach, welches an den beiden Enden frei drehbar

gelagert und sonst frei ist, ist für Eigengewicht berechnet
worden (Bild 9). Dank der Symmetrie muss nur ein Viertel
untersucht werden. Die drei für das Hybride Modell verwendeten

Elementeinteilungen sind mit den statischen
Randbedingungen angegeben. In Bild 9 ist die vertikale Durchbiegung
in der Mitte des freien Randes in Abhängigkeit der Anzahl
Gleichungen vor Einführen der geometrischen Randbedingungen

angegeben. Der genaue Wert, bestimmt auf&prund der
Theorie der schwach gekrümmten|||chale [36] und der
vollständigen Schalentheorie|[|57], ist ebenfalls dargestellt. Zum
Vergleich sind die in der Literatur angegebenen Resultate
verschiedener Finiter Elemente aufgetragen, geordnet nach ebenen
und gekrümmten Mittelflächen [38, 39].

Finite
Elemente
STRIP

Modell -
versuch

Nr. R
1 110.5
2 143.7
3 165,8
4 - 27,2
5 874,1
6 228,7
7 -276.5
8 -115,0

Druck

Zug

I0mt/m

Büd 12. Verlauf der Biegemomente im in Büd 11 angegebenen
Schnitt der Eisenbahnbrücke sowie Reaktionskräfte infolge
Eigengewicht. Die Übereinstimmung mit dem Ergebnis einer Messung
aus einem Modellversuch ist gut

Ein frei drehbar gelagerter Zylinder unter zwei Einzellasten,
die sich im Gleichgewicht befinden, ist für verschiedene in
Bild 10 dargestellte Elementeinteilungen mit STRIP untersucht

worden. Eine Analyse mit und ohne Einbau der
statischen Randbedingungen in den Schnittkraftansatz der
Randelemente ist durchgeführt worden. Statische Randbedingungen
sind wie angegeben eingeführt worden; längs der beiden Seiten
des Finiten Elementes, welche der Last benachbart sind, ist
der normale Schnittkraftansatz verwendet worden. Dadurch
wird eine zutreffende Einleitung der Last ermöglicht. Der
genaue Wert der Durchbiegung unter der Last ist [40]
entnommen. Das gleiche Beispiel ist von S.W.Key und Z.E.Bei-

Wmger [41] mit ihrem voll verträglichen Deformationsmodell,
das mit einer gekrümmten Mittelfläche arbeitet, der starren

Bild 11. Grundriss, Lagerungsbedingungen und Elementeinteilung (Rechtecke, Dreiecke
und gleichseitige Trapeze) einer Eisenbahnbrückenplatte variabler Stärke

-«.66

15.30 ».rt

>5 11.25
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Bewegung Rechnung trägt und eine allgemeine Geometrie zu-
lässt, untersucht worden. In Bild 10 ist die Durchbiegung
unter der Einzellast als Funktion der Elementeinteilung und
der Anzahl Gleichungen angegeben. Es ergibt sich, dass die
beiden Berechnungen mit dem Hybriden Modell mit ebener
Mittelfläche, was den Rechenaufwand, gemessen an der
Anzahl Gleichungen betrifft, besser abschneiden als das verträgliche

Deformationsmodell mit gekrümmter Mittelfläche. Würde
der Rechenaufwand an der Anzahl Operationen in der Lösung
des Gleichungssystemes, wie in Bild 4, gemessen, wäre diese
Tendenz noch ausgeprägter. Ein anderer Vergleich ist in [42]
enthalten. Es zeigt sich, dass das • Einführen der statischen
Randbedingungen sich günstig auf die Genauigkeit auswirkt,
was auch bei feiner werdender Elementeinteilung erhalten
bleibt. Die Elementeinteilung 8x8 mit 486 Gleichungen
ergibt mit statischen Randbedingungen einen Wert von 0,0121;
dieser wird ohne Änderung des Schnittkraftansatzes erst bei

einer Elementeinteilung 20 x 20 mit 2646 Gleichungen erreicht
(in Bild 10 nicht dargestellt).

4 Praktische Beispiele

Die in Bild 11 gezeigte Eisenbahnbrücke (Projektverfasser
und Modellversuch: Ing.-Büro H.Hossdorf, Basel) wird als
Platte berechnet. Sie weist im ungefähr trapezförmigen Teil
eine konstante Stärke auf, welche über den dreieckförmigen
Bereich linear abfällt. Abgesehen von einer kurzen elastisch
eingespannten Begrenzung ist der Rand überall frei; Einzelstützen

kommen ebenfalls vor. Die Elementeinteilung, welche
der veränderlichen Stärke der Brücke Rechnimg trägt, besteht
aus Rechtecken, Dreiecken und gleichschenkligen Trapezen.
Im in Bild 11 angegebenen Schnitt ist in Bild 12 die
Momentenverteilung für Eigengewicht dargestellt. Sie stimmt gut mit
dem Wert aus dem Modellversuch überein. Die Reaktionskräfte

sind ebenfalls angegeben.

aoi

Finite Elemente Schale

analytisch
(Fourier-Reihe)
Schale

Bild 14. Vergleich der Quermomentenverteilung in Feldmitte des
Hohlkastenträgers, bestimmt mittels einer Finiten Element-Berechnung

und aus einer Fourierreihe

Finite Elemente Schale
Finite Elemente Membran

analytisch (Fourier Reihe) Schale
Balken (gemischte Torsion)

Bild 15. Die Übereinstimmung der Normalspannungen im
Einspannquerschnitt des Hohlkastenträgers der Finden Element-Berechnung

als Schale mit jenen aus einer Fourierreihe ist gut. Zum
Vergleich ist das Ergebnis der Berechnung mit Finiten Elementen als
Membran und dasjenige der Balkentheorie mit gemischter Torsion
aufgetragen
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Bild 17. Hyparschalendach Hamburg, welches aus zwei aneinander gelehnten hyperbolischen Paraboloidschalen mit Randträgern besteht und

auf drei Stützen ruht. Der Abstand der beiden äusseren Stützen A und A' (s. auch Büd 18) beträgt 95,72 m; im Vordergrund befindet sich der

Hochpunkt D (aus [45])

Als nächstes Beispiel wird eine dreizellige Kastenkonstruktion

betrachtet, die am einen Ende eingespannt und am anderen

frei drehbar gelagert ist (Bild 13). Eine kurze Streckenlast

greift in Feldmitte au^&inem der äusseren Längsträger an.
Von A.C.Scordelis [43] liegt eine auf Grund der vollständigen
Faltwerktheorie (Scheiben- und Plattenwirkung in beiden

Richtungen) bestimmte Lösung vor. In dieser wird auf die

Arbeit von J.E.Goldberg und H.L.Leve [44] abgestellt.
99 Fourier-Terme, davon 50 von null verschieden, wurden
verwendet. Die Konstruktion ist mittels STRIP als Schale und
als Membran berechn^Svorden. Die Elemfinteinteilung ist in

Bild 13 dargestellt; in der Nähe der Einspannstelle und der

Lasteinleitung ist sie der zu erwartenden Spannungsgradienten

wegen in der Längsrichtung enger gewählt worden. Bild 14

zeigt die Quermomentenverteilung der Schalenberechnung in
der Feldmitte; die Übereinstimmung mit der analytischen
Lösung (Fourier-Reihe) ist mit Ausnahme des Lastemlettungs-
punktes sehr gut. Die Verteilung der Normalspannung in der
Mittelfläche ist im Einspannquerschnitt (Bild 15) und in Feldmitte

(Bild 16), je getrennt für den Könstruktionstyp Schale

und Membran, aufgezeichnet. Sie ist nicht mehr linear; die

Längsffiager ziehen wie erwartet Spannungen an (mittragende

Finite Elemente Schale
Finite Elemente Membran

raj|0Mj|ch (Fouriedpeihe) Schale
Balken (gemischte Torsion)

§m.

BUd 16. Die Übereinstimmung der Normalspannungen in der
Feldmitte des Hohlkastenträgers der Finiten Element-Berechnung

als Schale mit jenen aus einer Fourierreihe ist gut. Zum
Vergleich ist das Ergebnis der Finiten Element-Berechnung als
Membran und dasjenige der Balkentheorie mit gemischter Torsion

aufgetragen

13.50

Zugband

Höhlkörper
47.86

Randtraget ^
47.86 C 16.70

Bild 18. Übersichtsplan des Hyparschalendaches. a) Grundriss,
b) Ansicht von B, c) Ansicht von D, d) Ansicht von A bzw. A'
(aus [45])
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Bild 19. Elementeinteilung der
eigentlichen Schale und der
Randträger. Beim Übergang
des Voll- zum Hohlquerschnitt
sind die Ecken der Finiten
Elemente der Ober- und
Unterseite des Randträgers
exzentrisch an die in der
Fortsetzung der Mittelfläche der
Schale liegenden Knoten des
Vollquerschnittes angeschlossen

worden

Breite). Die analytischen Ergebnisse liegen nahe bei den
Ergebnissen der Methode der Finiten Elemente als Schale. Zum
Vergleich sind die Werte der Balkentheorie aufgezeichnet,
welche die Erhaltung der Querschnittsform voraussetzt. Die
St.Venantsche- und die WölbkrafttoraK>n werden erfasst. Wie
vorauszusehen ist, werden stark verschiedene Ergebnisse
erhalten. Die Vernachlässigung der Profilverformifng und vor
allem des Deformationseinflusses der sekundären Wölbschubspannungen

ist im Gegensatz zu offenen Querschnitten (siehe
[4, Bild 15] und [3, Seiten 204-212]) unzulässig.

Als letztes Beispiel soll die mit STRIP durchgeführte
Nachberechnung des Hyparschalendaches des Hallenbades
Hamburg Sechslingspforte (Konstruktion und Statik: Leonhardt

und Andrä, Gemeinschaft Beratender Ingenieure, Stuttgart)

betrachtet werden. Der Entwurf und das Tragverhalten
sind ausführlich in [45] beschrieben. Das Dach besteht aus
zwei aneinander gelehnten hyperbolischen Paraboloidschalen,
welche nur in drei Punkten gelagert sind (siehe Bilder 17 und
18). Die Randträger sind nicht kontinuierlich gestützt, sondern

Finite Elemente
Modellversuch

kragen frei aus. Ihre Achsen folgen der Schalenmittelfläche.
Die dreieckförmig ausgebildeten Randträger ermöglichen
einen stetigen Übergang zur Schale (siehe Bild 19). Sie sind
somit verwunden und weisen variable Abmessungen auf (Voll-
und Hohlquerschnitt).

Da in der Berechnung der Finiten Elemente nur zur
Falte BD symmetrische Lastfälle erfasst worden sind, ist die
Analyse auf die Hälfte der Konstruktion beschränkt worden.
Beliebige Belastungen könnten mittels des Belastungsumord-
nungsprinzipes in einen symmetrischen und antimetrischen
Anteil aufgespalten werden. Dieser könnte mit dem gleichen
Ersatzsystem (Elementeinteilung) verarbeitet werden, wobei
die Symmetriebedingungen längs der Falte BD durch anti-

Fimte Elemente
Modellversuch

Finite Elemente
Modellversuch

Untenseite

Oberseite

106.9

Oberseile

Y 89.3
^»-63,6

Unterseite
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»-46,2394,71399.6
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Bild 20. Vergleich der Hauptnormalkraft iit [kg/cm] in der eigentlichen

Schale längs der Linie BA für den Lastfall Eigengewicht
bestimmt aus der Berechnung mit Finiten Elementen und aus dem
Modellversuch

Bild 21. Vergleich der Normalspannungen in Längsrichtung an der
Unter- und Oberseite des Randträgers [kg/cm2] längs der Falte BD
für den Lastfall Eigengewicht bestimmt aus der Berechnung mit
Finiten Elementen und aus dem Modellversuch
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metrische zu ersetzen wären. Bild 19||eigt die verwendete
Elementeinteilung. Die Randträger sind ebenfalls in Flächen-
tragwerkelemente aufgelöst woHen. Beim Übergang des Voll-
zum Hohlquerschnitt sind die Ecken der Finiten Elemente der
Ober- und Unterseite des Randträgers exzentrisch an die in
der Fortsetzung der Mittelfläche der eigentlichen Schale liegenden

Knoten des Vollquerschnittes angeschlossen worden. Die
in Bild 19 nicht angegebenen Stützen sind durch Balkenelemente

erfasst worden. 754 Knotenpunkte und 792 Elemente
sind eingeführt worden. Das am Schluss anfallende
Gleichungssystem nach Einführen der geometrischen Randbedingungen

weist 4457 Unbekannte auf; die (halbe) Bandbreite
beträgt 245.

Ein ausgedehnter Modellversuch ist im Institut für
Modellstatik der Universität Stuttgart (Leitung Prof. Dr. R.K.
Müller) durchgeführt worden [46]. Das Kunststoffmodell im
Massstab 1:26,67 (grösste Abmessung Abstand derBäeiden

Tiefpunkte A und A' [Bild 18] 4m) hat neben der Ermittlung

der für die endgültige Bemessung benötigten Schnitt-
grössen auch für eine Prüfung der ästhetischen Wirkung der
Schale gedient.

Die Ergebnisse der Berechnung mit Finiten Elementen
sind mit denjenigen des Modellversuches für den Lastfall
Eigengewicht dargestellt worden. In Bild 20 bzw. 21 ist die
Hauptnormalkraft nx in der eigentlichen Schale längs der
Linie BA bzw. die Normalspannung in Längsrichtung an der
Ober- und Unterseite des Randträgers längs der Falte BD
aufgetragen. Die Messergebnisse sind den Bildern 22 bzw. 18 in
[46] entnommen; die gleichen Nummern für die Messpunkte
sind verwendet worden. Der allgemeine Verlauf der Ergebnisse
ist der gleiche. An gewissen Stellen ist die Übereinstimmung
gut. So beträgt in der Mitte der Einzelschale (Schnittpunkt
der beiden Diagonalen AB und CD) die Hauptnormalkraft der
Finiten Elementberechnung, bestimmt als Mittelwert der
Ergebnisse in den Zentren der anschliessenden Finiten Elemente
(Bild 19), 387,0 kg/cm. Der gemessene Wert beläuft sich auf
394,7 kg/cm (siehe Bild 20, Messpunktnummer 0,03).

Adresse des Verfassers: John P.JMßff, dipl. Ing. ETH, SIA, i. Fa.
Digital AG, Leonhardshalde 21, 8001 Zürich.
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Ein Institut für Umweltwissenschaft in Ölten? DK 577.4:061.6

Kürzlich war der Tagespresse die Stellungnahme des
Kantons Solothurn zur Vorbereitung eines neuen ETH-
Gesetzes zu entnehmen. Sie erfolgte in Beantwortung eines
Fragebogens, den das Eidgenössische Departement des
Innern im Oktober 1970 lanciert hatte.

In einem zweiten Teil der AntwoÄän das Departement
des Innern befasst sich die Solothurner Regierung mit den
hochschulpolitischen Bestrebungen des Kantons Solothurn.
Erstmals wurden die solothurnischen Behörden im Frühling
1968 mit diesem Fragenkreis konfrontiert. Damals wurde
die Regierung aufgefordert, die Möglichkeit zu prüfen, ob
nicht die damals in Auflösung begriffene Hochschule für
Gestaltung in Ulm vom Kanton Solothurn hätte übernommen

werden können. Diese Übernahme wurde abgelehnt,
gleichzeitig wurde aber eine kantonale Kommission für
Hochschulfragen gegründet. Diese Kommission nannte fünf
Fachbereiche, die im Hinblick auf die Gründung einer Spe-
zialhochschule (interdisziplinäre Forschung, nur Postgra-
duate-Studium) weiter zu verfolgen wären. 1970 wurden
die Kontakte mit den Kantonen Aargau und Luzern
intensiviert. Man wollte so die Koordination von Neugründungs-
projekten von Hochschulen sicherstellen. Parallel dazu sollten

Möglichkeiten einer allfälligen Zusammenarbeit mit
der Universität Bern, vorzugsweise im Rahmen eines
gemeinsamen bildungswissenschaftlich-pädagogischen Projektes
Aargau/Bern/Solothurn, weiter verfolgt werden.

Die Abklärungen der Kommission zeigten weiter, dass
im Kanton Solothurn in erster Linie das Projekt «Umwelt¬

wissenschaften» voranzutreiben sei. Damit eröffne sich dem
Kanton die Aussicht, einen sinnvollen Beitrag an das
schweizerische Hochschulwesen leisten zu können.

Der Stand der Abklärungen
Im Herbst 1970 fand an der ETH ein Symposium über

Probleme des Umweltschutzes statt. Damals wurde eine
Arbeitsgruppe für Fragen des Umweltschutzes gegründet.
Diese Gruppe ist der Meinung, dass die Probleme des
Umweltschutzes auch Gegenstand des Forschungsgebietes eines
ETH-Instituts und eines Nachdiplomstudiums sein könnten.
Im Frühling 1971 fand ein Gespräch zwischen der Arbeitsgruppe

für Fragen des Umweltschutzes und dem Vorsteher
des Erziehungsdepartementes des Kantons Solothurn statt.
Die Arbeitsgruppe bejaht das dringende Bedürfnis nach
einem Institut für Umweltwissenschaften. Das Institut
bedürfe einer festen Verankerung innerhalb der bereits
bestehenden Hochschulen unseres Landes, sollte indessen nicht
direkt in eine Hochschule eingegliedert werden. Daher sei
eine Stellung anzustreben, wie sie etwa die Annexanstalten
der ETH innehaben. In der Arbeitsgruppe war man der
Meinung, ein Institut für Umweltwissenschaften könne
seinen Standort im Kanton Solothurn haben, vorzugsweise
in der verkehrsgünstig gelegenen Region Ölten.

Es sei nicht ausgeschlossen, so stellt der solothurnische
Regierungsrat schliesslich fest, dass eine solche Institution
von Hochschulrang mit Standort im Räume Ölten sehr wohl
Kern einer dritten ETH werden könnte.

Studie über die Energieversorgung von Grosssiedlungen DK 620.98:711.5

Zwischen der südlichen Stadtgrenze von Zürich- und
dem überbauten Dorfkern von Adliswil wird eine
Grosssiedlung geplant, die unter dem Namen «Jolieville» bekannt
ist und auf rund 70 Hektaren eines noch weitgehend
unbebauten Gehißtes neben etwa 2500 Wohnungen für 9000
bis 10 000 Einwohner-ein Grosshotel sowie ein Einkaufszentrum

mit Bürogebäude, Küche, Schulen und Sportanlagen

umfasst. Die Frage, auf welche Art eine solche Siedlung

am wirtschaftlichsten mit Energie für Heizung und

Brauchwarmwasser zu versorgen sei, hat Planer, Behörden
und Versorgungsunternehmen von Anfang an beschäftigt,
weil anzunehmen ist, dass ähnliche Bauvorhaben immer
mehr das Bild neuer Siedlungsgebiete in der Schweiz prägen

werden.
Der Wunsch nach einer umfassenden Beurteilung aller

Möglichkeiten der Energieversorgung unter Berücksichtigung
der heute verfügbaren Energieträger führte im Sommer
1970 zur Bildung des «Studienkonsortiums Energieversor-
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