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HERAUSGEGEBEN VON DER VERL AGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH, POSTFACH 630

Anwendung der Finiten Elemente in der Industrie

Unter diesem Titel veranstaltete die SIA-Fachgruppe
der Ingenieure der Industrie (FII) am 12. November 1970
im Kasino Zürichhorn eine Informationstagung. In deren
Verlauf erhielten die zahlreichen Teilnehmer einen Überblick

über das Prinzip der Methode der Finiten Elemente
und über deren Anwendungsmöglichkeiten in der Industrie
sowie für die Lösung besonderer Fragen des Bauingenieurwesens.

Im vorliegenden Heft beginnen wir mit der Veröffentlichung

der während der Tagung gehaltenen Vorträge,

welche zum Teil überarbeitet wurden. Damit auch die
Leser, die mit der Methode nicht vertraut sind, einen Überblick

über deren Grundlagen und Aufbau erhalten, hat
sich Ing. E. Erni in verdankenswerter Weise bereit erklärt,
einen entsprechenden Beitrag zu verfassen. Mit diesem Aufsatz

leiten wir die Reihe über die Anwendung der Methode
der Finiten Elemente in der Industrie ein. Der Umfang
dieser Beitragsreihe zwingt uns, mit Rücksicht auf die
verschiedenen Berufssparten unserer Leserschaft, sie auf mehrere

Ausgaben zu verteilen. Red.
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Von E. Erni, Zürich

1. Einleitung
Die Methode der Finiten Elemente beruht auf den Grundlagen

der Matrizenstatik. Ein wesentlicher Unterschied zu
anderen Verfahren liegt in der Gestaltung des Rechenablaufes

von Beginn an in der Form der Matrizenrechnung. Die
geschichtliche Entwicklung der Methode beginnt in den Jahren

vor dem Zweiten Weltkrieg. Während des Krieges und im
Zeitraum bis 1955 lag der Schwerpunkt bei der Kraftmethode der
Matrizenstatik (Matrix Force Method). In den weiteren Jahren

beginnt die Deformationsmethode der Matrizenstatik (Matrix
Deformation Method) an Anwendungshäufigkeit zu gewinnen.
Die Entwicklung dieser Methoden auf den heutigen Stand der
Methode der Finiten Elemente ist stark gekoppelt mit den

Fortschritten der elektronischen Datenverarbeitung und ohne
sie praktisch nicht denkbar. Erst die Datenverarbeitung macht
die rationelle Lösung der grossen Zahl simultaner Gleichungen
möglich, die beim Rechnungsvorgang anfallen. Von den
zahlreichen Ingenieuren und Wissenschaftlern, die mit der
Entwicklung besonders eng verbunden sind, seien einige genannt:
B. Langefors, P.H. Denke, M.J. Turner, R.W. Clough,
J.H. Argyris, F.B. de Veubeke, O.C. Zienkiewicz.

Die Literatur über die Methode, vor allem in englischer
Sprache, hat seit 1960 einen Umfang angenommen, der selbst

für Spezialisten schwer überblickbar ist. Die im Literaturverzeichnis

angegebenen Standardwerke von 1967 an geben aber

doch einen guten Überblick.
Die Methode der Finiten Elemente ist unter die numerischen

Methoden der Festigkeitsrechnung einzureihen; es wird
darunter im allgemeinen ein Verfahren verstanden, bei dem die

zu analysierende Struktur als eine Konfiguration von diskreten
Teilchen dargestellt wird, genannt Elemente.

Jedes Element hat dabei endliche Dimensionen. Um
Berechnungen mit diesen Elementen durchzuführen, ist es

notwendig, für jedes die Beziehung zwischen der wirkenden Kraft
und der Deformation aufzustellen. Ein Kontinuumskörper
kann durch ganz verschiedenartige Modelle von Finiten
Elementen dargestellt werden: Dreiecke, Vierecke oder
polygonale Formen. Das Netzwerk der Unterteilung kann grob
sein und eine kleine Zahl von Elementen umfassen, oder aber

sehr fein, indem zahlreiche kleine Elemente gewählt werden.

Die Kriterien zur Wahl hängen von der Geometrie der Struktur
und von lokalen Einflüssen, wie etwa Spannungskonzentrationen,

ab. Dabei ist es durchaus möglich, die Feinheit der

Unterteilung zu variieren und an den Orten von Krafteinlei¬

tungen eine feinere Aufteilung vorzunehmen. Im Falle einer
Rahmenkonstruktion erhält man bereits eine passende
Unterteilung in Elemente, wenn jedes Teil, Balken oder Stab als ein
Finites Element betrachtet wird.

Diese Teile werden in der Berechnung durch die Neutralachse

dargestellt, die Bindungen an die Nachbarelemente
treten bei einer Rahmenstruktur nur an den Enden, Knoten
genannt, in Erscheinung. Die Betrachtung von Gleichgewicht
und Verträglichkeit der Verschiebungen wird dementsprechend

nur an diesen Knoten ausgeführt. Mit den Elementtypen,
welche normalerweise unter den Begriff Finite Elemente fallen,
werden Strukturen berechnet, die mathematisch dargestellt
sind durch zweidimensionale Scheiben, Platten und Schalen,
oder durch ein dreidimensionales elastisches Kontinuum. Damit

erscheinen die Verbindungen entlang einer Linie oder einer
Fläche und nicht nur an einem Knotenpunkt des Elementes.
Es muss nun sichergestellt werden, dass das Gleichgewicht und
die Verträglichkeit an den Knoten vorhanden ist und die

Berührungsflächen oder Linien zwischen den Knoten die gewählte
Form der Verschiebungsverteilung annehmen. Diese Verträglichkeit

an den Begrenzungen zwischen zwei benachbarten
Elementen muss gefordert werden, um ein der Wirklichkeit
entsprechendes Spannungsbild in der Struktur zu erhalten.
Sind die Verträglichkeits- und Gleichgewichtsbedingungen in
den Knotenpunkten erfüllt, so ist es von der Richtigkeit der

Steifigkeitsmatrize des Elementes abhängig, ob an den

Begrenzungen zweier benachbarter Elemente die
Verträglichkeitsbedingungen ebenfalls erfüllt sind. Wäre die
Verträglichkeitsbedingung nur an den Knoten eines Dreieckelementes
erfüllt und nicht an den Seiten, dann entstünden durch die

Belastung Spalten oder Übereinanderschiebungen der benachbarten

Dreiecksfelder, so dass die ganze Struktur weniger steif
wirkt, als in Wirklichkeit. Dieser Effekt hätte grosse
Spannungsabweichungen gegenüber der exakten Lösung und
Spannungskonzentrationen in den Knotenpunkten zur Folge.

2. Die Ableitung einer Steifigkeitsmatrize am Beispiel des

einfachen Balkens

2.1 Beziehungen zwischen Kräften und Verschiebungen

Vor der Betrachtung eines zweidimensionalen
Dreieckselementes, wie es zur B^Shnung eines Kontinuumskörpers

verw^^t werden kann, ist es nützlich, sich mit dem Vorgang

an einem einfachen Element, dem Balken, zu befassen, wie er
normalerweise in einem Rahmentragwerk vorkommt.
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Bild 1. Endkräfte am einfachen Balken Bild 2. Endverschiebungen des einfachen Balkens

In den Bildern 1 und 2 sind die Verschiebungen und
Verdrehungen des einfachen Biegebalkens mit gleichmässigem
Querschnitt unter den Knotenkräften Vlt Hu M, und V2, H2,
M2 an den Knoten 1 und 2 dargestellt. Die Kolonnen der
Kräfte V,, H,, Mj sowie V2, H2, M2 seien mit P, und P2
bezeichnet.

m
(2.11) P, H,

M,

V2

n
M2

Pj und P2 nennt man auch generalisierte Knoten- oder
Endkräfte.

In ähnlicher Form lassen sich generalisierte Knoten- oder
Endverschiebungen definieren:

(2.12) d,

Uz

d2 m

Damit am Balken unter den Kräften Ps und P2 Gleichgewicht

herrscht, müssen folgende Bedingungen erfüllt sein:

(2.13) H, -H,: V m M, -M2 -V21

Yl EJ 2EJ EJ1

1

mm

-M, V,
EJ \ Ii 2

'

WM

Ist der Knoten 1 fixiert, so resultieren die Gleichungen:

1
(2.15) k= — |i V2

1 / P l3

Das Einsetzen der Gleichgewichtsbedingungen aus (2.13)
führt zu:

; ^e7(_m,1 + ViT
i

-Mx- V,

Die in Längsrichtung des Balkens wirkenden Kräfte
verursachen Längenänderungen der Grösse:

Unter der Annahme, dass der Knoten 1 deformiert ist,
während der Knoten 2 festgehalten bleibt (Bild 3), gilt unter
Bezugnahme auf die einfachen Beziehungen am Kragträger:

*y

(2.17) Ul —u2 H,
1

EA

M,

AU

V! und Mj können mit v2 0 und u>2 0 in Funktion der
Verschiebung Vj und der Verdrehung ^ geschrieben werden:

12EJ 6EJ

Wenn vt 0 und u\ 0, gilt in Funktion von v2 und <J>2:

V
I2EJ 6EJ

P V
¦+2

Die Kraft V2 wird damit infolge der kombinierten
Verschiebung und Verdrehung der Enden 1 und 2:

X (2.18) V,
12EJ

v,
6EJ

<M +

h-Y +

Ve

12 EJ
US

6EJ
—r,~ +2

Auf das Moment und die Kraft H übertragen:

/6EJ 4EJ \
(2.19) M, l-jr-V! + —— <M +

6EJ 2EJ
l2 1

Bild 3. Endkräfte und Endverschiebungen des Balkens mit
einem eingespannten Ende

EA
H, =—j-u,-

EA
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2.2 Die Beziehungen zwischen Kräften und Verschiebungen in
Matrizenschreibweise

Die Matrizenschreibweise hat den Vorteil, dass sie die

Proportionalität zwischen Kräften und Verschiebungen klar
hervortreten lässt und zudem eine abkürzende Schreibweise bei

grosser Gleichungszahl darstellt. Die generalisierten Knotenkräfte

und Verschiebungen sind Beispiele für Kolonnenvektoren,

das heisst Matrizen mit nur einer Kolonne.
Die Matrize

K
all al2 al3

a21 a22 a23

a31 a32 a33

mit drei Zeilen und drei Kolonnen wird als 3 x 3 quadratische
Matrize bezeichnet. Werden die Elemente der Zeilen von K
mit den entsprechenden von d multipliziert und summiert, so
ist das Produkt:

an ai2 ai3

Kd a21 a22 a^
a3t a32 a:•"•31 ^32 "33

anu

a,, u

ai2V + aI3<|>

a22v + a23^

a32v + »33 +

Das Produkt stellt ebenfalls einen Kolonnenvektor dar.
Die Regeln welche hier angewandt wurden, können auf jeden
anderen Matrizentyp mit m Zeilen und n Kolonnen erweitert
werden (im Anhang wird ein Abriss weiterer notwendiger
Rechenregeln für Matrizen gegeben).

Die Gleichungen (2.18) und (2.19) werden jetzt in
Matrizenform dargestellt. Mit der Last- und Verschiebungsmatrize
in (2.11) und (2.12) definiert, resultiert:

K,

EA

0

0 0

12EJ 6EJ
P l2

6EJ 4EJ
P

K,

EA

1

0 0

12EJ 6EJ

0

I
6EJ

P

I
2EJ_

Damit kann geschrieben werden:

(2.20)P1=K11d1+K12d2

(2.21) P2 K21 di + K22 d2

EA

K2

JV2

l
0 0

0
12EJ 6E J

i 1

0
6EJ

1
4EJ

1

T 0 0
»••

0
12EJ 6EJ

P P

6EJ 4EJ
0 ~P— ~i~

Diese Gleichungen lassen sich weiter zusammenfassen in eine
einzige durch Definition der Kraft- und Verschiebungsmatrize:

P
Pil

kombiniert mit der Steifigkeitsmatrize:

K Kn K12

K21 K22

P und d sind Kolonnenvektoren mit 6 Elementen und K
eine 6x6 Matrize. Die Gleichungen (2.20) und (2.21) werden
zu:

(2.22) P Kd

Der betrachtete Biegebalken hatte bis jetzt eine zur x-
Achse parallele Lage, und die positive Richtung lief von 1 nach
2. Damit war der Vorteil verbunden, dass die Ausdrücke der
verschiedenen Matrizen einfach ausfielen. Normalerweise hat
der Balken aber eine beliebige Lage zu einem globalen
Koordinatensystem, wie Bild 4 zeigt. Die Kraftmatrize P', welche
auf das neue globale Koordinatensystem ausgerichtet ist,
lautet:

(2.23) P'j
cosa —sina 0

sina cosa 0

0 0 1

1 TP,

Für P2 und P'2 gelten analoge Beziehungen. Die
Transformationsmatrize wird dabei mit T bezeichnet. Aus Bild 4
lassen sich weiter folgende Beziehungen herleiten:

di
cosa sina 0

-sina cosa 0

0 0 1

Ui

1
T^d'j

Zusammengefasst gilt deshalb für P' folgende allgemeine
Beziehung:

+ >"

A>7

x'

\M

J^^ 1

V

|
0 X

Bild 4. Globales und lokales Koordinatensystem
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P'

H'i
m

H'2

m
M'2

COSa — sina 0 0 0 0 \m
sina — cosa 0 0 0 o1 m
0 0 1 0 0 0 M,
0 0 0 COSa -—sina Ol H2
0 0 0 sina cosa o v2
0 0 0 0 0 11 M,

TO
OT

O stellt eine quadratische Matrize dar, deren Elemente
alle gleich 0 sind. Bei gleicher Behandlung von d ergibt sich:

dl
d2

TT O
d'

o m

Weitere Entwicklungen sind dann:

(2.24) P'
TO
OT

T O
O T

Kd

T O
O T

POK ^ d' K'd'
O TT

Die Steifigkeitsmatrize eines einfachen Biegebalkens, die
sich auf ein beliebiges Koordinatensystem bezieht, ist damit
gefunden und lautet (T kann aus Gleichung (2.23) entnommen
werden):

(2.25) K'
ITO
O T

TT O
K

O TT

3. Die Ableitung der Steifigkeitsmatrize einer Balkenstruktur
In Bild 5, das eine Rahmenstruktur darstellt, wird der in

den vorhergegangenen Kapiteln behandelte einfache Balken
durch die Knoten A und B begrenzt und ist mit a bezeichnet.
Weitere Balken, nämlich b und c, sind im Knoten A, d und e
im Knoten B mit Balken a verbunden und an den anderen
Enden C, D, E, F eingespannt. In den Knoten A und B wirken
die Kräfte P'a und P'b. Die Einspannungen der verschiedenen
Stäbe sind mit 1 bezeichnet.

Die Gleichgewichtsbedingungen der Knoten A und B
lassen sich in folgender Art und Weise anschreiben:

P'a (P'i)a + (P'2)d + (P'2)c

P'b (P'2)a + (P'2)i + (P'2)e

E%.^D

P'

Bild 5. a) Rahmenstruktur in Balkenelemente aufgeteilt; b)
Einfacher Balken in der Struktur

Mit Hilfe der Gleichungen (2.20) und (2.21):

(P'l)a (KVM'a + (K',2)ad'B

(P'2)b (K'2i)b d'c + (K'2a)b d'A

Entsprechend Gleichung (2.25) gilt:

(K'LK)i I (T)i (Klh)i (TT),,

wobei L und R für 1 oder 2 und i für a, b, c..., n stehen.
Die Knotengleichungen in A und B können in einer

einzigen Matrize zusammengefasst werden:

P'a I I [(K'„)a + (K'22)b + (K'22)c] [(K'i2)a]
P'B [(K'sOa] [(K'22)a + (K'z2)d + (K'22)e]

d'A

d'B

das entspricht:

(3.1) (P)Knoten= [Steifigkeitsmatrize] (d)Knoten

Es ist also möglich, den Rechnungsgang, der sich auf die
Lösung simultaner linearer Gleichungen reduziert, zurückzuführen

auf die Bestimmung der Knotendeformationen durch
die Knotenkräfte oder umgekehrt. Die Steifigkeitsmatrize
entsteht dabei durch Zusammensetzen der Steifigkeiten der
einzelnen Glieder in der beschriebenen Art und Weise. Im
allgemeinen Fall gelten für die Matrize der Knotenkräfte und die
Matrize der Knotenverschiebung folgende Ausdrücke:

(P)i.

P'a d'A

P'b d'B

P'q
(A)Knoten—

d'o
:

P'r d'B

P'n d's

Die mit Q und R indizierten Grössen seien die Knoten
eines einfachen Balkens (Bild 5b). Dabei stellt Q den Anfang 1

und R das Ende 2 dieses Balkens n dar. Der Beitrag dieses
Balkens zur Steifigkeitsmatrize besteht in der Addition der
Ausdrücke (K'u)i zum Element, welches sich in der Zeile Q
und der Kolonne Q befindet. Die Grössen (K'i2)i, (K'2i)i,
(K'22)i werden zu den Elementen auf Zeile Q, Kolonne R und
Zeile R, Kolonne Q und Zeile R, Kolonne R hinzuaddiert.

[Steifigkeitsmatrize] (Q)

(R)

(Q)

(Ku)i
(K2l)i

(R)

(K12)i

(K22)i

4. Übertragung des Vorgehens auf Kontinuumskörper

Der beschriebene Lösungsweg kann in drei Abschnitte
eingeteilt werden:

- Bestimmung der Steifigkeit jedes einzelnen Elementes

- Bilden der Steifigkeitsmatrize der ganzen Struktur

- Lösung der Gleichung (3.1), welche die Knotenkräfte und
die Knotenverschiebungen verbindet und Auffinden der
unbekannten Knotenkräfte oder Knotenverschiebungen in
Ausdrücken der bekannten Kräfte oder Verschiebungen.

Im behandelten Beispiel greifen die äusseren Kräfte an
den Knoten an. Eine Erweiterung auf allgemeine Fälle des

Lastangriffes, einschliesslich verteilte Lasten, ist ohne weiteres
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möglich, liegt aber nicht im Rahmen dieser Ausführungen.
Die Spannungen und Verzerrungen in einem Kontinuums-
körper können auf ähnliche Art beschrieben werden. Das
Rahmentragwerk stellt die Zusammensetzung von einzelnen,
fest definierten Balken dar und kann damit leicht unterteilt
werden in seine elementaren Komponenten. Für einen Kon-
tinuumskörper gilt dies nicht unbedingt, denn er besteht aus
Teilchen von infinitesimaler Grösse und kann nur durch
Elemente mit endlicher Abmessung und Form angenähert werden.
Die Güte der Annäherung wird unter anderem bestimmt sein
durch Art und Grösse der Elemente.

Die Methode der Finiten Elemente wendet das Matrizenverfahren

der Festigkeitsrechnung auf Kontinuumskörper an.
Zu diesem Zweck werden die Körper bei Problemen mit
ebenem Spannungs- oder ebenem Deformationszustand in
eine Zahl von kleinen Elementen unterteilt mit variabler
Grösse und gewöhnlich von dreieckiger Form. Im allgemeinen
dreidimensionalen Fall, welcher an dieser Stelle nicht diskutiert

werden soll, werden Tetraeder oder Kuben verwendet.
Der Körper wird dabei nicht durch ein Rahmentragwerk oder
Netzwerk ersetzt, sondern durch eine reale Zusammensetzung
von zwei- oder dreidimensionalen dreieckigen Elementen,
welche an ihren Rändern oder Seitenflächen miteinander
verbunden sind. Die Deformationen und Kräfte entlang den sich
berührenden Rändern oder Flächen benachbarten Elementen
anzupassen stellt Probleme. Aus diesem Grund werden
vereinfachende Annahmen gemacht, um die Aufgabe auf eine lösbare
Form zu bringen.

Diese Annahmen bestehen in der vorliegenden Anwendung
darin, dass gerade Linien gerade bleiben und damit auch die
Ränder der Elemente. Die Kontinuität zwischen
Nachbarelementen mit zwei gemeinsamen Ecken ist gesichert, wenn die
gemeinsamen Ecken um den gleichen Betrag verschoben
werden. Weiter wird vorausgesetzt, dass die Randkräfte,
welche auf jedes Element aufgebracht werden, um das
Gleichgewicht im Element während der verursachten Deformation
zu halten, einem System von Kräften gleichwertig sind, welche
an den Ecken wirken. Diese Kräfte und Verschiebungen an den
Ecken können verglichen werden mit den Knotenkräften und
den Verschiebungen in der Struktur eines Rahmentragwerkes.
Die Ecken, welche mehreren Elementen angehören, spielen die
gleiche Rolle wie die Knoten, welche verschiedene Balken
verbinden. Die grundlegende Idee der Finiten Elemente besteht
unter anderem darin, die wahre Deformation und Randlast
jedes Elementes zu ersetzen durch Eckkräfte und Verschiebungen

und diese Kräfte und Verschiebungen in der gleichen
Weise anzupassen, wie das im Falle des Rahmentragwerkes
geschehen ist.

5. Die Ableitung der Steifigkeitsmatrize von Dreieckelementen

Bild 6 zeigt ein Dreieckelement und den deformierten
Zustand dieses Elementes. Die Verschiebungen jedes Knotens
haben zwei Komponenten u und v. Die Verschiebungen des
gesamten Elementes müssen nun durch die damit pro Element
vorhandenen sechs Verschiebungen ausgedrückt werden. Die
einfachste Darstellung ist gegHen durch zwei lineare
Polynome:

u a-i + a2x + a3y

V a4 + a5x + a6y

wobei a, bis a6 in Funktion der Verschiebungen an den Ecken
uq und Vq, ur und vr sowie us und Vs ausgedrückt werden-
können. Die Anwendung der obigen Gleichungen auf die
Eckpunkte ergibt:

|.K

X

m u«

«2, Ur

*3 Us

<*4 Vq

|j Vr

a*ö 1

Vs

Bild 6. Dreieckelement in deformiertem und ursprünglichem

Zustand

1 xu ya 0 0 0
1 xr yr 0 0 0
1 xs ys 0 0 0

0 0 0 1 Xq yq
0 0 0 1 Xr yr
0 0 0 1 Xs ys

Wird dieses Gleichungssystem gelöst, so findet sich:

al [Uq (Xrys Xsyr) + Ur (Xsyq Xqys) +
+ Us(Xgyr—XrVq)]/A

a2 [uq (yr — ys) + ur (ys — yq) + Us (yg — yr)]/A

a3 [Uq (Xs — Xr) + Ur (Xq — Xs) + Us (Xr — Xq)]/A

«4 [va (xrys — xsyq) + Vr (xsyq — xqys) +
+ Vs (Xqyr — Xryq)]/A

as [vq (yr — ys) + vr (ys — yr) + vs (yq — yr)]/A

ao [Va (Xs — Xr) + Vr (Xq — Xs) + Vs (Xr — Xq)]/A

A (xrys + xQyr + xsyq) — (xryq + Xqys + xsyr)

Der allgemeine Ausdruck für die Verschiebung des
Punktes 0 wird damit:

(5.1) u —^ [(xrys — xsyq) + (y9 — ys) x 1 (xs — xr) y] +

+ "/ [(Xsyi — X«Vs) + (ys — yq) X + (Xq — Xs) y] +

+ BS [(*«yr — Xryq) + (yq — yr) X + (Xr — Xq) y]

Ein entsprechender Ausdruck gilt für die Verschiebung in
Richtung der y-Achse v, wobei uq, ur, us durch Vq, vr und vs
ersetzt werden müssen. Die Verzerrungen im Punkte 0 ex, ey,
Yxy lassen sich ausdrücken durch:

(5.2) ex BS [u, (yq — ys) + ur (ys —- yq) +

+ us(yQ — yr)]/A

[Vq (Xs Xr) + Vr (Xq Xs) +

+ Vs (Xr — Xq)]/A

3y

2Y*
1

Sx
[Uq (Xs Xr) + Ur (Xq Xs) +

+ us (xr — xq) + vq (yr — ys) + vr (ys — yq) +
+ vs (yq — yr)]/A
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Diese Gleichung kann in Matrizenform dargestellt werden
durch die Definition der Verzerrungsmatrize e und der
Verschiebungsmatrize d der Ecken.

Cx

e ey

2rsy

Daraus:

(5.3) e Bd

B ist eine 3 x 6 Matrize:

1

B

(yr—ys) 0 (ys —yq) 0 (yQ —yr) 0

0 (Xq Xs) 0 (Xr Xq)— 0 (Xs Xr)

(Xs —Xr)(yr —yS)(Xq —Xs)(yS~Vq)(Xr —Xq)(yq —yr) |

Die Spannungen im Punkte 0 lassen sich bestimmen,
sobald die Verzerrungen bekannt sind. Die gegebene Proportionalität

zwischen S und e schliesst ein, dass S De, wobei:

(5.4) S
t
ay

TXy

und D
E

1—v2

I 1, v 0

V 1 0

1 —
0 0

Ebener
Spannungszustand

D
E (1 - v)

(1 +v)(l-2v)

1

(1—v)

0

(1— v)

1

0

0

(1—2v)
2(1-v)

Ebener
Verzerrungszustand

An den Rändern müssen die Spannungen durch die Randkräfte

im Gleichgewicht gehalten werden. Hier wird angenommen,

dass diese Randkräfte einem Satz von Kräften gleich
sind, die an den Ecken Xq, Yq, Xr, Yr und Xs, Ys wirken. Damit

wirken ausser den Knotenkräften keine Kräfte direkt auf

hY 4 /
£ !V^ 4

51

b

*kL 1

h

\] >

\9

•-¦<?

c

d\ / f

g

1/
lp 7^ 8 PS

$
P7 X

=»¦

die Elemente. Um die Knotenkräfte den effektiven Randspannungen

und den verteilten Lasten gleichwertig zu machen, ist
der einfachste Vorgang derjenige, eine virtuelle Knotenverschiebung

anzubringen. Für diese betrachtete Verschiebung
gilt, dass die Arbeit der äusseren Kräfte gleich der Arbeit der
inneren Spannungen sein muss. Das Konzspt, die verteilten
Spannungen an den Elementgrenzen durch äquivalente statische

Kräfte zu ersetzen, stellt die Frage nach den konkreten
physikalischen Bedingungen, die dabei verwendet werden,
sowie die Frage, welcher Grad der Annäherung an die exakte
Lösung durch den Rechenvorgang tatsächlich erreicht wird.
Der Rahmen dieser Ausführungen würde aber gesprengt durch
ein weiteres Eingehen auf diese Einzelheiten, und es muss auf
die entsprechende Fachliteratur verwiesen werden. Erwähnt
sei noch, dass die Methode der Finiten Elemente unter Beachtung

der notwendigen Kriterien den Satz vom Minimum der
potentiellen Energie erfüllt. Durch die Ableitung der Steifig-
keitsbeziehung auf einem alternativen Weg und der Grundlage
des Satzes des Minimums der gesamten Energie des Systems
kann die Identität der Methode der Finiten Elemente mit der
bekannten Ritz-Methode gezeigt werden. Ist die Verschiebungsfunktion

im Element so gewählt, dass sich keine Diskontinuitäten

zwischen den Verschiebungen benachbarter Elemente
ergeben, dann ist in jedem Zustand der Lösung der Inhalt der
totalen Energie des Systems über dem wahren Minimum.

Die Arbeit der äusseren Kräfte kann angeschrieben
werden mit:

2We

2We

XqUq + YqVq + XrUr H

Xq

Yq

; Uq Vq Ur Vr Us Vs
Xr
Yr
Xs
Ys

YrVr + XsUs + YsVs

dTP

Die Arbeit der inneren Spannungen pro Einheitsvolumen
beträgt unter Berücksichtigung der Gleichungen (5.3) und
(5.4):

2 Wi exax + eycjy + 2 yxy Txy eT S

2 Wi (Bd)T DBd di BT DBd

Werden die Regeln der Matrizenrechnung, welche im
Anhang zusammengestellt sind, angewendet, so lässt sich schreiben:

Volumen(5.5) P j (BT DBd) d
Volumen

K= / (B*DB)dVoIumen

Kd

Bild 7. Zusammengesetzte Dreieckelemente

Alle Ausdrücke in dieser Gleichung sind unabhängig von
den Koordinaten und beziehen sich auf die Geometrie des

Elementes und die elastischen Eigenschaften.

K (BT DB) x (Fläche des Dreiecks) x (Dicke)

In dieser Gleichung sind P und d Kolonnenvektoren mit
6 Elementen, und K ist eine 6x6 quadratische Matrize. Sind
die Koordinaten von q, r und s bekannt, der E-Modul und die

Poisson-Zahl, so kann die Matrize K gerechnet werden,
allerdings wird sie infolge der grossen Gleichungszahl nur mit Hilfe
der elektronischen Datenverarbeitung bewältigt.

Die Gleichung (5.5) ist im Prinzip dieselbe wie Gleichung
(2.24). In beiden Fällen ist die Steifigkeitsmatrize auf ein
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(Pi)a (Kll)a (Ki2)a (Ki3)a 01

(Pl). (K2l)a (K22)a (K23)a d2

(P3)a (K3l)a (K32V (K33)a d3

globales Koordinatensystem bezogen. Während bei einem
Dreieckelement P und d die Eckkräfte und Deformationen
in der x- und y-Richtung einschliessen, enthalten P' und d' die
Kräfte und Momente sowie die Verschiebungen und Verdrehungen

der beiden Enden des Balkens.

6. Ableitung der Steifigkeitsmatrize für eine Struktur, die mit
Dreieckelementen idealisiert wird

Die Ableitung der Steifigkeitsmatrize erfolgt nach den
gleichen Richtlinien wie diejenige des Rahmentragwerkes.
Die äusseren Kräfte auf die Struktur mögen entsprechend dem
Bild 7 wirken. Die Gleichung (5.5) soll erweitert werden, um
die Beziehung jedes Elementes zur Gesamtsteifigkeit zu
untersuchen. Für das mit a bezeichnete Dreieckelement kann
geschrieben werden:

(6.1)

(Kn)a,..., (K33)q stellen 2x2 Matrizen dar.

Dieselben Gleichungen können für die weiteren
Dreieckelemente in Bild 7 formuliert werden. Das Gleichgewicht im
Knoten 1 lässt sich folgendermassen ausdrücken:

Pl (Pi). + (Pi)b + (Pi)c + (Pi)a + (POe

[(Ku)a + (Ku)D + (K„)e + (Kn)d + (Ku)e] dl +

+ [(Ki2)a + (Ki2)d] d2 + [(K13)a + (K13)e] d3 +

+ [(K15)b + (Ki5)c] d5 + [(Ki6)o + (Ki«)d] d6 +
+ [(K17)a I (K17)e] d7

Das Gleichgewicht der weiteren Knoten wird durch
entsprechende Gleichungen beschrieben. Der Beitrag eines
Dreieckelementes QRS zur Gesamtsteifigkeitsmatrize einer Struktur

besteht in der Addition des Ausdruckes (Kqe)j zum
Element der Zeile Q und der Kolonne R so, dass die
Steifigkeitsmatrize folgendermassen dargestellt werden kann, wobei
alle Elemente 2x2 Matrizen sind:

(Q) (R) (S)

(Q) — (KQQ)i — (KQB)i — (KQS)i -

(R) — (Kbq)i — (KRS)i — (Kes)i -

(S) — (Ksq)i — (Ksr)i — (Kss)i •

Die Elemente jeder Zeile, zum Beispiel Q, können wie
folgt ausgedrückt werden:

(Kql)/ £ 0Kql)i

Der Index L entspricht einer Kolonne in der
Gesamtsteifigkeitsmatrize, und die Summation erfolgt über alle Dreiecke,

welche einen gemeinsamen Rand QL aufweisen. Ist Q
gleich L, so wird die Summation erweitert über alle Dreiecke

mit gemeinsame Ecke Q. Daraus lässt sich folgern, dass

die Zahl von Elementen, die nicht 0 sind, in jeder Zeile sehr
klein ist. Die Grösse der totalen Matrize spielt dabei keine
Rolle, da nur eine kleine Zahl von Dreieckelementen gemeinsame

Ränder QL oder gemeinsame Ecke Q haben werden.
Die zusammengesetzte Steifigkeitsmatrize ist daher sehr spärlich

besetzt, und die meisten ihrer Terme sind gleich 0. Von
dieser Eigenheit wird bei der numerischen Lösung Nutzen
gezogen.

m

Bild 8. Platte mit einem kreisförmigen
Ausschnitt, idealisiert mit Dreieckelementen

In der allgemeinen Form noch einmal angeschrieben lautet
die Beziehung zwischen Kräften und .Verschiebungen:

(6.2)
Pi

(Steifigkeitsmatrize)

Wie im Falle des Rahmentragwerkes besteht das Problem
darin, die unbekannten Kräfte oder Verschiebungen aus den
bekannten Verschiebungen oder Kräften zu finden. Ist der zu
untersuchende Körper zum Beispiel eine unendlich breite
Platte mit einem kreisförmigen Ausschnitt, so kann er gemäss

Bild 8 in Dreieckelemente unterteilt werden. In den Ecken oder
Knoten wirken, ausgenommen am Rand, keine äusseren

Kräfte. Die Verschiebungen jedes Punktes ergeben sich durch

Lösung der Gleichung unter Verwendung der entsprechenden
numerischen Methoden. Sind die Verschiebungen bekannt, so

ist es möglich, die Dehnungen aus der Gleichung (5.3) und die

Spannungen aus der Gleichung (5.4) zu berechnen.

7. Numerische Lösung der simultanen linearen Gleichungen

Die vorausgegangenen Ausführungen haben gezeigt, dass

die numerische Deformations-, Kraft- und Spannungsberechnung

zurückgeführt werden auf die Lösung eines Satzes von
simultanen linearen Gleichungen. Diese Gleichungen ergeben
sich normalerweise in der folgenden allgemeinen Form:

AB C

A ist eine m x n quadratische Matrize. B und C sind Kolonnenvektoren

mit n-Elementen. In dieser Gleichung sind die

Elemente B Unbekannte, während A und C bekannt sind. Die
Elemente von B stellen die Deformation einer Zahl von Punkten

dar. A stellt die Steifigkeitsmatrize dar, und C ist eine

Kolonne von bekannten Konstanten, zum Beispiel Komponenten

von Knotenkräften in x- und y-Richtung. Für die

Lösung dieser simultanen Sätze linearer Gleichungen bestehen

zahlreiche numerische Verfahren, und es wird an dieser Stelle

auf die Fachliteratur verwiesen. Der notwendige Rechnungsvorgang

ist für einen Digitalcomputer, welcher mit
Standardprogrammen für solche Probleme ausgerüstet ist, eine

Routineangelegenheit. Es werden dabei direkte und iterative Verfahren
benutzt. Als direkte Methode kann das Choleski-Verfahren,
als iterative das Gauss-Seidel-Verfahren oder das Jacobi-Verfahren

angeführt werden. Standardprogramme nehmen
normalerweise an, dass die Koeffizientenmatrize voll besetzt ist,

und es wird aus der Bandstruktur der Matrizen, welche für
Festigkeitsprobleme typisch sind, kein Vorteil gezogen. Im
InteresSe der minimalen Speicherbelegung des Computers
sowie einer kurzen Rechenzeit sind deshalb zahlreiche
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Programme zur Lösung der besonderen Bandmatrizen
entwickelt worden. Für weitergehende Ausführungen über die
mathematische und computertechnische Behandlung wird auch
hier auf die folgenden Beiträge und die Literatur verwiesen.

Die Methode der Finiten Elemente verlangt für ihre
praktische Anwendung die Benützung des Computers. Die
Programmierung bietet keine grundsätzlichen Schwierigkeiten.

Der Aufbau von wirtschaftlich arbeitenden Standardprogrammen

verlangt aber umfangreiche Vorbereitungen. Im
Augenblick wird ein beträchtlicher Aufwand in die
Weiterentwicklung dieser Methode gelegt, deren Eignung und Vorteile

gegenüber anderen numerischen und experimentellen
Verfahren durch zahlreiche Berechnungsbeispiele belegt werden
können.

Anhang: Zusammenstellung einiger Rechenregeln für Matrizen

1. Gleichheit zweier Matrizen
Zwei Matrizen A und B sind dann, und nur dann, gleich,

wenn sie vom gleichen Typ sind und wenn jedes Element der
einen Matrize gleich ist dem ihm entsprechenden Element der
anderen Matrize.
Es gilt A B dann, und nur dann, wenn aik bik für alle

i =1,2,. m
k 1,2,. n

üllt ist.

2. Addition
Zwei Matrizen A und B des Typs (m, n) werden addiert

(subtrahiert), indem man die einander entsprechenden
Elemente der ursprünglichen Matrizen addiert (subtrahiert). Die
Summenmatrize C ist wieder eine Matrize von Typ (m, n).

A ±B C

cik atk ± bik für alle i =1,2,. m

k 1, 2,. n.

3. Multiplikation einer Matrize mit einem Faktor
Eine Matrize A wird mit einer Zahl k multipliziert, indem

man jedes Element der Matrize mit der Zahl multipliziert. Das
allgemeine Element lautet kaij.

4. Multiplikation zweier Matrizen
Das Produkt AB einer m, n Matrize A und einer n, p

Matrize B in der angegebenen Reihenfolge ist die Matrize C, deren
Elemente cik man als Skalarprodukt der i-ten Zeile von A mit
der k-ten Spalte von B erhält.

AB C

cik ai i bi k 4 ai 2 b2 k + at n bn i

i 1, 2, ...,m. k l,2, ...,p.

V air brk

Ist die Zahl der Zeilen von A nicht gleich der Zahl der
Kolonnen von B, so ist die Multiplikation nicht durchführbar.
Die Matrizen werden als inkompatibel bezeichnet.

Ausführlich geschrieben lauten die Ausdrücke:

AB

Allgemein gilt AB i= BA

an aJ2 a13 t>n b12 bI3

a21 a22 a23 B b2i b22 b23

a31 a32 a33 b3i b32 b3j

(a„ b„ + a12 b2i + a13 b31) (an b12 4- a12 b22 4
+ ai3 ^32) (aU t>13 + ai2 b23 4 ai3 b33)

(a21 bn + a22 b21 + a^ b31) (a21 b12 4 a22 b22 4
+ a23 b32) (a21 b13 + a22 b23 4 a23 b33)

(a31 b„ 4 a32 b21 4 a33 b31) (a31 bi2 4 a32 b22 +
| a33 b32) (a.31 b13 4- a32 b23 4 a33 b33)

5. Transponieren

Die aus einer Matrize Am, n durch Vertauschen der Zeilen
mit den Kolonnen entstehende Matrize Am, n nennt man die
transponierte Matrize.

an ai2 ai3

a21 a22 a23

J31 a32 <*33

I ail a21 a31

AT i a12 a22 a32

a!3 a23 a33

Aus diesen Regeln folgt:

(AB)-1 =B-'A-'
(AB)T BT AT

6. Inversion

Die invertierte Matrix oder Kehrmatrize A_1 einer
Matrize A ist die Matrize, welche mit A von links oder rechts her
multipliziert die Einheitsmatrize ergibt.

AA- A-'A

Die Einheitsmatrize ist dadurch gekennzeichnet, dass alle
Elemente ausserhalb der Hauptdiagonalen, welche von der
linken oberen Ecke zur rechten unteren Ecke verlaufen, null
sind, währenddem diejenigen längs der Hauptdiagonalen gleich
1 sind.
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