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89.Jahrgang Heft 48

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER

SCHWEIZERISCHE BAUZEITUNG

AKADEMISCHEN

2. Dezember 1971

TECHNISCHEN VEREINE, 8021 ZzURICH, POSTFACH 830

Anwendung der Finiten Elemente in der Industrie

Unter diesem Titel veranstaltete die SIA-Fachgruppe
der Ingenieure der Industrie (FII) am 12. November 1970
im Kasino Ziirichhorn eine Informationstagung. In deren
Verlauf erhielten die zahlreichen Teilnehmer einen Uber-
blick iiber das Prinzip der Methode der Finiten Elemente
und iiber deren Anwendungsmoglichkeiten in der Industrie
sowie fiir die Losung besonderer Fragen des Bauingenieur-
wesens.

Im vorliegenden Heft beginnen wir mit der Veroffent-
lichung der wihrend der Tagung gehaltenen Vortrige,

Grundlagen der Methode der Finiten
Von E. Erni, Zlrich

1. Einleitung

Die Methode der Finiten Elemente beruht auf den Grund-
lagen der Matrizenstatik. Ein wesentlicher Unterschied zu
anderen Verfahren liegt in der Gestaltung des Rechenablaufes
von Beginn an in der Form der Matrizenrechnung. Die ge-
schichtliche Entwicklung der Methode beginnt in den Jahren
vor dem Zweiten Weltkrieg. Wahrend des Krieges und im Zeit-
raum bis 1955 lag der Schwerpunkt bei der Kraftmethode der
Matrizenstatik (Matrix Force Method). In den weiteren Jahren
beginnt die Deformationsmethode der Matrizenstatik (Matrix
Deformation Method) an Anwendungshiufigkeit zu gewinnen.
Die Entwicklung dieser Methoden auf den heutigen Stand der
Methode der Finiten Elemente ist stark gekoppelt mit den
Fortschritten der elektronischen Datenverarbeitung und ohne
sie praktisch nicht denkbar. Erst die Datenverarbeitung macht
die rationelle Losung der grossen Zahl simultaner Gleichungen
moglich, die beim Rechnungsvorgang anfallen. Von den zahl-
reichen Ingenieuren und Wissenschaftlern, die mit der Ent-
wicklung besonders eng verbunden sind, seien einige genannt:
B. Langefors, P.H. Denke, M.J. Turner, R.W. Clough,
J.H. Argyris, F.B. de Veubeke, O.C. Zienkiewicz.

Die Literatur iiber die Methode, vor allem in englischer
Sprache, hat seit 1960 einen Umfang angenommen, der selbst
fiir Spezialisten schwer tiberblickbar ist. Die im Literaturver-
zeichnis angegebenen Standardwerke von 1967 an geben aber
doch einen guten Uberblick.

Die Methode der Finiten Elemente ist unter die numeri-
schen Methoden der Festigkeitsrechnung einzureihen; es wird
darunter im allgemeinen ein Verfahren verstanden, bei dem die
zu analysierende Struktur als eine Konfiguration von diskreten
Teilchen dargestellt wird, genannt Elemente.

Jedes Element hat dabei endliche Dimensionen. Um Be-
rechnungen mit diesen Elementen durchzufiihren, ist es not-
wendig, fiir jedes die Beziehung zwischen der wirkenden Kraft
und der Deformation aufzustellen. Ein Kontinuumskorper
kann durch ganz verschiedenartige Modelle von Finiten
Elementen dargestellt werden: Dreiecke, Vierecke oder poly-
gonale Formen. Das Netzwerk der Unterteilung kann grob
sein und eine kleine Zahl von Elementen umfassen, oder aber
sehr fein, indem zahlreiche kleine Elemente gewéhlt werden.
Die Kriterien zur Wahl hingen von der Geometrie der Struktur
und von lokalen Einfliissen, wie etwa Spannungskonzentra-
tionen, ab. Dabei ist es durchaus moglich, die Feinheit der
Unterteilung zu variieren und an den Orten von Krafteinlei-
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Elemente

welche zum Teil iiberarbeitet wurden. Damit auch die
Leser, die mit der Methode nicht vertraut sind, einen Uber-
blick tiber deren Grundlagen und Aufbau erhalten, hat
sich Ing. E. Erni in verdankenswerter Weise bereit erklart,
einen entsprechenden Beitrag zu verfassen. Mit diesem Auf-
satz leiten wir die Reihe liber die Anwendung der Methode
der Finiten Elemente in der Industrie ein. Der Umfang
dieser Beitragsreihe zwingt uns, mit Riicksicht auf die ver-
schiedenen Berufssparten unserer Leserschaft, sie auf meh-
rere Ausgaben zu verteilen. Red.

DK 539.4.001.2:512.83

tungen eine feinere Aufteilung vorzunehmen. Im Falle einer
Rahmenkonstruktion erhdlt man bereits eine passende Unter-
teilung in Elemente, wenn jedes Teil, Balken oder Stab als ein
Finites Element betrachtet wird.

Diese Teile werden in der Berechnung durch die Neutral-
achse dargestellt, die Bindungen an die Nachbarelemente
treten bei einer Rahmenstruktur nur an den Enden, Knoten
genannt, in BErscheinung. Die Betrachtung von Gleichgewicht
und Vertraglichkeit der Verschiebungen wird dementsprechend
nur an diesen Knoten ausgefiihrt. Mit den Elementtypen,
welche normalerweise unter den Begriff Finite Elemente fallen,
werden Strukturen berechnet, die mathematisch dargestellt
sind durch zweidimensionale Scheiben, Platten und Schalen,
oder durch ein dreidimensionales elastisches Kontinuum. Da-
mit erscheinen die Verbindungen entlang einer Linie oder einer
Flache und nicht nur an einem Knotenpunkt des Elementes.
Es muss nun sichergestellt werden, dass das Gleichgewicht und
die Vertriglichkeit an den Knoten vorhanden ist und die Be-
rithrungsflichen oder Linien zwischen den Knoten die gewéhlte
Form der Verschiebungsverteilung annehmen. Diese Vertrag-
lichkeit an den Begrenzungen zwischen zwei benachbarten
Elementen muss gefordert werden, um ein der Wirklichkeit
entsprechendes Spannungsbild in der Struktur zu erhalten.
Sind die Vertraglichkeits- und Gleichgewichtsbedingungen in
den Knotenpunkten erfiillt, so ist es von der Richtigkeit der
Steifigkeitsmatrize des Elementes abhangig, ob an den Be-
grenzungen zweier benachbarter Elemente die Vertrédglich-
keitsbedingungen ebenfalls erfiillt sind. Wire die Vertrdglich-
keitsbedingung nur an den Knoten eines Dreieckelementes er-
fiillt und nicht an den Seiten, dann entstiinden durch die Be-
lastung Spalten oder Ubereinanderschiebungen der benach-
barten Dreiecksfelder, so dass die ganze Struktur weniger steif
wirkt, als in Wirklichkeit. Dieser Effekt hdtte grosse Span-
nungsabweichungen gegeniiber der exakten Losung und Span-
nungskonzentrationen in den Knotenpunkten zur Folge.

2. Die Ableitung einer Steifigkeitsmatrize am Beispiel des ein-
fachen Balkens
2.1 Beziehungen zwischen Krften und Verschiebungen

Vor der Betrachtung eines zweidimensionalen Dreiecks-
elementes, wie es zur Berechnung eines Kontinuumskorpers
verwendet werden kann, ist es niitzlich, sich mit dem Vorgang
an einem einfachen Element, dem Balken, zu befassen, wie er
normalerweise in einem Rahmentragwerk vorkommt.

1193



b7 %
M7 MZ
BE—=
e
b 4

.
RN

v X

Bild 1. Endkrifte am einfachen Balken

In den Bildern 1 und 2 sind die Verschiebungen und Ver-
drehungen des einfachen Biegebalkens mit gleichmissigem
Querschnitt unter den Knotenkriften V,, H,, M, und V,, H,,
M, an den Knoten 1 und 2 dargestellt. Die Kolonnen der
Krifte V,, H,, M, sowie V,, H,, M, seien mit P, und P, be-
zeichnet.

v, v,
(2.11) P, = ‘ H, B B
M, | M,

P, und P, nennt man auch generalisierte Knoten- oder End-
krifte.

In dhnlicher Form lassen sich generalisierte Knoten- oder
Endverschiebungen definieren:

u,

2.12)d, = v, A —

[,

Damit am Balken unter den Kriften P, und P, Gleichge-
wicht herrscht, miissen folgende Bedingungen erfiillt sein:

[
|
| Y2

Q13 H,=—H,; V,=—V,; M,=—M,—V,1

Unter der Annahme, dass der Knoten 1 deformiert ist,
wihrend der Knoten 2 festgehalten bleibt (Bild 3), gilt unter
Bezugnahme auf die einfachen Beziehungen am Kragtriger:

Y
M W,
7
G
Ay 2
| 7
X
Y
Mo
Y2
1 TVZ
T
\
X
Bild 3. Endkrifte und Endverschiebungen des Balkens mit

einem eingespannten Ende
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Bild 2. Endverschiebungen des einfachen Balkens
M, -1 Vi a2 1 12
24y === — L TR e S e e
Lo EJ 2EJ] EJ( iy s 21
1 12 I3
= RN T
& EJ( SN 3)

Ist der Knoten 1 fixiert, so resultieren die Gleichungen:

1

2.15) b, = —
(2.1} =5

12
(le + Vz 7)
1 12 I
=T (M27+ Vz_s*)

Das Einsetzen der Gleichgewichtsbedingungen aus (2.13)
fihrt zu:

1 12
216) b, = — | —M, 1 + V, —
(2.16) ¢ EJ( + 12)

1 I I3
(o)

Die in Langsrichtung des Balkens wirkenden Krifte verur-
sachen Lingendnderungen der Grosse:

|
_uzzH]—-

2.1
(2.17) u, EA

V, und M, konnen mit v, = 0 und ¢, = 0 in Funktion der
Verschiebung v; und der Verdrehung ¢, geschrieben werden:

12EJ , 6EJ
1 :7157‘1 —I—Tq’)l

Wenn v, = 0 und ¢, = 0, gilt in Funktion von v, und {,:

12EJ 6EJ
R

Ty 13 2 ll

Die Kraft V; wird damit infolge der kombinierten Ver-
schiebung und Verdrehung der Enden 1 und 2:

12E 7 6EJ
@BV ===y S |
12 E.J 6EJ ;
SRl == B vV, + 2 W2
Auf das Moment und die Kraft H libertragen:
6EJ 4E7J
.19 M, = (]fzv1 vl sb.) iy
6EJ 2E]J '
T = 2 v, + 1 Y2
E A E A
HI =5 i — 2
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2.2 Die Beziehungen zwischen Krdiften und Verschiebungen in
Matrizenschreibweise

Die Matrizenschreibweise hat den Vorteil, dass sie die
Proportionalitdt zwischen Kriften und Verschiebungen klar
hervortreten ldsst und zudem eine abkiirzende Schreibweise bei
grosser Gleichungszahl darstellt. Die generalisierten Knoten-
krifte und Verschiebungen sind Beispiele fiir Kolonnenvek-
toren, das heisst Matrizen mit nur einer Kolonne.

Die Matrize

Ay dyp a3
K =a, a;az;

Az A3y Az

mit drei Zeilen und drei Kolonnen wird als 3 x 3 quadratische
Matrize bezeichnet. Werden die Elemente der Zeilen von K
mit den entsprechenden von d multipliziert und summiert, so
ist das Produkt:

agu+a,vtagd
AU+ a8,V -+ ad
31U + a5, V + ag Y

a;; djp dg3 | | U
Kd =

Ay A Ap3 | |V | =

| 41 832 833 ¢

Das Produkt stellt ebenfalls einen Kolonnenvektor dar.
Die Regeln welche hier angewandt wurden, konnen auf jeden
anderen Matrizentyp mit m Zeilen und n Kolonnen erweitert
werden (im Anhang wird ein Abriss weiterer notwendiger
Rechenregeln fiir Matrizen gegeben).

Die Gleichungen (2.18) und (2.19) werden jetzt in Ma-
trizenform dargestellt. Mit der Last- und Verschiebungsmatrize
in (2.11) und (2.12) definiert, resultiert:

EA

=~ 0 0

1

12EJ 6EJ
R

6EJ 4EJ

0

—_ 0 0

12BJ 6EJ
TR R
6EJ 2EI

0 JE 1

Damit kann geschrieben werden:
Q200 P, =K,;;d;, +K,,d,
Q2)) P, =K, d; + K, d,

ED 0 0
1

12EJ]  6E]J

Ko = —
6EJ 4E7
0 2l L e

12 1

'E A 3
o 0 0

(1 ‘

' 12EJ 6ETJ |
Kzz_‘ g e
l 6EJ 4ET

o i Do i

2 Dbl
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Diese Gleichungen lassen sich weiter zusammenfassen in eine
einzige durch Definition der Kraft- und Verschiebungsmatrize:

P, ld,

P=| d::
'P5 ‘dz

kombiniert mit der Steifigkeitsmatrize:

Kll KIZ
K21 K22

K:‘

P und d sind Kolonnenvektoren mit 6 Elementen und K
eine 6 X 6 Matrize. Die Gleichungen (2.20) und (2.21) werden
zZu:

(222) P =Kd

Der betrachtete Biegebalken hatte bis jetzt eine zur x-
Achse parallele Lage, und die positive Richtung lief von 1 nach
2. Damit war der Vorteil verbunden, dass die Ausdriicke der
verschiedenen Matrizen einfach ausfielen. Normalerweise hat
der Balken aber eine beliebige Lage zu einem globalen Ko-
ordinatensystem, wie Bild 4 zeigt. Die Kraftmatrize P’, welche
auf das neue globale Koordinatensystem ausgerichtet ist,
lautet:

Hi cosoe —sine 0 150
(223) P, = |V, | |sine cosx O| |V, |=TP,
M’ ‘ 0 0 1 M, i

Fiir P, und P’, gelten analoge Beziehungen. Die Trans-
formationsmatrize wird dabei mit T bezeichnet. Aus Bild 4
lassen sich weiter folgende Beziehungen herleiten :

cose sina O |u’ |
d, = | —sine cosx 0| |v/,|=TTd,
0 0 1 |4,

Zusammengefasst gilt deshalb fiir P’ folgende allgemeine
Beziehung:

o’ X'
)//
V
Uy Vl’
&
0 X!

Bild 4. Globales und lokales Koordinatensystem
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iH'l | |cosa —sinee 0 0O 0 O‘ H; |

Vv, sine —cosx 0 0 0 0 |V 1

P M’ | |0 0 J 0] 0 0\ M,
|H, | |0 0 0 cose —sine 0| |H,

1 V7, 0 0 0 sina coso 0 V.|
M, |0 0 00 01| b,
oT

O stellt eine quadratische Matrize dar, deren Elemente
alle gleich O sind. Bei gleicher Behandlung von d ergibt sich:

4, TTO
i e
ld, O Tt

Weitere Entwicklungen sind dann:

'TO | T O
224) P’ = P= K
) ‘OT‘ ot X
TO| IT O |
P —| K— A =KW
|O-T| O TT|

Die Steifigkeitsmatrize eines einfachen Biegebalkens, die
sich auf ein beliebiges Koordinatensystem bezieht, ist damit
gefunden und lautet (T kann aus Gleichung (2.23) entnommen
werden):

(2.25) K’ =

3. Die Ableitung der Steifigkeitsmatrize einer Balkenstruktur

In Bild 5, das eine Rahmenstruktur darstellt, wird der in
den vorhergegangenen Kapiteln behandelte einfache Balken
durch die Knoten A und B begrenzt und ist mit a bezeichnet.
Weitere Balken, ndmlich b und ¢, sind im Knoten A, d und e
im Knoten B mit Balken a verbunden und an den anderen
Enden C, D, E, F eingespannt. In den Knoten A und B wirken
die Krifte P’a und P’s. Die Einspannungen der verschiedenen
Stéabe sind mit 1 bezeichnet.

Die Gleichgewichtsbedingungen der Knoten A und B
lassen sich in folgender Art und Weise anschreiben:

P/A = (P’l)a =E (Plz)h =k (P’z)c
P’z = (P2)a + (P2)a + P"2)e

D

Bild 5. a) Rahmenstruktur in Balkenelemente aufgeteilt; b) Ein-
facher Balken in der Struktur
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Mit Hilfe der Gleichungen (2.20) und (2.21):
(P'1)a = (K'11)ad'a + (K'12)ad's
(P2)p = (K2)n d’e + (K22)pd' o
Entsprechend Gleichung (2.25) gilt:
(K'nr)i = (T)i (Krr)i (TT)s,

wobei L und R fir [ oder 2 und i fiir a, b, c..., n stehen.
Die Knotengleichungen in A und B koénnen in einer
einzigen Matrize zusammengefasst werden:

[P’a |

e ‘ [(Klll)a + (K22)n + (K/zz)c] [(I(/lz)a] | |da
P/B |

[K20a] [K22)a + (K'22)a + (Kn)e] | d'n

das entspricht:
(3]) (P)Kunlcn: [StEiﬁgkeitSlnatrize] (d)h‘nutcn

Es ist also moglich, den Rechnungsgang, der sich auf die
Losung simultaner linearer Gleichungen reduziert, zuriickzu-
flihren auf die Bestimmung der Knotendeformationen durch
die Knotenkriafte oder umgekehrt. Die Steifigkeitsmatrize
entsteht dabei durch Zusammensetzen der Steifigkeiten der
einzelnen Glieder in der beschriebenen Art und Weise. Im all-
gemeinen Fall gelten fiir die Matrize der Knotenkrifte und die
Matrize der Knotenverschiebung folgende Ausdriicke:

P’a i d’'s
P’z d’s
P'q | ¢
(P)knoten = o & I (d) gnoten= d i |
. ‘ .
P'r | d'r |
Py } d'x

Die mit Q und R indizierten Grossen seien die Knoten
eines einfachen Balkens (Bild 5b). Dabei stellt Q den Anfang 1
und R das Ende 2 dieses Balkens n dar. Der Beitrag dieses
Balkens zur Steifigkeitsmatrize besteht in der Addition der
Ausdriicke (K’11)i zum Element, welches sich in der Zeile Q
und der Kolonne Q befindet. Die Grossen (K'iz)i, (K'21)i,
(K’22); werden zu den Elementen auf Zeile Q, Kolonne R und
Zeile R, Kolonne Q und Zeile R, Kolonne R hinzuaddiert.

} Q) R) |
! ,
[Steifigkeitsmatrize] = ‘ (Q) — (Ki1)i — (Ki2)i
(R) — (Kan)i — (Kaa):
| |

4. Ubertragung des Vorgehens auf Kontinuumskorper

Der beschriebene Losungsweg kann in drei Abschnitte
eingeteilt werden:

— Bestimmung der Steifigkeit jedes einzelnen Elementes
— Bilden der Steifigkeitsmatrize der ganzen Struktur

— Losung der Gleichung (3.1), welche die Knotenkrafte und
die Knotenverschiebungen verbindet und Auffinden der un-
bekannten Knotenkridfte oder Knotenverschiebungen in
Ausdriicken der bekannten Krifte oder Verschiebungen.

Im behandelten Beispiel greifen die dusseren Kréfte an
den Knoten an. Eine Brweiterung auf allgemeine Félle des
Lastangriffes, einschliesslich verteilte Lasten, ist ohne weiteres
2. Dezember 1971

Schweizerische Bauzeitung - 89. Jahrgang Heft 48 -



moglich, liegt aber nicht im Rahmen dieser Ausfithrungen.
Die Spannungen und Verzerrungen in einem Kontinuums-
korper konnen auf dhnliche Art beschrieben werden. Das
Rahmentragwerk stellt die Zusammensetzung von einzelnen,
fest definierten Balken dar und kann damit leicht unterteilt
werden in seine elementaren Komponenten. Fiir einen Kon-
tinuumskorper gilt dies nicht unbedingt, denn er besteht aus
Teilchen von infinitesimaler Grosse und kann nur durch Ele-
mente mit endlicher Abmessung und Form angenihert werden.
Die Giite der Annidherung wird unter anderem bestimmt sein
durch Art und Grosse der Elemente.

Die Methode der Finiten Elemente wendet das Matrizen-
verfahren der Festigkeitsrechnung auf Kontinuumskorper an.
Zu diesem Zweck werden die Korper bei Problemen mit
ebenem Spannungs- oder ebenem Deformationszustand in
eine Zahl von kleinen FElementen unterteilt mit variabler
Grosse und gewohnlich von dreieckiger Form. Im allgemeinen
dreidimensionalen Fall, welcher an dieser Stelle nicht disku-
tiert werden soll, werden Tetraeder oder Kuben verwendet.
Der Korper wird dabei nicht durch ein Rahmentragwerk oder
Netzwerk ersetzt, sondern durch eine reale Zusammensetzung
von zwei- oder dreidimensionalen dreieckigen Elementen,
welche an ihren Réndern oder Seitenflichen miteinander ver-
bunden sind. Die Deformationen und Krifte entlang den sich
beriihrenden Réndern oder Flichen benachbarten Elementen
anzupassen stellt Probleme. Aus diesem Grund werden verein-
fachende Annahmen gemacht, um die Aufgabe auf eine 13sbare
Form zu bringen.

Diese Annahmen bestehen in der vorliegenden Anwendung
darin, dass gerade Linien gerade bleiben und damit auch die
Rénder der Elemente. Die Kontinuitit zwischen Nachbar-
elementen mit zwei gemeinsamen Ecken ist gesichert, wenn die
gemeinsamen Ecken um den gleichen Betrag verschoben
werden. Weiter wird vorausgesetzt, dass die Randkrifte,
welche auf jedes Element aufgebracht werden, um das Gleich-
gewicht im Element wihrend der verursachten Deformation
zu halten, einem System von Kréften gleichwertig sind, welche
an den Ecken wirken. Diese Krifte und Verschiebungen an den
Ecken konnen verglichen werden mit den Knotenkriften und
den Verschiebungen in der Struktur eines Rahmentragwerkes.
Die Ecken, welche mehreren Elementen angehoren, spielen die
gleiche Rolle wie die Knoten, welche verschiedene Balken ver-
binden. Die grundlegende Idee der Finiten Elemente besteht
unter anderem darin, die wahre Deformation und Randlast
jedes Elementes zu ersetzen durch Eckkrifte und Verschie-
bungen und diese Kréfte und Verschiebungen in der gleichen
Weise anzupassen, wie das im Falle des Rahmentragwerkes ge-
schehen ist.

5. Die Ableitung der Steifigkeitsmatrize von Dreieckelementen

Bild 6 zeigt ein Dreieckelement und den deformierten
Zustand dieses Elementes. Die Verschiebungen jedes Knotens
haben zwei Komponenten u und v. Die Verschiebungen des ge-
samten Elementes miissen nun durch die damit pro Element
vorhandenen sechs Verschiebungen ausgedriickt werden. Die
einfachste Darstellung ist gegeben durch zwei lineare Poly-
nome:

U = o; + X + oy
|

V. = oty - 00X - oY

wobei o, bis a, in Funktion der Verschiebungen an den Ecken

uq und vq, ur und vr sowie us und vs ausgedriickt werden.

konnen. Die Anwendung der obigen Gleichungen auf die Eck-
punkte ergibt:
2, Dezember 1971
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G/
7’

X

Bild 6. Dreieckelement in deformiertem und urspriing-
lichem Zustand

1 X Y¢ 0 0 O | oy Ug
1 Xe yr 0 0 O ;0-2 i“":
1 X ys 0 0 0 | |o| |us|
0 0 0 1 Xq Va| |%| |va|
0 0 0 1 X yr| |2 lvr;
0O 0 0 1 xs ys ‘ ‘aoi | Vs

Wird dieses Gleichungssystem geldst, so findet sich:
o, = [Uq (XrYs — Xsyr) + U (XsYq — XqYs) -
+ us Xqyr — Xr}’u)]/A
% = [Ug (Yyr —¥s) + Ur (¥s — Ya) + Us (ya — yo)]/A
oo [0g (Xs — Xo)l -1~ U (Kol —SRE) = g (X — xa)]/A
oy = [Va (Xrys — Xs¥a) + Vi (Xsyqa — Xays) +
+ Vs (Xqyr — Xryq)]/A
s = [Va (yr— ys) + V2 (¥s — ¥r) + Vs (Yo — y)]/A
o = [Va (Xs — X2) + Vi (Xg — Xs) + Vs (xr — Xq)]/A
A = (X1ys + XaYr + Xsya) — (Xe¥q + Xq¥s + Xsys)

Der allgemeine Ausdruck fiir die Verschiebung des
Punktes 0 wird damit:

Ugq

(5]) u = T [(Xrys == Xs}’q) i (YQ = ys) X (Xs = Xr) y] AF
Uy
it g [(xsYa —Xq¥s) 4 (¥s — Ya) X + (xq —Xs) y] +

Us
S A0 [(Xq)’r — Xr¥a) + (Yo — ¥r) X + (Xr — Xq) )’]

Ein entsprechender Ausdruck gilt fir die Verschiebung in
Richtung der y-Achse v, wobei uq, ur, us durch vy, v und vs
ersetzt werden miissen. Die Verzerrungen im Punkte 0 ex, ey,
Y~y lassen sich ausdriicken durch:

8“ N X
(52) ex = — = [uq (ya — ys) + ur (ys—ya) +
+ Us (Ya —}’r)]/A
Oy
By =——= [Va (xs — X1) + vir (Xq — Xs)
~Y
I Vis (Xr — Xu)]/A
Ay dy
2 ey 6: = o 22 [Uq (xs — X1) + Ur (xq — Xs) +

+ Us (Xe — Xa) | Va (yr — ¥s) + Ve (¥s — Yao) +
+ Vs (Yo — yo)J/A
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Diese Gleichung kann in Matrizenform dargestellt werden
durch die Definition der Verzerrungsmatrize e und der Ver-
schiebungsmatrize d der Ecken.

o
i | ur|
i ‘ Us
e= ey d = b |
2"{\\ | iy ‘
i - .vr {
Daraus:
(5.3) e=Bd
B ist eine 3 x 6 Matrize:
B=
. @r—ys) O (ys—yd) O (ya—y» O ‘;
— 0 (Xs—xr) O (xg—xs) O (Xr—Xq)

A
(xs—X2) (yr —¥s) (Xa—Xs) (ys— Ya) (Xr —Xa) (Ya—¥) |
Die Spannungen im Punkte 0 lassen sich bestimmen, so-

bald die Verzerrungen bekannt sind. Die gegebene Proportio-
nalitdt zwischen S und e schliesst ein, dass S = De, wobei:

3 1 v
:‘GK | B vl Ebener
(54) S= oy und D = i = | Spannungs-
| Ty | il oA,,:A zustand
v 5
E (1 —v)
REdwa0y
] v ‘.
1 e 0 |
(=) |
- ‘ Ebener
e i) | Verzerrungs-
(= ; zustand
(1==2y
0 e L
| 0 SR

An den Rindern missen die Spannungen durch die Rand-
krifte im Gleichgewicht gehalten werden. Hier wird angenom-
men, dass diese Randkrifte einem Satz von Kriften gleich
sind, die an den Ecken X, Y4, X1, Yr und X, Ys wirken. Da-
mit wirken ausser den Knotenkriften keine Krifte direkt auf

Bild 7. Zusammengesetzte Dreieckelemente
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die Elemente. Um die Knotenkrifte den effektiven Randspan-
nungen und den verteilten Lasten gleichwertig zu machen, ist
der einfachste Vorgang derjenige, eine virtuelle Knotenver-
schiebung anzubringen. Fiir diese betrachtete Verschiebung
gilt, dass die Arbeit der dusseren Krifte gleich der Arbeit der
inneren Spannungen sein muss. Das Konzept, die verteilten
Spannungen an den Elementgrenzen durch dquivalente stati-
sche Krifte zu ersetzen, stellt die Frage nach den konkreten
physikalischen Bedingungen, die dabei verwendet werden, so-
wie die Frage, welcher Grad der Annidherung an die exakte
Losung durch den Rechenvorgang tatsidchlich erreicht wird.
Der Rahmen dieser Ausfithrungen wiirde aber gesprengt durch
ein weiteres Eingehen auf diese Einzelheiten, und es muss auf
die entsprechende Fachliteratur verwiesen werden. Erwahnt
sei noch, dass die Methode der Finiten Elemente unter Beach-
tung der notwendigen Kriterien den Satz vom Minimum der
potentiellen Energie erfiillt. Durch die Ableitung der Steifig-
keitsbeziehung auf einem alternativen Weg und der Grundlage
des Satzes des Minimums der gesamten Energie des Systems
kann die Identitdt der Methode der Finiten Elemente mit der
bekannten Ritz-Methode gezeigt werden. Ist die Verschiebungs-
funktion im Element so gewahlt, dass sich keine Diskontinui-
taten zwischen den Verschiebungen benachbarter Elemente
ergeben, dann ist in jedem Zustand der Losung der Inhalt der
totalen Energie des Systems iiber dem wahren Minimum.

Die Arbeit der &dusseren Krifte kann angeschrieben
werden mit:

2 Wc = Xqu —}— YqVq -f— XrUr ai= YrVr ‘F Xsl.ls ‘I“ YsVs
| Xa
Yo

| o 2
2 We = | Ugq Vg Ur Vr Us Vs‘
Y ‘Yr

\XS
| Ys

=d4*PpP

Die Arbeit der inneren Spannungen pro Einheitsvolumen
betrdgt unter Beriicksichtigung der Gleichungen (5.3) und
(5.4):;

2 Wi = exox + €yOy + 2 Yxy Txy — et S
2 W; = (Bd)* DBd = d™ B” DBd

Werden die Regeln der Matrizenrechnung, welche im An-
hang zusammengestellt sind, angewendet, so lasst sich schrei-
ben:

(55) P = j (B1 DBd) dVolumen = Kd
Volumen
K = (BT DB) dVolumen
Volumen

Alle Ausdriicke in dieser Gleichung sind unabhéngig von
den Koordinaten und beziehen sich auf die Geometrie des
Elementes und die elastischen Eigenschaften.

K = (BT DB) x (Flache des Dreiecks) x (Dicke)

In dieser Gleichung sind P und d Kolonnenvektoren mit
6 Elementen, und K ist eine 6 x 6 quadratische Matrize. Sind
die Koordinaten von ¢, r und s bekannt, der E-Modul und die
Poisson-Zahl, so kann die Matrize K gerechnet werden, aller-
dings wird sie infolge der grossen Gleichungszahl nur mit Hilfe
der elektronischen Datenverarbeitung bewiltigt.

Die Gleichung (5.5) ist im Prinzip dieselbe wie Gleichung
(2.24). In beiden Fillen ist die Steifigkeitsmatrize auf ein
2. Dezember 1971
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globales Koordinatensystem bezogen. Wihrend bei einem
Dreieckelement P und d die Eckkridfte und Deformationen
in der x- und y-Richtung einschliessen, enthalten P” und d” die
Kréfte und Momente sowie die Verschiebungen und Verdre-
hungen der beiden Enden des Balkens.

6. Ableitung der Steifigkeitsmatrize fiir eine Struktur, die mit
Dreieckelementen idealisiert wird

Die Ableitung der Steifigkeitsmatrize erfolgt nach den
gleichen Richtlinien wie diejenige des Rahmentragwerkes.
Die ausseren Krifte auf die Struktur mogen entsprechend dem
Bild 7 wirken. Die Gleichung (5.5) soll erweitert werden, um
die Beziehung jedes Elementes zur Gesamtsteifigkeit zu unter-
suchen. Fiir das mit a bezeichnete Dreieckelement kann ge-
schrieben werden:

(P1)a [ (K11)a Ki2)a (Ki3)a dy
P2)o | = | Koo (ao)o K)o | s
(P3)n. ‘ (Kal)a (Ksz)a (Kss)a \ d3

(6.1)

(K,)a, ..., (Ks3)q stellen 2 x 2 Matrizen dar.

Dieselben Gleichungen konnen fiir die weiteren Dreieck-
elemente in Bild 7 formuliert werden. Das Gleichgewicht im
Knoten 1 lasst sich folgendermassen ausdriicken:

P, = (Ps + @Jv -+ Br)e + @)a + @) =
= [Kia + K)o + (Kun)e + (Kin)a + (Kin)e] di +
+ [(Ki2)a + (Ki2)v] dz + [(Kis)a + (Kis)e] ds +
+ [Kis)v + (Kis)e] ds + [(Kio)e + (Kio)a] ds +
+ [Kina + Kur)e] d

Das Gleichgewicht der weiteren Knoten wird durch ent-
sprechende Gleichungen beschrieben. Der Beitrag eines Drei-
eckelementes QRS zur Gesamtsteifigkeitsmatrize einer Struk-
tur besteht in der Addition des Ausdruckes (Kqr)i zum
Element der Zeile Q und der Kolonne R so, dass die Steifig-
keitsmatrize folgendermassen dargestellt werden kann, wobei
alle Elemente 2 <2 Matrizen sind:

| (Q) (R) (S)
! \ \ 1
(Q) — (Kqq)i — (Kqr)i — (Kas)i —
(R) — (Krq): — (Krr)i — (Krs)i —
(S) — (Ksq)i — (Ksr)i — (Kss)i —
\ | |

Die Elemente jeder Zeile, zum Beispiel Q, kénnen wie
folgt ausgedriickt werden:

(KQL)AlIg:mein = Z (KQ I,)i

n

Der Index L entspricht einer Kolonne in der Gesamt-
steifigkeitsmatrize, und die Summation erfolgt tiber alle Drei-
ecke, welche einen gemeinsamen Rand QL aufweisen. Ist Q
gleich L, so wird die Summation erweitert Uber alle Drei-
ecke mit gemeinsame Ecke Q. Daraus ladsst sich folgern, dass
die Zahl von Elementen, die nicht 0 sind, in jeder Zeile sehr
klein ist. Die Grosse der totalen Matrize spielt dabei keine
Rolle, da nur eine kleine Zahl von Dreieckelementen gemein-
same Rédnder QL oder gemeinsame Ecke Q haben werden.
Die zusammengesetzte Steifigkeitsmatrize ist daher sehr spar-
lich besetzt, und die meisten ihrer Terme sind gleich 0. Von
dieser Eigenheit wird bei der numerischen Losung Nutzen
gezogen.
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Bild 8.
schnitt, idealisiert mit Dreieckelementen

Platte mit einem kreisformigen Aus-

In der allgemeinen Form noch einmal angeschrieben lautet
die Beziehung zwischen Kraften und Verschiebungen:

P, | dy
(6.2) P, = (Steifigkeitsmatrize) dz‘

Wie im Falle des Rahmentragwerkes besteht das Problem
darin, die unbekannten Krifte oder Verschiebungen aus den
bekannten Verschiebungen oder Kriften zu finden. Ist der zu
untersuchende Korper zum Beispiel eine unendlich breite
Platte mit einem kreisformigen Ausschnitt, so kann er gemaéss
Bild 8 in Dreieckelemente unterteilt werden. In den Ecken oder
Knoten wirken, ausgenommen am Rand, keine &usseren
Krifte. Die Verschiebungen jedes Punktes ergeben sich durch
Losung der Gleichung unter Verwendung der entsprechenden
numerischen Methoden. Sind die Verschiebungen bekannt, so
ist es moglich, die Dehnungen aus der Gleichung (5.3) und die
Spannungen aus der Gleichung (5.4) zu berechnen.

7. Numerische Losung der simultanen linearen Gleichungen

Die vorausgegangenen Ausfiihrungen haben gezeigt, dass
die numerische Deformations-, Kraft- und Spannungsberech-
nung zuriickgefiihrt werden auf die Losung eines Satzes von
simultanen linearen Gleichungen. Diese Gleichungen ergeben
sich normalerweise in der folgenden allgemeinen Form:

AB =C

A ist eine m % n quadratische Matrize. B und C sind Kolonnen-
vektoren mit n-Elementen. In dieser Gleichung sind die Ele-
mente B Unbekannte, wihrend A und C bekannt sind. Die
Elemente von B stellen die Deformation einer Zahl von Punk-
ten dar. A stellt die Steifigkeitsmatrize dar, und C ist eine
Kolonne von bekannten Konstanten, zum Beispiel Kompo-
nenten von Knotenkriften in x- und y-Richtung. Fiir die
Loésung dieser simultanen Sétze linearer Gleichungen bestehen
zahlreiche numerische Verfahren, und es wird an dieser Stelle
auf die Fachliteratur verwiesen. Der notwendige Rechnungs-
vorgang ist fiir einen Digitalcomputer, welcher mit Standard-
programmen fiir solche Probleme ausgeriistet ist, eine Routine-
angelegenheit. Es werden dabei direkte und iterative Verfahren
benutzt. Als direkte Methode kann das Choleski-Verfahren,
als iterative das Gauss-Seidel-Verfahren oder das Jacobi-Ver-
fahren angefiihrt werden. Standardprogramme nehmen nor-
malerweise an, dass die Koeffizientenmatrize voll besetzt ist,
und es wird aus der Bandstruktur der Matrizen, welche fiir
Festigkeitsprobleme typisch sind, kein Vorteil gezogen. Im
Interesse der minimalen Speicherbelegung des Computers
sowie einer kurzen Rechenzeit sind deshalb zahlreiche
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Programme zur Losung der besonderen Bandmatrizen ent-
wickelt worden. Fiir weitergehende Ausfiihrungen iiber die
mathematische und computertechnische Behandlung wird auch
hier auf die folgenden Beitrige und die Literatur verwiesen.
Die Methode der Finiten Elemente verlangt fiir ihre prak-
tische Anwendung die Beniitzung des Computers. Die Pro-
grammierung bietet keine grundsitzlichen Schwierigkeiten.

Anhang: Zusammenstellung einiger Rechenregeln

1. Gleichheit zweier Matrizen

Zwei Matrizen A und B sind dann, und nur dann, gleich,
wenn sie vom gleichen Typ sind und wenn jedes Element der
einen Matrize gleich ist dem ihm entsprechenden Element der
anderen Matrize.

Es gilt A = B dann, und nur dann, wenn aix = by fiir alle

i ==

e

m,

il
1 n

[ESIN S

3 eney
5 .o

3 80y

erfiillt ist.

2. Addition

Zwei Matrizen A und B des Typs (m, n) werden addiert
(subtrahiert), indem man die einander entsprechenden Ele-
mente der urspriinglichen Matrizen addiert (subtrahiert). Die
Summenmatrize C ist wieder eine Matrize von Typ (m, n).

A+B=C
Cik = aix =+ bik fiir alle =S

e =Ml 20

3. Multiplikation einer Matrize mit einem Faktor

Eine Matrize A wird mit einer Zahl k multipliziert, indem
man jedes Element der Matrize mit der Zahl multipliziert. Das
allgemeine Element lautet kasj.

4. Multiplikation zweier Matrizen

Das Produkt AB einer m, n Matrize A und einer n, p Ma-
trize B in der angegebenen Reihenfolge ist die Matrize C, deren
Elemente ciic man als Skalarprodukt der i-ten Zeile von A mit
der k-ten Spalte von B erhilt.

AB =C
n

Cik = Ai1 b1k + ai2b2x + ... @inbnx = Xair bri
r=1

== 1l 2 o ionly T =010 9) B8 o)

Ist die Zahl der Zeilen von A nicht gleich der Zahl der
Kolonnen von B, so ist die Multiplikation nicht durchfiihrbar.
Die Matrizen werden als inkompatibel bezeichnet.

Ausflihrlich geschrieben lauten die Ausdriicke:

| bu b12 bys |
B = b21 bzz bzs
’ bs; by, bs, |

18y a5 @53 ‘
Ap1 Azp Ay
| d31 A3, As3 ‘

A

l (a1 b1y + @5 by + @33 b)) (2, by + a5, by, + |

‘ + @33 b3,) (811 by + a1, b,y + 255 bsy)

[ (@21 byg + @y byy 1 83 byy) (@ by + @5, by

¥ + 853 b32) (821 by + a3 bys + @55 bsy) ‘

(@31 by1 + a3, by + @33 b31) (a5: by + a5, by, ‘
+ @33 b3y) (831 brs + @3, bz + 455 byy)

bl
AB

Allgemein gilt AB +# BA
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Der Aufbau von wirtschaftlich arbeitenden Standardpro-
grammen verlangt aber umfangreiche Vorbereitungen. Im
Augenblick wird ein betrichtlicher Aufwand in die Weiter-
entwicklung dieser Methode gelegt, deren Eignung und Vor-
teile gegentiber anderen numerischen und experimentellen Ver-
fahren durch zahlreiche Berechnungsbeispiele belegt werden
konnen.

fir Matrizen

5. Transponieren
Die aus einer Matrize Am,n durch Vertauschen der Zeilen

mit den Kolonnen entstehende Matrize Am,» nennt man die
transponierte Matrize.

a1 &1 Qg3 Ay Az Ay
A =2, a8, a, AT = laj,ay, ay,
| 831 a3, Qs Ap3 A3 Ay

Aus diesen Regeln folgt:
(AB)"t =B ! A-!

(AB)T — BT AT

6. Inversion

Die invertierte Matrix oder Kehrmatrize A-! einer Ma-
trize A ist die Matrize, welche mit A von links oder rechts her
multipliziert die Einheitsmatrize ergibt.

AA-'=A-'A—E

Die Einheitsmatrize ist dadurch gekennzeichnet, dass alle
Elemente ausserhalb der Hauptdiagonalen, welche von der
linken oberen Ecke zur rechten unteren Ecke verlaufen, null
sind, wihrenddem diejenigen ldngs der Hauptdiagonalen gleich
1 sind.
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