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Anwendungsbeispiele zur Berechnung segmentierter Radialgleitlager
endlicher Breite bei instationärem Betrieb dk621822.500412

Von Prof. Dr. H.H.Ott und Z. E.Varga, dipl. Ing., ETH Zürich

Zusammenfassung

Mit einem kürzlich veröffentlichten Berechnungsverfahren
für segmentierte Radialgleitlager bei instationärer Belastung
[1], das auf bisher nicht verwendeten Randbedingungen
beruht, werden einige in der Praxis gebräuchliche Lager untersucht.

Zum Nachweis des Randbedingungseinflusses werden
zunächst bei stationärem Betrieb die Druckverteilungen in
verschiedenen Einzelsegmenten und in ganzen mehrsegmentigen
Lagern ermittelt. Für ein Zitronenspiellager werden die
vollständigen Kennlinien angegeben, die zur Bemessung solcher
Lager notwendig sind. - Um die Anwendung des Berechnungsverfahrens

im instationären Bereich zu zeigen, werden
Druckverteilungen und resultierende Kraftverläufe bei kreisförmigen
und elliptischen Bewegungen des Wellenzentrums bei zwei-
und dreisegmentigen Lagern berechnet. Schliesslich werden für
das vorerwähnte stationär untersuchte Zitronenspiellager auch
die Feder- und Dämpfungszahlen ermittelt und mit gemessenen
und berechneten Ergebnissen anderer Autoren verglichen.

1. Einleitung
Der vorliegende Aufsatz behandelt Anwendungen des in

[1] veröffentlichten Berechnungsverfahrens für segmentierte
Radiallager endlicher Breite. Mit dieser Theorie werden einige
Einzelsegmente mit einfachen Spaltformen und ganze Radiallager

von gebräuchlicher Bauart berechnet. Bei den gewählten
Fällen handelt es sich vorwiegend um solche, die in der Literatur

mit anderen Methoden berechnet wurden, so dass ein
Vergleich der Ergebnisse möglich ist. Eine derartige Gegenüberstellung

ist deswegen wichtig, weil in den Berechnungen
anderer Autoren andere Randbedingungen für die Druckverteilung

im Schmierspalt angenommen werden. Anhand der
konkreten Fälle lassen sich Rückschlüsse auf den Einfluss der
Randbedingungen ziehen. Insbesondere wird mit den Resultaten

von G. Schaffrath [2] [3] verglichen, der mit sehr
vereinfachten Randbedingungen arbeitet und das Verfahren der
«Negativbereich-Unterdrückung» anwendet 1).

Von einer allgemeinen instationären Theorie ist zu fordern,
dass sie für den Sonderfall des stationären Betriebes brauchbare,

das heisst mit den bekannten, experimentell gesicherten
Berechnungsverfahren für konstante Belastung übereinstimmende

Ergebnisse liefert. Deshalb werden zunächst einige
stationäre Fälle untersucht und die Ergebnisse mit denjenigen
anderer Autoren verglichen. Insbesondere werden im Hinblick
auf die Beurteilung des Randbedingungseinflusses solche
stationäre Beispiele berechnet, die auch Schaffrath in [2] und
[3 ] untersucht hat.

*) Schaffrath schreibt ao den Grenzen der Segmente den Druck
Null vor und setzt dort, wo die Rechnung negative Drücke ergibt, den
Druck gleich Null.

2. Theoretische Unterlagen und Formelzeichen
Das angewandte Berechnungsverfahren ist in [1]

vollständig beschrieben. Auf die Wiedergabe dieser Theorie und
der darin enthaltenen Gleichungen wird hier verzichtet.
Gleichungen aus [1 ] werden durch die betreffenden Nummern mit
vorangestelltem Buchstaben T bezeichnet. Ebenso werden alle
Bezeichnungen aus [1] übernommen; es wird auf die dort
vorhandene Formelzeichen-Zusammenstellung verwiesen.
Nachstehend sind nur dieMügen Zeichen aufgeführt, die in der
vorliegenden Arbeit neu hinzukommen.
a grosse dimensionslose Halbachse der elliptischen

Verlagerungsbahn des Wellenzentrums
b kleine dimensionslose Halbachse der elliptischen

Verlagerungsbahn des Wellenzentrums
Sx H Horizontalkomponente des resultierenden Sommer¬

feldzahl-Vektors
S2 V Vertikalkomponente des resultierenden Sommer¬

feldzahl-Vektors
1 relative Dämpfungskonstante (auf Sores bezogen)
ß+ Dämpfungskonstante

y relative Federkonstante (auf Sores bezogen)

y+ Federkonstante

fi dimensionslose Horizontalkoordinate des Wellen¬
zentrums

|2 dimensionslose Vertikalkoordinate des Wellen¬
zentrums

m

n(<p)

Indices:

i

dimensionslose Geschwindigkeit des Wellenzentrums

in Richtung Si,2

über die Lagerbreite gemittelter dimensionsloser
Überdruck des Schmiermittels im Spalt

dimensionsloser Druck in der Mittelebene des

Lagers bei Randbedingungen nach Schaffrath [2]
(«Negativbereich-Unterdrückung»)

Richtung der Kraftkomponente (bei Feder- und
Dämpfungskonstanten)

Richtung der Verlagerung des Wellenmittelpunktes
(bei Feder- und Dämpfungskonstanten)
Gleichgewichtslage (Wellenverlagerung bei
statischer Belastung; Punkt auf Gümbelkurve)

3. Allgemeine Angaben über die numerische Durchführung des
Verfahrens

Für das vorliegende Berechnungsverfahren [1 ] wurde ein
ALGOL-Programm für die am ETH-Rechenzentrum
vorhandene Maschine ausgearbeitet.
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f 0

Y =219.7

372.5

\*
Y 219,7°
i'engster Spalt)

A

<p E=22.5

- TT nach Ott und Varga (Sores =3,035)
-fr*

T*nach Schaffrath [2]
mit Negativbereich - Unterdrückung

Bild 4.1. Druckverteilung in der Mittelebene eines stationär
laufenden Kreisschalen-Lagers

Die sowohl für die Genauigkeit des Verfahrens wie auch
für den Rechenaufwand wichtigste Grösse ist die Zahl n der
Intervalle im Segment. Systematische Untersuchungen haben
ergeben, dass bei üblichen Spaltformen mit A<p 2°.. .5° eine

für die Anwendungen hinreichende Genauigkeit der Ergebnisse
(insbesondere der resultierenden Sommerfeldzahl Sores)
erreicht wird2).

4. Druckverteilung in einzelnen Segmenten bei stationärem
Betrieb

Die vorliegende Segment-Theorie lässt sich insbesondere
auf kreiszylindrisehe Lagerschalen anwenden, wobei auch das

vollumschliessende Kreislager mit einer axialen Schmiermittel-
Zuführnut als Grenzfall eines Segmentlagers aufgefasst werden

2) im Bogenmass Arp 0,03...0,09

pA=467,5
rpE 117,5

W«P> ~~a7TJ "W

m 2.06

'Y=? 342'
rengster Spalt)m

<pE= 117,5

B =0,5
0.3

Y =342

ff nach Ott und varga

mit Negativbereich

V nach Schaffrath [2J j Unterdrückung / b

wo 3S.0.

Bild 4.3. Verteilung des mittleren Druckes in einem stationär
laufenden Kreisschalen-Lager

900

roA=377,5

0.5

Bild 4.2. Kreisschalen-Lager mit
vertikaler Belastung

kann. In diesem Abschnitt sollen einige Fälle behandelt
werden, die der Literatur entnommen werden können und aus
denen der Einfluss der Randbedingungen zu ersehen ist.

Beispiel 1: Kreisschale mit einer Zuführnut (Bild 4.1)

Dieses Beispiel hat Schaffrath in [2] behandelt (Bild 6b
in [2]). Die nach [1 ] in der Mittelebene des Lagers berechnete
Druckverteilung ist in Bild 4.1 dargestellt und mit den Resultaten

von Schaffrath verglichen. Die Berechnung nach [1]
führt auf einen Randbedingungsfall bx. Bei der gewählten
Lage des Wellenzentrums ergibt sich eine resultierende Kraft
auf die Welle, die annähernd horizontal nach rechts weist

(Bild 4.1).

Das Beispiel zeigt, dass die gewählten Randbedingungen
eine nicht vernachlässigbare Auswirkung auf die Druckverteilung

(und damit auch auf Richtung und Grösse der
resultierenden Tragkraft) der Lagerschale besitzen. Die Druckverteilung

nach Schaffrath endet bereits vor der engsten Spaltstelle,

was im Widerspruch zu allen experimentellen Befunden
steht [7].

Beispiel 2: Kreisschale mit einer Zuführnut (Bild 4.2)

Dieses Beispiel wurde gewählt, weil in [2] eine Gegenüberstellung

der resultierenden dimensionslosen Tragkraft Sores

nach verschiedenen Berechnungsverfahren angegeben ist
(Lagergeometrie nach Bild 4.2). Für e 0,8 lauten die
Zahlwerte :

Verfasser SOre

(a) Ott & Varga [1]
(b) Sassenfeld & Walther [9]
(c) Schaffrath [2]
(d) Someya [10]

1,780
1,730
1,543
1,535

Die Gegenüberstellung zeigt deutlich den Einfluss der
Randbedingungen. Die annähernd übereinstimmenden Resultate

(a) und (b) sind beide mit den als physikalisch korrekt zu
betrachtenden Gümbelschen Auslauf-Randbedingungen
gerechnet, während Someya (d) in ähnlicher Weise wie Schaffrath
(c) den Negativbereich der Lösungsfunktion unterdrückt, was
die enge Übereinstimmung der Resultate (c) und (d) erklärt3).

Beispiel 3: Kreisschale mit einer Zuführnut (Bild 4.3)

Die Daten dieses Beispiels sind dem Bild 6 aus [2]
entnommen. Die Resultate sind auf Bild 4.3 dargestellt und mit
den Ergebnissen von Schaffrath verglichen. Da er für dieses

Beispiel nicht den dimensionslosen Druck U in der Mittelebene,

sondern den über die Lagerbreite gemittelten Druck II
angibt, muss unser Ergebnis von IIauf 77 umgerechnet werden.

3) Die Öleintrittsbedingungen bei Sassenfeld & Walther [9] und bei

Someya [10] entsprechen nicht genau denjenigen des obigen Beispiels,
doch ist dieser Einfluss gering.

4) mit (T...) werden die Gleichungen aus [1] bezeichnet
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Dies geschieht mit der Gleichung (T 4.1)4) durch einmalige
Integration über die Lagerbreite:

(4.1) 77(9?) (1 | 77 (cp) cicp 77 (<p)

Im vorliegenden Beispiel hat m nach Gleichung (T 4.6) den
Wert m 2,06.

Aus Bild 4.3 ist zu ersehen, dass die Druckverteilung, die
auf einen Randbedingungsfall b3 führt, gegenüber Schaffrath
nur verhältnismässig geringe Unterschiede ergibt. Die grössten
Differenzen treten in der Gegend des engsten Spaltes (cp y)
auf.

Beispiel 4: Halbkreisschale (Bild 4.4)

In diesem Beispiel wird eine Wellenlage untersucht, wie
sie in Oberschalen von Zitronenspiellagern vorkommen kann.

Verglichen werden wiederum die Druckverteilung 77 (cp) mit

den Randbedingungen nach [1 ] und der Druckverlauf 77* (cp)

mit den Randbedingungen, wie sie Schaffrath verwendet;

77* (q>) wurde mit einem besonderen, auf [1 ] beruhenden
Reehenprogramm ermittelt.

Aus Bild 4.4 ist ersichtlich, dass der Einfluss der
Randbedingungen hier sehr gross ist. Die resultierende Tragkraft ist
mit den Randbedingungen, wie sie Schaffrath verwendet, nur
etwa halb so gross wie mit den Gümbelschen Randbedingungen,

die in [1] verwendet werden. Ferner endet auch hier
(wie im Beispiel 1) bei der Lösung mit den Randbedingungen
nach Schaffrath der Druckberg vor der engsten Spaltstelle, was
der Erfahrung widerspricht.

Zusammenfassend lässt sich feststellen, dass die nach [1 ]
berechneten Druckverteilungen infolge der unterschiedlichen
Randbedingungen teilweise erheblich anders verlaufen als die
von Schaffrath in [2] und [3] berechneten. Die Unterschiede
in den Druckverläufen sind in jenen Fällen gross, in denen die
Grundlösung u* nach Gleichung (T 9.19) über einen beträchtlichen

Teil der Segmentlänge negative Werte annimmt. Dies
trifft für Kreisschalen-Segmente häufig zu, und zwar vor allem

TTlrpl m
TTlm)

engster Spalt

TT Im) \

ß | 0,5
£• 0,2

Y =210°

<p£ 180

<Pa

J1 V I

180' 225' 270' 315' (p 360'

Bild 4.4. Druckverteilung in einem stationär betriebenen
Halbkreisschalen-Segment
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Bild 5.1. Ermittlung der Gümbel-
kurve für ein segmentiertes Radiallager

dann, wenn solche Segmente einen relativ grossen Teil der
Welle umschliessen (also z.B. bei 180°-Schalen). Die durch die
Randbedingungen bewirkten Unterschiede zwischen der
Berechnungsweise nach Schaffrath und der in unserem Verfahren
angewandten Methoden verschwinden grundsätzlich ganz,
wenn der Druck im ganzen Segment positiv ist.

5. Mehrsegmentige Lager bei stationärem Betrieb
5.1 Ermittlung der Gümbelkurve

Bei stationär betriebenen Lagern ist die Verlagerungs- oder
Gleichgewichtskurve wichtig, die man auch als Gümbelkurve
bezeichnet. Man versteht darunter den geometrischen Ort aller
Punkte, die das Wellenzentrum mit fester Lastrichtung bei
Variation der Sommerfeldzahl Sores durchläuft. Gestützt auf
[1 ] lässt sich eine Gümbelkurve für ein beliebiges segmentiertes
Lager mit nachstehend beschriebenem Verfahren ermitteln.
Man geht vom Bewegungsbereich der Welle in dimensionsloser

Darstellung aus (Bild 5.1) und ermittelt zunächst den

Randpunkt T der Gümbelkurve, der für Sores °° angenommen

wird. Er ergibt sich, indem man senkrecht zur Lastrichtung

die Tangente t an die Grenzlinie des Bewegungsbereiches
des Wellenzentrums zieht. Dann legt man parallel zu t eine
Schar von Geraden gi und sucht durch ein systematisches
Iterationsverfahren auf jeder Geraden gi jene Wellenlage Z,
welche eine in der Richtung o wirkende resultierende Ölkraft
auf die Welle ergibt. Die Punkte auf den Geraden gi müssen
durch ihre Polarkoordinaten (e, y) in die Rechnung eingegeben
werden5).

5.2 Zitronenspiellager
Das Zitronenspiellager ist ein symmetrisches, aus zwei

gegeneinander verschobenen kreiszylindrischen Halbschalen
bestehendes Radiallager, das meist senkrecht zur Teilungsebene

belastet wird (Bild 5.2). Das Betriebsverhalten eines

solchen Lagers (d.h. Wellenlage, Reibung, Schmierstoffdurchsatz)

kann mit dem Berechnungsverfahren [1 ] ermittelt werden.

5) Die in der Literatur erwähnte Methode, die iterative Bestimmung
von Gümbelkurven-Punkten auf s-Kreisen durchzuführen, ist unzweckmässig,

weil es Fälle gibt, in denen auf einer Linie e konst mehr als

ein Gümbelpunkt liegt (Beispiel: Zitronenspiellager). Beim oben
beschriebenen Verfahren kommen solche Mehrfachlösungen nicht vor.

Wellenlast

Oel Oel

Bild 5.2. Schematischer Aufbau des Zitronenspiel-Lagers
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Tmnmn-ni.

<par

rOEn'195

K.P.r

rpAn=345'

Bild 5.3. Geometrie des Zitronenspiel-
lagers; Definition der Spiele fit
(horizontal) und fy (vertikal) siehe [5]

Auf die Wiedergabe der Auswertungsergebnisse wird hier
verzichtet, da sie in [5] ausführlich dargestellt sind. Es sei hier
lediglich darauf hingewiesen, dass die dimensionslosen Kenn-
grössen in [5] nicht wie in [1] mit dem minimalen (d.h. dem
vertikalen) Spiel, sondern mit dem horizontalen Spiel gebildet
sind. Dies ist an sich unwesentlich, muss aber bei praktischen
Anwendungen beachtet werden.

Hingegen ist im Rahmen der vorliegenden Arbeit das
spezielle Zitronenspiellager durchgerechnet worden, das

/. Glienicke in [8] experimentell untersucht hat und das von
Schaffrath in [2] mit seinem Berechnungsverfahren theoretisch
berechnet wurde. Eine Gegenüberstellung der Resultate ist
deswegen aufschlussreich, weil auch bei einem zusammengesetzten

mehrsegmentigen Lager Auswirkungen der
Randbedingungen zu erwarten sind.

Ir.y
0.2

9,4

0.6

330

om

300

270"

Bild 5.4. Gümbelkurven des vertikal belasteten Zitronenspiellagers
nach Bild 5.3

Beispiel 5: Zitronenspiellager bei vertikaler Belastung (Bild 5.3)

Die Geometrie des Lagers ist auf Bild 5.3 dargestellt. Seine
beiden Schalen erstrecken sich über je 150°.

Die aus unserem Berechnungsverfahren [1] für die
relativen Breiten ß — 0,5 und 1,0 resultierenden Gümbelkurven
sind auf Bild 5.4 wiedergegeben. Den zugehörigen Zusammenhang

zwischen der dimensionslosen Belastung Sores und der

1,2

S

1,0

0,8

0,6

,fl-TS7=£- — _^ -&—
4— — fi—

fH0,5y
+ / |

/ /v/

1/ Jß W

4/ /
WM HS

0,005 0,01
So„

0,5

Bild 5.5. Relative Exzentrizität s in Funktinn der Belastungszahl Sores
für das Zitronenspiellager nach Bild 5.3 mit der relativen Breite ß

i" \
100

50

•%\\iS

A

\
5

X
'A

S +

iß!
'X

ig ^
>V H

Sor,
0,5 1 2 3 4 5

Bild 5.6. Reibungswert p,/f in Funktion der Belastungszahl
Sores für das Zitronenspiellager nach Bild 5.3 mit der
relativen Breite ß

1,0

0,9

0,8

0,7

0,6

sg —L
^N, E

s ^>.^ß =t,o

m +— ^— ^»~

i « - ft— ipsi i—s
—?— ^-+ —1—1—^^

ß =0,5

W04 0,01 0,04 0,1 0,4 1,0 So,es 4 10

Bild 5.7. Dimensionslose Öldurchsatzzahl Kr in Funktion der
Belastungszahl Sores für das Zitronenspiellager nach Bild 5.3 mit der
relativen Breite ß

360'\ 7

0.4

3300,6

Cr,B,

ß 0,5
300

* Ott und Varga
0 Glienicke [8] (Messung)
a Schaffrath [2] (Rechnung)

Bild 5.8. Gümbelkurve für das Zitronenspiellager nach
Bild 5.3 mit der relativen Breite ß 0,5. Vergleich mit
Rechnungen und Messungen anderer Autoren
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Bild 6.1. Kreislager mit
zwei seitlichen Ölein-
trittsnuten von je 30°

^
<jjt=n=180°

270

Ellipse

b 0.4

Kreis
a b 0,6

Bild 6.2. Ellipsen- und Kreisbewegung

des Wellenzentrums im Kreislager

nach Bild 6.1

0.2 780

10°

cut=0

0.3

-0,4
-0,5 -0,4 -0,3 -0,2 -0,1 0,1 0,2 ßj 0,4 0,5

a 0,6
b=0,4

Bild 6.3. Resultierende dimensionslose Ölkraft bei elliptischer Bewegung

des Wellenzentrums im zylindrischen Lager nach Bild 6.1

relativen Exzentrizität zeigt Bild 5.5, während Bild 5.6 den
Reibungswert /i/ip und Bild 5.7 die dimensionslose Öldurch-
satzzahl Kr für die beiden untersuchten Breiten wiedergeben.

Zum Vergleich wird für ß 0,5 auf Bild 5.8 die mit
unserem Berechnungsverfahren [1] erhaltene Gümbelkurve
der von Schaffrath [2] berechneten und der von Glienicke [8]
gemessenen Verlagerungsbahn gegenübergestellt. Auffällig ist
der letzte von Schaffrath gerechnete Punkt, dessen tiefe Lage
unerklärlich erscheint.

Für dasselbe Zitronenspiellager (d.h. für ß 0,5) ist auf
Bild 5.9 der dimensionslose engste Spalt in Abhängigkeit von
der Belastungszahl Sores aufgetragen, wobei auch hier mit den
Ergebnissen der erwähnten anderen Autoren verglichen wird.

5.3 Vierflächenlager nach Frössel

Das Lager setzt sich nach Bild 5.10 aus vier gleichmässig
auf dem Lagerumfang angeordneten Viertelkreisschalen
zusammen, zwischen denen je eine Axialnut für die Schmierstoffzufuhr

liegt.
Die nach [1] für Lager von der relativen Breite ß 0,5

und 1,0 berechneten Gümbelkurven und die Kennlinien für
Reibung und Öldurchsatz sind in [6] veröffentlicht, so dass auf
deren Wiedergabe hier verzichtet wird.

0.9 *N

0,8

0.7

ÜR

0,6

$0.5

ß =0,5
0,4

mmcke 18]
(Messung)0,3 Schaffrath [2]

(Rechnung)

0,2

OU u Varga
0H

0,2 0,6 aa So

6. Verlauf der resultierenden Kraft bei gegebener Bewegung des
Wellenzentrums (instationäre Fälle)

6.1 Kreislager mit elliptischer undkreisförmiger Wellenbewegung

In diesem Abschnitt soll der nach [1], Gleichungen
(T 12.17) und (T 12.18), berechnete Verlauf der dimensionslosen

resultierenden Kraft für eine kreisf^lmige und eine
elliptische (doppelt harmonische) Bewegung des Wellenzentrums in
einem kreiszylindrischen Lager wiedergegeben werden. Die
Form des Lagers ist auf Bild 6.1 dargestellt.

Die periodische elliptische Verlagerung der Welle ist nach
Bild 6.2 durch die Gleichungen

(6.1) esiny b sin cur

(6.2) e cos y a cos cot

gegeben, wobei a und b die Halbachsen der Ellipse bedeuten;
für a b ergibt sich eine gleichförmige Kreisbewegimg
(e konst; y cor).

Aus der Verlagerungsbahn lässt sich nach [1 ] punktweise
die resultierende Ölkraft Sores auf die Welle berechnen. Das
Ergebnis ist in Form von Polardiagrammen auf Bild 6.3 für
die elliptische (a 0,6; b 0,4) und auf Bild 6.4 für die
kreisförmige (a b 0,6) Wellenverlagerung dargestellt.

Die beiden Bilder zeigen deutlich den Einfluss der relativen
Lagerbreite ß. Ferner ist in Bild 6.3 der Einfluss der seitlichen
Ölzufuhrnuten sehr auffällig. Trotz der rein kreisförmigen
Schale und der konzentrischen gleichförmigen Kreisbewegung

Bild 5.9 (links). Dimensionsloser Minimalspalt in Funktion der Belastungszahl

Sorea für das Zitronenspiellager nach Bild 5.3 mit der relativen Breite ß
0,5. Vergleich mit Rechnungen und Messungen anderer Autoren

Bild 5.10 (rechts). Aufbau des Vierflächen-Lagers nach Frössel

m

0,6
ßj°£. W0.

O.4.

0.2

12ß.

0.2

-0.4

-0,8

0,2 0,4 0,6OS -0,4 -0,2

0 0,6
b 0.

Bild 6.4. Resultierende ölkraft bei Kreisbewegung

des Wellenzentrums im zylindrischen Lager
nach Bild 6.1
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w
0,5

0,4

0,3

^X—^ Ml 75"

W-~// s¦ 'A»\ e -U,41b
V 68'VL/ | =-0,24

/'f-f* \ G =+2,77

/ \ ,t
—\— sn \ TT*

1

-H—
<pEI=15° /90°

Oberschale
9ai 165° <pEn~195" 270'

Unterschale
<p4Jr=345°

(Randbedingungsfall b2) (Randbedingungsfall b, I

Bild 6.5. Dimensionslose Druckverteilung in der Lagermittelebene des Kreislagers nach Bild 6.1 für einen Bahnpunkt
bei elliptischer Verlagerung des Wellenmittels nach Bild 6.2; n* — Verlauf bei Randbedingungen nach [2]

des Wellenmittelpunktes stellt man eine bemerkenswert starke
Variation in der Grösse der resultierenden Ölkraft fest.

Als Beispiel für eine Druckverteilung bei instationärem
Betrieb des Lagers ist in Bild 6.5 der Druckverlauf im Lager
nach Bild 6.1 bei der elliptischen Wellenbewegung nach
Bild 6.2 aufgetragen, wobei der Punkt cot 5/12 • n 75°

herausgegriffen wurde. In der Oberschale ergibt sich ein
Randbedingungsfall b2 und in der Unterschale ein Fall bv Der mit

17* bezeichnete Druckverlauf in der Mittelebene ergibt sich
mit den von Schaffrath verwendeten Randbedingungen.

6.2 Dreiflächenlager

Als weiteres Beispiel wird ein Dreifiächenlager mit
elliptischen Wellenbewegungen berechnet, wie sie Schaffrath für
dasselbe Lager in [2] untersucht hat. Das Lager weist nach
Bild 6.6 drei gleiche kreiszylindrische Schalen auf, die durch
Ölzufuhrnuten von 20° voneinander getrennt sind. Die relative

Breite des Lagers beträgt ß =0,5.
In [2] sind die Segment-Krümmungsmittelpunkte des

Lagers von Bild 6.6 so gewählt, dass hmax/hmtn 3 beträgt6).
Daraus resultiert als Segment-Vertiefungsfunktion (siehe [1])
für das Segment I

1 | [1 — cos (<p — <pi)](6.1) AXi 2

Die entsprechenden Ausdrücke für die Segmente II und

III erhält man, indem man in Gleichung (6.1) den Mittelachsen-
Winkel q>i durch cpn bzw. ym ersetzt.

Im vorstehend bescHebenen Lager werden nun für zwei

elliptische Wellenbewegungen mit den dimensionslosen
Halbachsen 0,4 und 0,6 (Bild 6.7) die resultierenden dimensionslosen

Ölkräfte berechnet.

6) Der Abstand e0 des Krümmungsmittelpunktes vom Lagerzentrum
ist für das betrachtete Lager

(6.2) e0 2 AR P„ax/hmln) --1]

20° ß 0,5

JjJr WM

I
(Um 1150°^H e° s

in
SmmW, ~hm„

=30

ÜR

0.4
Bahn B

0.6

Ein- und Austrittswinkel.
Segment <Pe <Pa

I
M

-20"
100"
220°

80°
200°
320°

Bild 6.6. Dreiflächenlager mit drei
Kreisbogen-Schalen

Bild 6.7. Elliptische Bewegung

des Wellenzentrums
im Dreiflächen-Lager nach
Büd 6.6

Die Ergebnisse sind auf Bild 6.8 wiedergegeben. Die
beiden Kurven lassen sich direkt mit dem entsprechenden
Diagramm von Schaffrath [2, Bild 18] vergleichen.

Da Schaffrath das Lager gegenüber unserer Stellung um
180° gedreht angenommen hat und die äussere Lagerbelastimg
aufträgt, entstehen gleichliegende Kraftdiagramme.
Unterschiedlich ist hingegen die Winkel-Kotierung, was beim
Vergleich zu beachten ist. Man stellt eine gute Übereinstimmung
der beiden Ergebnisse fest. Für einzelne Kurvenpunkte
betragen zwar die Unterschiede in den Sommerfeld-Zahlen bis
gegen 20%, doch sind dies Punkte mit relativ geringer
Belastung. Hingegen fallen die Spitzenwerte bis auf ganz geringe
Abweichungen zusammen, was für praktische Anwendungen
der verglichenen Rechenmethoden wichtig ist. Dieses Ergebnis
ist nicht selbstverständlich, weil in den einzelnen Segmenten
zufolge der unterschiedlichen Randbedingungen die
Druckverläufe nach den beiden verglichenen Rechenverfahren
voneinander abweichen. Bild 6.9 zeigt dies an einem Beispiel.

7. Feder- und Dämpfungskonstanten

Für das dynamische Verhalten von Rotoren, die in
Gleitlagern laufen, sind beim Auftreten von Störkräifen an der
Wellenachse die Feder- und Dämpfungskonstanten der Lager
wichtig. Solange die Störungen klein sind, spielen sich die

\m

mBB

fZIO
270

'BO240

3003.0.0 WO/ Bahn330330

m ISO

120

Bahn
Bahn B

ß 0,5

^
"min

Bahn B

Bahn A

Bild 6.8. Polardiagramm der resultierenden dimensionslosen
ölkraft für die Wellenbewegungen nach Bild 6.7
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0,6 " j^\i ß=a5 iüüff \ t =0,59
Jl ' )[ Aü!=j y 100°¦^^ m | mm

m
G =+1,38

P
r\ V

0,4 i l
t' \\

TT* T fr \\
0/ ^ i* V
=-20°I Segment I <Pai' cpEn"

Segment E
<Pam=200° tpEM=220°

J L Segment SI
<PAm-320°

Bild 6.9. Dimensionslose Druckverteilung in der Lagermittelebene des Lagers nach Bild 6.6 für einen Bahnpunkt at 285 ° bei elliptischer
Bewegung des Wellenmittels nach Bahn A aus Bild 6.7. II* Druckverlauf bei Randbedingungen nach [2] (in allen Segmenten Randbedingungsfälle

b{)

Bewegungen in der Nähe der Gleichgewichtslagen der Welle ab,
das heisst in der Nähe von Gümbelkurven-Punkten. Bei kleinen
Auslenkungen aus der Gleichgewichtslage lässt sich die
resultierende Kraft durch eine lineare Funktion der Auslenkung
und der momentanen Geschwindigkeit ausdrücken [8] [10];
diese Darstellung kann als abgebrochene Taylor-Entw^ejclung
aufgefasst werden. Die Koeffizienten in dieser linearen
Beziehung sind die vorerwähnten Feder- und Dämpfungskonstanten.

Um die Federungs- und Dämpfungskonstanten zu
definieren, führen wir für die Darstellung der Wellenlage nach
Bild 7.1 kartesische Koordinaten ein. Es gilt:

(7.1)
£ j e cos y

f2 £ sin y

Die Federkonstanten y+ne werden durch die Gleichung

SSi i
7.2) X« *s «i [ 1,2

8H k\
und die Dämpfungskonstanten ß+iu durch

1,2(7.3) ß+tk m sl8 H. kI
definiert, wobei <f die Ableitung von £ nach der dimensionslosen

Zeit cot bedeutet:

(7.4) £gj
co St

81

8 (cot)

I hat somit die Bedeutung der dimensionslosen Geschwindigkeit

in Richtung |.
Die durch die Gleichungen (7.2) und (7.3) definierten

Feder- und Dämpfungskonstanten werden in der Regel für
Gleichgewichtslagen mit vertikaler resultierender Ölkraft an
der Welle angegeben. Bezeichnet man die auf den
Gleichgewichtszustand bezogenen Grössen mit dem Index s, so ist die
Wellenlage für einen derartigen (auf der Gümbelkurve liegenden)

Punkt durch die Polarkoordinaten es und ys mit der
vertikal nach oben gerichteten Resultierenden

(7.5) S2 V Sor Sos

charakterisiert. Für eine solche Gleichgewichtslage können die
durch die Gleichungen (7.2) und (7.3) definierten FeSl und
Dämpfungskonstanten auf Sos bezogen werden; diese

bezogenen Grössen eignen sich für manche Anwendungen besser
als die nicht bezogenen, weil sie im allgemeinen im Bereich der
praktisch vorkommenden Belastungen mit Sos weniger stark
variieren. Man definiert so in Anlehnung an (7.2) und (7.3) die
relativen Federkonstanten

(7.6) yac
1 SSi I 1.2

Sos Sttic

und die relativen Dämpfungskonstanten

1 8Si
(7.7) frft

Sos 8£k
1,2

Die beiden Zeiger i und k können die Werte 1 und 2
annehmen, so dass insgesamt vier Feder- und vier Dämpfungskonstanten

bestehen. Da in [1] die ganze Berechnung der
resultierenden Ölkraft auf der Polarkoordinaten-Darstellung
(e, y) beruht, drückt man die für die Feder- und Dämpfungskonstanten

notwendigen partiellen Ableitungen durch folgende
Transformationen durch die Grössen des Polarkoordinatensystems

aus:

(7.8)

(7.9)

(7.10)

(7.11)

8Si SSi

jj Se

8Si SSi

|| de

SSi SSi

M Se

sSi SSi

8£2

cosys

sin ys +

cosys —

sm ys

8Si sin ys

8y es

SSi cosys

8y ss

8Si sin ys

8y es

8Si cosys

dy £S

wobei in Anlehnung an die Gleichung (7.4) wegen der
Beziehungen (T 6.4) und (T 6.5) aus [1 ]

(7.12)

gilt.

8Si 8Si SSi _ SSi
2 und 2

9s SE 8y SG

SfV

S.-H

Bild 7.1. Koordinaten-System
zur Definition der Feder- und
Dämpfungskonstanten
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4,0

3ß

2,0

1,5

1,0

0,5

-0,5

-1,0

III
Glienicke [8]
Schqffrath [2] (So < 0,221

ß 0,5
//x^--^ m

/
/ /

/w

5*<7/o

/oc7

.Stfo/o

^^

//
/

s

// '22 y
s/y

/ ^
/ äs

^^~
** ^^*-

l^p r>-~~~

~-~ —

--—-
m

1
-y,t H 9

O 0.7 o,.? o,<? 0,7 o,,so,j <?.•*

Sorss

Bild 7.2. Federkonstante y+ für das Zitronenspiel-Lager nach Bild
5.3; Vergleich mit Berechnungen von Schaffrath [2] und Messungen
von Glienicke [8]

Die in den Gleichungen (7.8) bis (7.12) vorkommenden
partiellen Ableitungen werden numerisch als Differenzenquotienten

ermittelt, die wie folgt zu berechnen sind:

(7.13)
8 St

8e

Si(es + de;ys;E 0;G 0)-St(ss-Ae;ys;E 0;G=0)
2Ae

(7.14)
SSi

8y

Si(es;ys+4y;E 0;G 0)-Si(£s;ys-~Ay;E 0;G=-0)
lAy

(7.15)
SSi

SE

Si(ss;ys; +AE;G 0) -Si(ss;ys; - AE\G 0)

~~2AE

(7.16)
SG

Si(ss;ys;E AG) -Si(es;ys;Es 0; -AG)
2 AG

In diesen Gleichungen nimmt i die Werte 1 und 2 an.
Als Anwendungsbeispiel wurden in den Bildern 7.2 und

7.3 die Feder- und Dämpfungskonstanten für das im Abschnitt
5.2 beschriebene Zitronenspiellager (Bild 5.3) mit der relativen
Breite ß 0,5 dargestellt. Auf den Diagrammen sind auch

aus [2] die von Schaffrath berechneten Werte und aus [8] die

von Glienicke gemessenen Verläufe in der Form der
Gleichungen (7.2) und (7.3) aufgetragen.

Die teilweise beträchtlichen Abweichungen zwischen

Messung und Berechnung sind verständlich, wenn in Betracht

gezogen wird, dass im Versuch einige wichtige Vorausset-

5,0

4.0

<$. 1,5

- Ott und Varga
- Glienicke [8]
- Schaffrath [2](Sores <0,22)

ß=0,5

3.0

b:

1.0
-ß

'.« KZI0.5 Bin
ß,

^-*. 3=ss

ßi2 N'-/3„
Bi----/

0.1 0.4 0.5 0,7 0,8

Bild 7.3. Dämpfungskonstante ß+ für das Zitronenspiel-Lager nach
Bild 7.2; Vergleich mit Berechnungen von Schaffrath [2] und
Messungen von Glienicke [8]

zungen der Rechnung (konstante Schmiermittelzähigkeit,
überdruckfreie Zufuhr des Schmiermittels) nicht erfüllt sind.

Die Unterschiede zwischen den hier berechneten Kurven
und den Rechnungswerten von Schaffrath, die dieser allerdings
nur in einem sehr schmalen So-Bereich angibt, sind relativ
gering. Die Ursachen für die Differenzen können entweder bei

der Verschiedenheit der Rechnungsverfahren oder bei den

Unterschieden in den Randbedingungen liegen.

8. Berechnung der Wellenbewegung bei einer gegebenen instatio¬
nären Belastung

Die Lösung dieser Aufgabe auf der Grundlage des

Berechnungsverfahrens [1] wurde von Z.E. Varga durchgeführt
und soll demnächst veröffentlicht werden.
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