Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 89 (1971)

Heft: 21

Artikel: Erschütterungsbeanspruchung von Bauwerken: Vortrag

Autor: Bendel, Hermann

DOI: https://doi.org/10.5169/seals-84861

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Erschütterungsbeanspruchung von Bauwerken

DK 699.84

Vortrag, gehalten an der Herbsttagung 1969 der Schweiz. Gesellschaft für Bodenmechanik und Fundationstechnik in Luzern und überarbeitet 1971 von Dr. H. Bendel, Luzern

Erschütterungen erzeugen in einer Konstruktion zusätzliche Spannungen und vermindern bei häufiger Wiederholung die Widerstandsfähigkeit der Materialien. Ein Gebäude ist ein kompliziertes mechanisches System, das, von einer Erschütterung angeregt, als Ganzes räumlich schwingen kann, innerhalb dessen aber auch einzelne Konstruktionsteile schwingungsfähige Systeme darstellen.

Für die Beanspruchung eines Bauteiles infolge Erschütterungen sind die dynamischen Zusatzspannungen massgebend. Der Frequenzbereich der erregenden Erschütterungen spielt eine massgebende Rolle für die Art und Grösse der Beanspruchung (Tabelle 1).

Die direkte Messung von dynamischen Spannungen ist schwierig. Man ist deshalb bestrebt, leichter messbare kinematische Ersatzgrössen zu finden. Im Bereich der niederfrequenten Erschütterungen, vorwiegend durch Erdbeben erzeugt, eignet sich die Beschleunigung (proportional zu f^2) als Beurteilungsmassstab für die dynamische Schadeneinwirkung. Auf diesem Kriterium beruht die bekannte Skala von *Mercalli-Cancani*.

Bei etwas höheren Frequenzen besteht noch keine Klarheit über die massgebende kinematische Grösse. Von verschiedenen Autoren ist die Leistung (proportional zu $f^{3/2}$) vorgeschlagen worden, als Übergang zum Hauptbereich ab etwa 10 Hz, in dem die Bewegungsgeschwindigkeit (proportional zu f) für die Beanspruchung kennzeichnend ist.

Für einen frei längsschwingenden Stab gilt unabhängig von den Randbedingungen und von der Querschnittsform

(1)
$$\sigma_{max} = \sqrt{E\varrho} \cdot V_{max}$$

 $\sigma_{max} = \text{maximale}$ dynamische Dehnungsspannung

 $V_{max} =$ Scheitelwert der Bewegungsgeschwindigkeit

$$/E_{\varrho} = \text{Wellenwiderstand}$$

Diese Beziehung gilt nur für die Absolutwerte der Maximalamplituden,

die unter sich nicht in Phase zu sein brauchen. In erster Näherung kann man die Gleichung auch für die Dehnungsschwingungen einer Scheibe verwenden, insbesondere so lange keine Resonanz-überhöhungen vorhanden sind. Bei den im Hochbau üblichen Konstruktionsmaterialien und Abmessungen von Wänden und Decken liegen die niedrigsten Eigenfrequenzen von Dehnungsschwingungen über 100 Hz, wie *Splittgerber* [1] gezeigt hat.

In einer kürzlich veröffentlichten Publikation hat *Gasch* [2] nachgewiesen, dass zwischen den grössten Amplituden der Biegezugspannung und der Schwinggeschwindigkeit eines in Resonanznähe schwingenden Balkens die Beziehung gilt:

Aus der Veröffentlichung [2] lässt sich weiter entnehmen, dass für unbelastete biegeschwingende Balken und Platten im Resonanzfalle die Beziehung gilt

(2)
$$\sigma_{max} \simeq (1,0 \div 2,0) / E\varrho \cdot V_{max}$$

Vergleicht man Gleichung (1) und (2), so zeigt sich, dass bei gleicher Erschütterungsintensität die Biegezugspannungen infolge Biegeschwingungen den doppelten Wert der Zugspannungen infolge Dehnungsschwingungen erreichen können. Unabhängig von der Schwingungsform ist somit die Schwinggeschwindigkeit des Messpunktes ein Mass für die dynamische Beanspruchung des Bauteiles und eine allfällige Schadenwirkung.

$$\sigma_{max} = \sqrt{E\varrho} \cdot \sqrt{\frac{\mu + \mu_{Last}}{\mu}} \cdot \sqrt{\frac{F}{J}} Z_{a^2} \cdot \frac{\Phi_n ''_{max}}{\Phi_{n \ max}} \left(\frac{\omega_n}{\Omega}\right) \cdot V_{max} \Big|_{\Omega \simeq \omega_n}$$

$$\frac{\mu + \mu_{Last}}{\mu} = \frac{\text{Gesamtgewicht}}{\text{Balkengewicht}}$$

$$\sqrt{\frac{F}{J}} Z_{a^2} = \text{Profilkennwert (Randfaserabstand/Trägheitsradius)}$$

$$\frac{\Phi_n''}{\Phi_n} = \text{Eigenformkennwert, abhängig von den Randbedingungen}$$

$$\frac{\omega_n}{\Omega} = \text{Frequenzverhältnis (bei Resonanz} = 1)$$

Tabelle 1. Einfluss der Frequenz auf die Erschütterungsbeanspruchung

Frequenzbereich Hz	0 bis 5	5 bis 10	10 bis 60	> 60
Wellenlänge m	> 100			< 10
Erschütterungsquelle	Maschinen			
	Erdbeben	Verkehr und Rammen	Rammen und Sprengungen	Sprengungen
Eigenfrequenzen	Ganzes Haus		Wände und	Wände und
	Hochbauten	Niedrige Bauten	Decken quer zur Mittelaxe	Decken parallel zur Mittelaxe
Schwingungsform	Das Haus führt als Ganzes Scher- und Biegeschwin- gungen aus	Kombination	Wände und Decken führen Biege- und Dehnungsschwin- gungen aus	
Dynamische Beanspruchung	Durch Träg- heitskräfte	Komb	Durch Biege- und Dehnungs- spannungen	
Kennzeichnende kinematische Grösse	Beschleunigung		Geschwindigkeit	

Die massgebende materialtechnische Kenngrösse der Beanspruchung ist der Wellenwiderstand $\sqrt{E\varrho}$. Die Dichte ϱ des Materials ist meist bekannt. Der Elastizitätsmodul E lässt sich aus der Wellenausbreitungsgeschwindigkeit c bestimmen:

$$E = \varrho \cdot c^2 \cdot \frac{(1+\nu) \quad (1-2\nu)}{1-\nu}$$

v = Poissonzahl

Diese Messung gibt gleichzeitig Auskunft über den Zustand des Mate-

Tabelle 2. Baustoff-Charakteristiken

	schlecht	gut	ausgezeichnet
Mauerwerk	c > 1000 m/s	1200-1400	> 1600
Beton	c > 3000 m/s	3500-4000	> 4500

Tabelle 3. Schadenschwelle für verschiedene Werkstoffe

Werkstoff	Zugfestigkeit σ_Z in kg/cm ²	Wellenwiderstand	Schadenschwelle
		$\sqrt{E\varrho}$ in $\frac{\text{kg s}}{\text{cm}^3}$	$V_{max} = \frac{\sigma_Z}{\sqrt{E\varrho}}$
		$VEQ \text{ in } {\text{cm}^3}$	
Kalkmörtel	0,5	$0.25 \div 0.5$	10
Backsteinmauerwerk	2 ÷ 4	$0,2 \div 0,4$	50
unbewehrter Beton	10 ÷ 15	$0,7 \div 1$	100

Tabelle 4. Schadenskala in Abhängigkeit der Bewegungsgeschwindigkeit V (Frequenzbereich 10 bis 60 Hz, gültig für Wohnhäuser in gutem baulichen Zustand)

Geschwindigkeit V (mm/s)	Spannungszustand im Mauerwerk	Schadenwirkung	
0 ÷ 5	$(\sigma_{max} = \sigma_{stat} + \sigma_{dyn})$	Leichte Schäden sehr unwahrscheinlich (Erschütterungen sind spürbar)	
5 ÷ 10	$\sigma_{max} < \sigma_{stat} \cdot {}_{zul}$	Leichte Schäden unwahrscheinlich (Klırren von Fensterscheiben)	
10 ÷ 20		Abblättern des Kalkanstriches, dünne Putzrisse	
20 ÷ 30	$\sigma_{stat\ zul} < \sigma_{max} \ < \sigma_{\ Ermudung}$	Abbröckeln von Putz, dünne Risse in Trenn- wänden	
30 ÷ 50		Risse in Trennwänden	
50 ÷ 100	$\sigma_{Ermudung} < \sigma_{max} \ < \sigma_{Bruch}$	Risse in Tragwänden	
> 100	$\sigma_{max} > \sigma_{Bruch}$	Einsturz von Wänden	

Tabelle 5. Schadenschwelle von Erschütterungen. Frequenzbereich 10 bis 60 Hz

Qualifikation:	leichte Schäden unwahrscheinlich (leichte Schäden = Öffnen alter Risse, Entstehen von Putzrissen, Abbröckeln von Putzteilchen)		
Sicherheitsfaktor:	gegenüber schweren Schäden (Risse in Tragmauern) ≥ 5		
Kriterium:	Scheitelwert der Bewegungsgeschwindigkeit Gesamtvektor		
	$V = \sqrt{V_X^2 + V_Y^2 + V_Z^2}$ in mm/s		
Messort:	Eintrittstelle der Erschütterung in das Bauwerk (Fundamentmauer auf Bodenhöhe)		
	Resonanzüberhöhungen im Innern des Gebäudes bis zum dreifachen Wert sind inbegriffen.		
Literatur:	Haller, Süsstrunk, VDI-Empfehlung, Ciesielski		
Paymeterial	Prushctainmauerwerk Backeteinmauerwerk Eisenheton		

Baumaterial Bauwerk	Bruchsteinmauerwerk, Ruinen, Riegelbauten	Backsteinmauerwerk, Wohnhäuser	Eisenbeton Stützmauern, Industriebauten
Erschütterungsan	ızahl		
einmalig	3–10	10-15	30-50
wiederholt	2- 5	5-10	20-35
dauernd	1- 3	3- 7,5	15-25
Einflussfaktoren		positiv	negativ
Fundationsmater	ial	Beton	Backstein
Fundationsart		Streifen, Platten	Pfähle
Gebäudezustand		neu, ohne Risse	alt, viele Risse
Konstruktion		massiv, eckversteift	schlaff, aufgelöst
Mörtel		Zement	Kalk
Untergrund		Fels	weiches Lockergestein
Höhe		< zweistöckig	> zweistöckig

rials. Beispielsweise gilt für Wände und Decken Tabelle 2.

Aus Gleichung (1) lässt sich für verschiedene Materialien in Abhängigkeit ihrer Zugfestigkeit die Grössenordnung der kritischen Schwinggeschwindigkeit berechnen. Diese stellt die untere Grenze einer dynamischen Schadenwirkung an Konstruktionsteilen dar, die nicht durch statische Spannungen vorbelastet sind.

Unter Berücksichtigung der vorhandenen statischen Spannungen erhält man in Übereinstimmung mit empirischen Werten [3,4] die Skala der Schadeneinwirkung von Erschütterungen gemäss Tabelle 4.

Eine Schwierigkeit bei der praktischen Anwendung dieser Erschütterungsskalen liegt darin, dass es nicht möglich ist, im voraus die Stellen maximaler Erschütterungseinwirkung zu kennen. Man ist deshalb darauf angewiesen, irgend eine Messstelle zu wählen und von diesen Ergebnissen auf das Erschütterungsverhalten des ganzen Gebäudes zu schliessen. Liegt die Erschütterungsquelle ausserhalb des Gebäudes, so werden die Geber vorzugsweise an der Eintrittstelle der Schwingungen in das Gebäude, d.h. beim Fundament Richtung Störung aufgestellt, bei Schwingungen, die im Hause selbst erzeugt werden, dort, wo es am meisten wackelt.

Bei konkreten Aufgaben interessiert in erster Linie die Schadenschwelle, unterhalb welcher keine Schäden zu erwarten und oberhalb welcher leichte Schäden möglich sind. Darunter versteht man das Öffnen alter Risse, Entstehen von Putzrissen oder Abbröckeln von Putzteilchen, das Verschieben loser Teile, beispielsweise von Kaminsteinen. Diese Schadenschwelle ist einerseits von der Einwirkungsdauer der Erschütterungen und anderseits von den verwendeten Konstruktionsmaterialien und deren baulichem Zustand abhängig. Eine Übersicht dieser Schadenschwelle für Biegeschwingungen gibt Tabelle 5.

Dazu ist zu bemerken, dass beim Überschreiten dieser Schwelle vorerst nur Schäden auftreten, die durch Flickarbeiten behoben werden können. Solange man sich in diesem Erschütterungsbereich befindet, sollte beim Auftreten von Schäden kein Minderwert für ein Gebäude geltend gemacht werden können, da nach der Reparatur der Schaden vollständig behoben ist. Anders verhält es sich beim Entstehen von schweren Schäden, d.h. Rissen in Tragteilen, die tatsächlich einen schnellern Alterungsprozess des Gebäudes einleiten, somit einen Minderwert verursachen.

Bei höheren Frequenzen (über 60 Hz, Dehnungsschwingungen) sind die Zugspannungen im Mittel halb so gross

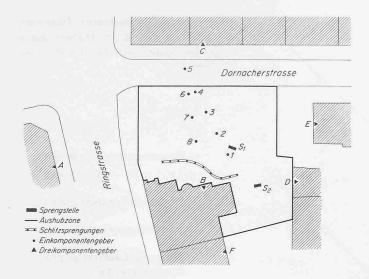


Bild 1. Aufstellung der seismischen Geophone bei Versuchssprengungen zur Abklärung der zulässigen Lademenge

wie infolge Biegeschwingungen. Erfahrungsgemäss sind in diesem Frequenzbereich auch die Resonanzüberhöhungen im Gebäude geringer. Meist werden die Erschütterungen im Bauwerk gedämpft. Bei höheren Frequenzen sind deshalb grössere Erschütterungsintensitäten als nach Tabelle 5 zulässig. Dabei ist allerdings zu beachten, dass die reine Zugfestigkeit von im Hochbau verwendeten spröden Materialien kleiner als die Biegezugfestigkeit ist.

Die bei Sprengungen ausgelöste Energie erzeugt in einem Gebäude eine Erschütterungsgeschwindigkeit, welche Funktion der Frequenz, des logarithmischen Dekrementes und der Bodenbeschleunigung der ankommenden Welle ist. Medvedev [6] hat einige theoretische Zusammenhänge hergeleitet, aber in der Praxis geht man stets so vor, dass man Versuchssprengungen mit verschiedenen Lademengen ausführt und die Erschütterungsintensitäten misst. Beispielsweise zeigt Bild 1 die Aufstellung der Geber bei einem Baugrubenaushub in Olten. Man misst den Gesamtvektor der räumlichen Erschütterungen.

Trägt man die Messergebnisse in doppellogarithmischem Papier auf, erhält man eine Schar von Geraden mit dem Parameter Q (Bild 2). Für die gewählte zulässige Erschütterungsintensität bestimmt man die kritischen Distanzen und erhält dann als Ergebnis einen Zonenplan gemäss Bild 3.

Bei einer Sprengung entstehen drei hauptsächliche Typen von Erschütterungswellen, die sich mit unterschiedlicher Geschwindigkeit im Gestein ausbreiten. Die drei Wellenarten haben unterschiedliche Frequenzen, und ihre Intensität wird deshalb mit zunehmender Distanz verschieden stark gedämpft. Je nach Abstand eines Bauwerkes zum

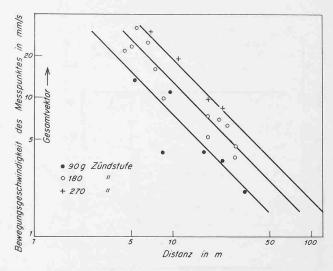


Bild 2. Abnahme der Erschütterungsintensität in Abhängigkeit der Distanz für verschiedene Lademengen. Die drei Konstanten K, x und α werden durch ein Ausgleichsverfahren aus den Messpunkten ermittelt (Olten, Ringkonsortium)

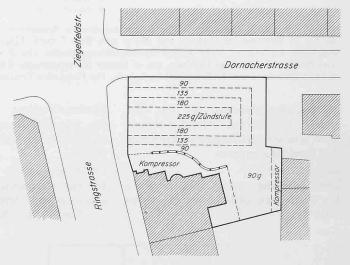


Bild 3. Zonenplan der empfohlenen Lademengen pro Zündstufe. Zulässiger Erschütterungsvektor $V=10~\mathrm{mm/s}$ (Olten, Ringkonsortium)

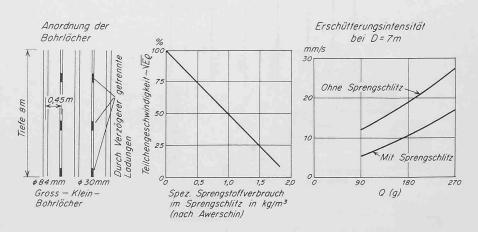
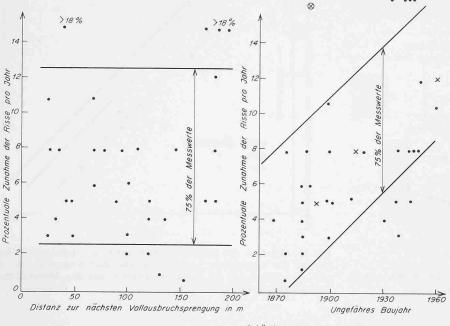



Bild 4. Erstellung eines Sprengschlitzes als Erschütterungsschutz für nahegelegene Gebäude.
a) Anordnung der Bohrlöcher (gemäss GEFAS AG). Es werden nur die Kleinbohrlöcher gesprengt. b) Theoretische Verminderung der Teilchengeschwindigkeit nach Awerschin [8].
c) Gemessene Verminderung der Erschütterungsintensität hinter dem Sprengschlitz. Baugrube Ringkonsortium Olten

Gebäude in Wollerau ohne Erschütterungsschäden
 X Gebäude in Luzern ohne Erschütterungsschäden
 Ø Gebäude in Luzern mit Erschütterungsschäden

Bild 5. Statistische Zusammenstellung der prozentualen Risszunahme pro Jahr an den Gebäuden in Wollerau im Umkreis von 200 m zum Blatt-Tunnel. Links: Risszunahme in Abhängigkeit der Distanz ergibt keinen Zusammenhang. Rechts: Die Risszunahme ist abhängig vom Baujahr. Je älter das Gebäude, um so kleiner die prozentuale Risszunahme. Messpunkte der Gebäude an einem Stollensystem in Luzern. Ein Haus wies Erschütterungsschäden auf

Sprengpunkt überwiegt der eine oder andere Wellentypus intensitätsmässig. Vom Sprengpunkt ausgehend kann man drei Bereiche abgrenzen:

Naher Bereich:

Die höchstfrequenten Longitudinalwellen überwiegen an Intensität ($f \sim 60$ bis 200 Hz)

Mittlerer Bereich:

Die mittelfrequenten Transversalwellen überwiegen an Intensität ($f\sim20$ bis 60 Hz)

Entfernter Bereich:

Die niederfrequenten Oberflächenwellen überwiegen an Intensität ($f \sim 5$ bis 20 Hz) Für alle drei Wellentypen lässt sich

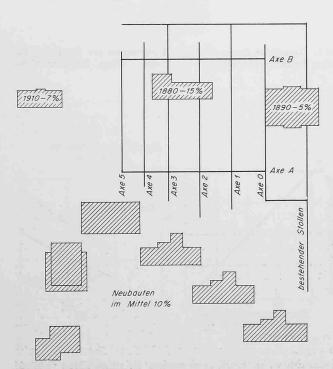


Bild 6. Situationsskizze eines unterirdischen Stollensystems in Luzern mit umliegenden Gebäuden. Approximatives Baujahr und prozentuale Risszunahme pro Jahr. Das Haus unmittelbar über dem Stollen hat Erschütterungsschäden erlitten

die Abhängigkeit zwischen der Intensität, der Lademenge und der Distanz durch folgendes semiempirisches Gesetz ausdrücken:

$$V = K \frac{Q^{\alpha}}{D^{\chi}}$$

 $V = \text{Gesamterschütterungsvektor} = \sqrt{V_x^2 + V_y^2 + V_z^2} \text{ in mm/s}$

 V_x , V_y = Horizontalkomponenten

 V_z = Vertikalkomponente

Q = maximale Lademenge pro Zündstufe in kg

α = Ladungsexponent, variiert von 0,5 bis 0,8

D = Distanz Sprengstelle-Messstelle in m

χ = Abklingexponent, abhängig vom vorherrschenden Wellentyp (χ variiert von 1 bis 1.5)

 K = Übertragungsfaktor, abhängig von den geologischen Verhältnissen

Liegt man sehr nahe an zu schützenden Objekten, werden die zulässigen Lademengen so klein, dass ein wirtschaftlicher Felsabbau kaum mehr möglich ist. Man behilft sich dann am besten mit einem Sprengschlitz. Durch Sprengungen in eng benachbarten Bohrlöchern erzeugt man Trennrisse im Muttergestein. Dadurch nimmt der Wellenwiderstand des Gesteins ab und die Wellenenergie bzw. die Schwinggeschwindigkeit hinter dem Schirm wird vermindert. Bei einem Sprengstoffverbrauch von 1÷1,5 kg/m³ im Schlitz gelingt es, die Schwinggeschwindigkeit zwei- bis dreimal zu vermindern (Bild 4).

Der übliche Ablauf bei der Behandlung von Sprengerschütterungsproblemen besteht darin, vor Beginn der Aushubarbeiten Zustandsprotokolle aufzunehmen, dann orientierende Erschütterungsmessungen im beschriebenen Sinn durchzuführen und hierauf mit einer Dauerüberwachung die Innehaltung der Vorschriften zu kontrollieren.

Eine Dauerüberwachung bezweckt:

- Anpassung der zulässigen Lademenge an die örtlichen Verhältnisse.
- Überwachung der Unternehmung, ob sie das vorgeschriebene Ladeschema innehält.
- Schaffung einer Dokumentation für den Fall späterer Auseinandersetzungen.

Nach Beendigung der Arbeiten werden Schlussprotokolle der Häuser erstellt, und dann stellt man vor allem bei länger dauernden Baustellen fest, dass die Gebäude neue Risse aufweisen. Jedes Gebäude ist einem natürlichen Alterungsprozess unterworfen, und dabei entstehen Risse. Diese Rissvermehrung ist prozentual umso rascher, je neuer das Gebäude ist. Es ist deshalb oft schwierig zu unterscheiden, ob Risse als Erschütterungsschäden zu qualifizieren sind.

Am besten geht man statistisch vor und trägt die Rissvermehrungen in Funktion des Gebäudeabstandes bzw. des Baujahres auf (Bild 5). Mit dieser Methode konnte beim Ausbruch des Blattunnels für die N3 nachgewiesen werden, dass die beobachteten Schäden weitgehend auf eine natürliche Alterung zurückzuführen waren [7].

Bei den Sprengungen für ein Stollensystem in Luzern trat das Problem auf, dass ein einzelnes Gebäude direkt über dem Stollen lag. Eine Beschränkung auf eine sichere Erschütterungslimite hätte beträchtliche wirtschaftliche Konsequenzen gehabt. Im Sinne eines kalku-

lierten Risikos und weil der Eigentümer in diesem Falle einverstanden war, war die zulässige Bewegungsgeschwindigkeit auf V = 15 mm/s festgelegt worden. Die neu entstandenen Risse, die vermutlich zum grösseren Teil Erschütterungsschäden sind (Bild 5), waren alle fein und beeinträchtigen die Lebensdauer des Gebäudes keineswegs. Die Reparaturkosten von rund 5000 Fr. haben sich durch Einsparung an Abbaukosten infolge Sprengbeschränkung (rund 45000 Fr.) bezahlt gemacht. Aber es ist Vorsicht am Platze gegenüber diesem Vorgehen, denn Erschütterungsprobleme verursachen oft mehr Ärger als Schäden, und es ist auch ein rechtliches Problem, inwieweit man einem Nachbarn bewusst einen Schaden zufügen darf, selbst wenn man gewillt ist, dafür aufzukommen.

Literaturverzeichnis

[1] H. Splittgerber: Untersuchungen über das Verhalten einer rechteckigen Wand aus Mauerwerk bei erzwungener harmonischer Anregung eines Randes im Hinblick auf die Beurteilung von Gebäudeerschütterungen. Mitteilungen aus dem Curt-Risch-Inst. der Techn. Hochschule Hannover, Heft 2,

- [2] R. Gasch: Schwingungsmessungen in Bauteilen. Berichte aus der Bauforschung Heft 58. Wilhelm Ernst Verlag, Berlin 1968.
- [3] R. Köhler: Beurteilung der Erschütterungswirkung von Sprengungen. Nobelhefte 21 (1955).
- [4] R. Ciesielski: Barèmes pour la taxation de l'influence des vibrations et des chocs dus aux causes extérieures sur les constructions de brique. RILEM, Proc. of the symposium 1963, Budapest, Vol. II.
- [5] A. Süsstrunk: Erschütterungsprobleme bei Tiefbauarbeiten in überbauten Gebieten. SBZ 1967 Heft 50, S. 917.
- [6] S.V. Medvedev: Die Einwirkung von Sprengerschütterungen auf Gebäude. «Bergakademie», 18. Jg., H. 4, April 1966.
- [7] H. Bendel: Sprengerschütterungen, Zustandsaufnahmen, Messungen, Überwachung. «Strasse und Verkehr» Nr. 12/1968.
- [8] S.G. Awerschin: Die Deformationseigenschaften und die Widerstandsfähigkeit der Gesteine bei Sprengerschütterungen. «Bergakademie», 19. Jg., H. 11, November 1967.
- [9] Schweiz. Sprengstoff AG: Erschütterungsarmes und schonendes Sprengen. Mels 1968.

Adresse des Verfassers: Dr. Hermann Bendel, 6000 Luzern, Alpenquai 33.

Der Neubau für den Hauptsitz der Zürcher Kantonalbank

DK 725.24

Architekt Ernst Schindler, SIA, BSA, Zürich

Hierzu Tafeln 1 und 2

Nach einer Bauzeit von rund zehn Jahren ist anfangs November 1970 der neue Hauptsitz der Zürcher Kantonalbank (ZKB) in Zürich eingeweiht und endgültig in Betrieb genommen worden. Die lange Baudauer war durch die besonderen Erschwernisse einer etappenweisen Ausführung bedingt. Zuerst musste unmittelbar neben dem bisherigen Sitz, anstelle der Liegenschaft Henneberg, und darauf an diesem selbst gebaut werden. Weit länger als die Verwirklichung des Bankneubaus hat die Geschichte seiner Projektierung gedauert:

Ursprünglich war die Kantonalbank auf einem Teil des heutigen Areals an der oberen Zürcher Bahnhofstrasse in der «Marienburg» untergebracht. Im Jahre 1884 beabsichtigte der Bankrat im Kappelerhof-Areal an der Fraumünsterstrasse ein neues Bankgebäude zu errichten. Dieses Pro-

jekt hat der Kantonsrat nicht genehmigt. 1895 wurde ein Neubau am alten Standort beschlossen. Um die Jahrhundertwende ist das Projekt von Architekt *Adolf Brunner* zur Ausführung gekommen (SBZ 1902, Bd. 39, Nr. 18, S. 201). In seiner Architektur spiegelte sich die für repräsentative Bauten damals übliche Neurenaissance-Manier. Die symmetrische Hauptfassade war durch zwei Seitenrisalite mit je zwei Paaren Zwillingssäulen gegliedert ohne entsprechenden Bezug auf die dahinter befindliche Raumanlage.

Schon vor Beginn des Ersten Weltkrieges litt jedoch der Hauptsitz an Raummangel. Für einen Erweiterungsplan konnte Land an der Talstrasse gekauft werden. Von 1922 bis 1929 wurden dort zwei Neubauetappen ausgeführt.

Eine neue Lage ergab sich nach dem Erwerb des Hauses Henneberg (Kopfbau Bahnhofstrasse, Börsenstrasse,

Der Hauptsitz der Zürcher Kantonalbank in der «Marienburg» 1874 bis 1901

Das Gebäude der ZKB 1902 bis 1964. Links anschliessend das für den Neubau ebenfalls abgebrochene Haus Henneberg

