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Numerische Auswertung von unendlichen alternierenden Losungsreihen

mit schlechter Konvergenz

DK 517.52

Von Dr.-Ing. Gunter Eisenbiegler, wissenschaftlichem Assistenten am «lnstitut fiir Baustatik und Messtechnik»

(Direktor Prof. Dr.-Ing. B. Fritz), Universitat Karlsruhe (TH)

1. Problemstellung

Bei der Berechnung von Stab- und vor allem von Flichen-
tragwerken lassen sich die gesuchten Losungen oft in der Form
von einfachen, unendlichen Reihen darstellen. Konvergieren
diese Reihen allerdings nur sehr schleppend, so ist ihre Auf-
summierung mithsam und zeitraubend. Selbst mit dem Einsatz
von Elektronenrechnern kann vielfach die gewiinschte Ge-
nauigkeit des Summenwertes nicht erreicht werden, wenn bei-
spielsweise die auftretenden Rundungsfehler die hoheren
Reihenglieder zu stark verfilschen, oder wenn die Ermittlung
einer sehr grossen Anzahl von erforderlichen Gliedern zu auf-
wendig wird. Im folgenden wird nun fiir unendliche, alter-
nierende Reihen mit langsamer Konvergenz eine einfache
Methode angegeben, die nur wenige Anfangsglieder einer
solchen Reihe bendtigt, um deren Summenwert mit einer
hohen Genauigkeit zu berechnen. Im Bauwesen ist diese Me-
thode bislang wenig bekannt geworden.

2. Mathematische Grundlagen
Die beliebige, konvergente Reihe

M Y DWVa=Vo—Vit+Vo—Vs+Vo—+...
n=20

ldsst sich mit Hilfe der Eulerschen Reihentransformation (vgl.
[11, [2]) wie folgt umformen:

1 1 1

o0
) Y (—)rVa = Vo+~AVQ+?A2V0+

=10 2 4

ok s gy . WS

S il el s Sek Tre
Dabei bedeuten allgemein 4V, = Vu — Vi1 die ersten und

AvY, = A®-VY, — AE-1}, ., die hoheren Differenzen der
Gliederfolge (V»).
Diese Umformung bewirkt bei schlecht konvergierenden,
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alternierenden Reihen eine wesentliche Konvergenzbeschleu-
nigung, und zwar konvergiert die transformierte Reihe umso
schneller, je schleppender die Konvergenz der vorgelegten
Reihe ist. Fiir die Abschidtzung der Restsumme

nach p Gliedern der Reihe (2) gilt die kurze Beziehung

Jmm

(3) |Rs| < T

an die jedoch die Bedingung gekniipft ist, dass nicht nur die
Glieder ¥V, sondern auch die p-ten Differenzen A”V, eine
positive, monotone Nullfolge bilden miissen.

Es ist natiirlich ebenso moglich, mit der gezeigten Um-
formung erst bei einem bestimmten Reihenglied 7; zu be-
ginnen, Man erhélt dann

@ = - Y — W

n=0
= "V e . V.+_I_AV i —I—A'ZV' =
T $=1 ZI= 5 P == 4 1 o 8 T oeee —
. - o A
:VO—Vl_i_Vz_VS"‘_'_ Vi—l Ik:()—?c-{-—l'

Von dieser Moglichkeit wird man mit Vorteil immer dann
Gebrauch machen, wenn die Konvergenzgeschwindigkeit nach
einer gewissen Gliederanzahl merklich zuriickgeht, oder wenn
eine monotone Nullfolge der ¥V iiberhaupt erst vom i-ten
Gliede an vorhanden ist.

Abschliessend sei vermerkt, dass man in vielen, praktisch
wichtigen Féllen auf Reihen folgender Bauart stosst:
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=<} [ m
= 1
(5) ngo( (mg Vnm) — Vory = ( cosh(ﬁ’)*? smh(ﬁ))
= 153 VOO s Vm + VOZ + . =i VOm - P 1
= VlO ES V11 =" V1z =i Fsa = Vlm lpl’l - 7 Slnh(ﬁ)
I Vlﬁ I VZl —J‘- V22 + . + V2 m J
: : : : Py = 7 sinh(f y)
= Vm S Vm v an—...
; 0 ; f +m‘:0 2 Wy = (c;osh(/3)+7 smh(ﬁ))
NP : 4 ~ 1/ I |
Betrachtet man hierbei die Teilsummen Y Viuw als Var = (Y‘COSh By) + v - sinh(f y))
m-O 2
Glieder V. einer alternierenden Reihe V‘ (—1)"Va, so ldsst .
n = 0 ~
sich die angegebene Transformationsmethode wiederum er- Y3 (2 cosh(f) + f - smh(ﬁ))
folgreich anwenden.
2 1
3. Anwendungsbeispiele Waish (2 cosh(By) + By - sinh (B ))

Beispiel 1

Fiir die m,-Momentenfliche der in Bild 1 dargestellten,
vierseitig gelagerten Rechteckplatte ergibt sich unter der
Gleichflachenlast p der folgende Ausdruck (vgl. [3]):

mam

Werten wir die rechte Seite der Formel (6) fiir die Koordi-

o e Pan - Bon Bn A naten (x = 1,0; y = 0,0) aus, so erhalten wir fiir das negative

6 my(x,y) = \_ ( ~— = R ‘Y3,»  Einspannmoment —myen €ine unendliche, alternierende Reihe
o m=13,5. . (A vom Typ (1). Thre einzelnen Glieder sind mit ¥, beginnend in

i SR Vi T P Ya B e U\ 2 sin (8x) Tabelle 1, Spalte 4, aufgetragen. Man sieht, dass die anfangs

Pia P21 — Vo * Pan ' ) ) rasche Konvergenz bereits nach etwa 4 Gliedern stark nach-

Faktor: p 1,°.

Die verwendeten Abkiirzungen bedeuten dabei

lasst, und es ist deshalb zweckmaéssig, in diesem Bereich mit der
beschriebenen Reihenumformung einzusetzen.

Bilden wir nach dem tibersichtlichen Schema der Tabelle 1
die benotigten hoheren Differenzen A%V, dann lasst sich mit
deren unterstrichenen Zahlenwerten die folgende Summe an-

% 1 2
Y14 — S5 B

(1—cosh(p) -+ - -sinh(#)

schreiben:
Tabelle 1.
n 2 3 4 5
A°V
m n E;:(-l)nvn Y av, 8V, 87V AV, -
1 2 5 4 5 6 T 8 9
1 o 0,135336 0,135336
3 1 0,118131 0,017206
5 2 0,122230 0,004100
7 0,120727 0,00150k
9 4 0,121434 0,000708
0,000320
11 5 0,121047 0,000388 0,000167
0,000153 0,000096
13 6 0,121282 0,000235 0,000071 04000059 5
0,000082 0,020037 0,000038
iy Tt 0,121129 0,000153 0,00003M 04000021
0,000048 0,000016
alfy 8 0,121234 0,000105 0,000018
0,000030
19 9 0,121159 0,000075
21 10 0, 1?121” 0, 0000)6
23 11 0,121172 0,0000/12 2
25 12 0, 12120“ 0.000033 i
27 115 o|121179 04000026 >
29 14 0,121200 0,000021 " b
31 15 0, 121182 0,000017 &
8o 16 0,121197 o.ooool“
35 AT, (o% 121185 0,000012
37 18 oy121195 o,oooolo . 4
39 19 0}y 121183 0,000009 Bild 1. 4
41 20 0, 12119 0,000007 Vierseitiz el
g gelagerte
43 21 121187 0,000006 Rechtealplatie .
£ 5 5 < unter Gleichlast 2z
i . a 10 20 x
Schweizerische Bauzeitung - 89. Jahrgang Heft 11 - 18. Marz 1971 253



Beispiel 2

Die exakte funktionale Darstellung der Einflussfliche
1 1 (EFF) fir die Randquerkraft g,» am beidseits starr einge-

(—D"Va = Vo—V, + Vo, — V, +

—Myem —

N‘ — o8

+ Ve + 4 AV, + ?Az Vet ... spannten Plattenvollstreifen (Bild 2) lautet nach. [3]:
—nmyen == 0,135336 — 0,017206 -+ 0,004100 — 1 . — _
1 1 1 (7) EFF — qyo(x,y) = _J (., = Ind ~ Py i
— 0,001504 +70,OOO708 %770,000320 =0 —8~0_,000167 < 4] s\ Yia Y1 — Yo " Y2
- L0 000096 -+ L0 000059 +—l— 0,000038 = 0,121190 + = pr* ~ ;Fo'ﬂ“) cos (ex) der
16 7= ! 64 —_—tr e Y11 " Y11 — Your " Yau y

)

Erfolgt die Umformung erst bei n = 5, so ergibt sich TP 2
= —J w(e,y) " cos(ox)do; Faktor:l—.
T

2] 4 1
—myem = ), (—1)"V = Y (—1)Voy —— V, — !
0 0 2 g
1 1 1 Als Abkiirzungen sind darin eingefiihrt
— — AV, —— A2V ——— A3V, — ..
4 8 : 16 | i |
—myem == 0,121434 — You = (7 B h(p) ==~ Sinh(“)) ;
1 1 1 : '
— —-0,000388 — — - 0,000153 — — - 0,000071 — ~ 1 1 .
2 4 8 Vhar = = ( - cosh(z y) — — - sinh(a y)
2 o2 o3
1 1
— ——-0,000037 — — - 0,000021 = 0,121190,
16 32 —_— = | Lo,
Yy = o = = sinh{e);
das heisst auf 6 Ziffern genau der gleiche Momentenwert wie 2«
oben. = Iy
In diesem Beispiel geniigen somit 10 Reihenglieder, um Wt = Sl o)
die gesuchte Schnittgrosse mit einer Genauigkeit zu berechnen, or i
fur die bei einer gewOhnlichen Aufsummierung rund 50 Glieder Py =— (cosh(a e sinh(oc)}
notwendig wiren. 2 2 )
Tabelle 2.
& 2 3, i 5 6
o n g(_i)nvn ~Vn AVn A Vn A Jv‘ A Vn A Vn A Vn
1 2 3 it 5 6 7 8 9 1o
in/0,9 o) 0 005223 0,005223
2n/0,9 1 -0,018019 0,023242
31/0,9 2 0,010521 0,028540
0,000293
bn/o,9 3 | —0,017726 | 0,028247 -0,002310
0,002603 -0,001391
51/0,9 | 4 0,007918 | 0,025644 -0,000919 ~0,000623
0,003522 -0,007768 -0,000250
6n/0,9 | 5 | -0,014204 | o0 022122 -0,000151 ~0,000373 -0,000097
0,003673 -0,005395 -0,000153%
Tn/0,9 6 o,00l245 0,018449 0,00024} -0,000220
0,003429 -0,003175
8n/0,9 7 | —0,010775 | o,015020 0,000419
o0,003010
91/0,9 8 0,001235 | o,012010
lon/0,9 9 -0,008235 0,009470
10 | -0,000851 | 0,007384
11 [ -0,006556 | 0,005705
12 | -0,002182 | 0,004374
13 | -0,005514 | 0,003332
15n/0,9 | 14 | -0,002989 | 0,002525
15 | -0,004893 | o,001904
16 | -0,003464 | o0,001429
17 -0,004533 0,001069 b4
18 -0,003736 | 0,000797
20m/049 | 19 | -0,004329 | 0,000593
20 | -0,003889 | o,0004k40 b 10
21 | -o,004214 | 0,000325 b |——— ——— —9(09,09)
22 | -0,003974 | o,0002%0 1
23 -o0,00l151 0,000177 I
251/0,9 | 24 | -0,004021 | o0,000130 | 7
25 | -o,004116 | 0,000095 | 4
26 | -o0,004046 | 0,000070 |
27 | -0,004096 | o0,000050 |
28 | -o,00k4060 | 0,000036 l
3om/0,9 | 29 -0,004087 0,000027 = ’ %
30 | -0,004068 | 0,000019
5 3 5 Bild 2. Beidseits starr eingespannter Plattenvollstreifen
3 : 5 Rand a: starr eingespannt; Rénder b, ¢, d: frei drehbar gelagert
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Fiir den grossten Teil des interessierenden Plattenbereiches
liefert die numerische Auswertung von Gleichung (7) bereits
nach einer kurzen Integrationsstrecke sehr genaue Einfluss-
ordinaten. Eine Ausnahme macht zum Beispiel der Punkt
(2 =109 3 =10,9)

Nach einem Vorschlag von 1. M. Longman [4] spaltet man
dafiir das uneigentliche Integral zweckmissig wie folgt auf:

®
~

1 -
(8) EFF—gqy(0,9;0,9) = — [ w(x 0,9) - cos («-0,9) dx
T

0
T 2w 37 47
0,9 0,9 0,9 0,9
L | o 1
= = = -
7T a4 1 7
0 T 27 3w
0.9 0,9 0,9

=(Ve—V, + V=V +_)(—1)
Zufolge des oszillierenden Integrandenanteiles cos(x - 0,9)
lasst sich aus Gleichung (8) eine unendliche, alternierende
Reihe ableiten, deren Glieder V7, aus den angegebenen Teil-
integralen gebildet werden. Wie aus Tabelle 2, Spalte 4, zu er-
sehen, erfiillt diese Reihe vom 3. Gliede an die Voraussetzungen
Va >0, Vo > Varaund Vys1/Ve > 1/2, nach denen sich eine
Behandlung gemiss Abschnitt 2 anbietet.
Mit den in Tabelle 2 berechneten hoheren Differenzen
ergibt sich fiir / = 2 geméss Gleichung (4)

i
—FEFF-gy4(0/9:0,9) = Vo— Vi~ ¥, —
kg 2%+

=~ 0,005223 — 0,023242 +
1 1 1
i T 0,028540 + 7 0,000293 — e 0,002310 —

1 1 1
———-0,001391 — ——-0,000623 ———" 0,000250 —
16 32 64

1
— ———0,000097 =~ — 0,004076.
128 7 S ————=

Fiir i = 3 ergibt sich ebenso

[~ ,11 IcV
—EFF—q4(09;09) = V,—V, + V, — :

k:lO Qk+1

1
=~ (0,005223 — 0,023242 +- 0,028540 —5 0,028247 —

Aluminiumkonstruktionen im Bauwesen

1 1

1
— — +0,002603 4 — - 0,000919 + — - 0, -
7 3 T3 0,000768

1 1
} . 3 | . ~
T 33 0,000373 A o 0,000153 =~ — 0,004076

In solchen Aufgaben kann also die erforderliche Integrations-
strecke sehr stark verkiirzt werden, was bei der zeitaufwendigen
numerischen Quadratur von grossem Nutzen ist.

4. Schlusswort

Die beschriebene Transformationsmethode fiihrt bei
schlecht konvergierenden, alternierenden Reihen zu einer
wesentlichen Konvergenzverbesserung und damit zu einer
schnelleren Berechnung ihrer Summenwerte. Es ist lediglich
darauf zu achten, dass die verwendeten Anfangsglieder einer
solchen Reihe mindestens die Sollgenauigkeit des gewiinsch-
ten Endergebnisses aufweisen.

Besondere Bedeutung erlangt diese Methode bei der Aus-
wertung von Reihenldsungen, die bei punktférmig belasteten
Platten, Scheiben und Schalen (vgl. z.B. [5]) gefunden werden.
Dabei sind es vor allem Momente und Querkrifte, die mit-
unter aus extrem schleppend konvergierenden Reihen be-
stimmt werden miissen.

Wihrend auch die in den beiden Anwendungsbeispielen
erzielte Genauigkeit der statischen Grossen fiir die Bemessung
eines Tragwerks nicht notwendig ist, kann diese wohl erforder-
lich werden, wenn bestimmte Schnittkrifte und Verformungen
erst als Zwischenergebnisse eines weiteren Rechnungsganges
benutzt werden. Dies kann zum Beispiel bei der Berechnung
von punktgestiitzten Platten, Durchlaufplatten u.a. der Fall
sein.
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DK 546.621:624.07

Von Prof. Dr.-Ing. Otto Steinhardt, Inhaber des Lehrstuhls fiir Stahl- und Leichtmetallbau und Direktor der Versuchsanstalt fiir

Stahl, Holz und Steine der Universitat Karlsruhe (TH)

1. Einfiihrung

Die zurzeit wichtigsten Aluminiumlegierungen sind in
Tabelle 1 zusammengestellt; bei der Vorbereitung eines neuen
Normblattes DIN 4113 sind die hervorgehobenen drei Haupt-
arten, die fiir eine Verwendung fiir Baukonstruktionen unter
«vorwiegend ruhender Belastung» eingehend diskutiert wur-
den, von besonderer Bedeutung.?)

1) Der Verfasser dieses Kurzberichtes ist Vorsitzer des Unteraus-

schusses fiir den Entwurf der Norm DIN E 4113 (Teil I) im Deutschen
Ausschuss fur Stahlbau (DASt).

Die Schwingfestigkeitskurven nach A. Wdhler sind fiir
diese Legierungen natiirlich ebenfalls interessant, soweit sie
ndmlich Aufschluss dariiber geben, ob die jeweiligen Werte
der zulédssigen Spannungen ou fiir «statische» Beanspruchung
unbedenklich voll ausgenutzt werden diirfen (Bilder 1a und 1b)
(z.B. AlZnMg 1 F 36) [1], [2]. Man konnte also zum Beispiel
im Zeitfestigkeitsbereich bei einer Lastspielzahl N = 100000
und bei einer Uberlebenswahrscheinlichkeit von Py = 90%,
das Grenzmass sehen, welches (weil im Sinne der «Betriebs-
festigkeit» ein leichtes Belastungskollektiv zu ungefdhr doppel-

30 30 30
N
N ‘ — P, =50%
N\, \ 28 oty = 2,33 MIG/S~- Al Mg5 | == =s0%
20 N 20 O 200 ; Re0aloastCil
m o AN o PN
; . =T O ) 16192 £ ‘ |
Bild 1. Zeitfestigkeitsverhalten und £ tor— —r €8 KON S G |
. a > a1 >
o.u-Werte (EDIN 4113) der Alumi- 3 Lo 2 L =t B
niumlegierung Al Zn Mg 1 F36 & — 0 = i I
(nach [1], [2]): I b N
I
a) Vollstab 3 E ; | i :
[} o] . (o] L
b) Lochstab on 105 108 10° o0® 108 104 108 108
¢) Stumpfnaht a) LASTWECHSELZAHL b) LASTWECHSELZAHL ¢) LASTWECHSELZAHL
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