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89.Jahrgang Heft 11 SCHWEIZERISCHE BAUZEITUNG 18 März 1971

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH, POSTFACH 630

Zweites Sonderheft zum 70. Geburtstag von Prof. DrjF. Stüssi
Das erste Sonderheft erschien als Heft 1 dieses Jahrgangs am 7. Januar 1971

Zur Algebraisierung von Spannungs- und Verformungsfunktionen
Von Prof. Dr.-Ing. Nikola S. Dimitrov, Universität (TH) Karlsruhe und Universität (TH) Stuttgart DK 539.31

1. Einleitung
Mit der Operatorenrechnung im Sinne von Mikusinski [1 ]

ist eine Entwicklung möglich, die selbst dem Computer etwas
voraus hat, da die Lösungen von Anfangs- und
Randwertproblemen ganz einfach kalkülmässig und symbolisch durch
Operatoren gegeben sind. Als Nebenprodukt dieser Rechnung
werden die Funktionen im stetigen oder im diskreten Bereich
durch gemeinsame Operatoren dargestellt. Insbesondere in der
BalkeÄund Plattentheorie können ohne die Operatorschreib-

^Ble Einzelkräfte, Einzelmomente oder Querkraftsprünge
nicht durch gewöhaBhe FunBfonen beschrieben werden, es
sei denn, man benütze die schwerÄLige Fö«r/er-Analyse. Bis
vor kurzem war noch die Z,ap/ace-Transformation das einzige
Mittel, um partielle Differentialgleichungen exakt kalkülmässig

zu lösen.
Einer der vielen Vorteile des Mikusinski-Kalküls ist die

Fundierung der Lösung auf algebraischem und symbolischem
Wege. Nichtlineare Differentialgleichungen werden numeri||I«
gelöst. Besonders leistungsfähig ist dabei das Mehrstellenprinzip

des Differenzenverfahrens. Im Grad der Genauigkeit
unterscheiden sich die VSahren von Collatz [2], Stüssi [3]
und [4], Falk [5] und Gurr [6] wenig vorBaander. Allen diesen
Verfahren hegt die Tendenz zugrunde, das engmaschige
Gittermodell der gewöhnUchen Differenzen durch wirksamere
grössere Teilbereiche als endliche Elemente zu überdecken,
Bild 1. Die erreichte Genauigkeit ist dabei gegenüber den
einfachen Methoden weit überlegen. In diesem Sinne werden wir
auch die massgebenden Gleichungen algebraisieren und die
dazugehörigen Rekursionsformeln mit Hilfe der Operatoren
schneller und allgemeiner lösen. In [7] bis [11] wurden bereits
einige neue Grundlagen der Statik und Festigkeitslehre
angegeben. In [12] bis [20] sind weitere Anwendungen des neuen
Kalküls aufgeführt.

2. Grundlagen

Fasst man die Funktionen als unendliche Menge auf, dann
kann man sie je nach ihrer Dichte und Mächtigkeit in zwei
Arten unterteilen: Abzählbare Mengen oder diskrete Funktionen

im numerischen Bereich 0 s; n < oo, wenn n eine ganze
Zahl 0,1,2,... bedeutet. Kontinuierliche Mengen oder stetige
und unstetige Funktionen im Kontinuum 0 SJ x < oo, wenn x
eine beliebige Zahl ist.

Die Darstellung dieser Mengen wird durch abstrakte
Summen vorgenommen, bei denen das Einheitselement eine
abstrakte Zahl h" ist. Man nennt h auch einen Verschiebungsoperator.

Hierin bedeutet v nicht nur eine Potenz, sondern auch den

Ort, wo die Einheit (A 1) steht, siehe Bild 2a. Die diskrete
Funktion / (n) ist im Bild 2b angegeben. Die Menge der
Koeffizienten erhält einen Rang und eine Ordnung, wenn man sie

Bildl. Überdeckung der engen
Gitterabstände durch grössere Maschenweiten

(Zahlen in Kreisen) und endliche
Elemente¦ i i ® s e r 0)9 ioii (£.

in Form einer Summe nach den entsprechenden
Einheitselementen aufzählt. Diese Summe

(1) / /oÄ"+/iA1+/1A2 + fvh" +
n 0

ist abstrakt, weil man sie nie ausführen kann. Sie hat aber die
grossen Vorteile der Potenzenreihen, die immer konvergieren.
Man kann natfSch für h" 1 und für h1 h schreiben, wie
es bei Potenzen sein muss. Dieaäb.endliche Reihe (1) ist bereits
die Operatorform der Funktion f{n), die mit /= {/(«)}
gekennzeichnet wird und die sehr häufig durch eine einfache
Summenformel charakterisiert ist.

Eine^^^^Em f(x) im stetigen Bereich hat analog die
Operatorform

(2) /={/(*)} =/A«/G)dE.
o

Setzt man h e~s, dann geht Gl. (2) rein formal in die

Löp/ace-Transforma^Sn über. Das Integral ist im Sinne von
Mikusinski ab^Skt, denn s ist eine abstrakte Zahl und
bedeutet den Differentialoperator. Ist.? eine komplexe Zahl, dann
hat man es mit der Funktionentheorie, mit einem gewöhnlichen
Integral, das konvergieren muss, kurz, man hat es mit der
Laplace-Transformation zu tun. Dagegen hat das Integral in
der Operatorenrechnung immer einen Sinn, wenn/ein Element
eines Ringes ist. Eine Menge heisst ein Ring, wenn für irgend
zwei Elemente eine Verknüpfung der Addition und eine zweite
der Multiplikation gegeben sind:

Für die Numerik (diskreter Bereich)

(3) / + * £(/«+*«)*"
(4) fg =Y,fnh*YiS*hn c

Für das Kontinuum (stetiger Bereich)

(3a) f + g {f(x)+g(x)}

(4a) fg {//(l)g{x-i) dS) c
o

Bei allen diesen Verknüpfungen gelten die kommutativen,
assoziativen und distributiven algebraischen Gesetze. Das
Produkt (4) bzw. (4a) nennt man Faltung

(5) fg c

a)

f=f0+f,tn-f2hz+—+fyhv*-

1

h=i b)

O 1 2

Bild 2. Einheitselemente an der Stelle v und diskrete Funktion/"
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¦ a) Kfi

-9-/7 f=1 + h-4,Sh-8,5h+l,Sh4 +

MBU v-s,5

"h s4i 1%

0 12 3 4
-»-/7 g-l + h+4h-t-9h+i6h +

0 12 3 4
,n C - H-2tH-0,5hz-0h3+ />*+

IMMSt Produkt zweier diskreter Funktionen fg c

Das allgemeine Glied cn erhält man aus der Multiplikation

zweier Potenzenreihen, wenn es sich um Funktionen im
diskreten Bereich handelt:

(5a) Cn /o gn + fl gn-l + + fn-1 gl + fn go

Für das Kontinuum ist das Faltungsintegral (4a) durch
das Produkt fg der beiden Operatorfunktionen zu ersetzen

(5b) fg {c(x)}
Ist eine der beiden FunMfiffiien, zum Beispiel /, unbekannt, so
dient Gl. (5) zur unmittelbaren Ermittlung. Für den djj|Ereten
Bereich, beispielsweise, kann maMMie unbekannten Koeffizienten

fn durch Koeffizientenvergleich unmittelbar bekommen.

Dabei ist das Dividieren

(6) m*ä^*i=SAA. JHHH
g hgn A" "

gegenüber der Matrizenrechnung bedeutend einfacher. Der
Nenner g in (6) kann nie Null werden. Man hat in der
Operatorenrechnung die Vorteile einer Null-Teiler-freien Algebra.

Beispiel: Gesucht wird die diskrete Verteilung/ («), die
multipliziert mit g

g h° +{n2} 1 +h +4h2 + 9A3 + 16 A4 +
die bekannte Funktion c (n)

c 1 + 2 h + 0,5 A2 + 0 A3 + A4

ergibt. Aus Gl. (5) hat man sofort

1 + 2 A + 0,5 h1 + A4

f g 1 + A+4A2+ 9A3 + 16A4 +
c„ + ct h + c2 A2 + :/o+/iA+/2A2
g<t+gih +g2h2 +

Gl. (5a) ergibt unmittelbar

c0 1 =/o^o /„; fa 1

c, 2 f0 gx + / g0 1 + /i; A 1

c2 0,5 =f0g2 +flgl +f2g0 4 + 1 +f2;
f2= — 4,5 usw.

Man kann leicht nachprüfen, dass f3 —8,5; f4 1,5 und
die gesuchte diskrete Verteilung, siehe Bild 3,

/= 1 + A -4,5A2 - 8,5 A3 + 1,5 A4 +

lauten würde.

M=f 1 kf,

Ir 3 r>
'i mI /%»/& i A»W,

1

2 ' i/

1

b)
ae "

-¦?/¦

-t^-
1

giga (i-h)f*f-fh

(l-hff^f-Zfln-fh1
S*h°= {M0-7}

Bild 4.

a) Mechanische Deutung des ersten Differenzenoperators (1 —A)/als
einfaches Drehmoment

b) zweiter Differenzenoperator (1 — A)2 als Doppelmoment
c) Doppelmoment M0 1 mit dem Operator s2

2.1 Differentialoperator s und Differenzenoperator (1 — h)
Definitionsgemäss erhält man aus der Beziehung

(7) sf f'+f0h°
den Differentialoperator s. Die Gleichung (7) besagt, dass das

Produkt sf den Differentialquotienten /' ersetzt. Dabei
bedeutet/die Operatorform der Funktion/(x). /' ist der Operator

für die erste Ableitung /' (x) und /0 A° den Anfangswert an
der Stelle 1 0.

Für die zweite Differentiation hat man entsprechend

(8) s2f f"+f'0ha+sf0h".

f'0 und sf0 bedeuten Anfangswerte an der Stelle x 0. Ganz
allgemein ist:

(9) snf ßn> +/„<"-'> +j/„<"-2> + +s"-lf0h°

Dieser Kalkül rechtfertigt in einem gewissen Sinne den
/feßvzs'zWe-Kalkül um die Jahrhundertwende. Jene Beziehungen
lauten, beispielsweise für die zweite Differentiation:

D2f(x)=f"(x)
Hier bedeutet D den Differentialoperator im Sinne von
Heaviside. Man hat zwar die Anfangswerte vergessen, aber die
damalige Operatorenrechnung hat für die rasche Entwicklung
der Elektrotechnik sehr viel beigetragen.

Die diskreten Funktionen haben analoge Beziehungen,
siehe auch [8]. Definiert man die erste Differenz mit

(10) Af fn+l-fn
und die zweite mit

(11) A2f= Afn+1 - Afn =fn+l ~ 2fn+l + fn,

dann hat man für die diskreten Verteilungen die Operatoren

f^foh"
(12), (13) {fn bzW. {fn} f
und Gl. (10) lautet jetzt

(14) (l-h)f={Af}h+f»h°
Der Differenzenoperator heisst (1 - A), der Anfangswert

ist f0 an der Stelle n 0.

Für die zweite Differenz folgt aus (11)

(15) (1 - A)2/ {A2f) A2 + Af0 h + (1 - Ä)/0 A°
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mit den Anfangswerten Af0 f — f„ an der Stelle n 1 und
f0 an der Stelle n 0.
Ganz allgemein ist:

(16) (1 - A)»/= {<4"/}AB +zl»-I/oA"~1 + +
+ (1 - A)»-M/0 A°

Die Analogie zwischen den Gleichungen (7), (8), (9) und
(14), (15), (16) ist offensichtlich. Im Bild 4 ist eine mechanische
Deutung der Differenz- und Differentialoperatoren gegeben.
Bild 4a zeigt die erste Differenz als ein einfaches Drehmoment
eines fiktiven Kräftepaares /. Wird der Gitterabstand unendlich

klein, dann geht (1 — A) in /über. Bild 4b gibt die zweite
Differenz als Doppelmoment wieder und Bild 4c zeigt das

Doppelmoment M0 1 an der Stelle x 0, wenn man die
zweite Differenz durch den zweiten Differentialoperator s2

ersetzt.

2.2 Beispiele zur Ermittlung der Operatoren
2.2.1 Konstante diskrete Funktion oc

« {1} a (1 + h + A2 + A3 + a £ A"
77=0

Sie kann gemäss Gl. (14) in eine geschlossene Formel gebracht
werden:

(1 - A)a{l} =0 + och",

2.2.2a Die kontinuierliche trigonometrische Funktion sin (a x)
wird durch Gl. (8) in Operatorform gebracht:

s2 {sin (a x)} — { — a2 sin (a x)} + <x A°

oder

(18a) {sin(ax)}1 ' s2 + <x2

Dabei bedeuten a2 im Nenner und a im Zähler
Zahlenoperatoren, das heisst Einzelwerte an der Stell^K 0.

2.2.3 Diskrete hyperbolische Funktion Sin (a »)

Man kann wieder gemäss Gl. (15) nachweisen, dass

(19) {Sin (an))
A Sin 1

1 -2ACosa +A2

oder

(17) {a}
1 - A

71 =0

Diese Beziehung hätte man auch aus der Eigenschaft der geo-
metrisJKi Reihe ohne weiteres erhalten können.
2.2.1a Ist die konstante Funktion im stareten Bereich gjgeben,
dann hat man aus (7)

{«} 0 + aA°

oder

(17a) {*}

Eine Auswahl von Funktionen, deren Operatoren aus den
Gleichungen (7) und (8) bzw. (14) und (15) ermittelt sind,
werden in Tabelle 1 am Schluss angegeben. Für a. — 1 sind
einige im Bild 5a aufgetragen.

2.3 Integrations- und Summierungsoperator
Die Integration der Funktionen im stetigen Bereich wird

durch den Operator

(20) 1/j

definiert:
1

(21)
5

f={ff(S)dS}

Mit/= A° 1 geht Gl. (21) in die Gl. (20) über. Diese
Funktion ist die K«stante {1} im ganzen stetigen Bereich,
siehe Bild 5a. Gl. (21) ist ein Sonderfall der Faltung (4a).

Jede diskrete Funktion /(«) mit dem Summierungsoperator

(20a)
1

Beide Formen (17) und (17a) sind typisch für die Symbolik
dieser Rechnung. Die inverse Form des Differenzenoperators
1/(1 — A) bedeutet Summieren und die Reziproke von s, das
heisst \js, heisst Integrieren. Im Falle der Gl. (17) bzw. (17a)
besagt die Formel: Summiere bzw. Integriere den Anfangswert

cc h°.

2.2.2 Diskrete trigonometrische Funktion sin (<x n)

Aus Gl. (15) folgt

(1 -A)2 {sin (<*«)}

{sin a (n + 2) — 2 sin <x(n + 1) + sin a «} A2 + A sin a

Mit
sin a (n + 2) + sin a n 2 sin a (n + 1) cos a

und

{sin a(n + 1)}

folgt

(18) {sina«} -

sm a n

A

A sin a

2 A cos a
Yi sm (a n) hn

n= 1

Den Beweis, dass diese Formel stimmt, erhält man aus der
Division der beiden Reihen A sin a und 1 — 2 A cos <x + h2.

multipliziert, bedeutet Summieren:

f(22) —'—- =f0 + (f0+f,)h + (fo+fi +fjh2 +
1 — A

oo

C £ Cn hn
77 0

Dies ist ein Sonderfall der Faltung (4). Gl. (20a) bedeutet den
konstanten Wert {1} an den diskreten Stellen 0, 1,2, usw.

\0 für x<£
uWBBmfür "*£ \

M \ffx-i)fürWW

«jlllinrf.

{Q
für n < y 1

f0 für.n-- v \
fn-v für n> vi

C) ,.f'\ fn-v
ro\

nfM Sin

Bild 5. Integration der Einzellast a h°
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p(*-V

\a

i-Ax

b) pM

u

Ax

,'-&

2.4.2 Ist die Belastung p diskret (Bild 6d), dann hat man

Ah°

-fp(t)(x-Vdi

/
3<

i\

/
f) /1/

A/0/

(27) M \Pnj

1

[Ah°-(Plh + P2h2 + ...)]

7 2 3

*-X Q 7 2 3

HD
y - x t"

g)

^{"}

0 12
Mo=0

0 12
M, A6

1^
e) i)

Bild 6. Biegemomente als kontinuierliche und diskrete Funktionen

2.4 Anwendungen

Die Errnif||i||j|ler Balkenmomente soll als Beispiel für
die Anwendung der Operatorenrechnung dienen. Dabei werden
Funktionen im diskreten und im kontinuierlichen Bereich
verwendet.

Das Biegemoment M(x) kann unmittelbar als
Integralgleichung geschrieben werden. Das Moment im Bild 6a infolge
der beiden Einzelkräften A und P wird wie gewöhnlich

(23) M(x) Ax-P'x-£)
geschrieben.

In Operatoren hat man jedoch die Beziehung

(24) M Ah°{x}-Ptf{x}
Beachten muss man dabei die grosse Bedeutung des

Verschiebungsoperators A mit der Eigenschaft, die im Bild 5b für
den stetigen und im Bild 5c im diskreten Bereich gezeigt ist.

In Gl. (24) ist durch die Multiplikation von h% {x} die Funktion
fix) x um die Strecke £ verschoben, siehe Gl. (23). In der

Matrizenrechnung wird diese Übertragung mühsam mit Hilfe
der Transfer- oder Übertragungsmatrize erreicht.

Für eine Belastung im stetigen Bereich, Bilder 6b und 6c,

geht das letzte Glied der Gl. (23) in ein Integral über:

(25) M(x)=Ax~J(x-S)p(£)d£
o

und als Operatorgleichung, siehe auch Gl. (4a),

M=A{x}- {x} {p (x)}
(25a) A {/>(*)}

Die rechte ¦Selte^dieser Gleichung bedeutet eine zweifache
Integration der Einzellasten, die natürlich zum Polygonzug führt.

2.4.3 Die gesuchte Funktion M (x) wird als diskreter Verlauf
M (n) ermittelt (Bild 6i).

Gl. (27) stellt eine Funktion im diskreten Bereich dar, wenn für
die kontinuierliche Funktion

ix\

die diskrete Verteilung, siehe Nr. 4 der Tabelle 1,

/ \
h

H I (1 -A)2

und die diskrete Belastung P in) eingefügt wird. Die Lösung
SliMfJlpF^

{M{n)} A{n)~{n){Pn)
(28) Ah A £ P„ A»

' (i-üy" (i-A)2
Den ersten Teil der rechten Seite zeigt Bild 6g bzw.

Bild 6f. Unter Beachtung der Regel (5a) hat man:

Mx =A
M2 =2/4 --Pj
M3 3A-(2P1+P2)

(28a) M„ v A — P1 (y - 1) + P2 (v - 2) HÜ

3. Lösung von Differentialgleichungen der Balkenbiegung

3.1 Die Operatorform der Balkenbiegung

Die massgebenden Gleichungen lauten:

(29) M" {x) -p (x)

M{x)
(30) y"(x)

EJ(x)

oder zusammengefasst

(31) [E J (x) y (x)"Y P (x)

Die Lösungen von (29) und (30) können als Integralgleichung
(25) geschrieben werden, wenn man die Anfangswerte M0 und

M'0 bzw. y0 und y'0 berücksichtigt;

Das Faltungsintegral in Gl. (25) kann je nach Verlauf der

Belastung p als eine Funktion ausgewertet werden, die
entweder im stetigen, diskreten oder gemischten Bereich verläuft.
Im Beiggiel des Bildes 6 hat man nämlich:

2.4.1 Das Biegemoment ist kontinuierlich (Bild 6c)

Ist die Belastung p konstant, dann lautet das Moment

(32) M(x) M0 + M'0 x - I (x - S)p (f) df
6

bzw.

(33) y (x) y
MQ)

0+y'aX-l{X-^'E-JW) dS

1 P f
(26) M A — - -^s2 iJ

A x — p

Algebraisch sehr übersichtlich ist ihre Operatorform, siehe

auch (4a) und (8),

(29a) s2M -{p B + M'0h° + sM0h°
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(30a) s2 y

(32a) M I

M W_l

(33a) j>

M0 A° AToA<

Hl *2

H

-/„A°+ij'oA0

BII1

s2

yoh° 1 M(x) I

.E/Ot) |

1

AtW

A/W«

i ,j i:,W.M *v
T*7 |/77-^ Mj

Kalkülmässig sind das die Spannungs- und Verformungsfunktionen

der Balkenbiegung in neuer Form. In
Operatorschreibweise ist die Identität »sehen Differential- und
Integralgleichungen (29a), (30a), (32a) und (33a) offensichtlich.

3.2 Durchlaufträger mit konstanter Biegesteifigkeit EJ und
mit gleichen Spannweiten

Man braucht die Einteilung der Tragsysteme in statisch
bestimmte und statisch unbestimmte nicht mehr, wenn die
Durchbiegung des Tragsystems berechnet wird. Das Tragwerk
gemäss Bild 7 wird durch die Differentialgleichung (30) oder
Integralgleichung (33) gelöst. Ihre gemeinsame Operatorgleichung

(33a) lautet mit y0 0

^^g«
KLt=Lnt.i+R„ri 0+htl =Ln+1 +"aH j ur 12EJ

n+1 n+2

M0-o M, Mz Ms'0
Mn Mn+l Mrn-2

Mn+l
'EJ

EJ
Mn+2

ED

1 Hl f J^WjhMs^C^V
EJ

{ Mf 0*0 + Mst 0*0 ]Hl EJ \

oder in üblicher Schreibweise

y(x)
M 1 Mf«) + MstiM)y0'x-f(x-^— EJ - -di

Bild 7. Durchlaufträger-Berechnung durch diskrete Verteilungsfunktionen;
Summe der Knotenlasten gleich Null ist identisch mit Summe

der Tangentendrehwinkel x gleich Null

(37) Kn + i (-FT) Lm + 1 + Rn + 1

Gleichung (35) ergibt nun die übliche Dreimomentengleichung

M 0*0 ist in den beiden Anteilen Mf 0*0 und Mst 0*0 zerlegt,
siehe Bild 7. Will man die Werte nur an den Stützstellen
n 0, 1, 2, ermitteln, so muss das obige Produkt bzw.
Integral für den diskreten Bereich berechnet werden, indem
die reduzierte Belastung M(x)/EJ durch Knotenlasten Kn
ersetzt wird. Man erhält die Bestimmungsgleichung aus der
Bedingung, daHdie Biegeordinaten an den Stützen n
verschwinden muss:

(38) Mn+4Mn + l+Mn+2
6EJ

l
Kn + 3

Mf
EJ

kn + l

Gemäss Bild 7 lauten die Lastglieder:
' Mf'K
EJ K0+K1h+K2 h2

Mit

(34) yn 0 y0' A° •- Kn
Mf + Mst
5^9 %>

PI2

16EJ

Abgesehen vom trivialen Fall n 0, verschwindet die eckige
Klammer für n ¥= 0, das heisst

X, PP/16EJ + q
P

24 EJ L1+R1

(35) KM l Mst \
n + 1\ET) Kn- Mf

~E~J
0

Diese Aussage ist auf anderem Wege mehrmals bewiesen. So
bedeutet sie nach Mohr Gleichheit der Drehwinkel links und
rechts des Auflagers (n + 1). Infolge der Analogie zwischen
Moment und Durchbiegung ist die Knotenlast Kn +i die
Auflagerkraft der reduzierten Belastung M/EJ, die identisch mit
dem Drehwinkel ist.

Die Stützmomente Mn sind zwar noch unbestimmt, aber
ihre trapezförmige Verteilung ist bekannt. Nach der Trapezregel

hat man

A2 -1 24 EJ

#3 q
l3

24 EJ

Kt d
P

i?3

P
U + i?4

24 EJ 48 EJ
Für die 6 E ///-fachen Lastglieder hat man die Reihe

k k0 +k,h + k2h2 +

(39) k0
3 3 l2

~pi; nrrlfB " ' ' ki q8 8 4 4
(36) X» 1?7

/
[Afn + 4 Mn + l + Mtj+2] p l2 p

Die Knotenlasten des bekannten Feldmomentes sind die
üblichen Belastungsglieder, wenn bei jenen links mit rechts
vertauscht wird:
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Nun zeigt es sich, dass die Losung einer Rekursionsformei mit
Hilfe des Verschiebungsoperators A sehr übersichtlich und
geschlossen möglich ist. In Operatoren lautet die Dreimomenten-
gleichung

(40)] Mn+4Mn+l + Mn+2 - kn+l

Dabei bedeuten die abzählbaren Mengen

{ Mn | M M0 + My h + M2 h2 +

<Xr,M„

n+1
<*-n+i Mn+,

n+1 '"n+1
Mn + 2

n+2

Jn+1

n+2 lv'n+2

M-M0
[Mn + l] — ~ =Mi + M2h

{Mn+l}

{kn+1}~ h

Es folgt aus (40)

(40a) M MQ

h

M -M0--Mxh
h2

k - k0

Mn + lhn

M2 + M3h

Mn+2hn +

Bild 8. Durchlaufträger mit veränderlicher Spannweite und
Biegefestigkeit

Gemäss Gl. (43) hat man für

Y5 =ktU4+ k2 U3 + k3U2 + kt U,

Die Unbekannte M, erhält man aus

1 +4A

I
p

i
209

3 P
56 [-PI + q —

1 +4A + A2
Mi

1 +4A + A2

15I?—! m gl-

-(k- k0)
h 21

1 +4A + A2
PI qP 56 - 15 + 4 - 1,5

Mit den Anfangswerten M0 E 0 und Mi als Parameter, den
man aus der Endbedingung Mv 0 ermitteln kann, bedeutet
die Gl. (40a) die geschlossene Lösung der Dreimomenten-
gleichung für die diskrete Verteilung der Stützmomente Mst
an den Stellen n 1,2,...

Die Grundlösung der Operatorgleichung (40a) lautet,
siehe auch Nr. 3 der Tabelle,

209 " ' 4

- 0,10048 PI - 0,05203 q P

Aus Gl. (42a) folgt nW, kx U,

(41)
1 + 4 A + A2 1 + 2 A Cos oc + h2

l(-l)n-lSin(<xn)/Sinoc\

U ¦¦

M2 M, U2 - Y2 - 4 M1 - k, 0,40192 PI +
qP_

_
4

0,02692 PI- 0,04188 qP

0,20812 qP -0,375 PI

Sie ist eine alternierende diskrete hyperbolische Sinusfunktion.
Mit Cos a 2 erhält man

(41a) Ut l; U2 -4; U3 15; £/4 -56; (75=209usw.

die sogenannten Tschebischeffschen Polynome. Gl. (40a)
lautet

(42) M M1U -(k -k0)U M1U - Y

Mit dem allgemeinen Glied

(42a) Mn MiUn- Yn

Es bedeutet:

(k -k0)=k1h + k2 h2 + siehe Gl. (39),

U U^ + U2h2 + siehe Gl. (41a)

(43) F=(/c-Ä:0)l7 (Ä:1A + A:2A2 + ...)(f/1A + i72A2+
A2 {k, C/,) + A3 (k, U2 + k2 U,) +

Aus der Endbedingung

Mv Ms 0

folgt die Bestimmungsgleichung für Mt

3.3 Durchlaufträger mit feldweise veränderlicher Steifigkeit und
ungleichen Spannweiten

Die massgebende Differenzengleichung lautet:

(45) OCn Mn + 2 («n + l + ßn+l) Mn + 1 + ßn+l Mn+2 ~
ßn+lkLn+l — Xn + l kRn + l

Hierbei bedeuten die Koeffizienten a (rechts) und ß (links)
Abminderungsfaktoren der Stützmomente, Bild 8,

in Je

lcJrn

ln + 1 Je

le Jrn +1

ßn-

ßn-

In Je

le J'n +1

ln + l Je

le J'n+2

le und Je sind Bezugswerte für Spannweite und Trägheitsmoment.

Eine Operatorpotenzenreihe mit veränderlichen
Koeffizienten

/, Mn) £ 0C„ Mn h" [«] M

(44) Mx

kann man als einfaches Produkt kennzeichnen:

[oc] M <x0M0h° + oc1M1h + <x2M2h2 +

Die Operatorform der Gl. (45) lautet, wenn Mt 0
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(46) M ßiMxh
[ß] + 2 A [« + ß] + [«] A2

[fl £L + M £* - «o kR0
1

[ß]+2h[x + ß] + [x]h2~

Ein Zahlenbeispiel ist in [8] angegeben. Zur Abkürzung
gilt nach wie vor

M M1 U - Y

Die Koeffizienten Un erhält man aus

m{Un \ m
f [ß] + 2h [« + ß] + [oc]h2

Unter Beachtung der Eigenschaft des Verschiebungsoperators

in Bild 5c werden die Werte Un aus der Gleichung
durch Koeffizientenvergleich ermittelt:

(47) ß, h I £ Un ßn Ä» + 2 £ Un-l (0Cn-l + ßn-l) fl» +
1 2

+ 2 Un-2Xn-2hn
3

Für n 1 erhält man

ßi U1ß1+2 U0 (a0 + ß0)

Mit U0 0 ist C^ 1. Für « 2 ist

0 <72 ß2 + 2 (J7, a, + ft, (/,)

oder

2 a, + ftü,
/5a

usw.
Hier ist eine Möglichkeit zur Lösung von nichtlinearen

Rekursionsformeln gegeben. Man erhält beispielsweise für die
veränderlichen Koeffizienten neue erweiterte Tschebischeffsche
Polynomwerte U. Für den Sonderfall <x ß 1 hat man
wieder die alten Werte gemäss Gl. (41a).

3.4 Die Knickung als nichtlineares Spannungsproblem

Der Gleichgewichtswechsel kann vom Augenblick der
lawinenartigen Ausbiegung als ein Spannungsproblem
betrachtet werden. Für den einfach gelagerten Stab auf zwei
Stützen ist gemäss Bild 9

(48) M(x)=Hy(x)

oder

HMIx)
EJtxJ

n+i

EJo '

J_^L
f/7 nn+2

i i IT i i
/7 n+1 n+2 V*N

Bild 9. Knickaufgabe als Spannungsproblem
a) kontinuieBIBhe Last HM (x)\EJ (x)
b) diskrete Knotenlast Kn +1 (HM/Ef) als Ersatzlast

eignet und die zuerst von Stüssi für die num^Khen Lösungen
angewendet wurde.

Werden die Iffit>tenlasten Kn aus einfachen
Treppenfunktionen berechnet, dann muss der Approximationsbereich,
Bild 1, sehr eng gewählt sein, um eine gewisse Genauigkeit zu
erzielen. Benützt man den Trapez- oder Parabel^mauf, dann
zeigt es sich, dass nur wenige Gitterpunkte nötig sind, um
eine ausreichende Genauigkeit zu bekommen. Als Vergleich
soll die genaue Lösung für die Eulerlast Hk dienen. Das
gesuchte Moment liegt vorerst im stetigen Bere^^B

3.4.1 Genaue Lösung im stetigen Bet^^^M
Die Operatorgleichung von (50) lautet für E J kon-

1 1

(51) M M0'— -M —
s

oder

M
1

~M°
s2+H/EJ

Nach TabelCTl, Nr. 2 folgt die Lösung

(52) M 0*0 I Mo' ]/e J/H sin x ]/E J/H

Diese Funktion muss an der Stelle x L verschwinden. Die
Bestimmungsgleichung für Hk lautet dann

L]/Hic/EJ n

oder

(53)
7l2EJ

(49) M"0*0 =Hy'(x) - H
~EJ M(x) -p(x)

Die Lösung folgt aus der Integralgleichung

3.4.2 Numerische Lösungen

Ähnlich dem Beispiel im Bild 6 wird die stetige Last
M (x)/E J durch Einzellasten Kn ersetzt. Die Integralgleichung
lautet jetzt

(50) M(x) M'0 x - Hj (x - I) M(|)
EJ® dt

(54) M'x) Mo'x-H f (x- £)K„-
o

M_
Yj di

Das ist aber die bekannte Gleichung (25), nur steckt die
Unbekannte Funktion M (x) auch unter dem Integral. Ihren
Verlauf kann man durch verschiedene Kurven approximieren,
siehe [9]. Eine Lösung im diskreten Bereich erhält man, wenn
die stetigen Lasten in «massengleiche» Einzellasten verwandelt
werden. Sehr anschaulich ist dabei die baustatische Methode,
die sich durch die Konstruktion von Haupt- und Nebenträger
für die Übertragung von diskreten Knotenlasten ausgezeichnet

(Kn

Mit dem Operator

K— K0

im h

lautet die Operatorlösung

K, + K2 h + K3 A2

(54a) M
1

M„'
1 H lKn + l{M))EJ \ üü
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Will man die Werte nur an den diskreten Stellen /, 2 /,...
n l,... N l bekommen, dann lautet die Lösung

(54b) [Min)) l {n) M0' I ||j {n} [Kn+i]

Für die Knotenlast Kn + i kann je nach Annahme der Approximation

die allgemeine Formel, siehe [9], angegeben werden:

M(0,1) -n,

M(U,TJ nf-0

Mfu,vjh,%

1

A,= I M(n,,1)h"'

ig Bi*Z. M(2,nl)h"2
(h,,) nt=o

(55) Kn
l

a + 2b + c
[a Mn + 2 b Mn + i + c Mn+2] Bild 10. Diskrete Flächenfunktion

Die Treppenfunktion als Approximation mit a c 0

und b ¥^ 0 ergibt

(56) Kn + l=lMn + l

Die Trapezformel erhält man für a c 1 und b 2

l

Summieren nach Zeilen Au : M £ Avh2v
u o

Summieren nach Spalten Bß : M J] Bß h-iV-

Summieren nach Diagonalen Dn '¦ M £ Dn

Summieren nach Matrizen: M £ M C«t, n2) WL h2

(57) ü:n + 1 [Mn + 4 Mre + i + Mn+2] (62b) .ff** 6 tV2
1 — cos njN E J

Die Stüssische Parabelformel erhält*man dann aus a c 1

und A 5

(58) #„- m [Mn + 10M. + 1 + Mn+2]

Die Lösung von (54b) ergibt für M0' MJl, siehe auch [9],

(59) M

mit

1 - 2Ay + A2

i?/2A

(60) y cos a
2EJ(a + b)

HPa
2EJ(a + b)

Gl. (59) bedeutet nach Nr. 2 in Tabelle 1 die diskrete
Funktion

(61) M («) Mj
sin (a «)

wobei a über cos a aus Gl. (60) ermittelt wird. Die Randbedingung

M (L) 0 sin a AT sin ra ergibt

AT

und die kritische Last aus Gl. (60)

Hk*Pb

cos
N

1

1

2EJ(a + b)
Hk*Pa

oder

(62) Hk* =2N2(a + b)

2EJ(a + b)

1 -cos n/N EJ
b + a cos njN LP-

Einfache Differenzen (Treppenfunktion): a 0

EJ
(62a) Ä* 2 AT2 (1 - cos n/N) ——

Trapezformel: a 1; b 2

250

2 + cos Jr/W L2

Parabelformel: a 1; b 5

1 -cosTi/W £V
(62c) #**= 12 AP

5 + cos ji/W L2

Der Genauigkeitsgrad wird an die Zahl n2 9,87
gemessen.

Für N \0 ergibt die Methode der einfachen Differenzen
(62a) den Koeffizienten 9,78. Schon bei N 4 ergibt die

Parabelformel die sehr gute Approximation 9,85. Auch mit
N — 3 hat man die gute Annäherung von 9,82.

4. Flächenfunktionen

Als Differentialoperatoren werden entsprechend s1 und s2

und als Verschiebungsoperatoren hx und h2 für die stetigen
BereiKrx,. und x2 sowie für die diskreten Bereiche nx und n2

eingesetzt. Die konstante Funktion p0 lautet als Operator im
kontinuierlichen Bereich 0g^< ao;0^x2< °°:

(63) {Po}=Po{i}
Po

S1S2

und im diskreten Bereich

0 g; n, < 00; 0 sg n2 <

(64) {/>„}=/>. {l}
i>o

(1 - AJ (1 - A2)
Po £ Ai *' Aa "2

Hier hat man für die diskrete Verteilung eine unendliche

Doppelreihe, die auf verschiedenem Wege summiert (natürlich
nur symbolisch) werden kann. Im Bild 10 ist schematisch die

Summation nach Zeilen, Spalten, Diagonalen und quadratischen

Matrizen für eine diskrete Verteilung der Funktion
M(nlt n2) angegeben:

00

(65) M=Y,M (»1. "2) h 1 A2 *2

n n =0

(66) M=£[EM(Wl,«2)A2n>]A1Bi
ni U2

(67) M=l][l]M fe hJ A, "1] A2 "2

"2 "1

Eine wichtige Rekursionsformel für die Knotenlast der

parabolischen Approximation, siehe Stüssi [3] und Dubas [21 ],

lautet:
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Tabelle 1. Operatoren für diskrete und kontinuierliche Funktionen

Nr. Diskrete Funktionen Kontinuierliche Funktionen

(a\ a£A"
1 7 n

a.

1 -A
A sina

sm a n
' > 1 — 2 A cos a + h2

I A Sin a
{ Sm a n =» ^ j* >X J 1 - 2 A Cos a

B H «Ä"
A

(1 - A)2

{ COS a TZ
1

1 — A cos <

6 {Cos a n\

1 -in2\

Hfl6 X /

—- {n4\
24 ^ >

1 — 2 A cos a + A2

1 — A Cos a

1 -2ACosa +A2

A (1 + A)

2 (1 - A)3

(1 +4A +A2)A
6 (1 - A)4

(1 + IIA + IIA2 + A3)A

24 (1 - A)5

10 „a 7i i m
1

1 =eah

{ a l koj^M

sin ax X -X > s2

{ Sin a x \

{cos a x \

jCos a x]

/ v2 \
2 ^ /

!-{*¦>

¦S"1 + a'

a^

(68) (Z [(«! + («, + !)]] 144 X
M [«„Hl

+ 10 M [(«! + 1), «2] + M [(«, +»,] +
+ 10 f M 9 («2 + 1)] + 10 M [(«, + 1), H + 1)] +
+ M jfl + 2), H + 1)]] + M S H + 2)] +
+ 10 M m + 1), H + 2)] + M [(«! + 2), (n2 + 2)]}

Mit der Abkürzung nach Gl. (65) und wegen der Übersicht

mit den Anfangswerten

M (0,0) M («!, 0) M (0, n2) 0;

M(l,n2) ^= 0 und M(«„ 1)^0
folgt für die allgemeine Formel (68) die Operatorschreibweise

K-K(0,n2)-K(ni,0)
(69)

144

AXA2

M
VA

M(1,k2)

(1 + 10 Ä! + At2) (1 + 10 A2 + A22) -

Ai A2
(1 + 10A2 + A22)-

Ai2A2
(1 + 10 h, + h2)

Die Potenzenreihen der diskreten Funktionen können sehr
einfach die vektoriellen Produkte ausdrücken. Unbekannte
Funktionen werden analog den Gleichungen (5,5a und 6) durch
Koeffizientenvergleich ermittelt. Der Ausdruck für das
Produkt fg lautet:

(70) fg c Y1c(nl il 11 A2 "2

mit dem allgemeinen Glied

(71) e B !h) f(Q,ff)gifh, n2) + /(0,1)£ («i, «2 - 1) + +
+ /(l, 1 - 2) * («i -1,2) + + f(nu n2)g (0, 0)

Auch die Erweiterung der diskreten Mengen im Raum ist
ohne weiteres möglich; so lautet die konstante Funktion im
Raum

i > | WM. Po

W II (1 - hd (1 - h2) (1 - A3)

Eine p- und j>-fache Summierung in den Gitterrichtungen
K2 und n2 wird durch die Inversen der DifferenzenOperatoren
(1 - A,) und (1 — A2) gegeben, [22],

(72)
(1 - htY(\ - h2)"

fn, + p — 1\ (n2 + v — 1

E
i( n2=0

' /< — 1) 1
Ax"1*»

mit B 4 1\ («1 + 1) fa + 2) («!+/*- 1)
l A.-1 j "

1.2.3 ...0i-l)
Für das Kontinuum gilt die Formel

(73)
1

HPIffllHP000 000
I -4 /j-fach | -4 »'-fach |

Wir haben versucht mit Hilfe der Mengenlehre die

Funktionen im stetigen und diskreten Bereich neu zu definieren.
Dabei ergaben sich interessante symbolische Vereinfachungen,
die dazu führen, hochgradig statisch unbestimmte Systeme
durch geschlossene Funktionen zu lösen. Auch die Flächen-
tragwerke können durch Spannungs- und Verformungsfunktionen

sowohl im stetigen als auch im diskreten Bereich

gelöst werden.
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Numerische Auswertung von unendlichen alternierenden Lösungsreihen
mit schlechter Konvergenz DK 517.52

Von Dr.-Ing. Günter Eisenbiegler, wissenschaftlichem Assistenten am «Institut für Baustatik und Messtechnik»
(Direktor Prof. Dr.-Ing. B. Fritz), Universität Karlsruhe (TH)

1. Problemstellung
Bei der Berechnung von Stab- und vor allem von

Flächentragwerken lassen sich die gesuchten Lösungen oft in der Form
von einfachen, unendlichen Reihen darstellen. Konvergieren
diese Reihen allerdings nur sehr schleppend, so ist ihre Auf-
summierung mühsam und zeitraubend. Selbst mit dem Einsatz
von Elektronenrechnern kann vielfach die gewünschte
Genauigkeit des Summenwertes nicht erreicht werden, wenn
beispielsweise die auftretenden Rundungsfehler die höheren
Reihenglieder zu stark verfälschen, oder wenn die Ermittlung
einer sehr grossen Anzahl von erforderlichen Gliedern zu
aufwendig wird. Im folgenden wird nun für unendliche,
alternierende Reihen mit langsamer Konvergenz eine einfache
Methode angegeben, die nur wenige Anfangsglieder einer
solchen Reihe benötigt, um deren Summenwert mit einer
hohen Genauigkeit zu berechnen. Im Bauwesen ist diese
Methode bislang wenig bekannt geworden.

2. Mathematische Grundlagen

Die beliebige, konvergente Reihe

(1) S (—1)»K» Fi—K, + V2
n 0

V3 V.

lässt sich mit Hilfe der Eulerschen Reihentransformation (vgl
[1], [2]) wie folgt umformen:

00 111(2) £ (-DnVn= — V0+—AV0+—A2V0 +
77= 0 l 4 O

1

l6~ A3Va
1

2*-»
A"Vn

oo Aky
V r"

k 0 l
Dabei bedeuten allgemein AVn Vn — Vn+i die ersten und
AWn A^-^Vn — AV°-lWn+x die höheren Differenzen der
Gliederfolge (Vn).

Diese Umformung bewirkt bei schlecht konvergierenden,

alternierenden Reihen eine wesentliche Konvergenzbeschleunigung,

und zwar konvergiert die transformierte Reihe umso
schneller, je schleppender die Konvergenz der vorgelegten
Reihe ist. Für die Abschätzung der Restsumme
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nach p Gliedern der Reihe (2) gilt die kurze Beziehung
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an die jedoch die Bedingung geknüpft ist, dass nicht nur die
Glieder Vn sondern auch die p-tea Differenzen AvVn eine
positive, monotone Nullfolge bilden müssen.

Es ist natürlich ebenso möglich, mit der gezeigten
Umformung erst bei einem bestimmten Reihenglied Vi zu
beginnen. Man erhält dann
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Von dieser Möglichkeit wird man mit Vorteil immer dann
Gebrauch machen, wenn die Konvergenzgeschwindigkeit nach
einer gewissen Gliederanzahl merklich zurückgeht, oder wenn
eine monotone Nullfolge der Vn überhaupt erst vom z-ten
Gliede an vorhanden ist.

Abschliessend sei vermerkt, dass man in vielen, praktisch
wichtigen Fällen auf Reihen folgender Bauart stösst:
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