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89.Jahrgang Heft 11

HERAUSEGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER

SCHWEIZERISCHE BAUZEITUNG

AKADEMISCHEN

18. Marz 1971

TECHNISCHEN VEREINE, 8021 ZOURICH, POSTFACH 630

Zweites Sonderheft zum 70. Geburtstag von Prof. Dr. F. Stiissi

Das erste Sonderheft erschien als Heft 1 dieses Jahrgangs am 7. Januar 1971

Zur Algebraisierung von Spannungs- und Verformungsfunktionen

Von Prof. Dr.-Ing. Nikola S. Dimitrov, Universitat (TH) Karlsruhe und Universitat (TH) Stuttgart

1. Einleitung

Mit der Operatorenrechnung im Sinne von Mikusinski [1]
ist eine Entwicklung moglich, die selbst dem Computer etwas
voraus hat, da die Losungen von Anfangs- und Randwert-
problemen ganz einfach kalkiilméssig und symbolisch durch
Operatoren gegeben sind. Als Nebenprodukt dieser Rechnung
werden die Funktionen im stetigen oder im diskreten Bereich
durch gemeinsame Operatoren dargestellt. Insbesondere in der
Balken- und Plattentheorie konnen ohne die Operatorschreib-
weise Einzelkréfte, Einzelmomente oder Querkraftspriinge
nicht durch gewohnliche Funktionen beschrieben werden, es
sei denn, man beniitze die schwerféllige Fourier-Analyse. Bis
vor kurzem war noch die Laplace-Transformation das einzige
Mittel, um partielle Differentialgleichungen exakt kalkiil-
maéssig zu 10sen.

Einer der vielen Vorteile des Mikusinski-Kalkiils ist die
Fundierung der Losung auf algebraischem und symbolischem
Wege. Nichtlineare Differentialgleichungen werden numerisch
gelost. Besonders leistungsfdahig ist dabei das Mehrstellen-
prinzip des Differenzenverfahrens. Im Grad der Genauigkeit
unterscheiden sich die Verfahren von Collatz [2], Stiissi [3]
und [4], Falk [5]und Gurr [6] wenig voneinander. Allen diesen
Verfahren liegt die Tendenz zugrunde, das engmaschige Gitter-
modell der gewdhnlichen Differenzen durch wirksamere
grossere Teilbereiche als endliche Elemente zu tiberdecken,
Bild 1. Die erreichte Genauigkeit ist dabei gegeniiber den ein-
fachen Methoden weit {iberlegen. In diesem Sinne werden wir
auch die massgebenden Gleichungen algebraisieren und die
dazugehorigen Rekursionsformeln mit Hilfe der Operatoren
schneller und allgemeiner 16sen. In [7] bis [11] wurden bereits
einige neue Grundlagen der Statik und Festigkeitslehre ange-
geben. In [12] bis [20] sind weitere Anwendungen des neuen
Kalkiils aufgefiihrt.

2. Grundlagen

Fasst man die Funktionen als unendliche Menge auf, dann
kann man sie je nach ihrer Dichte und Miéchtigkeit in zwei
Arten unterteilen: Abzdhlbare Mengen oder diskrete Funktio-
nen im numerischen Bereich 0 =< n < oo, wenn 7 eine ganze
Zahl 0,1,2,... bedeutet. Kontinuierliche Mengen oder stetige
und unstetige Funktionen im Kontinuum 0 = x < oo, wenn x
eine beliebige Zahl ist.

Die Darstellung dieser Mengen wird durch abstrakte
Summen vorgenommen, bei denen das Einheitselement eine
abstrakte Zahl A#” ist. Man nennt / auch einen Verschiebungs-
operator.

Hierin bedeutet » nicht nur eine Potenz, sondern auch den
Ort, wo die Einheit (4 = 1) steht, siche Bild 2a. Die diskrete
Funktion f (n) ist im Bild 2b angegeben. Die Menge der Ko-
effizienten erhélt einen Rang und eine Ordnung, wenn man sie

Bild 1. Uberdeckungderengen Gitter-

5 Zy 2 £ abstande durch grossere Maschenwei-
[ |+ RN | 5 e | TJ 72 ten (Zahlen in Kreisen) und endliche
123@567@357010Q Elemente

Schweizerische Bauzeitung + 89. Jahrgang Heft 11 - 18. Marz 1971

DK 539.31

in Form einer Summe nach den entsprechenden Einheits-
elementen aufzihlt. Diese Summe

O f=fhE+AR+LER+ R+ =Y ok
n=0

ist abstrakt, weil man sie nie ausfiihren kann. Sie hat aber die
grossen Vorteile der Potenzenreihen, die immer konvergieren.
Man kann natiirlich fiir 2° = 1 und fiir 4 = h schreiben, wie
es bei Potenzen sein muss. Die unendliche Reihe (1) ist bereits
die Operatorform der Funktion f (), die mit /= {f(n)} ge-
kennzeichnet wird und die sehr hiufig durch eine einfache
Summenformel charakterisiert ist.

Fine Funktion f(x) im stetigen Bereich hat analog die
Operatorform

@ f={f0) = [ K £ &) de.
0

Setzt man A = e~5, dann geht Gl. (2) rein formal in die
Laplace-Transformation {iber. Das Integral ist im Sinne von
Mikusinski abstrakt, denn s ist eine abstrakte Zahl und be-
deutet den Differentialoperator. Ist s eine komplexe Zahl, dann
hat man es mit der Funktionentheorie, mit einem gewohnlichen
Integral, das konvergieren muss, kurz, man hat es mit der
Laplace-Transformation zu tun. Dagegen hat das Integral in
der Operatorenrechnung immer einen Sinn, wenn fein Element
eines Ringes ist. Eine Menge heisst ein Ring, wenn fiir irgend
zwei Elemente eine Verkniipfung der Addition und eine zweite
der Multiplikation gegeben sind:

Fiir die Numerik (diskreter Bereich)
Q) fre=Y(n+gn)h

4 fe =Y rh") gnh"=c
Fiir das Kontinuum (stetiger Bereich)

Ba) fte={fx)+eg®)}
@) fa =@ —ode =
0

Bei allen diesen Verkniipfungen gelten die kommutativen,
assoziativen und distributiven algebraischen Gesetze. Das
Produkt (4) bzw. (4a) nennt man Faltung

(G dez=ic
Fetot Eh+Eh4 - +F,h"
4
0) /71;_: 7 b)
[ ¢ ol
. e e e
o 1 2 v o 7 J ] »
%
Bild 2. Einheitselemente an der Stelle » und diskrete Funktion /
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Bild 3. Produkt zweier diskreter Funktionen fg — ¢

Das allgemeine Glied ¢, erhidlt man aus der Multipli-
kation zweier Potenzenreihen, wenn es sich um Funktionen im
diskreten Bereich handelt:

(Sa) Cn :ﬁgn +ﬁgu4 O %fnvl g1 ’\Lfngo

Fiir das Kontinuum ist das Faltungsintegral (4a) durch
das Produkt f g der beiden Operatorfunktionen zu ersetzen

(5b) fg={c()}

Ist eine der beiden Funktionen, zum Beispiel f, unbekannt, so
dient Gl. (5) zur unmittelbaren Ermittlung. Fiir den diskreten
Bereich, beispielsweise, kann man die unbekannten Koeffi-
zienten f, durch Koeffizientenvergleich unmittelbar bekom-
men. Dabei ist das Dividieren

(6) _f - ,,C, il Z cn h?

e = AR o hn
o Zgw h» L‘f

gegeniiber der Matrizenrechnung bedeutend einfacher. Der
Nenner g in (6) kann nie Null werden. Man hat in der Opera-
torenrechnung die Vorteile einer Null-Teiler-freien Algebra.

Beispiel: Gesucht wird die diskrete Verteilung f (), die multi-
pliziert mit g
pr—h® = {2 = 1 SRR SO 6T L
die bekannte Funktion ¢ (n)
c=1+2h+05h*+0h+ h*
ergibt. Aus GI. (5) hat man sofort
f— a0 1 +2h+0,5h*+ h* -
T g L FhEAR LR H16R + ...
C e h+cy h2 =
g0 & h g B2+ ...

=fothh+LHR+ ..

Gl. (5a) ergibt unmittelbar

=1=fg=/rf: fi=1

a=2=fogi +figo=1+1f; fi=1
=05 =fig Hhg+hge—=4+1+F5
fo = —4.5 usw.

Man kann leicht nachpriifen, dass f; = —38,5; f; = 1,5 und
die gesuchte diskrete Verteilung, siehe Bild 3,

f=1 +h—45h — 85k L3k + ...

lauten wiirde.
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Bild 4.
a) Mechanische Deutung des ersten Differenzenoperators (I — 4) f als

einfaches Drehmoment
b) zweiter Differenzenoperator (1 — /)2 als Doppelmoment
¢) Doppelmoment M, = 1 mit dem Operator s?

2.1 Differentialoperator s und Differenzenoperator (1 — h)
Definitionsgemass erhilt man aus der Beziehung

M sf=f+4LE

den Differentialoperator s. Die Gleichung (7) besagt, dass das
Produkt s f den Differentialquotienten f” ersetzt. Dabei be-
deutet f die Operatorform der Funktion f(x). f” ist der Opera-
tor fiir die erste Ableitung f” (x) und f;, #° den Anfangswert an
der Stelle x = 0.

Fiir die zweite Differentiation hat man entsprechend

Q) s2f=f"+[f'oh®+ sf k.

f’o und s f, bedeuten Anfangswerte an der Stelle x = 0. Ganz
allgemein ist:

(‘9) §n :f‘(n\ +f“](n—l) = Sﬂ,(”“l) A Sn—lfo ho

Dieser Kalkiil rechtfertigt in einem gewissen Sinne den
Heaviside-Kalkiil um die Jahrhundertwende. Jene Beziehungen
lauten, beispielsweise fiir die zweite Differentiation :

D2 f(x) = f" (x)

Hier bedeutet D den Differentialoperator im Sinne von
Heaviside. Man hat zwar die Anfangswerte vergessen, aber die
damalige Operatorenrechnung hat fiir die rasche Entwicklung
der Elektrotechnik sehr viel beigetragen.

Die diskreten Funktionen haben analoge Beziehungen,
siche auch [8]. Definiert man die erste Differenz mit

(10) Af = fosr — fu

und die zweite mit

(11) A2f= Afnﬂ *Afn:fnw‘—z*zfrwl*ifﬁs
dann hat man fiir die diskreten Verteilungen die Operatoren
o ,
12),(13) {fa+ry — f /for bzw. {fu}) = f
h

und Gl. (10) lautet jetzt
(A —Rmf={4fYh+ fo h°

Der Differenzenoperator heisst (I — /), der Anfangswert
ist f, an der Stelle n = 0.
Fiir die zweite Differenz folgt aus (11)

(14)

(15) (1 — k2 ={42F k2 +Afyh + (1 — k) fo h°
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mit den Anfangswerten Af, = f, — f, an der Stelle n = 1 und
fo an der Stelle n = 0.
Ganz allgemein ist:

(16) (1 — h)rf ={Anf} hn + An—t fohn=t |, +

+ (L — )1 Af, b

Die Analogie zwischen den Gleichungen (7), (8), (9) und
(14), (15), (16) ist offensichtlich. Im Bild 4 ist eine mechanische
Deutung der Differenz- und Differentialoperatoren gegeben.
Bild 4a zeigt die erste Differenz als ein einfaches Drehmoment
eines fiktiven Kriftepaares f. Wird der Gitterabstand unend-
lich klein, dann geht (1 — /) in s iiber. Bild 4b gibt die zweite
Differenz als Doppelmoment wieder und Bild 4c zeigt das
Doppelmoment M, = 1 an der Stelle x = 0, wenn man die
zweite Differenz durch den zweiten Differentialoperator s2 er-
setzt.

2.2 Beispiele zur Ermittlung der Operatoren

2.2.1 Konstante diskrete Funktion o

«{ly =a(l +h+h2+h+.)= oczoh“

Sie kann geméss Gl. (14) in eine geschlossene Formel gebracht
werden :

Diese Beziehung hétte man auch aus der Eigenschaft der geo-
metrischen Reihe ohne weiteres erhalten konnen.

2.2.1a Ist die konstante Funktion im stetigen Bereich gegeben,
dann hat man aus (7)

s{oc} =0+ ah®

oder
(17a) {a} = —
S

Beide Formen (17) und (17a) sind typisch fir die Symbolik
dieser Rechnung. Die inverse Form des Differenzenoperators
1/(1 — h) bedeutet Summieren und die Reziproke von s, das
heisst 1/s, heisst Integrieren. Im Falle der Gl. (17) bzw. (17a)
besagt die Formel: Summiere bzw. Integriere den Anfangs-
wert o h°.

2.2.2 Diskrete trigonometrische Funktion sin (« n)
Aus GI. (15) folgt

(1 — h)*{sin (xn)} =
={sina(n + 2) — 2sina(n + 1) + sinon}h* + hsin

Mit
sino(n + 2) +sinaen =2sin«(n + 1) cos «
und
. sin o n
{sinac(n + 1)} = ———
h
folgt
: h sin S n
(18) «qsinon) = PR = Y sin(xn)h

1 —2hcosa—+ h?

n=1

Den Beweis, dass diese Formel stimmt, erhdlt man aus der
Division der beiden Reihen 4 sin o« und 1 — 2 hcos o« - A2
< 18. Marz 1971

Schweizerische Bauzeitung + 89. Jahrgang Heft 11

2.2.2a Die kontinuierliche trigonometrische Funktion sin (e x)
wird durch Gl. (8) in Operatorform gebracht :

s2{sin (¢ x)} = {— a?sin (@ x)} + « h°
oder

I e &
(18a) {sin(xx)} = pEnp

Dabei bedeuten «? im Nenner und « im Zéhler Zahlen-
operatoren, das heisst Einzelwerte an der Stelle x = 0.

2.2.3 Diskrete hyperbolische Funktion Sin (e n)
Man kann wieder gemiss GI. (15) nachweisen, dass

h Sin o

(19) 1
1—2hCosa -+ Ah?

{Sin (e n)} =

Eine Auswahl von Funktionen, deren Operatoren aus den
Gleichungen (7) und (8) bzw. (14) und (15) ermittelt sind,
werden in Tabelle 1 am Schluss angegeben. Fiir « = 1 sind
einige im Bild 5a aufgetragen.

2.3 Integrations- und Summierungsoperator

Die Integration der Funktionen im stetigen Bereich wird
durch den Operator

(20) 1/s
definiert:

1 X
@) —f={[f&dE}
s 0

Mit = h° = 1 geht Gl. (21) in die GI. (20) iiber. Diese
Funktion ist die Konstante {1} im ganzen stetigen Bereich,
siehe Bild 5a. GIl. (21) ist ein Sonderfall der Faltung (4a).

Jede diskrete Funktion f(n) mit dem Summierungs-
operator

1
2 .
(30a) 1—~h

multipliziert, bedeutet Summieren:

f

(22) gy =h TN AR+ =

1

oo
=c = Z cn h™
n=20

Dies ist ein Sonderfall der Faltung (4). Gl. (20a) bedeutet den
konstanten Wert {1} an den diskreten Stellen 0, 1, 2, usw.

f(x) Sin x5 = 7_ O fir x<§
¢ el #E {trxy=cto fir x= &
b) f(x=&)fur x>&
5
5 £ g

oy fUr n>v
c) %
fa‘
X r T T T T
[ 7 2 3 o 7 v V+7

e
s2+1

o fur n<v
hY 3£, 008 fy Firn= v

fo—v

L.

{sin xp=
Bild 5. Integration der Einzellast o A°
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Bild 6. Biegemomente als kontinuierliche und diskrete Funktionen

2.4 Anwendungen

Die Ermittlung der Balkenmomente soll als Beispiel fiir
die Anwendung der Operatorenrechnung dienen. Dabei werden
Funktionen im diskreten und im kontinuierlichen Bereich ver-
wendet.

Das Biegemoment M (x) kann unmittelbar als Integral-
gleichung geschrieben werden. Das Moment im Bild 6a infolge
der beiden Einzelkriften A4 und P wird wie gewohnlich
23) M@ =Ax—Px—29
geschrieben.

In Operatoren hat man jedoch die Beziehung

(4) M= AR {x}— Pht{x)

Beachten muss man dabei die grosse Bedeutung des Ver-
schiebungsoperators 4 mit der Eigenschaft, die im Bild 5b fiir
den stetigen und im Bild 5¢ im diskreten Bereich gezeigt ist.
In Gl. (24) ist durch die Multiplikation von A¢ {x} die Funktion
f(x) = x um die Strecke & verschoben, siehe Gl. (23). In der
Matrizenrechnung wird diese Ubertragung miithsam mit Hilfe
der Transfer- oder Ubertragungsmatrize erreicht.

Fiir eine Belastung im stetigen Bereich, Bilder 6b und 6c,
geht das letzte Glied der GI. (23) in ein Integral tiber:

M(x):Axfj(x—E)p(E)dE
0

(25)

und als Operatorgleichung, siche auch Gl. (4a),

M= A{x} —{x}{p ()}
(25a) - 4
w2 52

Das Faltungsintegral in Gl. (25) kann je nach Verlauf der
Belastung p als eine Funktion ausgewertet werden, die ent-
weder im stetigen, diskreten oder gemischten Bereich verlduft.
Im Beispiel des Bildes 6 hat man ndmlich:

2.4.1 Das Biegemoment ist kontinuierlich (Bild 6c)
Ist die Belastung p = konstant, dann lautet das Moment

L e |

260) M=A— — — =JAx—
(26) . 1)2]

2
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2.4.2 Ist die Belastung p diskret (Bild 6d), dann hat man

M :Aihuf {P",},:

2

@7) ,
A 8§

1
= o A RSPyl Py h? 5]

Die rechte Seite dieser Gleichung bedeutet eine zweifache Inte-
gration der Einzellasten, die natiirlich zum Polygonzug fiihrt.

2.4.3 Die gesuchte Funktion M (x) wird als diskreter Verlauf
M (n) ermittelt (Bild 6i).

Gl. (27) stellt eine Funktion im diskreten Bereich dar, wenn fiir
die kontinuierliche Funktion

1

2

i
X =
= @

f
\
die diskrete Verteilung, siche Nr. 4 der Tabelle 1,

B h

I ey ==t nbn
A

—

und die diskrete Belastung P (n) eingefiihrt wird. Die Losung
lautet:

{M(n)} = A{n}vf :n“ V‘P”}

[
(28) i Ah kY, Py hv
(T B)?

(1 —h)?

Den ersten Teil der rechten Seite zeigt Bild 6g bzw.
Bild 6f. Unter Beachtung der Regel (5a) hat man:

M, = A
M,—24— P,
M,=3A4— (2P, + P,)

(28a) M, =vA—P, (v — 1) - P,(» —2) + ... + Py

3. Losung von Differentialgleichungen der Balkenbiegung
3.1 Die Operatorform der Balkenbiegung
Die massgebenden Gleichungen lauten:

29 M"(x)=—px)
Y T M (x)ﬁ
(30) Y (x) = EJG)

oder zusammengefasst

@) [EJ@y@)T =px)

Die Losungen von (29) und (30) konnen als Integralgleichung
(25) geschrieben werden, wenn man die Anfangswerte M, und
M’, bzw. y, und y’, beriicksichtigt;

(32) M) =M, + Mox—[(x— Hp©de
' 0

bzw.

% M (&
PG = Yy I Viox — [1(x =) k)

/ BT

(33)

Algebraisch sehr iibersichtlich ist ihre Operatorform, siehe

auch (4a) und (8),

(292) s*M = —!p (x)} - M h® & s Mo S

Schweizerische Bauzeitung - 89. Jahrgang Heft 11 - 18. Marz 1971



M
(303) 52y = — { EJ((XX)T} + ¥ B+ sy, A°
M, h° M’ h° 1
(B2a) M = 20 4 T ()
S 8§ 8=

Yo h°

G3a) y=2oF o Wk 1| M@ |
3 — 4

52 52 l EJ(x) l

Kalkiilméssig sind das die Spannungs- und Verformungs-
funktionen der Balkenbiegung in neuer Form. In Operator-
schreibweise ist die Identitdt zwischen Differential- und Inte-
gralgleichungen (29a), (30a), (32a) und (33a) offensichtlich.

3.2 Durchlauftrager mit konstanter Biegesteifigkeit E J und
mit gleichen Spannweiten

Man braucht die Einteilung der Tragsysteme in statisch
bestimmte und statisch unbestimmte nicht mehr, wenn die
Durchbiegung des Tragsystems berechnet wird. Das Tragwerk
gemadss Bild 7 wird durch die Differentialgleichung (30) oder
Integralgleichung (33) gelost. Ihre gemeinsame Operator-
gleichung (33a) lautet mit y, = 0

1 [ , [ Mr(x) + Mse (x) H
pro== ' i — - :
52 | EJ

Mp (x) + Ms: (x) ]
. o\ j ™~ _— = A R RS
{x] 1}0 ¥ EJ |
oder in ublicher Schreibweise

Mr @ + Msi@® .
EJ

Y =y x— [ (x—
0

M (x) ist in den beiden Anteilen Mr (x) und Ms: (x) zerlegt,
siche Bild 7. Will man die Werte nur an den Stiitzstellen
n=20,1,2,.. ermitteln, so muss das obige Produkt bzw.
Integral fiir den diskreten Bereich berechnet werden, indem
die reduzierte Belastung M (x)/E J durch Knotenlasten K
ersetzt wird. Man erhélt die Bestimmungsgleichung aus der
Bedingung, dass die Biegeordinaten an den Stiitzen n ver-
schwinden muss:

/ ' Mr + Ms:
B4 yu=0={n) [J,o W ( EJM)]

Abgesehen vom trivialen Fall n = 0, verschwindet die eckige
Klammer fiir n # 0, das heisst

G5) | K (MS‘) 1 K (MF) —0

BT E.J

Diese Aussage ist auf anderem Wege mehrmals bewiesen. So
bedeutet sie nach Mohr Gleichheit der Drehwinkel links und
rechts des Auflagers (n + 1). Infolge der Analogie zwischen
Moment und Durchbiegung ist die Knotenlast K, +1 die Auf-
lagerkraft der reduzierten Belastung M/EJ, die identisch mit
dem Drehwinkel ist.

Die Stiitzmomente M, sind zwar noch unbestimmt, aber
ihre trapezformige Verteilung ist bekannt. Nach der Trapez-
regel hat man
MSt) = ; [M11+4M11+1+M71+2]

(36) Kn:1 (? 6EJ

Die Knotenlasten des bekannten Feldmomentes sind die
tiblichen Belastungsglieder, wenn bei jenen links mit rechts
vertauscht wird:

- 18. Marz 1971
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... i S
1
4| 4| |n ln+r ez | 45
e 2N m\%
+
Mix)

7] 2
a8

n n+1 n+2
St
Mg —"1 T [ T~
My=0 M, Mo, My =0
M, V' M,
Mnsr ! i nee
" £J
-z Mpy2
Aosr . 2
/(},S,c, N7 [Mn 4y 47 *Mns2]

St &
Kns1 * Kns1 =2 Tpey =0

Bild 7. Durchlauftriger-Berechnung durch diskrete Verteilungsfunk-
tionen; Summe der Knotenlasten gleich Null ist identisch mit Summe
der Tangentendrehwinkel 7 gleich Null

M
EJ) g n+1 n+1

(B7) Kn+a (

Gleichung (35) ergibt nun die iibliche Dreimomentengleichung

(38) M11+4Mn.+l+Mn+2:*
6.EJ

M
1* |:Kn+1 (E;)jl = — kn+1

Geméss Bild 7 lauten die Lastglieder:

M
K( F) =K, 4+ Kb+ K h2+ ..

\EJ
Mit
o e
16EJ
KI:P/2/16EJ+qﬁ:L1+R,
-
Kzzqm:L2
e
K3:qW:R3
& &
e . L G e

Fiir die 6 E J/l-fachen Lastglieder hat man die Reihe
k=%, +kih +kh+ ...

(39) kO:iP/; kI:iPHqP,; kl:qﬁ;
8 8 4 4
/‘JZ‘I{TZ§ /€4:Q%+Q%=%qlz;
kszéqlz.
247



Nun zeigt es sich, dass die Losung einer Rekursionsformel mit
Hilfe des Verschiebungsoperators /4 sehr iibersichtlich und ge-
schlossen moglich ist. In Operatoren lautet die Dreimomenten-
gleichung

(40)_} Mp +4d4Mpi1 +Mui2 = — knia

Dabei bedeuten die abzihlbaren Mengen

{ Mo }»:M:M0+M1h+M2h2—!—...

M — M,
.{M,1,+1} a—— :M1-]\—M2h++MnL1h"+
M — M, — M,
{MHH} = o = My h =M, +Mh+..+
hZ
+ Mpi2h® + ...
. k—k,
{k7l+1}/=T
Es folgt aus (40)
1 +4h h
40a) M = M, L M. =
(402) *14+4h+n> ' 144k + k2
h
( o) 1+4h+ R

Mit den Anfangswerten M, = 0 und M, als Parameter, den
man aus der Endbedingung M, = 0 ermitteln kann, bedeutet
die Gl. (40a) die geschlossene Losung der Dreimomenten-
gleichung fur die diskrete Verteilung der Stiitzmomente Ms;:
an den Stellen n =1, 2, ...

Die Grundlésung der Operatorgleichung (40a) lautet,
siehe auch Nr. 3 der Tabelle,

h h
41 =
sl 1+4h+ h? 1 +2hCos o + h?

= {(— 1)»=1Sin (& n)/Sin oc}

= =

Sie ist eine alternierende diskrete hyperbolische Sinusfunktion,
Mit Cos o = 2 erhdlt man

(41a) U,=1; U,=—4; U,=15; U,=—56; U, =209usw.

die sogenannten Tschebischeffschen Polynome. GIl. (40a)

lautet
“42) M=MU—-(k—k)U=MU-Y
Mit dem allgemeinen Glied

(42a) Mn = M1 Un — Y

Es bedeutet:

(k — ko) = ki h + k, h* + ..., siehe Gl. (39),
U= U,k -+ U,h* + ..., siche Gl. (41a)

(43) Y=(k—k) U=(k;h+ k> + ..)(Ush + Uyh* + ..) =
— h2(ky Uy) + 13 (ky U, + K, U3) + ...

Aus der Endbedingung
M,= M, =0
folgt die Bestimmungsgleichung fiir M,

Y,

@ M =
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—————————— L Xngy Mpsr
Mo Brr1Mpt1 ™

T

& gt
T In

Mp+2

,3174'-2 /Mﬂ-r.?
n+2

A My

Jn+l

Bild 8.
festigkeit

Durchlauftriger mit verinderlicher Spannweite und Biege-

Gemiss Gl. (43) hat man fiir
Ys=k U + kU + k; U, + k, U,
Die Unbekannte M, erhilt man aus

Tl ol 3 2
M= 22 =~ | sel= pria 0\
T 209[ 6(8”7"4)F

o) o) ()

__Ewpli_qll 56 —15 +4 — 1,5
209 4 209

Il

— 0,10048 P/ — 0,05203 ¢ /?
Aus Gl. (42a) folgt mit Y, = k, U,

M,=MU,—Y, = —4M, —k, =040192 P/ +
ql?
0208121 ~ 0375 P1 — L —
— 0,02692 P/ — 0,04188 ¢ I2
usw.

3.3 Durchlauftrager mit feldweise vercinderlicher Steifigkeit und
ungleichen Spannweiten

Die massgebende Differenzengleichung lautet:

@45) on Mn + 2 (tn+1 + fa+1) Mas1 + frnr2 Mui2 = —

:’—‘ﬁﬂr‘i'l kLn.+1 — Op+1 kR7x+l

Hierbei bedeuten die Koeffizienten « (rechts) und g (links)
Abminderungsfaktoren der Stiitzmomente, Bild 8,

o lﬂ JC ﬁ — ln Jc
- N le JTn G le Jln 41
17l+lJC /3 l7l+1J(‘
(Zn _— In ==
- le JTn+1 e le Jln+2

l. und J. sind Bezugswerte fiir Spannweite und Tréagheits-
moment.

Eine Operatorpotenzenreihe mit verdnderlichen Koeffi-
zienten

{Otn Mn} == Z oon Mn h® = [OC]M
0

kann man als einfaches Produkt kennzeichnen:
[l M = otg My h° + ¢, M, b + o, M, B* + ...
Die Operatorform der Gl. (45) lautet, wenn M, = 0
- 18. Mérz 1971
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By M, h
] - 2h [ + B] + [2]h*
, [B1" + [ k* — a kT
[B] + 2hlx + Bl +[«] h*

(46) M =

Ein Zahlenbeispiel ist in [8] angegeben. Zur Abkiirzung
gilt nach wie vor

M=MU-Y
Die Koeffizienten U, erhilt man aus

Pih
[ U} = -
VT B4 2k [ 4 B+ [o] A

Unter Beachtung der Eigenschaft des Verschiebungs-
operators in Bild 5¢ werden die Werte U, aus der Gleichung
durch Koeffizientenvergleich ermittelt:

(47) Bih =) Unfnh® + 2 Un-1(an-1 + fn-1) h* +
1 2
+ Y Un-zan—2h®
Fir n = 1 erhilt man 3
Br=U B+ 2 U, (x5 + Bo)
Mit U, = 0ist U; = 1. Fiir n = 2 ist
0=U,6, +2(U, o, + B, U))

oder

20,4+ B,

b

U, = —

usw.

Hier ist eine Moglichkeit zur Losung von nichtlinearen
Rekursionsformeln gegeben. Man erhélt beispielsweise fiir die
verdnderlichen Koeffizienten neue erweiterte Tschebischeffsche
Polynomwerte U. Fiir den Sonderfall « = f = 1 hat man
wieder die alten Werte geméss Gl. (41a).

3.4 Die Knickung als nichtlineares Spannungsproblem

Der Gleichgewichtswechsel kann vom Augenblick der
lawinenartigen Ausbiegung als ein Spannungsproblem be-
trachtet werden. Fiir den einfach gelagerten Stab auf zwei
Stiitzen ist gemdiss Bild 9

48) M) =Hy )
oder
H
49) M (x)=Hy (x)=——-Mmx)=—pX

EJ
Die Losung folgt aus der Integralgleichung

M (§)

fo
EJ(© de

(50) M(x)zM’ox—Hf(xﬁf)
0

Das ist aber die bekannte Gleichung (25), nur steckt die
Unbekannte Funktion M (x) auch unter dem Integral. Thren
Verlauf kann man durch verschiedene Kurven approximieren,
siehe [9]. Eine Losung im diskreten Bereich erhélt man, wenn
die stetigen Lasten in «massengleiche» Einzellasten verwandelt
werden. Sehr anschaulich ist dabei die baustatische Methode,
die sich durch die Konstruktion von Haupt- und Nebentrager
fiir die Ubertragung von diskreten Knotenlasten ausgezeichnet
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. HM(x)
‘ H’ EJ(x)
a) AL I L [ |.T
I L
Kner L
/Tn l Kn2
b) [ L ¥ l by
" T n Nt 2 ey
EJo
H_’W’Ahﬁl
A A yix)
Bild 9. Knickaufgabe als Spannungsproblem

a) kontinuierliche Last HM (x)/EJ (x)
b) diskrete Knotenlast K+, (HM/EJ) als Ersatzlast

eignet und die zuerst von Stiissi fiir die numerischen Losungen
angewendet wurde.

Werden die Knotenlasten K, aus einfachen Treppen-
funktionen berechnet, dann muss der Approximationsbereich,
Bild 1, sehr eng gewihlt sein, um eine gewisse Genauigkeit zu
erzielen. Bentlitzt man den Trapez- oder Parabelverlauf, dann
zeigt es sich, dass nur wenige Gitterpunkte nétig sind, um
eine ausreichende Genauigkeit zu bekommen. Als Vergleich
soll die genaue Ldsung fiir die Eulerlast Hx dienen. Das ge-
suchte Moment liegt vorerst im stetigen Bereich.

3.4.1 Genaue Lisung im stetigen Bereich

Die Operatorgleichung von (50) lautet fiir EJ = kon-
stant

1 1
(51) M:MO’—Z—M =
s S
oder
1
M=M,———
s + HIEJ

Nach Tabelle 1, Nr. 2 folgt die Lésung

(52) M (x) = M, JEJ/H sin x |[EJ/H

Diese Funktion muss an der Stelle x = L verschwinden. Die
Bestimmungsgleichung fiir Hr lautet dann

LVHJET = =
oder
72 B
53 Hy = -
(53) 1 Iz

3.4.2 Numerische Losungen

Ahnlich dem Beispiel im Bild 6 wird die stetige Last
M (x)/E J durch Einzellasten K, ersetzt. Die Integralgleichung
lautet jetzt

~ M
(54) M(X):Mo X—H(_)} (X*g)Kn‘Tl (ff) dé

Mit dem Operator

. K — K
{Kn+1::;/‘O‘ZK|+K2/Z+K3IIZ+...
2

lautet die OperatorlGsung

1 1
(542) M = — M, — —
S

SZ

H
E—J{K".H(M)}
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Will man die Werte nur an den diskreten Stellen /, 2 /...
nl,... N [ bekommen, dann lautet die Losung

) H 3
(54b) {M(n)} = l{n} M, — —— ,ln}{K,H.l‘

Fiir die Knotenlast K» +1 kann je nach Annahme der Approxi-
mation die allgemeine Formel, siehe [9], angegeben werden:

/
— [aMn +2an-;—1 +(‘Mn+2]

3) a+2b+c

K"“Tl =

Die Treppenfunktion als Approximation mit a = ¢ =0
und b # 0 ergibt

(56) K71+1:]Mn+1

Die Trapezformel erhilt man fira = ¢ = 1und b = 2
/
(57) sz.+1:Z[M7L+4M'n+1+Mn+2]

Die Stiissische Parabelformel erhdlt man dann aus a = ¢ = |
und b =5

/
(58) K71+1:E[Mn,+10M1l+l+Mn+2]

Die Losung von (54b) ergibt fiir M," = M,/l, siehe auch [9],

M, h
39 M= mm
mit
Pt ST N
e - ZEiI(;jb)
2EJ(a+b)

GI. (59) bedeutet nach Nr.2 in Tabelle 1 die diskrete
Funktion

sin (e« 1)
sin «

(61) M (n) = M,

wobei « iiber cos o aus Gl. (60) ermittelt wird. Die Randbe-
dingung M (L) = 0 = sin o« N = sin « ergibt

und die kritische Last aus Gl. (60)

L Herb
. 2EJ(a+b)
cOsS — =
N, H*la
2EJ (@ b)
oder
| — N EJ
(62) Hi* =2NZ*(a+ b) S0

b+ acos i/N L*

Einfache Differenzen (Treppenfunktion): a = 0

E.J
T2

(62a) Hr* = 2 N2(1 — cos #/N)
Trapezformel: a = 1; b = 2
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R A . A I
VAN NN L/,, -3 ny
vl o/ M) R il
2
‘/ M MV
V.

72 =5 hlz /
() B> ﬂ§=0 M(2,n2)h5
Bild 10. Diskrete Flichenfunktion

Summieren nach Zeilen Ap: M = Y, Avhy”
v=0

Summieren nach Spalten By : M = Y, By hy#
Summieren nach Diagonalen Dy, : M = Y Dy

oo

Summieren nach Matrizen: M = Y M (ny, m) by "2

L— cosni/N EJ
2 +cosn/N L2

(62b) Hr* = 6 N2

Parabelformel: a = 1; b =5

1 —cosn/N EJ

62c) Hp*=12N* ——————
629 H 54-cosw/N L?

Der Genauigkeitsgrad wird an die Zahl => = 9,87 ge-
messen.

Fiir N = 10 ergibt die Methode der einfachen Differenzen
(62a) den Koeffizienten 9,78. Schon bei N = 4 ergibt die
Parabelformel die sehr gute Approximation 9,85. Auch mit
N = 3 hat man die gute Anndherung von 9,82.

4. Flidchenfunktionen

Als Differentialoperatoren werden entsprechend s, und s,
und als Verschiebungsoperatoren h, und 4, fiir die stetigen
Bereiche x, und x, sowie fiir die diskreten Bereiche 7, und 7,
eingesetzt. Die konstante Funktion p, lautet als Operator im
kontinuierlichen Bereich 0 = x; < o0; 0 = x, < oo

Po
85182

(63) {Po} = Do {1} =

und im diskreten Bereich
0<nm <o0;0=n < x
5

6 j \: Il\_zfi,, Po ¥ l 711] n,
( 4) \poj Po & (] - /’11) (1 —hz) f?'§:€1 15

Hier hat man fiir die diskrete Verteilung eine unendliche
Doppelreihe, die auf verschiedenem Wege summiert (natiirlich
nur symbolisch) werden kann. Im Bild 10 ist schematisch die
Summation nach Zeilen, Spalten, Diagonalen und quadra-
tischen Matrizen fiir eine diskrete Verteilung der Funktion
M (ny, n,) angegeben:

oS}

65) M =Y M(n,n,)h, "1 h,"

n, =0
1, 2

66) M=Y[Y M@, n,)h, "1] h, ™

n n
1 2

(67) M = Z [Z M (ny, n,) hy "1] h, "2

2 1

Eine wichtige Rekursionsformel fiir die Knotenlast der
parabolischen Approximation, siche Stiissi [3] und Dubas [21],
lautet:

. 18. Marz 1971
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Tabelle 1.

Operatoren fur diskrete und kontinuierliche Funktionen

Diskrete Funktionen

Kontinuierliche Funktionen

Nr.
1 {x} -
2 sina n} =
3 {Sinan} —
U
5 -{cosmn} =
6 «{Cos an} = -
7 %)‘nz} =
s i) -
9 2% Lt b=
10 fewn) =
(68) (KK + 1, Gs 4 DTy = 22 (M, ] +
+ 10 M [(n, + 1), ny] + M [(ny, + 2), n,] +
+ 10 [ M [ny, (n, + D1+ 10 M [(m, + 1), (m, + D] +

+ M [(ny + 2, 0 + D] + M [, (1 + 2]+
+10M [(n, + 1), (i, + 2] + M [(m, +2), (1, + 2]}
Mit der Abkiirzung nach Gl. (65) und wegen der Uber-

sicht mit den Anfangswerten

M (0,0) = M (n,,0) = M (0, n,) = 0;
M (1,n,) # 0und M (n,,1) #= 0

folgt fiir die allgemeine Formel (68) die Operatorschreibweise

K—-K(©O,n)—K(n,0)

69 —
e hy hy
thil M
= 14; i (1 +10hy 4+ h2) (1 410 hy + h?) —
1 2
M(17’12)
= W (l + 10/11 + /122) e

M
M@ gL oh 1,12)]

h?h,

Die Potenzenreihen der diskreten Funktionen konnen sehr
einfach die vektoriellen Produkte ausdriicken. Unbekannte
Funktionen werden analog den Gleichungen (5, 5a und 6) durch
Koeffizientenvergleich ermittelt. Der Ausdruck fiir das Pro-
dukt fg lautet:

@O g — = X Clm m)h Sk 2
mit dem allgemeinen Glied
89. Jahrgang Heft 11
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o0

Y hi — i, fi 2 = _ o
“/F/' 1— & % | konst. R
hsin o (s : i
4 (0255 o -
1—2hcosa + h? et S praer
h Sin o o
i =
1—2hCosa + h? {Slnou’ 2=
= h 1
LT n o — N |\ =
T S SR
l —hcos« ; =
1cosofx} = -
1—2hcosa + 12 $% L o2
1 —hCosa s
Sl C s
1—-2hCosa -+ h? { Osax} 52— o?
h(1+h) 1 1
P T e =
2(1 — h)? o Gl | 53
(1+4h+m)h 1 i 1
S L Rl o 7{xv> -
6(1 — A 6 oK
(0 +11A+ 11K+ W) A 1 1
= il = =
24 (1 — h)® 24\ 5
1 = feux] = 1
1:6‘“}1 s — o

(M) e(m, 1) = f(0,0)g (m, ;) + f(0,1) g (my, 1y — 1) 4. +

+f,n —2)gm —1,2) + ... +f(n, n,)g(0,0)
Auch die Erweiterung der diskreten Mengen im Raum ist
ohne weiteres moglich; so lautet die konstante Funktion im
Raum
) Do
(1 —h) (L —h)(d —hy)
Eine u- und »-fache Summierung in den Gitterrichtungen

n; und n, wird durch die Inversen der Differenzenoperatoren
(1 — hy) und (1 — h,) gegeben, [22],

{Po} =

1
T e —hy

_ i n+u—1\ (n, +v—1 B B
n, =0 uw—1 v—1
(111 = = 1) A+ + 2 s — 1)
w—1

123...(0 — 1)
Fiir das Kontinuum gilt die Formel

mit

I (O Pl

(73) NG l]f“‘fdéljlj_/“'jdll
o 0 0 0 0 0

| «——p-fach e v-fach » |

Wir haben versucht mit Hilfe der Mengenlehre die
Funktionen im stetigen und diskreten Bereich neu zu definieren.
Dabei ergaben sich interessante symbolische Vereinfachungen,
die dazu fiihren, hochgradig statisch unbestimmte Systeme
durch geschlossene Funktionen zu lésen. Auch die Fldchen-
tragwerke konnen durch Spannungs- und Verformungs-
funktionen sowohl im stetigen als auch im diskreten Bereich
gelost werden.

251



Literaturverzeichnis

[1]1 Mikusinski, Jan: Operatorenrechnung. Berlin 1957, Deutscher Ver-
lag der Wissenschaft (VEB). Engl. Ausgabe: Operational Calculus.
London 1960, Perg. Press.

[2] Collatz, L.: Numerische Behandlung von Differentialgleichungen.
2. Aufl. Berlin, Gottingen, Heidelberg 1955, J. Springer.

[3]1 Stiissi, F.: Entwurf und Berechnung von Stahlbauten. Bd. 1. Grund-
lagen des Stahlbaues. Berlin 1958, J. Springer, S. 168/226.

[4] Stissi, F.: Die verbesserte Seilpolygonmethode zur Ldsung von
Differentialgleichungen zweiter Ordnung. «Abh. IVBH» 29 (1969)
Nr. 2, S. 201/216.

[5] Falk, S.: Die Berechnung des beliebig gestiitzten Durchlauftrigers
nach dem Reduktionsverfahren. «Ing. Arch.» 24 (1956) S. 216/232.

[6] Gurr, S.: Beitrag zur Anwendung des Differenzenverfahrens bei
linearen und nichtlinearen Randwertaufgaben zweiter Ordnung.
«Ing. Arch.» 35 (1966) S. 248/261.

[7] Dimitrov, N.: Operatorenrechnung und ihre Anwendung auf die
Baustatik. «Abh. IVBH» 24 (1964) S. 31/60.

[8] Dimitrov, N.: Operatorenstatik. Fortschr.-Bericht
Reihe 4, Nr. 4, Diisseldorf 1968.

[9]1 Dimitrov, N.: Die baustatische Methode in Operatorenform. Mitt.
des Instituts fiir Stahl- und Leichtmetallbau. Karlsruhe 1969.

[10] Dimitrov, N.: The Application of the Operational Calculus to
Frames. Int. Symp. Univ. of Newcastle upon Tyne 1966.

[11] Eisenbiegler, G.: Operatorenkalkiil zur Berechnung von Stab- und
Flachentragwerken. Diss. Univ. Karlsruhe (TH) 1969.

[12] Butzer, P.L.: Die Anwendung des Operatorenkalkiils von Jan Mi-

kusinski auf lineare Integralgleichungen vom Faltungstypus. Arch.
f. Rat. Mech. and Anal. 2 (1958) Nr. 2, S. 114/120.

der VDI-Z.

[13]1 Butzer, P.L.: Singular Integral Equations of Volterra Type and the
Finite Part of Divergent Integrals. Arch. f. Rat. Mech. and Anal. 3
(1959) Nr. 3, S. 194/205.

[14] Butzer, P.L., und H. Schulte: Ein Operatorenkalkiil zur Losung
gewohnlicher und partieller Differenzengleichungssysteme von
Funktionen diskreter Veranderlicher und seine Anwendungen.
Forsch. Bericht des Landes Nordrhein-Westfalen, Nr. 1557. Kdln
und Opladen 1965.

[15] Schulte, H.: Ein diskreter zweidimensionaler Operatorenkalkiil zur

Losung partieller Differenzengleichungen und seine Anwendung

bei der numerischen Losung partieller Differentialgleichungen.

Diss. Aachen 1966.

Wioka, J.: Uber die Anwendung der Operatorenrechnung auf

lineare Differential-Differenzengleichungen mit konstanten Koeffi-

zienten. Diss. Heidelberg 1958.

[17] Erdélyi, A.: Lectures on Mikusinski’s Theory of Operational Cal-
culus and generalized Functions. Pasadena 1959; Holt. Rinehart
and Wilson, N.Y. 1962.

[18] Berg, L.: Einfiihrung in die Operatorenrechnung. Berlin 1962, VEB-
Verlag,

[19] Elias, I.: Uber eine Operatorenmethode zur Losung von Differen-
zengleichungen. Mat. Fys. Casopis. Slovenska Akademia, Bratis-
lava 1958, S. 203/226.

[20] Fenyo, J.: Eine neue Methode zur Losung von Differenzenglei-
chungen nebst Anwendungen. «Periodica Politechnica, Budapest»
3(1959) 8: 135/151.

[21] Dubas, P.: Calcul numérique des plaques et des parois minces.
Schweiz. Bauzeitung 79 (1961) Nr. 17, S. 280/288.

[22] Dimitrov, N. und W. Herberg: Festigkeitslehre. 2. Bd. Sammlung
Goschen, Berlin 1971 (Erscheint demnéchst).

[16]

Numerische Auswertung von unendlichen alternierenden Losungsreihen

mit schlechter Konvergenz

DK 517.52

Von Dr.-Ing. Gunter Eisenbiegler, wissenschaftlichem Assistenten am «lnstitut fiir Baustatik und Messtechnik»

(Direktor Prof. Dr.-Ing. B. Fritz), Universitat Karlsruhe (TH)

1. Problemstellung

Bei der Berechnung von Stab- und vor allem von Flichen-
tragwerken lassen sich die gesuchten Losungen oft in der Form
von einfachen, unendlichen Reihen darstellen. Konvergieren
diese Reihen allerdings nur sehr schleppend, so ist ihre Auf-
summierung mithsam und zeitraubend. Selbst mit dem Einsatz
von Elektronenrechnern kann vielfach die gewiinschte Ge-
nauigkeit des Summenwertes nicht erreicht werden, wenn bei-
spielsweise die auftretenden Rundungsfehler die hoheren
Reihenglieder zu stark verfilschen, oder wenn die Ermittlung
einer sehr grossen Anzahl von erforderlichen Gliedern zu auf-
wendig wird. Im folgenden wird nun fiir unendliche, alter-
nierende Reihen mit langsamer Konvergenz eine einfache
Methode angegeben, die nur wenige Anfangsglieder einer
solchen Reihe bendtigt, um deren Summenwert mit einer
hohen Genauigkeit zu berechnen. Im Bauwesen ist diese Me-
thode bislang wenig bekannt geworden.

2. Mathematische Grundlagen
Die beliebige, konvergente Reihe

M Y DWVa=Vo—Vit+Vo—Vs+Vo—+...
n=20

ldsst sich mit Hilfe der Eulerschen Reihentransformation (vgl.
[11, [2]) wie folgt umformen:
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Dabei bedeuten allgemein 4V, = Vu — Vi1 die ersten und

AvY, = A®-VY, — AE-1}, ., die hoheren Differenzen der
Gliederfolge (V»).
Diese Umformung bewirkt bei schlecht konvergierenden,
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alternierenden Reihen eine wesentliche Konvergenzbeschleu-
nigung, und zwar konvergiert die transformierte Reihe umso
schneller, je schleppender die Konvergenz der vorgelegten
Reihe ist. Fiir die Abschidtzung der Restsumme

nach p Gliedern der Reihe (2) gilt die kurze Beziehung
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an die jedoch die Bedingung gekniipft ist, dass nicht nur die
Glieder ¥V, sondern auch die p-ten Differenzen A”V, eine
positive, monotone Nullfolge bilden miissen.

Es ist natiirlich ebenso moglich, mit der gezeigten Um-
formung erst bei einem bestimmten Reihenglied 7; zu be-
ginnen, Man erhélt dann
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Von dieser Moglichkeit wird man mit Vorteil immer dann
Gebrauch machen, wenn die Konvergenzgeschwindigkeit nach
einer gewissen Gliederanzahl merklich zuriickgeht, oder wenn
eine monotone Nullfolge der ¥V iiberhaupt erst vom i-ten
Gliede an vorhanden ist.

Abschliessend sei vermerkt, dass man in vielen, praktisch
wichtigen Féllen auf Reihen folgender Bauart stosst:
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