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Das Rechnen mit unstetigen Funktionen in der Baustatik

Von Prof. Dr.-Ing. G. Franz

Wir stellen als Ingenieure immer wieder fest, wie sprode
unsere mathematischen Hilfsmittel sind: Bei unseren Aufgaben
der Stabstatik haben wir es einerseits vielfach mit Einzellasten
zu tun oder mit Streckenlasten, die unstetig verlaufen, ander-
seits wechseln die Abmessungen von Balken oder Stiitzen mit-
unter plotzlich (Bild 1). Wie behandeln wir in solchen Fillen
die Aufgabe, die Schnittkrifte oder Verformungen zu er-
mitteln ?

Es stehen hierzu folgende Methoden zur Verfiigung:
la) Die Zerlegung des Stabes in einzelne Bereiche, in denen

Lasten und Querschnitte stetig verlaufen. Zu den Rand-

bedingungen des Gesamtstabes treten dann noch Uber-

gangsbedingungen zwischen den einzelnen Abschnitten, so
dass eine grosse Zahl von Konstanten zu bestimmen ist.

1b) Benutzt man Abschnitte geringer Linge, so gelangt man
zur Differenzenrechnung.

2) Die Entwicklung unstetiger Belastungen in Fourier-
Reihen. Man weiss, dass sehr viele Reihen-Glieder notig
sind, um zum Beispiel die Wirkung einer Einzellast zu be-
schreiben.

a) unstetige Lasten b) unstetige Querschnitte

Y [ ) ’ ! .
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Bild 1.

Unstetige Funktionen in der Stabstatik
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3) Die Ansitze von unstetigen Funktionen in der Form von
Operatoren. Sie stammen von Mikusinsky [1] und sind
neuerdings bei uns durch Dimitrov [2] bekannt geworden.
Zu erwihnen sind auch in den USA entwickelte Verfahren,
iiber die Pilkey [3] berichtet.

4) Grafische Verfahren. Sie sind zwar miihsam, aber sehr
universell.

Es gibt aber auch noch andere Moglichkeiten. Ich habe
1931 auf Anregung von Prof. Trefftz in Dresden eine recht ein-
fache, ingenieurmissige Methode entwickelt, die eine Funk-
tion u (a, x) benutzt (Bild 2). Sie besitzt ab x = @ den Wert 1
und gestattet so, eine gleichformige Streckenlast als p =
qu (a, x) darzustellen. Hort diese Streckenlast bei x = b auf, so
hat man einen zweiten Teil mit der Funktion u (b, x) hinzu-
zufiigen, der ab x = b die Belastung annulliert:

p =q[u(a,x)—u(b,x)]

Aber auch eine linear ansteigende Last ldsst sich hiermit
darstellen, eine Trapezlast oder eine beliebige andere Last, die
bei x = a beginnt.

y ulax)
einseitig begrenzt: | 1 (I,
a
J Tjk ufxa)
| — X
a
seitig begrenzt: }/T SR
zweiseitig beg ' | 1 WﬂTﬂTﬂb iy
a

Verwendung zur Darstellung von Streckenlasten

Lastfunktion:
plx)-qu(ax)

P
I g [T ,
a

,_ 49
p o
=n! _} (')
T ,ﬁmﬂmﬂ%\mﬂw plx)=q'(x-a)ulax
| ¢y
p qfq’()(-a/ —T ﬂ :
! ‘ =(Gp* (x-a)lula,x)
T Ga [MATITVATTATALIINT pix)=lg,+q'lx-0)lula

a

Bild 2. Die unstetige Funktion u (a, x)
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Bild 3. Differenzieren der Funktion u (a, x); geo-

metrische Ableitung

Zur Darstellung einer Einzellast und eines Momenten-
angriffes miissen wir die Infinitesimalrechnung auf die Funk-
tion # (a, x) anwenden. Zun#chst wollen wir sie differenzieren
(Bild 3). Wenn wir geometrisch vorgehen, ziehen wir den An-
stieg um 1 an der Stelle g auf dx auseinander, In diesem Bereich
ist dann die Steigung

du (a, x) 1

S e T

sehr gross, aber das Integral ist
F’ =fu’(a,x) dx = ulla, x) = 1.

Wenn wir daher p = P u’ (a, x) bilden, so stellen wir damit eine
auf die Linge dx verteilte, sehr grosse Gleichlast dar, deren
Summe jedoch endlich gleich P ist. Durch eine weitere Dif-
ferentiation erhalten wir im An- und Abstieg von 1/dx wieder-
um zwei Streckenlasten iiber die Strecken d2x von der Grosse
u”’ (a, x) = 1/dx d?x. Sie ergeben ein Moment 1, so dass sich
durch Multiplikation mit M, die Belastungsfunktion angeben
lésst, die ein eingeprigtes Moment darstellt:

P (x) = Mau” (a, x).
Die Integration von u« (a, x) (Bild 4) liefert:
5 =fu (a, x) dx:

z
fuir'e << a:w —.0k dex:O,

fijrx>a:u=l:f dx = (x — a);

a

Yi=x—a)u(a x) + k.

ffm,x)dxz =(x_2a)2u(a,X) + kix + k.

Y3=fffu(a,x)dx3=(x2—_3a)3u(a,x)—|-

X

2
+ Ky 2 + k,x + k;

Y, =

usw.
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Bild 4. Integration der Funktion u (a, x); Darstellung der Inte-

gralfunktionen fiir ky = kg = kg = kg = 0

Die Konstanten k,, k,, k... gelten fiir den Gesamtstab.
Sie gestatten nachtréglich die Erfiillung von Randbedingungen
am linken Stabende, wihrend die Wirkung der Lasten zu-
néchst auf den rechten Stabteil beschrinkt ist.

Im allgemeinen Fall wird die Stabbiegung durch folgende
Differentialgleichung der Biegelinie y beschrieben :

Ay + Bym + Cy = p (x).
Dabei sind folgende Sonderfélle wichtig:

B = C = 0: freitragender Balken;
€ =0; Stab mit Langs- und Querlast;

B =03 elastisch gebetteter Stab, rotations-
symmetrisch belastete Zylinderschale

Beim freitragenden Balken kann man die Lastfunktion
unmittelbar integrieren, wobei die Kontinuitét erfiillt ist. Von
besonderem Nutzen ist die hier vorgefiihrte Methode bei den
anderen Fillen.

Die Losung der Differentialgleichung setzt sich aus zwei
Anteilen zusammen: y = y, -+ y,. Als Losung der homogenen
Gleichung ist dabei

Y1 =1018(%) + 8, (%) + 385 (x) 4 84 ().

», besteht aus der Partikularlésung f (x), die im Fall einer Last-
unstetigkeit bei x = a zur Wahrung der Kontinuitit erginzt
werden muss:
Vo=f(X)+dig(x—a)+dyg,(x—a) +
+dsgs(x—a) + dygs(x —a)lu(a, x).

Angepalite Form der Losungsfunktionen g, dadurch
ausgezeichnet, daf3 sie fur x=0 bestimmte Werte
annehmen :

x=0: gl0)=1 g,(0)-0 g;(0)-0 g,(0)=0
g;(0)=0 g3(0)=1 g;(0)=0 g (0)=0
gil0)=0 g5(0)=0 g5(0)=1 g/ (0)=0
grl0)=0 g5(0)=0 g4(0)=0 g}(0)=1

Sollen fur x=0 y und seine Ableitungen bestimmte
Werte A annehmen, so mull sein

x=0: y =f(0)+c=4;, c=A;—f (0)
vy =(0)+co=4, =4~ (0)
yr=f'(0)+c=4;, c3=43="(0)
y'=f"(0)+c;=Ay, cp=A—1"(0)

y:f(,\/)+5, q (X)+(,‘2g2 (X)+C3 gg(X)+C4 g (x)
Bild 5
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a) Lastunstetigkeiten an der Stelle x=a
Zugehorige losung
yo=ulax)[f (x) +diglx-a)+dy g lx-a) *ds g3 (x-a) * dsgs (x-a)]

Last M, p q 7
Lastfunktion plx) \=Mau"(a.x)| =Pu'(ax) | =qulax) |-q'kalulox)
flx) fur x-a 0 0 4q 8g'
unstetig ist M=-EJy"| Q=-EJy)' p p'
ZJusatzglied daher| d3g;(x-a) | dygs (x-a) | digilx-a) | dzgz(x-a)
Beiwert =2 | 4-5 d=-Ag | d--8g’
insgesamt yulo)| £5510) | £, 0x-0) | Aal1-gilx-ol | By lixa gl

b) Querschnittsunstetigkeiten bel x-a und x=b
A[ —
g a J; b J] C

e
25

Nur allg losungsanteil y;, Argumente der g enthalten J !
Bereich a hat nur 2 Beiwerte, da fur x=0 stets zwel Nullbedingungen.

GG (&) a(E) v-talhonlE) yrenlo) e
G )*CMM 5’3!]3(@ +€404 /Tj,b/

firx-a: yi=c1G1(E)+C0: (&) =dh
n=adi(f)+9 (1)
yi=agl(G) g5 -%

n v/

I=Cgi(15)+C82 (1)t

yr=0101 (%) s 55 .. -6
J’/‘duh’/fzf'ﬁdzgé -6;
1= di gy /[ )+d2£7
Y= a,gj [2)"6729 =&
Alle e lassen sich so auf die ¢ und ¢, zuruckfuhren

aus den Bedingungen fur x={ bestimmt. Alle d und e
dann aus Rekursion

fur x=b:

Diese werden
ergeben sich

Bild 6. Herstellung der Kontinuitit bei Unstetigkeiten

Homogene Differentialgleichung der Biegelinie :

y"’+4[1 =0, .charakteristische lange” [ =} Uz
Allg L6sung: 1 =09(H)+G (1) +G0(E)+a 9 (H):
fur x=0 ist:
g g g g" Om
o(f)= coshfcos¥ 100 0 1
0(£) = 5 fcoshEsin£+sinh#cosk) 0 1 0 0 m
0% =L72 sinh % sin& 001 0 m
(&) =L (cosh#sin£-sinhxcost) 0 0 0 1 m’
Differentiationsschema: Oim.
g'= ~ 54U = (9= 5% =
g= o -9 2
g= %= §G=" z%g4 T
g= G- 9 g !

Bem. - Fur Balkenlange [=3 [ benutzt man andere Funkiionen !

Bild7. Losungsfunktionen fiir den Fall B = 0 (elastisch gebet-
teter Stab)
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Bodenreaktion p*=Cy, C Bettungszah!

Vollstandige [Differentialgleichung

e b (x)
Y Y=g l:“cﬂ
Allg Losung : Randbed. x=0:  yi'=-75 —CJ a,
a0

daher y1=6; gy /f/ 68, /T/'

Zusatzlosungen y, fur Belastungen in x=a :

I n

[ [ !
WI*' p WMQU (U,/\)‘U .‘0 | 0 'EJ 0
y V=30 (5 ulox)

\
i rate 10 (01101
%= 76, (ulox)
gulax) | £ ]-2lojo]o
@ o= 11 Ql/X'U)]U(UX)
giealulax)) |0 |-£ 0| 0

|

|

et

| X

| il :_g_[/x a)- gZ/X[”)]u(U,X)

Durchgehend elastisch gebetteter Balken

NN

a

Bild 8.

Homogene Differentialgleichung der Biegelinie -
y' +5 £ =0, ,charakteristische lange’ | - 1/?7
P: langskraft

Allg. Losung: yi=0 Gi(E)+C% ();

fur x=0 ist
g g’
g1 (E)= cos¥ ! 0
9 ( f/ =[ sip f 0 1
Differentiationsschema
o~ ~hos --hai- do
n _— I/ 7 /= 7
9 = g =129 7129

Bild 9. L&sungsfunktionen fiir den Fall C = 0
(druckbeanspruchter Stab)

Die Konstanten ¢ werden aus den Bedingungen A, bis 4,
bestimmt, die der Grosse y und ihren ersten drei Ableitungen
an den Stellen x = 0 und x = 7 auferlegt werden. Man formu-
liert die Funktionen g mit Riicksicht auf eine bequeme Rech-
nung so, dass fiir x = 0 die Funktionen g und ihre Ableitungen
den Wert 0 oder 1 annehmen (Bild 5). Ich weise ausdriicklich
darauf hin, dass die Funktionen g ebenso wie die Ableitungen
von y dimensionsbehaftet sind, und zwar derart, dass die ge-
wiinschten «1»-Werte der Funktionen dimensionslos sind.
Nach Bestimmung der Konstanten ¢ erhdlt man dann y in
{ibersichtlicher Form. Auf diese Weise wird die Formulierung
von Zusatzfunktionen bei Lastunstetigkeiten wesentlich er-
leichtert. Auch die Erfassung von Querschnittsunstetigkeiten
wird dadurch vorbereitet. Wie man vorzugehen hat, zeigt
Bild 6a bei Lastunstetigkeiten und konstantem Stabquerschnitt
und Bild 6b bei unstetigem Querschnittswechsel.

Die allgemeinen Losungsfunktionen beispielsweise fiir
einen elastisch gebetteten Stab zeigt Bild 7. In Bild 8 ist die
Lésung fiir den Stab mit verschiedenen Lasten dargestellt.
Da fiir den Stabanfang M = — EJy,” =0 wie auch
Q0 = — EJy,”” = 0 sein sollen, miissen die Beiwerte ¢ der-
jenigen Funktionen g, die fiir x = 0 nicht Null sind, ver-
- 7.Januar 1971
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Wo=0p Lpsin 7 +a, ws T}

Ja=CzLy sin 71 +cycos 77

fur x=0- =0, =0
Ubergangsbedingung fur x=a
CWh=d=p=6lLsine, ty=Glsin e ;
W=0=y=crc05 @, dr=Cy¢05 & ;
damit wird- yy=C;lilsina cos %2 +)Lcasasm”] A= [ lz’
Randbed x=i: yy=c;11[snacos 3 +/sta5/n/3/=0, o= f—]; f= %
y nur dann =0, wenn [ /=0, d h l:—%
__ lgmvF/ P, 1)) 2EJ
oder A= S s v Py=ml sz—/L 2

Beispiel: a=b,; J=2J2: A=VZ ergibt P=0,183 Fr; durch Probieren.

Bild 10. Druckstab mit wechselndem Querschnitt und zentrischer
Last P

schwinden, das heisst ¢; = 0 und ¢, = 0. Ubrig bleibt ein zwei-
gliedriger Ausdruck. Wir haben nun einen zweiten Anteil y,
hinzuzufiigen, der die Wirkung der Last in x = a beschreibt,
mithin die Partikularlésung darstellt. Seine Giiltigkeit ist auf
x > a beschrinkt, so dass die Differentialgleichung lautet

1100

s
L4

@)
EJ

R AC))
- EJ

u (a, x).

Die Konstanten ¢, und ¢, werden aus den Bedingungen
fiir das rechte Stabende bestimmt, wo M = — EJy”" = 0 und
Q = — EJy” = 0 gefordert wird.

Bild 9 zeigt die Losungsfunktionen fiir einen Druckstab
ohne Querlast. Wenn ein solcher aus zwei Abschnitten mit
verschiedenen Querschnitten besteht (Bild 10), &ndert sich der
Koeffizient J der Differentialgleichung an der Bereichsgrenze,
und es wechselt das Argument der Losungsfunktion x/L. Man
muss daher x fiir die beiden Bereiche getrennt ansetzen und die
beschréinkte Giiltigkeit fiir einen Bereich a bis b im allgemeinen
Falle durch

y=legi(x—a) +e,g (x—a)]lulax)—u,x)]
kenntlich machen. Statt der Differenz der Werte « kann man
auch schreiben « (a, x, b).

Anwendungsgebiete der Kryotechnik

An einem hochst beachtenswerten Vortrag mit dem
Titel «Zukunftsaspekte der Kiltetechnik», den Prof. Dr.-
Ing. Th. E. Schmidt, Universitit Stuttgart, an der Fach-
tagung Klima- und Kiltetechnik 1970 am 29. April in
Hannover gehalten hatte (verdffentlicht in «Kiltetechnik —
Klimatisierung» 22 (1970), H. 9, S. 274—278, wird unter
anderem auf jene interessanten Anwendungen der Tief-
temperaturtechnik (Kryotechnik) hingewiesen, die auf der
Feststellung beruhen, dass der elektrische Widerstand von
Metallen bei sehr tiefen Temperaturen nahezu verschwin-
det. Heute sind iiber hundert supraleitende Verbindungen
bekannt. Spulen aus solchem Material gestatten etwa die

Schweizerische Bauzeitung - 89. Jahrgang Heft 1 + 7. Januar 1971

Vo=t cos *} +d2125/n*[2“

Va=0 oS %] +Gplysin [i]
fur x=0- y,=e, =

Ubergangsbedlngung fur x=a
Yo=ti=y,=e cosa +c,L; Sina,
o=Gr=yg==F-Sina+c,cosa,

damit wird- y, = (C;COSDC—” sina)Lysin %2 Lz

Randbed x =1 e liefert

=

e ]+Asinasinf3—cosa cosf3
2= Z] Acosa sinfs+sino.cos 3

wenn =>4y, d.h. P=Fy (zentrische Knicklast ), wird
der Nenner=0 und ¢; sowie y—-e==.

3

Bild 11. Druckstab mit wechselndem Querschnitt und
exzentrischer Last P

Fiir unseren Fall setzen wir wieder die Funktionen in der
angepassten Form an:

Y1 =¢1g(x) + ¢, 8, (x)
v, =d g1 (x —a) + d, g, (x — a).

An der Nahtstelle miissen beide Anteile mit Ordinate und
Neigung ineinander iibergehen. Dadurch lassen sich die Bei-
werte d auf die ¢ zuriickfiihren, allgemein gesprochen auf die-
jenigen des vorhergehenden Bereiches und damit die aller
folgenden Bereiche auf die des ersten. Die Randbedingungen
fur x = 1 liefern die kritische Last P oder bei zusitzlicher
Querbelastung, die sich leicht in den Rechnungsgang einbauen
ldsst, die Werte von ¢; und c,, wie in Bild 11 dargestellt ist.

Der Verfasser wird die hier im Grundriss gezeigte Methode
in einer in Kiirze erscheinenden Broschiire ausfiihrlicher dar-
stellen und verschiedene Anwendungsgebiete behandeln.
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zehnfache Stromdichte und ein zehnfaches Magnetfeld; es
lasst sich somit die hundertfache Leistung verwirklichen.

In England wurde ein Elektromotor mit supraleitender
Feldwicklung entwickelt, der 2800 kW bei 110 U/min und
einem Wirkungsgrad von 97 % leistet. Vorteilhaft ist diese
Bauart fiir Maschinen grosser Leistung und niedriger Dreh-
zahl, da sie geringes Gewicht und kleine Abmessungen ergibt
und daher wirtschaftlich iiberlegen sein kann. Um die Spu-
len in supraleitendem Zustand zu erhalten, geniigt deren Kiih-
lung auf 4,4 K, wozu nur ein sehr geringer Leistungsaufwand
erforderlich ist. Man hofft bis zum Jahre 2000 Generatoren
fiir Leistungen von 10 000 MW bauen zu konnen.
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