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Das Rechnen mit unstetigen Funktionen in der Baustatik
Von Prof. Dr.-Ing. G. Franz

DK 624.04.001.2

Wir stellen als Ingenieure immer wieder fest, wie spröde
unsere mathematischen Hilfsmittel sind: Bei unseren Aufgaben
der Stabstatik haben wir es einerseits vielfach mit Einzellasten
zu tun oder mit Streckenlasten, die unstetig verlaufen, anderseits

wechseln die Abmessungen von Balken oder Stützen
mitunter plötzlich (Bild 1). Wie behandeln wir in solchen Fällen
die Aufgabe, die Schnittkräfte oder Verformungen zu
ermitteln?

Es stehen hierzu folgende Methoden zur Verfügung:
la) Die Zerlegung des Stabes in einzelne Bereiche, in denen

Lasten und Querschnitte stetig verlaufen. Zu den
Randbedingungen des Gesamtstabes treten dann noch
Übergangsbedingungen zwischen den einzelnen Abschnitten, so
dass eine grosse Zahl von Konstanten zu bestimmen ist.

lb) Benutzt man Abschnitte geringer Länge, so gelangt man
zur Differenzenrechnung.

2) Die Entwicklung unstetiger Belastungen in Fourier-
Reihen. Man weiss, dass sehr viele Reihen-Glieder nötig
sind, um zum Beispiel die Wirkung einer Einzellast zu
beschreiben.

3) Die Ansätze von unstetigen Funktionen in der Form von
Operatoren. Sie stammen von Mikusinsky [1] und sind
neuerdings bei uns durch Dimitrov [2] bekannt geworden.
Zu erwähnen sind auch in den USA entwickelte Verfahren,
über die Pilkey [3] berichtet.

4) Grafische Verfahren. Sie sind zwar mühsam, aber sehr
universell.

Es gibt aber auch noch andere Möglichkeiten. Ich habe
1931 auf Anregung von Prof. Trefftz in Dresden eine recht
einfache, ingenieurmässige Methode entwickelt, die eine Funktion

u (a, x) benutzt (Bild 2). Sie besitzt ab x a den Wert 1

und gestattet so, eine gleichförmige Streckenlast als p
qu (a, x) darzustellen. Hört diese Streckenlast bei x b auf, so
hat man einen zweiten Teil mit der Funktion u (b, x)
hinzuzufügen, der ab x b die Belastung annulliert:

p q [u (a, x) — u (b, x)]

Aber auch eine linear ansteigende Last lässt sich hiermit
darstellen, eine Trapezlast oder eine beliebige andere Last, die
bei x a beginnt.

a) unstetige Lasten

1

b) unstetige Querschnitte

\ i i

nm__|
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Bild 1. Unstetige Funktionen in der Stabstatik
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Bild 2. Die unstetige Funktion u (a, x)
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Bild 3. Differenzieren der Funktion u (a, x);
geometrische Ableitung

Zur Darstellung einer Einzellast und ein^Rlomenten-
angriffes müssen wir die Infinitesimalrechnung auf die Funktion

u (a, x) anwenden. Zunächst wollen wir sie differenzieren
(Bild 3). Wenn wir geometrisch vorgehen, ziehen wir den
Anstieg um 1 an der Stelle a auf dx auseinander. In diesem Bereich
ist dann die Steigung

du (a, x) 1

dx dx
u' (a,'x)

sehr gross, aber das Integral ist

F' f u' (a, x) dx u (a, x) l.
Wenn wir daher p =P u' (a, x) bilden, so stellen wir damit eine
auf die Länge dx verteilte, sehr grosse Gleichlast dar, deren
Summe jedoch endlich gleich P is&Durch eine weitere
Differentiation erhalten wir im An- und Abstieg von \/dx wiederum

zwei Streckenlasten über die Strecken d2x von der Grösse
u" (a, x) l/dx d2x. Sie ergeben ein Moment 1, so dass sich
durch Multiplikation mit Ma die Belastungsfunktion angeben
lässt, die ein eingeprägtes Moment darstellt:

p (x) B Ma u" (a, x).

Die Integration von u (a, x) (Bild 4) liefert:

Y1 J u(a, x)dx:
X

für x < a: u 0: J 0 dx 0,
a

x
für x > a: u 1: j dx (x — a);

Yx (x — ä) u (a, x) + k±.

Y2 IJ u(a, x)

Y3= Jjju(a,x)

dx2

dx3

(X — a)2

(x

2

— a)3

u (a, x) + ktx + k2.

2-3 u (a, x)

+ £i /fc_. X ~T~ ** 3

m

V.

1
a.x

a qW VF W M
Bild 4. Integration der Funktion u (a, x); Darstellung der
Integralfunktionen für k\ k<i kz k& — 0

Die Konstanten ku kz, k3... gelten für den Gesamtstab.
Sie gestatten nachtrjach <üe Erfüllung von Randbedingungen
am linken Stabende, während die Wirkung der Lasten
zunächst auf den rechten Stabteil beschränkt ist.

Im allgemeinen Fall wird die Stabbiegung durch folgende
Differentialgleichung der Biegelinie y beschrieben:

Ayiv + Byii + Cy =p(x).
Dabei sind folgende Sonderfälle wichtig:

B C 0: freitragender Balken;
C=0: Stab mit Längs-und Querlast;
B 0: elastisch gebetteter Stab, rotations¬

symmetrisch belastete Zylinderschale

Beim freitragenden Balken kann man die Lastfunktion
unmittelbar integrieren, wobei die Kontinuität erfüllt ist. Von
besonderem Nutzen ist die hier vorgeführte Methode bei den
anderen Fällen.

Die Lösung der Differentialgleichung setzt sich aus zwei
Anteilen zusammen: y =y1+ y2. Als Lösung der homogenen
Gleichung ist dabei

7i 11 (x) + c2 g2 (x) + c3 g3 (x) + c4 g4 (x).

y2 besteht aus der Partikularlösung/ (x), die im Fall einer
Lastunstetigkeit bei x a zur Wahrung der Kontinuität ergänzt
werden muss:

yi=f (x) + ^ gx (x — a)+ d2g2 (x — a) +
+ d3g3(x — ä) + d4gi(x—-a)]u(a,x).

Angepaßte Form der Lösungsfunktionen g, dadurch

ausgezeichnet, daß sie für x=0 bestimmte Werte
annehmen

x-0- g,fO)-l g2(0)=0 g3(0)-0 g4(0)=0

gj(0)-0 g2(0)=l g3'(0)=0 g\(0)=0

gf(0)-0 g2(0)=0 g"3(0)=l gi(0)-0
gf(0i 0 gm2lOH gllOH EBB

Sollen für x-0 y und seine Ableitungen bestimmte

Werte A annehmen, so muß sein

x=0-. y-f(0)*c,-Ai,
y'=f'(0)+c2=A2,

y«=f(0)+c3=A3,
S1IIIHJ

q-Ai-f (0)

c2 A2-f'(0)
c3 A3-f"(0)

ct-ju-rto)
y~f(x)+cigi(x)+c2g2 (xhc3 g3(x)+c4 g4 (x)

usw. Bild 5
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a) Lastunstetigkeiten an der Stelle x-a

Zugehörige Lösung

y2 9 (a,x)[f (x) + a)gi (x-a)+d2g2 (x-a) +d3g3 (x-a)+di,gt, (x-a)]

Last Ma p

Lastfunktion p(x) fflffl -Pu'(ax)

fix) für x=-a ¦ 0 0

mawmtia ist M-EJy2" d=-FJy2"

Zusatzglied daher d3g3(x-a) ckgt (x-a)

Bei wert 3E H
insgesamt y2-u(a,x) ¦^-o) ¦{j-gfo-a)

q

-qu (a,x)

Aq

P

digt(x-a)

d,=-Aq
Aq[l-gt(x-a)J

¦q'(x-a)u(o,x)

m
I

d2g2(x-a)

¦H
Bq'Kx-a^x-a)}

b) (LuerschnittsunstetiiWBiten bem^a und x-b

y
1 I I

/Vur 0///7 Lösungsanteil y, Argumente der g enthalten J '

Bereich a hat nur 2 Beiwerte, da fürx-0 stets zwei Nullbedingungen

yrCMtijJ+Qg^) mM| yreig](f)+e2g2(f)

¦# yrc1g1(^)+c2g2(^)=d,

yhQgfdfj+QtfföH,
yr=c,g','ffl+c2g"2ffl^

für x-b yrdigi(tf)+d2g?~-e1
yhdigi(ff)+d2g2 -e2

yhd,g','fff) + d2g^ =e3

yr^i^dzg'i m
Alle e lassen sich so auf die 1 und c2 zurückführen Diese werden

aus den Bedingungen fürx=l bestimmt Alle d und e ergeben sich

dann aus Rekursion

Bild 6. Herstellung der Kontinuität bei Unstetigkeiten

Homogene Differentialgleichung der Biegelinie ¦¦

yN+4 r? | 0, charakteristische Lange" L -Sßp

Atlg Lösung: yi=c,g!(f)i-c2g2(f)+c3g3(f-)+cig4(f)l

für x-0 ist'

g g' g" g"

gi(f]= coshfcosf 10 0 0

g2ff) j-(coshfsinf+sinhfcosf) 0 10 0

SsffJ'T sinhfsinf 0 0 10
gjf) £(coshfsmf-sinhf-cosf) 0 0 0 1

Ulm.

1

1
2m

ITF

Differentiationsschema ¦¦

nm — 4- nii _ _ 4 ni 4 n0i - -jzSi =-7ja?--7?5?

|j WBmSBm
U U 9r~iDi

Dim.

19?= 9j 9r i
Bern Für Balkenlänge l=-3L benutzt man andere Funktionen!

Bild 7. Lösungsfunktionen für den Fall B 0 (elastisch gebetteter

Stab)
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BEB
daher yrcig,(f)+c2g2(f)¦
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0
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0
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o
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0
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mIMSMv
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Bild 8. Durchgehend elastisch gebetteter Balken

Homogene Differentialgleichung der Biegelinie ¦¦

y" + j2= 0, „charakteristische Lange" L=1/7?

P: Langskraft

Allg. Lösung y-c,g,(f]+c2g2(f-),

furx=0ist

¦gl cosf
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Differentiationsschema:
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1

1
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Bild 9. Lösungsfunktionen für den Fall C 0

(druckbeanspruchter Stab)

Die Konstanten c werden aus den Bedingungen Ax bis A4

bestimmt, die der Grösse y und ihren ersten drei Ableitungen
an den Stellen x 0 und x l auferlegt werden. Man formuliert

die Funktionen g mit Rücksicht auf eine bequeme Rechnung

so, dass für x 0 die Funktionen g und ihre Ableitungen
den Wert 0 oder 1 annehmen (Bild 5). Ich weise ausdrücklich
darauf hin, dass die Funktionen g ebenso wie die Ableitungen
von y dimensionsbehaftet sind, und zwar derart, dass die
gewünschten «1 »-Werte der Funktionen dimensionslos sind.

Nach Bestimmung der Konstanten c erhält man dann y in
übersichtlicher Form. Auf diese Weise wird die Formulierung
von Zusatzfunktionen bei Lastunstetigkeiten wesentlich
erleichtert. Auch die Erfassung von Querschnittsunstetigkeiten
wird dadurch vorbereitet. Wie man vorzugehen hat, zeigt
Bild 6a bei Lastunstetigkeiten und konstantem Stabquerschnitt
und Bild 6b bei unstetigem Querschnittswechsel.

Die allgemeinen Lösungsfunktionen beispielsweise für
einen elastisch gebetteten Stab zeigt Bild 7. In Bild 8 ist die

Lösung für den Stab mit verschiedenen Lasten dargestellt.
Da für den Stabanfang M — ETy^' 0 wie auch

Q — EJyf" 0 sein sollen, müssen die Beiwerte c

derjenigen Funktionen g, die für x 0 nicht Null sind, ver-
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r~4 t-
1 i
a

Di

H
X

f

yb-d2L2sinx-f2+diCosf2

ya=C2L,sinjf+cjcosjf
für x-0 ya=0, c,=0

UbergangsbWktgung für x=a

yb=d1=ya c2Ljsina, d, c2LiSina,

yu=d2=ya c2cosa, d2=c2cosa,
damit wird- yb-c2 Lisino, cos *jj +Xcosasin^], X= jj =/?•
Randbedx=l yh=c2Li[sinWksß +Xcosasinß] =0, a=fj;ß=^-
y nur dann =0, wenn [ ]=0, W&h. X1 •

oder X= Pe,=n2f

tga
tgfi

o wHttm
WmmTt'-wtgnVWhYz

Beispiel- a=b, Wsm l =i7 ergibt P-0,183 PE1 durch Probieren

Bild 10. Druckstab mit wechselndem Querschnitt und zentrischer
Last P

schwinden, das heisst c3 0 und c4 0. Übrig bleibt ein
zweigliedriger Ausdruck. Wir haben nun einen zweiten Anteil y2
hinzuzufügen, der die Wirkung der Last in x a beschreibt,
mithin die Partikularlösung darstellt. Seine Gültigkeit ist auf
x > a beschränkt, so dass die Differentialgleichung lautet

L4
1&L
EJ

P(x) I
-hs— u (a, x).EJ J

Die Konstanten cx und c2 werden aus den Bedingungen
für das rechte Stabende bestimmt, wo M — EJy" 0 und
Q — EJy'" 0 gefordert wird.

Bild 9 zeigt die Lösungsfunktionen für einen Druckstab
ohne Querlast. Wenn ein solcher aus zwei Abschnitten mit
verschiedenen Querschnitten besteht (Bild 10), ändert sich der
Koeffizient / der Differentialgleichung an der Bereichsgrenze,
und es wechselt das Argument der Lösungsfunktion x/L. Man
muss daher x für die beiden Bereiche getrennt ansetzen und die
beschränkte Gültigkeit für einen Bereich a bis b im allgemeinen
Falle durch

1 \ex gx (x — d) + e2 g2 (x — a)] [u (a, x) — u (b, x)]

kenntlich machen. Statt der Differenz der Werte u kann man
auch schreiben u(a, x,b).

Dz

a

I
y

TT

JJ* -Li

yb=d,cos*rf+d2L2sin^

y0'Qcosjj+c2l1sm{l
für x-0 yQ=e, c,=e

Übergangsbedingung für x=a

yb"drya^msa +c2L1sina,

yb=d2=ya -jjsina+c2cosa,
damit wird- yb (c2cosa-fsma)L2sin^

+(c2Lj sin a+ecosaicosj8-'
Randbed x=l yb=e liefert

=_£ 1 + Xsina snß -cos a cosft
2 L] Xcosasinß+sinacosfi '

wenn X=XK,d.h P=PK (zentrische Knicklost), wird
der Henner-0 und q sowie y—»«.

Bild 11. Druckstab mit wechselndem Querschnitt und
exzentrischer Last P

Für unseren Fall setzen wir wieder die Funktionen in der
angepassten Form an:

m CiftW + c2g2(x)

y2 =d1g1(x — a) + d2g2(x — a).

An der Nahtstelle müssen beide Anteile mit Ordinate und
Neigung ineinander übergehen. Dadurch lassen sich die
Beiwerte d auf die c zurückführen, allgemein gesprochen auf
diejenigen des vorhergehenden Bereiches und damit die aller
folgenden Bereiche auf die des ersten. Die Randbedingungen
für x 1 liefern die kritische Last P oder bei zusätzlicher
Querbelastung, die sich leicht in den Rechnungsgang einbauen
lässt, die Werte von ct und c2, wie in Bild 11 dargestellt ist.

Der Verfasser wird die hier im Grundriss gezeigte Methode
in einer in Kürze erscheinenden Broschüre ausführlicher
darstellen und verschiedene Anwendungsgebiete behandeln.
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Anwendungsgebiete der Kryotechnik DK 621.56.004

An einem höchst beachtenswerten Vortrag mit dem
Titel «Zukunftsaspekte der Kältetechnik», den Prof. Dr.-
Ing. Th. E. Schmidt, Universität Stuttgart, an der
Fachtagung Klima- und Kältetechnik 1970 am 29. April in
Hannover gehalten hatte (veröffentlicht in «Kältetechnik -
Klimatisierung» 22 (1970), H. 9, S. 274—278, wird unter
anderem auf jene interessanten Anwendungen der
Tieftemperaturtechnik (Kryotechnik) hingewiesen, die auf der
Feststellung beruhen, dass der elektrische Widerstand von
Metallen bei sehr tiefen Temperaturen nahezu verschwindet.

Heute sind über hundert supraleitende Verbindungen
bekannt. Spulen aus solchem Material gestatten etwa die

zehnfache Stromdichte und ein zehnfaches Magnetfeld; es
lässt sich somit die hundertfache Leistung verwirklichen.

In England wurde ein Elektromotor mit supraleitender
Feldwicklung entwickelt, der 2800 kW bei 110 U/min und
einem Wirkungsgrad von 97 % leistet. Vorteilhaft ist diese
Bauart für Maschinen grosser Leistung und niedriger Drehzahl,

da sie geringes Gewicht und kleine Abmessungen ergibt
und daher wirtschaftlich überlegen sein kann. Um die Spulen

in supraleitendem Zustand zu erhalten, genügt deren Kühlung

auf 4,4 K, wozu nur ein sehr geringer Leistungsaufwand
erforderlich ist. Man hofft bis zum Jahre 2000 Generatoren
für Leistungen von 10 000 MW bauen zu können.
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