Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 89 (1971)

Heft: 1: 1. Sonderheft zum 70. Geburtstag von Prof. Dr. F. Stüssi

Artikel: Prof. Dr. Fritz Stüssi zum 70. Geburtstag

Autor: Steinhardt, O.

DOI: https://doi.org/10.5169/seals-84724

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Prof. Dr. Fritz Stüssi zum 70. Geburtstag

In dieser Sondernummer der auch ausserhalb der Schweiz von den Ingenieuren sehr geschätzten Schweizerischen Bauzeitung wurde seitens ihrer Herausgeber in dankenswerter Weise einigen von F. Stüssis Fachkollegen und Freunden die Möglichkeit eingeräumt, ihrer Verbundenheit mit dem international bedeutenden wissenschaftlich-technischen Werk des Jubilars und mit seiner wegweisenden Persönlichkeit Ausdruck zu verleihen. Es soll hierbei nicht erneut versucht werden, die wissenschaftlichen Veröffentlichungen F. Stüssis aufzuzählen, das ist in vorbildlicher, umfassender Weise zuletzt in der S. B. Z. 84 (1966), H. 1, S. 42 und 43; sowie ferner in den IVBH-Abhandlungen, V. 26 (1966) Leemann-Verlag, Zürich, S. 627–637, geschehen. Auch auf mehrere in Deutschland erschienene ausführliche Würdigungen seiner Persönlichkeit (z. B. «Der Bauingenieur», H. 1 (1966); «Der Stahlbau», H. 1 (1961); «Die Bautechnik», H. 3 (1966) u.a.m.) mag nur beiläufig hingewiesen sein. Nachfolgend soll in einer Reihe von wissenschaftlichen Beiträgen, zu denen grösstenteils F. Stüssis Wirken Anregung gab, ein dankbarer Gruss zum 3. Januar 1971 zum Ausdruck kommen.

O. Steinhardt

Zum Beulverhalten von Kreiszylinderschalen

DK 531.223.001.5

Von Prof. Dr.-Ing. O. Steinhardt und Dr.-Ing. U. Schulz

1. Einführung

Das Beulverhalten dünnwandiger Kreiszylinderschalen ist seit langem Gegenstand der Forschung. Besonders in den letzten Jahren ist man wegen der Fortschritte im Leichtbau bemüht, für diese Frage eine zufriedenstellende Antwort zu finden. Die ersten Ansätze zur Lösung des Lastfalls Axialdruck stammen von R. Lorenz (1908) und S. Timoshenko (1910). Sie erhielten unter Verwendung eines eingliedrigen (axialsymmetrischen) Verformungsansatzes für die kritische (klassische) Beulspannung den Wert $\sigma_{kl} = 0,606 Et/R$ (bei $\mu = 0,3$). Wegen der Diskrepanz zwischen dieser klassischen Beulspannung und den Versuchswerten und wegen der Schwierigkeit, die Störeinflüsse bei der Ermittlung der kritischen Beulspannung $\sigma_{k,o}$ zu berücksichtigen, haben T. v. Kármán/H. Tsien [8] 1941 die von L. Donnell [3] 1934 aufgestellten Differentialgleichungen grosser Verformungen mittels eines zweigliedrigen Ansatzes gelöst. Sie erhielten Nachbeulkurven, deren absolutes Minimum bei $\sigma_{k,u}/\sigma_{kl} = 0.32$ lag. Eine scheinbare Bestätigung dieses Wertes - er liegt nur geringfügig unter den meisten Versuchswerten und schien daher zur Bemessung geeignet zu sein - erbrachten die Arbeiten von H. Michielsen [10] 1948 (Variation nach 4 Parametern) und I. Kempner [9] 1954 (Variation nach 5 Parametern). Wird (theoretisch) die Anzahl der Ansatzglieder weiter gesteigert - B. Almroth [1] 1963 zeigt, dass für zum Beispiel 9 Glieder das Nachbeulminimum auf $\sigma_{k,u}/\sigma_{kl}=0,108$ abfällt –, so ergibt sich, dass eine Bemessung nach dieser unteren Beulschranke auch aus wirtschaftlichen Gründen nicht mehr sinnvoll erscheint; grundsätzlich neue Überlegungen müssen angestellt werden.

Aus dieser Erkenntnis heraus ist in der vorliegenden Arbeit auf theoretischem und experimentellem Wege – als wesentliche, die *obere* kritische Beulspannung (als wirkliche Versagensgrenze) beeinflussende Grösse – die örtliche axialsymmetrische planmässige Vorverformung untersucht worden. Zudem können, bis zur endgültigen Klärung weiterer, den Durchschlag begünstigender Faktoren (Eigenspannungen,

Temperatureinflüsse, stossweise Belastung usw.), die Ergebnisse von durchgeführten statistischen Untersuchungen über die Abhängigkeit von tatsächlich kritischer Beulspannung und Geometrieparameter herangezogen werden.

2. Bezeichnungen

	Vorboulnouseten
а	Vorbeulparameter
a_0, a_1, a_2, a_3	Koeffizienten im Verformungsansatz
$b_1, b_2, \dots b_6$	Koeffizienten im Spannungsansatz
C_v	Amplitude der planmässigen Vorbeule
C'_v	Abweichung von der planmässigen Vorbeule
E	Elastizitätsmodul
F the background of π	Spannungsfunktion
g	=L/2R
L	Zylinderlänge
m	Wellenzahl in Längsrichtung (Halbwellen)
n	Wellenzahl in Umfangsrichtung (Vollwellen)
p	Längskraftbelastung
$\frac{p}{p}$	= q R/E t
p_k	kritische Verzweigungslast
p_{kl}	klassische Verzweigungslast
q	Aussen- (Innen-)druckbelastung
R	Zylinderradius
S	Ordinate in Zylinderlängsrichtung
t	Wanddicke
W	radiale Verformung eines Schalenpunktes
w_v	Vorverformung
\boldsymbol{x}	= s/R
у	Ordinate in Zylinderumfangsrichtung
λ	$=\pi m R/L$
μ	Querdehnungszahl
ν	$=n^2/\lambda^2$
σ	Spannung
σ_k	kritische Spannung
σ_{kl}	klassische Beulspannung
$\sigma_{k,o}$; $\sigma_{k,u}$	obere, untere kritische Beulspannung
m	- 1/P

= v/R