**Zeitschrift:** Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

**Band:** 88 (1970)

Heft: 50

**Artikel:** Optimierungsaufgaben bei der Lüftung von Autostrassen-Tunneln

Autor: Loch, E.

**DOI:** https://doi.org/10.5169/seals-84705

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 29.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## Optimierungsaufgaben bei der Lüftung von Autostrassen-Tunneln

Von Dr. E. Loch, Luwa AG, Zürich

#### DK 625.712.35 : 628.83.003.1

#### Einleitung

Der zurzeit intensiv betriebene Bau von Autobahnen in den Alpenländern bringt es mit sich, dass den Problemen der Tunnellüftung besondere Aufmerksamkeit geschenkt wird. Da es sich bei langen Tunneln mit künstlicher Belüftung um kapital- und energieintensive Anlagen handelt, kommt der optimalen Bemessung grosse Bedeutung zu. Über die grundsätzliche Berechnung der Lüftungsanlagen für Autostrassentunnel gibt es genügend gute Literatur. In der vorliegenden Arbeit wird weniger hierauf als auf Optimierungsfragen eingegangen. Dabei spielen die Kosten der bautechnischen, mechanischen und elektrischen Teile sowie auch die Wirkungsgrade der Maschinen eine wesentliche Rolle.

Bei der Durchführung solcher Untersuchungen muss man sich darüber im klaren sein, dass infolge der Abhängigkeit von Preis- und Kostenfaktoren, die sich in ihrer Grösse und Darstellung nur ungenau erfassen lassen, alle Optimierungsaufgaben nur näherungsweise zu lösen sind. Trotzdem können daraus aber wichtige Erkenntnisse gewonnen und entscheidende Schlussfolgerungen gezogen werden.

Die angeführten Preise und Kostenansätze sind für Herbst 1968 gültig. Mit den üblichen Gleitpreisformeln für bautechnische und maschinelle Einrichtungen ist es möglich, diese Werte für die nächsten Jahre zu korrigieren. Ausserdem lassen sich die Preisfaktoren jederzeit und in jedem Land durch Einholen neuer Offerten der jeweiligen Lage anpassen. Ein wesentlicher Teil der vorliegenden Untersuchung befasst sich mit der Analyse der Einflussparameter und deren Gewicht auf die einzelnen Kostenansätze. Falls nicht neue Arbeitsprinzipien und Herstellungsmethoden zur Anwendung kommen, können die qualitativen Ergebnisse jederzeit übernommen werden. Eine Schwankung der Preise zwischen verschiedenen Bau- und Lieferfirmen wurde von vornherein ausgeschlossen, da in der Regel nur die niedrigsten Angebote berücksichtigt werden.

Die meisten hier behandelten Optimierungsprobleme sind nicht explizit lösbar, so dass nur numerische Berechnungen und direktes Vergleichen der Ergebnisse zum Ziele führen. Um diese dem Leser besser zu veranschaulichen, wurden mehrere praxisnahe Beispiele eingehender behandelt. Obwohl der Bemessung einer Tunnelanlage nach optimalwirtschaftlichen Gesichtspunkten sicher ein wesentliches Gewicht zukommt, gibt es auch noch andere wichtige Forderungen, die bei der Projektierung berücksichtigt werden müssen. Zu diesen zählt beispielsweise die Verkehrssicherheit.

## 1. Wirtschaftlicher Kanalquerschnitt

Bei gegebenem Luftstrom in einem Lüftungskanal wird einerseits die Strömungsgeschwindigkeit und somit auch der Druckverlust sowie die Leistung des Ventilators grösser, je kleiner man den Kanalquerschnitt annimmt. Anderseits verringern sich aber die Baukosten für den Kanal.

Die Frage, wie gross die Kanalquerschnitte im einzelnen zu wählen sind, kann durch eine Wirtschaftlichkeitsbetrachtung unter Berücksichtigung aller massgebenden Einflussfaktoren beantwortet werden. Dabei sind die Gesamtjahreskosten für die ganze Lüftungsanlage zu optimieren. Ist das Wirtschaftlichkeitskriterium in allgemeiner Form aufgestellt, so lässt es sich auf verschiedene Lüftungskanalabschnitte, wie zum Beispiel Frischluftverteilkanal, Abluftsammelkanal, Horizontalstollen, Vertikal- oder Schrägschächte usw., anwenden, indem die entsprechenden Parameter eingesetzt werden.

Die Jahreskosten  $P_j$ , die minimal ausfallen sollen, setzen sich zusammen aus den Kapitalkosten  $P_a$  für den Bauanteil der Lüftungskanäle, zu denen auch die mechanischen und elektrischen Einrichtungen zu zählen sind (Ventilatoren, Elektromotoren, Steuerung, elektrische Schalteinrichtungen, Zuleitungen, Transformatoren usw.), und den Betriebskosten  $P_b$  für elektrische Energie und Unterhalt. Es gilt die Gleichung

(1) 
$$P_j = P_a + P_b \rightarrow \min$$

Die *Kapitalkosten* ergeben sich aus den Baukosten *K* für die einzelnen Anlageteile durch Multiplikation mit den betreffenden Annuitäten:

(2) 
$$P_a = \tau_B K_B + \tau_{MA} (K_V + K_M + K_E)$$

Hierin bedeuten:

 $\tau_B$  die Annuität für die bautechnischen Teile (Lüftungskanäle). Heute wird durchschnittlich mit 4,5% Zins (Bundesgelder) und mit einer Amortisationsdauer von 50 Jahren gerechnet, wofür  $\tau_B = 0.0506$  ist.

K<sub>B</sub> die Baukosten für den fertigen Lüftungskanal.

 $\tau_{MA}$  die Annuität für die mechanischen und elektrischen Einrichtungen. Bei ebenfalls 4,5% Zins und 25jähriger Amortisationsdauer ist  $\tau_{MA} = 0,0674^{\,1}$ ).

 $K_V$ ,  $K_M$ ,  $K_E$  die Anlagekosten für die Ventilatoren, die Antriebsmotoren und die elektrischen Einrichtungen für den Betrieb einschliesslich die Regelung der Lüftung.

Für die Betriebskosten gilt der Ansatz:

$$(3) P_b = K_S + K_U,$$

wobei  $K_S$  die Stromkosten und  $K_U$  die Unterhaltskosten bezeichnen.

Es sollen nun nachfolgend die einzelnen Kostenelemente näher betrachtet werden.

## 1.1. Die Baukosten für einen fertigen Lüftungskanal

Hierfür gilt der Ansatz:

$$(4) K_B = F_K L p_B$$

Hierin bedeuten:

F<sub>K</sub> den Kanalquerschnitt.

L die Länge des betrachteten Kanalstücks von konstantem Querschnitt.

p<sub>B</sub> den Preis pro Kubikmeter des fertigen Kanals.

Der Kubikmeterpreis  $p_B$  lässt sich meist nur grob erfassen, weil er von sehr vielen Einflüssen abhängt. Die wesentlichen davon sind:

¹) Eine Tabelle für Annuitäten findet sich zum Beispiel in [5], siehe Literaturverzeichnis am Schluss des Aufsatzes.

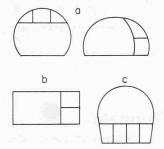
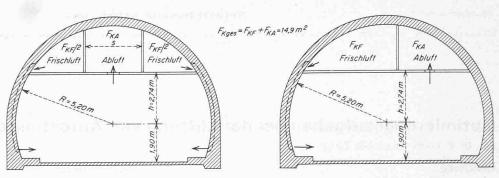




Bild 1. Lüftungskanäle werden zweckmässig parallel zum Verkehrsraum geführt. a Frisch- und Abluftkanal oberhalb oder seitlich der zweispurigen Fahrbahn. b Tunnel mit Lüftungskanälen nahe der Oberfläche, ohne Bergdruck; für Unterführungen von Flüssen oder Plätzen. Ausführung aus vorgefertigten Elementen im Tagbau. c Luftkanäle unterhalb der Fahrbahn bedingt stark ausgebildete Fahrbahnplatte



Bilder 2 und 3. Häufig verwendetes Tunnelprofil mit zwei Fahrspuren und über der Zwischendecke angeordneten Frisch- und Abluftkanälen. Beidseitige Anordnung der Frischluftkanäle bewirkt eine etwas gleichmässigere Zuführung der Frischluft in den Verkehrsraum

- a) Art und Lage des Kanals: Horizontalstollen, Lüftungskanal als Teil des Haupttunnels (z.B. über der Fahrbahndecke), Vertikalschacht, Schrägschacht.
- b) Grösse der Querschnittsfläche des Kanals oder des ganzen Tunnels, wenn der Lüftungskanal einen Teil dieses Tunnels ausmacht. Dies hängt mit dem Einsatz der Maschinen und der Gewölbeausmauerung zusammen.
- c) Güteklasse des Gesteins und des anzuwendenden Bauverfahrens. Änderungen der Gesteinsart in langen Tunneln oder Schächten sind häufig. Der Kubikmeterpreis wird dann entsprechend den Längenanteilen der Güteklassen zusammengesetzt.
- d) Die L\u00e4nge spielt beim Horizontalstollen keine Rolle, hingegen scheint beim Vertikalstollen ein geringer Einfluss vorhanden zu sein.

Die unter a) aufgezählten Kanalarten sollen nun im einzelnen untersucht werden.

#### 1.1.1. Horizontalstollen und Tunnel mit Lüftungskanälen

Aus wirtschaftlichen Gründen werden Lüftungskanäle häufig zusammen mit dem Nutzraum (Verkehrsraum) parallel in einem gemeinsamen Tunnel geführt. Die Lüftungskanäle können, wie aus Bild 1 ersichtlich, oberhalb, seitlich oder unterhalb des Verkehrsraumes angeordnet werden. Sie sind

400 (Gentle Querschnittsläche Fix (m²))

durch Betonelemente, Wände oder Tragplatten voneinander und vom Verkehrsraum getrennt.

Für ein Tunnelprofil in Kreisbogenform mit zweispuriger Fahrbahn und über dem Verkehrsraum angeordneten Lüftungskanälen gemäss den Bildern 2 und 3 kann je nach Gebirgsklasse mit den in Bild 4 angegebenen Kubikmeterpreisen gerechnet werden. Diese beziehen sich auf den bautechnisch komplett fertiggestellten Tunnel (einschliesslich Zwischendecken und Verkleidungsplatten). Sie beruhen auf Durchschnittswerten von in letzter Zeit ausgeführten Tunneln und können je nach Arbeitsmarktlage und Aufwendigkeit der Ausführung variieren. Der Verkehrsraumquerschnitt  $F_{VR}$  für alle hier angegebenen Tunnelgrössen ist angenähert gleich gross und beträgt rund 45 m².

#### 1.1.2. Vertikalschächte

Die Kubikmeterpreise von abgeteuften Vertikalschächten sind für mittlere Gebirgsklassen nach [6] in Bild 5 in Abhängigkeit von der Querschnittsfläche dargestellt. Sie nehmen mit der Schachttiefe ab. Daraus können die in Tabelle 1 zusammengestellten Zahlen abgelesen werden. Für Vertikalschächte, die von unten nach oben gebohrt werden – was allerdings gefährlicher ist – liegen die Kubikmeterpreise etwas niedriger.

## 1.1.3. Schrägschächte

Die Kubikmeterpreise von 400 bis 600 m langen Schrägschächten sind nach [6] in Bild 6 und Tabelle 2 angegeben.

Die Kubikmeterpreise bezogen auf den lichten Raum für Tunnel nach den Bildern 1b und 1c sind dem Verfasser nicht bekannt. Sie dürften aber für den letzteren Fall wegen der tragenden Fahrbahnplatte höher, im ersteren gleich oder niedriger als die in Bild 4 angegebenen Preise liegen.

## 1.2. Kosten $K_V$ für Tunnellüftungs-Ventilatoren

Die hier angegebenen Werte umfassen Axial-Ventilatoren, die sich im allgemeinen aus Laufradgehäuse mit feststehendem Nachleitrad, Laufrad, Diffusor, Nabenkörper, Dilatation und

Tabelle 1. Kubikmeterpreise p<sub>B</sub> für Vertikalschächte in Fr./m<sup>3</sup>

| lichter Schachtdu<br>lichte Schachtfläc |       | m<br>m²            | 5,5<br>23,7 | 7,5<br>44,2 |
|-----------------------------------------|-------|--------------------|-------------|-------------|
| Preise für                              | 350 m | Fr./m³             | 338.—       | 320.—       |
| Schachttiefen                           | 650 m | Fr./m <sup>3</sup> | 332.—       | 312.—       |
| von:                                    | 950 m | Fr./m³             | 328.—       | 306.—       |

Tabelle 2. Kubikmeterpreise p<sub>B</sub> für Schrägschächte in Fr./m<sup>3</sup>

| lichter Schachtdurchmesser | m      | 5     | 7     | 9     |
|----------------------------|--------|-------|-------|-------|
| lichte Schachtfläche       | m²     | 19,6  | 38,5  | 63,8  |
| Preis p <sub>B</sub>       | Fr./m³ | 382.— | 270.— | 206,— |

Bild 4. Kubikmeterpreise für fertige horizontale Stollen und Tunnel mit parallel laufenden Lüftungskanälen

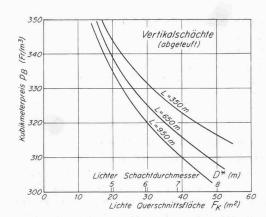



Bild 5 (links). Kubikmeterpreise für vertikale Lüftungsschächte

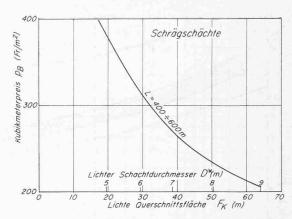



Bild 6 (rechts). Ungefähre Kubikmeterpreise für schräge Lüftungsschächte

Absperrklappe mit Antriebsmotor zusammensetzen (vgl. Bild 18, Abschnitt 4) sowie deren Montage (einschliesslich Motormontage, jedoch ohne Motor) und Inbetriebsetzung. Für einen Förderstrombereich zwischen 30 und 600 m³/s pro Ventilator wurde folgende Beziehung gefunden:

$$(5) K_V = p_V \ \dot{V}$$

In Abschnitt 4 wird gezeigt, dass der Aussendurchmesser  $D_V$  eines Ventilators fast nur vom Förderstrom  $\dot{V}$  abhängt, wenn der Elektromotor die Abmessungen des Ventilators nicht beeinflusst (Bild 16). Ist hingegen der Motor in der Nabe eingebaut, so muss für grosse Leistungen der Durchmesser im Verhältnis zum Förderstrom vergrössert werden (Bild 17). Für solche Fälle ist also nicht der effektive Förderstrom  $\dot{V}$  des Ventilators in Gleichung (5) einzusetzen, sondern der dem zugehörigen Durchmesser entsprechende maximale Strom  $\dot{V}^*$ .

In Bild 17 ist beispielsweise der Bemessungspunkt G mit  $\dot{V}=100~\text{m}^3/\text{s}$  eingetragen. Die Kostenberechnung hat aber mit  $\dot{V}^*=160~\text{m}^3/\text{s}$  zu erfolgen.

Der Preisfaktor kann näherungsweise nach folgender Formel ermittelt werden:

(6) 
$$p_V \approx 170 (1 + f_{Le} + f_{La} + f_{Di} + f_{Kl})$$
 Fr. pro m<sup>3</sup>/s

Für die Summanden f gelten folgende Zahlen:

 $f_{Le}=0,06$  bei festem Nachleitrad; fehlt dieses, so ist  $f_{Le}=0^2$ ).  $f_{La}=0,44$  bei im Betrieb verstellbaren Laufschaufeln einschliesslich den zur Verstellung erforderlichen mechanischen, hydraulischen oder pneumatischen Stell- und Regeleinrichtungen. Sind die Laufschaufeln nur im Stillstand verstellbar, sonst aber feststehend, so ist  $f_{La}=0$ .

 $f_{Di}=0,14$  für den Diffusor mit einem Flächenverhältnis  $F_2/F_1\cong 1,3$ ; ohne Diffusor ist  $f_{Di}=0$ .

 $f_{Kl}=0.21$  für die Absperrklappe, wenn sie quadratisch und ihre Seitenlänge gleich dem Ventilator-Laufraddurchmesser ist

 $f_{Kl} = 0,27$  für die quadratische Absperrklappe, wenn sie sich hinter dem Diffusor befindet und ihre Seitenlänge gleich 1,25mal dem Ventilator-Laufraddurchmesser ist; fehlt eine solche Klappe, so ist  $f_{Kl} = 0$ .

## 1.3. Kosten $K_M$ für elektrische Antriebsmotoren

An die Motoren werden folgende Anforderungen gestellt: Einfachheit in Aufbau, Betrieb und Unterhalt, Möglichkeit der Drehzahlregelung, hohe Betriebssicherheit, niedrige Anschaffungskosten, die Kühlluft für die innere Kühlung (Wicklungsköpfe, Luftspalt) soll wegen Verschmutzung durch Staub und Abriebteile nicht der Förderluft der Ventilatoren entnommen werden.

## 1.3.1. Asynchron-Käfigankermotoren

Diese Motoren werden mit einer oder mehreren polumschaltbaren Drehzahlen für Niederspannung bis zu einer Leistung von rund 1000 kW gebaut. Maschinen grösserer Leistungen sind in Hochspannungsausführung (über 600 V) günstiger. In Niederspannung-Motoren über 100 kW können in einer Einheit höchstens fünf polumschaltbare Drehzahlstufen untergebracht werden. Ganz allgemein hängt der Preis eines Elektromotors ab von der Motorart, der Bau- und Schutzart, dem Drehmoment bei Vollast, der Spannung und der Motorleistung.

Für die Motorkosten gilt der Ansatz:

(7) 
$$K_M = 1,1 p_M f_M N_M/n$$

 $K_M$  wird hier auf das Drehmoment bezogen, das durch  $N_M/n$  ausgedrückt wird. Folglich hat der Preisfaktor  $p_M$  die Einheit Fr. (U/min)/kW oder Fr./kW min.

Die erforderliche maximale Motorleistung ergibt sich zu:

(8) 
$$N_M = \frac{1}{\eta \dot{v}} \sum_{(S)} N_K$$

Danach sind die Leistungsbedarfszahlen  $N_K$  für die einzelnen Abschnitte des in Frage stehenden Lüftungssystems (z. B. eines Frischluftsystems, das vom Schachteintritt bis zum Verkehrsraum reicht) über das ganze System (S) zu summieren, wobei diese Zahlen für die höchste Betriebsdrehzahl ermittelt werden müssen, und es ist das Ergebnis durch den Vollast-Wirkungsgrad  $\eta_{\mathcal{V}}$  einer Übersetzung oder Übertragungseinrichtung zwischen Ventilator und Motor zu dividieren. Die Nennleistung des Motors wähle man um 10% grösser, also

(9) 
$$N_{MO} = 1,1 N_M$$

Polumschaltbare Asynchron-Käfigläufermotoren weisen entsprechend der Polzahl getrennte Statorwicklungen auf, was die Kosten erhöht und den Wirkungsgrad verringert. Der Zusammenhang zwischen Synchrondrehzahl  $n_i$  (U/min), Polpaarzahl ( $Z_i$ ) und Netzfrequenz v (Hz) ist:

(10) 
$$n_i = 60 v/Z_i$$

Der Einflussparameter  $f_M$  in Gleichung (7) berücksichtigt Anzahl und Abstufung der Motordrehzahlen. Es ist:

$$(11) \quad f_M = \sum_{(n)} \left( \frac{n_i}{n_{max}} \right)^2$$

Die Summierung erfolgt über alle i Drehzahlstufen. Die Potenz 2 der Drehzahlverhältnisse ergibt sich daraus, dass das Drehmoment des Ventilators quadratisch mit der Drehzahl absinkt. Als Beispiel für die Ermittlung von  $f_M$  diene die

<sup>&</sup>lt;sup>2</sup>) Nach [7] sind Leiträder nicht mehr erforderlich, wenn die Druckziffer  $\psi=2g~\Delta p_{ges}/\gamma u^2$  des Ventilators kleiner als 0,14 ist (*u* ist die Umfanggeschwindigkeit des Laufrades).

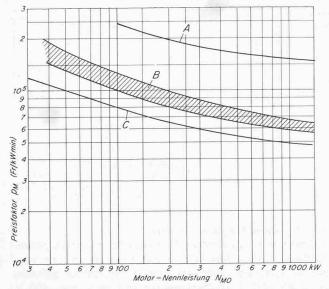



Bild 7. Preisfaktor  $p_M$  für elektrische Antriebsmotoren: A Gleichstrom-Kompoundmotoren (Normalausführung). B polumschaltbare Asynchron-Käfigmotoren für Niederspannung (bis 600 V) in Spezialausführung, horizontalachsig, Bauform B 14, Wälzlager, innenventiliert. C Asynchron-Käfigmotoren, nur eine Drehzahl, Normalausführund B 3 oder B 5, Schutzart P 33, Wälzlager

Tabelle 3, die für  $n_{max} = 1000$  U/min,  $N_M = 500$  kW und vier Drehzahlen gilt.

Für Motoren mit einer maximalen Drehzahl von 3000 U/min ist in den Gleichungen (7) und (11) für  $n_{max}$  nur 1500 U/min zu setzen, da die Baugrösse der 3000tourigen Maschine wegen schlechter Drehfeldverteilung etwa gleich der der 1500tourigen ist.

Der Preisfaktor  $p_M$  schliesst alle Nebenkosten für Temperatur- und Drehzahlüberwachungseinrichtungen, Montage, Transport sowie Wust ein und ist in Bild 7 in Abhängigkeit von der maximalen Motorleistung eingetragen. Trotz Streuung können die unteren Grenzwerte für die Berechnung eingesetzt werden.

## 1.3.2. Asynchron-Schleifringläufermotoren

Für diese Motoren, die für drehzahlvariablen Antrieb mit Schlupfregelung gebaut werden, gilt ebenfalls Gleichung (7). Der Preisfaktor  $p_M$  liegt je nach Ausführung etwa 20 bis 30% höher als der des Käfigläufermotors nach Bild 7. Ferner ist  $f_M=1$  zu setzen.

## 1.3.3. Gleichstrom-Kompoundmotoren

Gleichstrommotoren haben den grossen Vorteil, dass durch Variation der an der Rotorwicklung angelegten Spannung die Motordrehzahl stufenlos geregelt werden kann. Die Drehzahl ist der Höhe der Spannung fast genau proportional; der Motor könnte bei unveränderlicher Erregung seines Hauptfeldes im gesamten Drehzahl-Verstellbereich ein konstantes Drehmoment entwickeln. Da der Ventilator ein mit der Drehzahl etwa quadratisch abnehmendes Drehmoment erfordert, wäre der Motor im Gebiet tiefer Drehzahlen nur schwach belastet und sein Wirkungsgrad schlecht. Um dies zu vermeiden, ist es wichtig, dass der Motor mit einer das Hauptfeld kräftig beeinflussenden Kompoundwicklung versehen und dass unter Umständen das Grundfeld mit sinkender Drehzahl zusätzlich geschwächt wird. Gleichstrommotoren verschmutzen durch den Abrieb der Kohlebürsten. Die umfangreicheren Wartungsarbeiten (Motorreinigung, Bürsten auswechseln, Kollektor überdrehen) fordern gute Zugänglichkeit und eine Aufstellung ausserhalb des Ventilators (vgl. z. B. die Bilder 19 und 20 in Abschnitt 4). Der Motorpreis kann mit Gleichung (7) und Bild 7 ermittelt werden, wobei  $f_M = 1$ zu setzen ist.

Tabelle 3. Berechnungsbeispiel für den Parameter  $f_M$ 

| $\overline{Z_i}$ | $n_i$ (U/min) | $N_{Mi}$ (kW) | $n/n_i$ | $(n/n_i)^2$   |
|------------------|---------------|---------------|---------|---------------|
| 3                | 1000          | 500           | 1       | 1             |
| 4                | 750           | 210           | 0,75    | 0,562         |
| 6                | 500           | 62,5          | 0,50    | 0,250         |
| 9                | 333           | 18,5          | 0,333   | 0,111         |
|                  |               |               |         | $f_M = 1,823$ |

#### 1.4. Kosten $K_E$ für die elektrischen Einrichtungen

Dieser Kostenanteil, der sich auf die für Betrieb und Regelung der Ventilatormotoren erforderlichen Einrichtungen bezieht, lässt sich in allgemeiner Form nur überschlagsmässig erfassen, weil die einzelnen Anlagen oft sehr unterschiedlichen Umfang haben. Im wesentlichen sind nachstehende Gegebenheiten zu beachten: örtliche behördliche Vorschriften (Anfahrstromspitzen), Art und Stärke der Hochspannungszuleitung, Anzahl der Zuleitungen (Koppelung verschiedener Netze), Art der Motorenregulierung, Grösse der Motoreinheitsleistungen. Die folgende Preiszusammenstellung schliesst die Hochspannungszuleitungen vom allgemeinen Netz bis zur Hochspannungsschaltanlage für die Tunnellüftung aus, weil diese von der Entfernung und den topografischen Gegebenheiten abhängt. Für die Kosten gilt folgender Ansatz:

(12) 
$$K_E = 1{,}10 N_M \sum p_E$$

Die auf die maximale Motorleistung  $N_M$  bezogenen Preisfaktoren  $p_E$  für die komplett montierten und betriebsbereiten Anlagen gelten die Angaben der Unterabschnitte 1.4.1. bis 1.4.5.

### 1.4.1. Hochspannungsschaltanlagen für Innenaufstellung

Gemeint sind Anlagen für Drehstrom von 11 oder 16 kV mit Transformatoren für Niederspannungs-Antriebsmotoren, Schutzeinrichtungen und allen Hochspannungsverbindungsleitungen. Für einfache Anlagen mit Einspeisung von einem Netz ist  $p_{E_1} \cong 100$  Fr./kW, für komplizierte Anlagen mit Einspeisung von zwei unabhängigen Netzen und Kuppeltransformatoren kann gesetzt werden

$$p_{E_1} \simeq 230$$
 bis 250 Fr./kW.

## 1.4.2. Niederspannungsschaltanlagen

Hier handelt es sich um Anlagen für den Betrieb von Asynchron-Käfigläufermotoren mit Hauptverteilschränken, Motorschaltschränken, Steuerschränken, Rangierverteilschränken, Blindleistungs-Kompensationseinrichtungen, Anlasstransformatoren zum Abbau der Anfahrstromspitzen, sämtliche Leitungen verlegt und angeschlossen an die Motoren.

Hier gilt 
$$p_{E_2} \cong (80 \text{ bis } 90) \sum_{(n)} n_i/n \text{ Fr./kW.}$$

Bei Anlagen ohne Blindleistungs-Kompensationseinrichtung und Anlasstransformatoren kann gesetzt werden

$$p_{E_2} \cong (60 \text{ bis } 70) \sum_{(n)} n_i/n \text{ Fr./kW.}$$

## 1.4.3. Niederspannungsschaltanlagen

Gemeint sind Anlagen mit stufenlos steuerbaren Flüssigkeitswiderständen zum Betrieb von Asynchron-Schleifringläufermotoren. Mit normalen Wasserwiderständen kann die Regelung der Drehzahl bis auf 30 bis 25% der vollen Drehzahl erfolgen. Es ist daher erforderlich, einen zweiten kleineren Wasserwiderstand für den Bereich zwischen 6 und 25% vorzusehen. Für Schaltanlagen in einfachster Ausführung mit Blindleistungs-Kompensationseinrichtung einschliesslich aller Hilfs-, Kühl- und Überwachungseinrichtungen, sämtliche Anschlussleitungen verlegt und betriebsbereit ist  $p_{E_4} \cong 180 \, \text{Fr./kW}$ , für Anlagen ohne Blindleistungskompensation

$$p_{E_3} \cong 130 \text{ Fr./kW.}$$

# 1.4.4. Gleichrichter-Speise- und Regelgeräte zum Betrieb von Gleichstrommotoren

Die Drehzahlregulierung erfolgt hier durch Speisung der Rotoren mit variabler Gleichspannung über gesteuerte Thysistor-Halbleiter-Gleichrichter. Im Preis sind eingeschlossen die Verkabelung, die Kabel zu den Motoren und Transformatoren, die Blindleistungs-Kompensationseinrichtung und die betriebsbereite Montage. Hier ist  $p_{E_4} \cong 490$  Fr./kW; ohne Blindleistungs-Kompensationseinrichtung ist

$$p_{E_5} \cong 400 \text{ Fr./kW.}$$

#### 1.4.5. Zentralisierte vollautomatische Steuerung

Für die zur Regelung der Ventilatorförderströme erforderlichen Einrichtungen (nicht inbegriffen die CO- und Sichttrübungsmesseinrichtungen sowie Verkehrszählanlagen), komplett verkabelt und betriebsfertig, kann gesetzt werden

$$p_{E_5} \cong 30$$
 bis 35 Fr./kW.

#### 1.5. Die Stromkosten $K_S$

Diese richten sich nach den örtlichen Tarifen und der Höhe der Abnahmemenge; sie lassen sich wie folgt berechnen:

(13) 
$$K_S = \frac{\Theta N_K}{\eta v \eta_M \eta_{TR}} p_S = \frac{\Theta N_M}{\eta_M \eta_{TR}} p_S,$$
 worin:

η<sub>M</sub> Motor-Vollastwirkungsgrad

ηψ Vollastwirkungsgrad der Übersetzung zwischen Ventilator und Antriebsmotor

η<sub>TR</sub> Transformator-Vollastwirkungsgrad

 $N_K$  Anteil der Wellenleistung des Ventilators für den betrachteten Lüftungskanal

Die jährliche Anzahl  $\Theta$  der Vollastbetriebsstunden ist abhängig von der Verkehrsfrequenz bzw. der Verkehrs-Dauerkurve, von der Art der Regulierung des Förderstromes des Ventilators sowie den Teillastwirkungsgraden  $\eta'v$ ,  $\eta'v$ ,  $\eta'm$  und  $\eta'x$ . Der Stromtarif beträgt in der Regel  $p_S=0.07$  bis 0.08 Fr./kWh.

### 1.6. Die jährlichen Unterhaltskosten $K_U$

Dieser Kostenanteil ist eher vom Umfang der Lüftungsanlage als von der installierten Leistung abhängig. Da er aber klein ist, wird trotzdem der Ansatz

(14) 
$$K_U = p_U N_M$$

gewählt, worin  $p_U \cong 10 \text{ Fr./kW}$  Jahr gesetzt werden kann.

#### 1.7. Der Leistungsbedarf des Ventilators

#### 1.7.1. Der Druckverlust des untersuchten Kanals

Um den Leistungsbedarf des Ventilators berechnen zu können, muss vorerst die Druckdifferenz  $\Delta p_{ges}$  ermittelt werden, die dieser zu überwinden hat. Darunter ist die gesamte Differenz, also die Summe des statischen und des dynamischen Anteils zu verstehen. Sie setzt sich aus den Druckverlusten  $\Delta p_{Kges}$  zusammen, die der Förderstrom  $\mathring{V}$  beim Durchströmen der einzelnen Kanalabschnitte erfährt; es ist also

(15) 
$$\Delta p_{ges} = \sum \Delta p_{Kges}$$

Für den zu untersuchenden Kanal bzw. Kanalabschnitt lässt sich der Druckverlust in allgemeiner Form wie folgt anschreiben:

(16) 
$$\Delta p_{Kges} = \frac{\gamma}{2g} \left( \frac{\dot{V}}{F_K} \right)^2 \left[ \frac{\lambda L}{a D_K} + b \right]$$

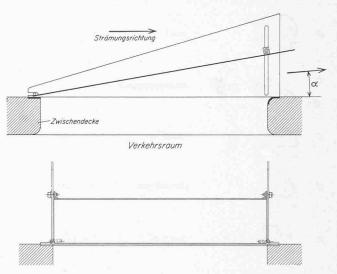



Bild 8. Einstellbare Abluftklappe für den Einbau in die Tunnelzwischendecke (Konstruktion Luwa AG)

Das erste Glied in der eckigen Klammer bezieht sich auf die Strömung im Kanal. Der Faktor a berücksichtigt eine im Kanal längs x veränderliche Geschwindigkeit. Der Faktor b fasst die Druckverluste infolge Ablenkung und Übertritt vom Frischluftverteilkanal in den Verkehrsraum bzw. von diesem in den Abluftsammelkanal sowie die dynamischen Druckanteile zusammen.

Der Reibungsbeiwert  $\lambda$  ist von der Reynoldszahl Re und der relativen Wandrauhigkeit  $r/D_K$  abhängig. Für Tunnellüftungskanäle, die vorwiegend mit Blechschalungen sauber betoniert und deren Fugen abgeschliffen oder verputzt werden, rechnet man im allgemeinen mit einer Wandrauhigkeit von r=0,5 mm. Die entsprechenden  $\lambda$ -Werte können beispielsweise dem Bericht [4] entnommen werden. Tritt die Luft aus dem Verkehrsraum nicht senkrecht in den Abluftkanal ein, sondern unter einem Winkel  $\alpha$  gegenüber der Strömungsrichtung im Kanal, Bild 8, so erteilt der meist mit beträchtlicher Geschwindigkeit eintretende Luftstrahl der im Kanal strömenden Luft einen Impuls, der den Druckabfall im Kanal (längs x) verringert. Auch diese Wirkung ist im Faktor b enthalten, weshalb dieser namentlich bei kleinen Winkeln  $\alpha$  negativ ausfallen kann.

#### 1.7.2. Angaben über die Faktoren a und b

Bei *Schächten* oder *Horizontalstollen* für Frischluft oder Abluft, bei denen  $\dot{V}$  und  $F_K$  längs x konstant sind, sind a=1 und b=0.

Für Frischluft-Verteilkanäle von längs x konstantem Querschnitt, bei denen also  $\dot{V}$  und  $w_K$  mit x abnehmen und somit kinetische Energie sich in Druckenergie umwandelt, gilt nach [8]:

$$a = 3;$$
  $b = 1 - kz_0 - \frac{1}{3}(kz_0 - kz_1);$   $\lambda = \lambda_1$ 

Dabei ist  $k_{Z_0}$  vom Wert  $L/D_K$  und von der Kanalform abhängig, während  $k_{Z_1}=0,21$  für quadratischen Querschnitt und =0,48 für dreieckförmigen Querschnitt zu wählen ist. Nimmt hingegen  $F_K$  linear mit x ab, derart, dass die Luftgeschwindigkeit  $w_L$  konstant bleibt, so können nach [8] gesetzt werden:

$$D_K = D_{K_1}; \quad \lambda = \lambda_1; \quad a = \frac{3}{8}; \quad b = 1.$$

Für Abluft-Sammelkanäle von längs x konstantem Querschnitt  $F_K$ , also von 0 bis  $\dot{V}$  zunehmendem Luftstrom, gelten nach [8]:

$$a=3$$
;  $b=k_a-1$ ;  $\lambda=\lambda_2$ ,

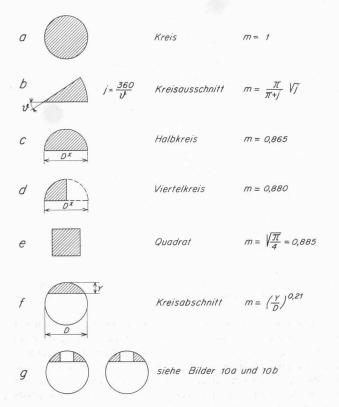
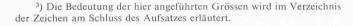
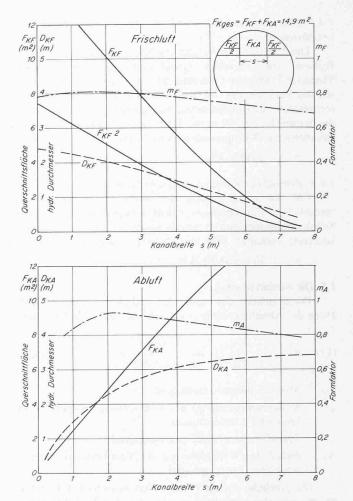



Bild 9. Formfaktoren m verschiedener Kanalquerschnitte zur Berechnung der hydraulischen Durchmesser

wobei  $k_a$  eine Funktion ist von  $\alpha$ ,  $\zeta_A$ ,  $\lambda_2 L/D_K$  und  $\Pi_A{}^3$ ). Wie später an Beispielen gezeigt wird, ist der Einfluss des Eintrittswinkels  $\alpha$  der Luft in den Abluftkanal verhältnismässig gross. Bild 8 zeigt die konstruktive Ausbildung einer Absaugöffnung mit einstellbarer Klappe. Der Winkel kann sich zwischen etwa  $10^\circ$  und  $90^\circ$  verändern; je kleiner er ist, desto stärker die Impulswirkung, desto geringer der Druckverlust im Kanal. Beim Sonderfall  $\alpha = 90^\circ$  sind  $k_a = 2$  und daher b = 1. Für Abluftsammelkanäle, bei denen  $F_K$  linear mit x zunimmt, so dass  $w_L$  konstant bleibt, lassen sich für den Sonderfall  $\alpha = 90^\circ$  aus [8] folgende Zahlenwerte ableiten:

$$D_K = D_{K_2}; \quad a = 1/2,2; \quad b = 8,2$$


Für  $\alpha < 90^\circ$  gibt es keine allgemeine Lösung in Form von Gleichung (16); vielmehr muss der Druckverlust graphisch bestimmt werden. Hierzu sei auf [8] sowie auf Beispiel 2.2.1. verwiesen.


#### 1.7.3. Der hydraulische Durchmesser DK

Dieser hängt von der Form und der Querschnittsfläche des betrachteten Kanals ab. Die beiden Grössen lassen sich durch den Ansatz trennen:

$$(17) \quad D_K = \frac{4 F_K}{U_K} = \frac{2 m}{\sqrt{\pi}} \sqrt{F_K}$$

Hierin bedeuten  $U_K$  den luftbespülten Umfang des Kanalquerschnitts und m einen Formfaktor, dessen Grösse den Bildern 9, 10a und 10b zu entnehmen ist. Aus Gleichung (17) geht hervor, dass sich die hydraulischen Durchmesser geometrisch ähnlicher Kanalquerschnitte wie die Quadratwurzeln aus dem Quotienten der Flächeninhalte verhalten.





Bilder 10a (oben) und 10b (unten). Querschnittsflächen, hydraulische Durchmesser und Formfaktoren für (a) Frisch- und (b) Abluftkanäle, die in der Tunnelkalotte untergebracht sind, in Abhängigkeit von der Abluftkanalbreite s

#### 1.7.4. Die Gleichungen für den Leistungsbedarf des Ventilators

Der Anteil  $N_K$  der für den betrachteten Kanal oder Lüftungsabschnitt erforderlichen Wellenleistung in kW berechnet sich zu

$$(18) \quad N_K = \frac{\dot{V} \, \Delta p_{Kges}}{\eta_V \, 102}$$

Für das ganze in Frage stehende Lüftungssystem ergibt sich der Leistungsbedarf des zugehörigen Ventilators zu

(19) 
$$N_V = \sum_{(s)} N_K = \frac{\dot{V} \Delta p_{ges}}{\eta_V 102}$$

## 1.8. Gleichungen für optimale Kanalquerschnitte $F_K$

Um den optimalen Querschnitt eines bestimmten Kanals (z.B. eines Horizontalstollens oder eines Frischluft-Verteiloder Abluft-Sammelkanals als Teil des Haupttunnels oder eines Schrägschachtes) im Rahmen eines Tunnellüftungssystems ermitteln zu können, werden zunächst in Gleichung (1) die nach den Gleichungen (2) bis (19) gefundenen Grössen eingesetzt. Man erhält für die Jahreskosten:

(20) 
$$P_{j} = \tau_{B} L p_{B} F_{K} + \tau_{MA} p_{V} \dot{V} + \left\{ 1, 1 \tau_{MA} (p_{M} f_{M}/n + \sum p_{E}) + p_{U} + \Theta p_{s}/\eta_{M} \eta_{TR} \right\}$$

$$\frac{\gamma \dot{V}^{3}}{2 \cdot 102 \cdot g \eta_{V} \eta_{U} F_{K}^{2}} \left[ \frac{\lambda L \sqrt{\pi}}{2 a m} \frac{1}{\sqrt{F_{K}}} + b \right]$$

Tabelle 4a. Jahreskosten bei verschiedenen Schachtquerschnitten  $F_{KF}$  im Beispiel 1.9.1.

| $F_{KF}$      | m²   | 9,6     | 12,6   | 17,2   | 19,6   | 28,3   |
|---------------|------|---------|--------|--------|--------|--------|
| D*            | m    | 3,5     | 4,0    | 4,68   | 5,0    | 6,0    |
| $w_F$         | m/s  | 59,3    | 45,2   | 33,1   | 29,0   | 20,1   |
| $P_j$         | Fr.  | 120 920 | 88 650 | 78 070 | 79 310 | 95 660 |
| $P_j/P_{jmi}$ | in - | 1,55    | 1,13   | 1,00   | 1,02   | 1,22   |

Tabelle 4b. Jahreskosten in Abhängigkeit von  $F_K$  im Beispiel 1.9.4.

| $F_K$         | m²  | 5      | 6      | 7,4    | 10     | 14      |
|---------------|-----|--------|--------|--------|--------|---------|
| $w_{F_1}$     | m/s | 38,0   | 31,7   | 25,6   | 19     | 13,6    |
| $P_i$         | Fr. | 88 900 | 81 700 | 80 680 | 90 000 | 114 920 |
| $P_j/P_{jmi}$ | n - | 1,1    | 1,01   | 1,00   | 1,12   | 1,42    |

Tabelle 4c. Jahreskosten bei verschiedenen Werten von  $F_K$  im Beispiel 1.9.5.

| $F_K$          | $m^2$ | 4      | 5      | 6      | 7      | 8      |
|----------------|-------|--------|--------|--------|--------|--------|
| $w_{A_2}$      | m/s   | 49,5   | 39,6   | 33,0   | 28,3   | 24,8   |
| $P_j$          | Fr.   | 83 440 | 68 590 | 65 340 | 67 140 | 71 390 |
| $P_j/P_{jmin}$ | _     | 1,28   | 1,05   | 1,00   | 1,03   | 1,09   |

Sieht man von einigen Faktoren (wie  $p_B$ ,  $p_M$ , b und  $\lambda$ ) ab, deren Veränderungen die Jahreskosten nur unwesentlich beeinflussen, so erscheint als einzige Variable nur noch der Kanalquerschnitt  $F_K$ . Die Bedingung für minimale Jahreskosten lautet daher:

$$(21) \quad \frac{dP_j}{dF_K} = 0$$

Mit ihr ergibt sich aus Gleichung (20) die Bedingung für optimalen Kanalquerschnitt:

(22) 
$$\frac{5\sqrt{\pi} \lambda L}{4 a m} \frac{1}{F_{K}^{7/2}} + \frac{2b}{F_{K}^{3}} = \frac{2 \cdot 102 g L}{\dot{V}^{3} \gamma} \cdot \frac{\tau_{B} p_{B} \eta_{V} \eta \dot{v}}{1,1 \tau_{MA} (p_{M} f_{M}/n + \sum p_{E}) + p_{U} + \Theta p_{S}/\eta_{M} \eta_{TR}}$$

Diese Gleichung lässt sich für den allgemeinen Fall nicht explizit nach  $F_K$  auf lösen. Man findet aber die Lösung verhältnismässig rasch durch Variieren von  $F_K$  und Vergleichen. Dazu nimmt man zunächst die Grössen  $p_E$ ,  $p_M$ , b und  $\lambda$  an und setzt sie in die rechte Seite der Gleichung (22) ein. Anschliessend wählt man einen wahrscheinlichen Wert für  $F_K$ , setzt ihn in die linke Seite von Gleichung (22) ein und vergleicht das Ergebnis mit dem der rechten Seite.

Für Lüftungskanäle mit längs x konstantem Luftstrom wird b=0 und somit

(23) 
$$F_{K} = \left(\frac{(5\sqrt{\pi} \lambda \gamma \dot{V}^{3})}{816 a m g \tau_{B} p_{B} \eta_{V} \eta \dot{v}} \cdot \left\{1, 1 \tau_{MA} (p_{M} f_{M}/n + \sum p_{E}) + p_{U} + \Theta p_{S}/\eta_{M} \eta_{TR}\right\}\right)^{2/7}$$

Die nachfolgenden Beispiele, die sich auf ein bestimmtes Lüftungssystem beziehen, sollen die Anwendung der Gleichungen (20), (22) und (23) veranschaulichen.

## 1.9. Beispiele zur Bestimmung der optimalen Kanalquerschnitte

1.9.1. Vertikaler kreisförmiger Frischluftschacht

Es werden folgende Hauptdaten zugrundegelegt:  $L=160~\mathrm{m};~\dot{V}=570~\mathrm{m}^3/\mathrm{s};~\gamma_F=1,10~\mathrm{kg/m}^3;~\Theta=820~\mathrm{h};$   $\tau_B=0,0506;~\tau_{MA}=0,0674;~N_M=400~\mathrm{kW}$  (vorläufige Schätzung). Für den in Frage stehenden Kanal sind

$$a = 1$$
;  $m = 1$ ;  $r = 5 \cdot 10^{-4}$  m;  $\lambda = 0.012$ .

Zum Antrieb des Ventilators wird ein Asynchron-Käfigankermotor mit den vier Drehzahlen 1000, 750, 500 und 250 U/min gewählt, der mit dem Ventilatorlaufrad direkt gekuppelt ist. Für ihn sind: der Einflussparameter, Gleichung (11),  $f_M = 1,875$  und der Preisfaktor, Bild 7,  $p_M = 7 \cdot 10^4$  Fr./kW min. Für die zugehörige elektrische Einrichtung werde gewählt:  $\sum p_E = 430$  Fr./kW, für die Stromkosten  $p_S = 0,07$  Fr./kWh, für die Unterhaltskosten  $p_U = 10$  Fr./kW, für die Baukosten  $p_B = 350$  Fr./m³ und für die Ventilatorkosten  $p_V = 250$  Fr. pro m³/s. Die Wirkungsgrade seien  $\eta_V = 0,83$ ;  $\eta_{\bar{V}} = 1$ ;  $\eta_M = 0,92$ ;  $\eta_{TR} = 0,98$ . Setzt man diese Zahlenwerte in Gleichung (23) ein, so ergeben sich der optimale Kanalquerschnitt zu:

$$F_{KF} = 17.2 \text{ m}^2$$
, also  $D^* = 4.68 \text{ m}$ ,

und die Durchströmgeschwindigkeit  $w_F = 33,1$  m/s <sup>4</sup>).

Berechnet man mittels Gleichung (20) die Jahreskosten unter Annahme grösserer oder kleiner Schachtquerschnitte  $F_K$ , so ergeben sich die Zahlen der Tabelle 4a.

1.9.2. Vertikaler halbkreisförmiger Frischluftschacht nach Bild 9c Der Schacht sei mit einem zweiten, zum Beispiel für Abluft, zu einem kreisförmigen kombiniert. Alle Daten seien gleich wie im Beispiel 1.9.1., mit Ausnahme von:

$$m = 0.865$$
;  $p_B = 326$  Fr./m<sup>3</sup>;  $\lambda = 0.0124$ .

Mit Gleichung (23) ergeben sich folgende Optimalwerte:

$$F_{KF} = 18.5 \text{ m}^2$$
;  $D_{KF} = 4.2 \text{ m}$ ;  $D^* = 7.0 \text{ m}$ ;  $w_F = 30.8 \text{ m/s}$ ;  $P_j = 78100 \text{ Fr}$ .

1.9.3. Vertikaler Frischluftschacht mit Viertelkreisquerschnitt nach Bild 9d

Der Schacht sei mit anderen Schächten zu einem kreisförmigen kombiniert. Alle Daten seien gleich wie im Beispiel 1.9.1., ausgenommen:

$$m = 0.880$$
;  $p_B = 308$  Fr./m<sup>3</sup>;  $\lambda = 0.0123$ .

Die Optimalwerte ergeben sich zu:

$$F_{KF} = 18,7 \text{ m}^2;$$
  $D_{KF} = 4,3 \text{ m};$   $D^* = 10 \text{ m};$   $w_F = 30,5 \text{ m/s};$   $P_j = 74910 \text{ Fr}.$ 

## 1.9.4. Zweiteiliger Frischluft-Verteilkanal nach Bild 2

Die beiden Kanalhälften befinden sich oberhalb der Verkehrsraumdecke; ihr Querschnitt sei längs x konstant. Sie gehören zum selben Lüftungssystem wie der Schacht in Beispiel 1.9.1., daher sind die meisten Einflussparameter dieselben; neu sind lediglich:

$$L = 865 \text{ m}$$
  $F_{VR} = 45 \text{ m}^2$   $a = 3; m = 0,80$   
 $\dot{V} = 190 \text{ m}^3/\text{s}$   $F_{VR} + F_{KF} + F_{KA} = 60 \text{ m}^2$   $k_{Z_0} = 1,53$   
 $\dot{V}/2 = 95 \text{ m}^3/\text{s}$  Gebirgsklasse II  $k_{Z_1} = 0,48$   
 $\lambda_1 = 0,0145$   $p_B = 172 \text{ Fr./m}^3$   $b = -0,18$ 

Durch Anwendung der oben unter 1.8. angegebenen Methode findet man mittels Gleichung (22) die folgenden Optimalwerte:

$$F_{KF}/2 = 3,70 \text{ m}^2$$
;  $D_{KF} = 1,70 \text{ m}$ ;  $w_{F_1} = 25,6 \text{ m/s}$  s);  $P_j/2 = 40340 \text{ Fr./m}^3$ .

- <sup>4</sup>) Der Index «F» bedeutet «Frischluft», der Index «A» «Abluft», siehe Zeichenerklärung am Schluss.
- <sup>5</sup>) Der Index 1 weist auf den Kanalanfang, der Index 2 auf das Kanalende und der Index 3 auf den Verkehrsraum hin, siehe Zeichenerklärung.

Bei Änderung des Kanalquerschnittes ergeben sich die in Tabelle 4b angegebenen Jahreskosten.

## 1.9.5. Abluft-Sammelkanal nach Bild 2

Der Kanal befindet sich ebenfalls oberhalb der Fahrbahndecke, in der Mitte zwischen den zwei zugehörigen Frischluftkanälen nach Beispiel 1.9.4. Auch hier sei der Querschnitt längs x konstant. Die neuen Daten sind:

$$L = 865 \text{ m}$$
  $\alpha \simeq 0^{\circ}$   $a = 3$   
 $\dot{V} = 198 \text{ m}^3/\text{s}$   $\zeta_A = 0,2$   $k_a = 0,53$   
 $\gamma_A = 1,04 \text{ kg/m}^3$   $\lambda_2 L/D_{KA} \simeq 4,8$   $b = -0,47$   
 $\lambda_2 = 0,0137$   $H_A = 0,25$   $m = 0,92$ 

Mit einem Kubikmeterpreis von  $p_B = 172 \text{ Fr./m}^3$  ergeben sich in gleicher Weise wie beim Beispiel 1.9.3. die Optimalwerte zu

$$F_{KA} = 6.0 \text{ m}^2$$
;  $D_{KA} = 2.5 \text{ m}$ .

Bei Änderung von  $F_{KA}$  erhält man die Jahreskosten nach Tabelle 4c.

Für die Lüftungskanäle nach den Beispielen 1. 9. 4. und 1. 9. 5. liefert die Optimierung einen Tunnelquerschnitt

$$F_{VR} + F_{KF} + F_{KA} = 45 + 4.7 + 6.0 = 58.4 \,\mathrm{m}^2$$

Die Jahreskosten belaufen sich auf  $P_i = 146200 \, \mathrm{Fr.}$ 

#### 1.9.6. Frischluft-Verteilkanal nach Bild 3

Der Kanal befinde sich wieder oberhalb der Fahrbahndecke; sein Querschnitt sei längs x konstant. Er bildet eine Variante zum Kanal nach Beispiel 1.9.4. Die entsprechenden Daten sind:

$$L = 865 \,\mathrm{m}$$
  $k_{Z_0} = 1,54$   $F_{VR} = 45 \,\mathrm{m}^2$   
 $\dot{V} = 190 \,\mathrm{m}^3/\mathrm{s}$   $k_{Z_1} = 0,48$   $F_{VR} + F_{KF} + F_{KA} = 60 \,\mathrm{m}^2$   
 $\lambda_1 = 0,0150$   $b = -0,19$  Gebirgsklasse II  
 $a = 3$   $m = 0,78$   $p_B = 172 \,\mathrm{Fr./m}^3$ 

Es ergeben sich folgende Optimalwerte:

$$F_{KF} = 6.7 \text{ m}^2$$
;  $D_{KF} = 1.63 \text{ m}$ ;  $w_{F_1} = 28.3 \text{ m/s}$ ;  $P_i = 73500 \text{ Fr}$ .

## 1.9.7. Abluft-Sammelkanal nach Bild 3

Der Kanal sei mit dem von Beispiel 1.9.6. kombiniert. Sein Querschnitt sei längs x konstant. Die Daten sind:

Die Optimalwerte sind:

$$F_{KA} = 6.3 \text{ m}^2$$
;  $D_{KA} = 2.25 \text{ m}$ ;  $w_{A2} = 31.4 \text{ m/s}$ ;  $P_j = 68040 \text{ Fr}$ .

Für die Lüftungskanäle nach den Beispielen 1.9.6. und 1.9.7. liefert die Optimierung einen Tunnelquerschnitt

$$F_{VR} + F_{KF} + F_{KA} = 45 + 6.7 + 6.3 = 58 \text{ m}^2$$

Die Jahreskosten belaufen sich auf  $P_i = 141540$  Fr.

Tabelle 5. Beispiel 2.1.2.; Ergebnisse der Berechnung nach GI. (29) für optimale Aufteilung des für die Luftkanäle verfügbaren Querschnitts von 14,9 m²

| α                              | o       | 90     | 45     | 10     |
|--------------------------------|---------|--------|--------|--------|
| ξA                             |         | 0      | 0,10   | 0,20   |
| S                              | m       | 3,15   | 2,90   | 2,80   |
| $(F_{KF}/F_{KA})_{opt}$        | <u></u> | 1,00   | 1,16   | 1,225  |
| $F_{KF}$                       | $m^2$   | 7,45   | 8,0    | 8,2    |
| $F_{KA}$                       | $m^2$   | 7,45   | 6,9    | 6,7    |
| $D_{KF}$                       | m       | 1,73   | 1,80   | 1,82   |
| $D_{KA}$                       | m       | 2,82   | 2,72   | 2,67   |
| $w_{F_1}$                      | m/s     | 25,5   | 23,8   | 23,2   |
| $W_{A_2}$                      | m/s     | 26,6   | 28,8   | 29,6   |
| $\lambda_{F_1}$                | _       | 0,0147 | 0,0147 | 0,0147 |
| $\lambda_{A_2}$                |         | 0,0134 | 0,0138 | 0,0138 |
| $a_F$                          | -       | 3      | 3      | 3      |
| $a_A$                          |         | 3      | 3      | 3      |
| $b_F$                          | 1 12    | -0,19  | -0.18  | -0,18  |
| $b_A$                          | _       | 1      | -0,20  | -0,50  |
| $\Delta p_{F(1-2)}$            | mm WS   | 83     | 70     | 65,7   |
| $\Delta p_{A (1-2)}$           | mm WS   | 90,5   | 58,5   | 46,9   |
| $\Delta p_{F(2-3)}$            | mm WS   | 20     | 20     | 20     |
| $\Delta p_{A (3-1)}$           | mm WS   | 20     | 20     | 20     |
| $\Delta p_{F (1-3)}$           | mm WS   | 103    | 90     | 85,7   |
| $\Delta p_{A (3-2)}$           | mm WS   | 110,5  | 78,5   | 66,9   |
| $V_F \Delta p_{F(1-3)}$        | m kp/s  | 19 570 | 17 100 | 16 290 |
| $\dot{V}_A \Delta p_{A (3-2)}$ | m kp/s  | 22 000 | 15 590 | 13 290 |
| $\sum_{(i)} N_K$               | kW      | 408    | 320    | 290    |

## 1.10. Folgerungen aus den Beispielen

Aus den vorliegenden Lüftungsverhältnissen und Annahmen ist ersichtlich, dass Schachtgruppen, das heisst mehrere getrennte, nahe zusammenliegende Schächte gegenüber einem kombinierten Schacht – abgesehen von den Problemen der Trennung von Ansaug- und Ausblasöffnungen – in wirtschaftlicher Hinsicht keinen Vorteil bieten.

Die Gegenüberstellung der Jahreskosten für optimal bemessene, über der Fahrbahn liegende Frisch- und Abluftkanäle zeigt keinen wesentlichen Vorteil der Lösung mit nur einem Frischluftkanal nach Bild 3 gegenüber jener mit zwei Frischluftkanälen nach Bild 2.

## 2. Die geometrische Form der Kanäle

#### 2.1. Aufgabenstellung

In Abschnitt 1 wurde gezeigt, dass jeder Lüftungskanal für sich optimiert werden kann. Zur Vereinfachung des Problems wurde dabei ein konstanter Querschnitt über die ganze Kanallänge vorausgesetzt. Laufen mehrere Kanäle parallel nebeneinander, so sind die einzelnen optimierten Querschnitte zu einer für den unterteilten Gesamtkanal bautechnisch günstigen Form zusammenzufassen.

Nun kommt es aber öfters vor, dass für eine Anzahl parallel zu führender Kanäle der Gesamtquerschnitt  $F_{Kges}$  aus irgendeinem Grund von vornherein festgelegt ist. Dies kann beispielsweise der Fall sein, wenn aus einem Tunnelnormalprofil durch eine Zwischendecke, die einen ganz bestimmten Abstand von der Fahrbahn haben muss, ein Raum entsteht, der Frisch- und Abluftkanäle aufnehmen muss, wie das in den Bildern 2 und 3 der Fall ist. Ein anderes Beispiel stellt der aus Fertigelementen im Tagbau zusammengesetzte Tunneltyp für Unterführungen dar, wobei ein Teil des Querschnitts, wie Bild 1b zeigt, als Fahrraum und der Rest als Zu- und Abluftkanal dient. Die Aufgabe lautet somit: Optimale Unterteilung eines Kanals mit festgelegtem, längs x konstant bleibendem Querschnitt in mehrere Einzelkanäle. Das Wirtschaftlichkeitskriterium Gleichung (21) erhält nun die Form:

$$(24) \quad \frac{d}{dF_K} \sum_{(i)} P_j = 0$$

Tabelle 6. Zahlenwerte zu Beispiel 2.2.1.

| $F_{KF_1}$ m <sup>2</sup> 14,9   | w <sub>A</sub> m/s |        | $\Delta p_{F(1-2)}$      | mmWS 120     |
|----------------------------------|--------------------|--------|--------------------------|--------------|
| $F_{KA2} \text{ m}^2$ 14,9       | $\lambda_{F1}$ -   |        | $\Delta p_{F(2-3)}$      | mmWS 20      |
| $D_{KF_1}$ m 2,47                | $\lambda_{F2}$ -   | 0,0131 | $\Delta p_{F(1-3)}$      | mmWS 140     |
| $D_{KF_2}$ m 3,40                | $a_F$ -            | 0,375  | $V_F \Delta p_{F (1-3)}$ | mkp/s 26 600 |
| $w_F$ m/s 12,75                  | $b_F$ -            | 1      |                          |              |
| α                                | 0                  | 90     | 45                       | 0            |
| $\xi_A$                          |                    | 0      | 0,10                     | 0,20         |
| $\Delta p_{A (1-2)}$             | mm WS              | 147,5  | 40,0                     | 12,6         |
| $\Delta p_{A (3-1)}$             | mm WS              | 20,0   | 20,0                     | 20,0         |
| $\Delta p_{A (3-2)}$             | mm WS              | 167,5  | 60,0                     | 32,6         |
| $\dot{V}_{A} \Delta p_{A (3-2)}$ | mkp/s              | 33 250 | 11 910                   | 6470         |
| $\sum_{(i)} N_K$                 | kW                 | 586    | 378                      | 325          |
|                                  |                    |        |                          |              |

Wenn in erster Näherung die Versperrung durch die Zwischenwände vernachlässigt wird, so ist

(25) 
$$F_{Kges} = \sum F_{Ki}$$

Die Jahreskosten sind in Gleichung (20) zusammengestellt. Diese Gleichung lässt sich wesentlich vereinfachen, wenn angenommen wird, dass die Luftströme durch die Teilkanäle gegeben sind, dass die Baukosten nur unwesentlich von der Lage der Zwischenwände beeinflusst werden, dass der konstruktive Aufbau und die Wirkungsgrade der Ventilatoren, der Motoren und der elektrischen Ausrüstung für alle Teilkanäle gleich seien und dass für alle Abschnitte gleiche Betriebszeiten eingehalten werden. Unter diesen Voraussetzungen geht Gleichung (24) über in

(26) 
$$\frac{d}{dF_K} \sum_{(i)} N_K = \frac{d}{dF_K} \sum_{(i)} \left( \Delta p_{Kges} \, \vec{V} \right) = 0$$

Um diese Optimierung durchführen zu können, muss der Zusammenhang zwischen hydraulischem Kanaldurchmesser  $D_K$  und Kanalquerschnitt  $F_K$  für verschiedene Lagen der Zwischenwände bekannt sein. Er geht für eine Anordnung nach Bild 2 aus den Bildern 10a und 10b hervor.

#### 2.2. Einzelkanäle mit längs x konstanten Querschnitten

#### 2.2.1. Die Gleichung für das optimale Flächenverhältnis

Der einfachste Fall ergibt sich mit zwei Einzelkanälen für Frischluft (F) und Abluft (A).

Mit Gleichung (16) geht die Bedingung (26) über in

(27) 
$$\frac{d}{dF_{KF}} \left[ \frac{\gamma_F}{\gamma_A} \left( \frac{\dot{V}_F}{\dot{V}_A} \right)^3 \frac{1}{F_{KF}^2} \left( \frac{\lambda_F L}{a_F D_{KF}} + b_F \right) + \frac{1}{F_{KA}^2} \left( \frac{\lambda_A L}{a_A D_{KA}} + b_A \right) \right] = 0$$

Die Differentiation lässt sich nach Einführen von

$$(28) \quad F_{Kges} = F_{KF} + F_{KA}$$

und Gleichung (17) durchführen. Das Ergebnis mit wieder zurückverwandelten Parametern lautet:

(29) 
$$\left(\frac{F_{KF}}{F_{KA}}\right)_{opt} = \frac{\dot{V}_F}{\dot{V}_A} \sqrt{\frac{\gamma_F}{\gamma_A}} \left[ \frac{\frac{5\lambda_F L}{2a_F D_{KF}} + 2b_F}{\frac{5\lambda_A L}{2a_F D_{KA}} + 2b_A} \right]$$

Es ist leider nicht möglich, eine der beiden gesuchten Flächen  $F_{KF}$  oder  $F_{KA}$  explizit zu berechnen. Die Iteration (Annahme von  $F_{KF}$ , berechnen von  $F_{KA}$ ,  $D_{KF}$ ,  $D_{KA}$  und aller

weiteren Parameter, Einsetzen in Gleichung (29) und Vergleichen der Resultate) führt aber rasch zum gesuchten Ergebnis. Gleichung (29) ist dabei sowohl für Schächte oder Kanäle mit längs x konstantem Luftstrom wie auch für Verteil- und Sammelkanäle mit veränderlichem Luftstrom gültig.

#### 2.1.2. Beispiel: Parallele Kanäle nach Bild 2

Das Tunnelprofil schliesse zwischen Gewölbe und Zwischendecke einen Gesamtquerschnitt von  $F_{Kges}=14,9~\mathrm{m}^2$  ein, der in einem mittleren Abluft-Sammelkanal und zwei seitliche Frischluft-Verteilkanäle optimal aufgeteilt werden soll. Diese drei Kanäle weisen längs x konstante Querschnitte  $F_{KF}$  und  $F_{KA}$  auf. Diese sowie die hydraulischen Durchmesser  $D_{KF}$  und  $D_{KA}$  und die Formfaktoren m sind in den Bildern 10a und 10b in Abhängigkeit von der lichten Breite s des Abluftkanals dargestellt. Gegeben seien:

$$\dot{V}_F = 190 \text{ m}^3\text{/s}$$
  $\gamma_F = 1{,}11 \text{ kg/m}^3$   $L = 865 \text{ m}$   $\dot{V}_A = 198 5 \text{ m}^3\text{/s}$   $\gamma_A = 1{,}06 \text{ kg/m}^3$   $r = 0{,}5 \text{ mm}$ 

Mit diesen Zahlenwerten ergeben sich unter Anwendung der oben angegebenen Iterationsmethode die Zahlen der Tabelle 5. Dabei werden für die Druckverluste  $\Delta p_{F~(2-3)}$  beim Übertritt der Fischluft vom Kanalende in den Verkehrsraum und  $\Delta p_{A~(2-3)}$  beim Übertritt der Abluft vom Verkehrsraum in den Abluftkanal an dessen Ende je 20 mm WS angenommen, was für eine gleichmässige Verteilung der Luftströme durch die Öffnungen sowie für das Dämpfen von verkehrsbedingten Druckschwingungen erforderlich ist. Um den starken Einfluss des Einströmwinkels  $\alpha$  zu zeigen, sind drei Fälle mit den Winkeln  $\alpha=90^{\circ}$ , 45° und 10° durchgerechnet worden. Wie ersichtlich, sind die Unterschiede sehr beträchtlich. Für das ganze System ergibt sich die Summe der Leistungsbedarfszahlen für die Ventilation zu

(30) 
$$\sum_{(i)} N_K = (\dot{V}_F \ \Delta p_F + \dot{V}_A \ \Delta p_A) / 102 \text{ kW}$$

## 2.2. Die Querschnitte der Einzelkanäle sind in Richtung deren Längsachse veränderlich

Eine Optimierung von Kanälen mit längs x veränderlichen Querschnitten ist nur für eine Kombination von Verteil- und Sammelkanal sinnvoll. Hier lassen sich jedoch mit bestimmten Formen der Querschnittsveränderung wesentlich niedrigere Druckverluste und Ventilationsleistungen als mit Kanälen von konstanten Querschnitten erzielen. Infolge der sehr grossen Anzahl Gleichungen sowie deren kompliziertem Aufbau ist eine explizite Bestimmung der optimalen Querschnittsverläufe  $F_{KF}$  und  $F_{KA}$  in Abhängigkeit von x nicht möglich. Man ist deshalb darauf angewiesen, den Verlauf anzunehmen, darauf die Druckverluste und die Leistungen zu berechnen und untereinander zu vergleichen. Nachfolgend werden einige Querschnittsformen anhand von Beispielen mit denselben Angaben wie in Beispiel 2.1.2. einander gegenübergestellt. Dabei wird eine längs x gleichmässige Verteilung bzw. Sammlung der Frisch- bzw. Abluft vorausgesetzt.

#### 2.2.1. Erstes Beispiel zu 2.2.: Spitzkanäle (Fall I, Tabelle 9)

Unter Spitzkanälen werden Kanäle verstanden, bei denen die Luftgeschwindigkeiten w längs x konstant sind, während sich die Querschnitte mit x linear verändern. Der Druckverlust ist für den Frischluft-Verteilkanal nach Gleichung (16) zu berechnen, ebenso für den Abluft-Sammelkanal, sofern die Luft aus dem Verkehrsraum senkrecht in ihn eintritt ( $\alpha = 90^{\circ}$ ). Ist jedoch  $\alpha$  kleiner als  $90^{\circ}$ , so gilt für den statischen Druckunterschied zwischen den Stellen 1 und 2 (siehe Fussnote 4) ein Ansatz, der in [8], Seite 69, beschrieben ist. Er bezieht sich auf die graphische Lösung der Gleichung:

(31) 
$$\frac{dp_{Astat}}{dx} = \frac{\gamma_A}{2g} w_{A_2}^2 \cdot \left[ \frac{2}{x} \left( \frac{\sqrt{p_3 - p_{stat}}}{\sqrt{1 + \zeta_A} \sqrt{\gamma_A w_{A_2}^2 / 2g}} - 1 \right) - \frac{\lambda_2}{D_{KA_2}} \left( \frac{L}{x} \right)^{5/8} \right]$$

Er berücksichtigt die Impulswirkung der aus dem Verkehrsraum 3 in den Abluftkanal einströmenden Luft auf die Strömung im Kanal. Die Berechnung kann nur innerhalb der Grenzen von x/L=0.01 bis 1 durchgeführt werden (für noch kleinere Werte x würde L/x unverhältnismässig gross). Innerhalb dieser Grenzen ist:

(32) 
$$\Delta p_{Ages} = \Delta p_{Astat} - \gamma_A w_{A_2}^2/2 g$$

Der Berechnung liegen dieselben Daten zugrunde wie bei Beispiel 2.1.2. Die Ergebnisse finden sich in Tabelle 6. Auch hier fällt die starke Impulswirkung im Abluftkanal bei kleineren Winkeln  $\alpha$  auf, die sich entsprechend stark auf den Leistungsbedarf auswirkt. Weiter zeigt sich, dass Spitzkanäle hinsichtlich Druckverlust und Leistungsaufwand der Ventilatoren von allen geometrischen Formen am ungünstigsten sind.

# 2.2.2. Zweites Beispiel zu 2.2.: kombinierte Kanäle (Fall III Tabelle 9)

Bei Spitzkanälen entstehen hohe Druckverluste in den Kanalteilen mit kleinen hydraulischen Durchmessern, das

Tabelle 7. Beispiel 2.2.2.; kombinierte Kanäle, Zahlenwerte und Ergebnisse

| Absch                                                                    | nnitt                              | I (Querso                          | hnitt län                                                                    | igs x                                                                            | konst.) l <sub>I</sub>             | = 259                                   | ,5 m                |                   |           |                                              |
|--------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|---------------------|-------------------|-----------|----------------------------------------------|
| $F_{KF_1}$                                                               | m²                                 | 10,4                               | $F_{KA_1}$                                                                   | $m^2$                                                                            | 4,5                                | $a_F$                                   |                     | _                 |           | 3                                            |
| $D_{KF1}$                                                                |                                    | 2,07                               | $D_{KA_1}$                                                                   | m                                                                                | 2,2                                | $b_F$                                   |                     | -                 |           | -0,18                                        |
| $w_{F_1}$                                                                | m/s                                | 18,3                               |                                                                              | m/s                                                                              |                                    | $\Delta p_F$                            | (1-2)               | mm V              | WS        |                                              |
| $w_{F2}$                                                                 |                                    |                                    |                                                                              |                                                                                  | 13,2                               | $a_A$                                   |                     |                   |           | 3                                            |
| $\lambda_{F1}$                                                           | -                                  | 0,0145                             | $\lambda_{A_2}$                                                              | =,                                                                               | 0,0145                             |                                         |                     |                   |           |                                              |
| α                                                                        |                                    |                                    | 0                                                                            |                                                                                  | 90                                 |                                         | 45                  |                   |           | 10                                           |
| $b_A$                                                                    |                                    |                                    |                                                                              |                                                                                  | 1                                  |                                         | -0,90               | )                 |           | -1,37                                        |
|                                                                          |                                    |                                    |                                                                              |                                                                                  | 4 4 4                              |                                         | 2.0                 |                   |           | 7 4                                          |
| Abscl                                                                    | hnitt                              |                                    |                                                                              | es Sp                                                                            | 14,5<br>pitzkanals)                |                                         | -3,0<br>346 m       |                   | 1.        | 0.016                                        |
| $F_{K_1}$                                                                | hnitt<br>m²                        | 10,4                               | hnitt ein $F_{KA_1}$                                                         | es Sp                                                                            | oitzkanals)<br>4,5                 | $\lambda_{F_2}$                         | Ť                   |                   |           | 0,016                                        |
| Absch $F_{K_1}$ $F_{K_2}$                                                | hnitt<br>m²<br>m²                  | 10,4<br>4,5                        | Shnitt ein $F_{KA_1}$                                                        | es Sp<br>m²<br>m²                                                                | oitzkanals)<br>4,5<br>10,4         | $\lambda_{F_2}$ $a_F$                   | Ť                   |                   |           | 0,016<br>3/8<br>1                            |
| Abscl $F_{K_1}$ $F_{K_2}$ $D_{KF_1}$                                     | nnitt<br>m²<br>m²<br>m             | 10,4<br>4,5<br>2,07                | Shnitt ein $F_{KA_1}$ $F_{KA_2}$ $D_{KA_3}$                                  | m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup>                               | 4,5<br>10,4<br>2,2                 | $\lambda_{F_2}$ $a_F$ $b_F$             | 346 m               | -<br>-<br>-       | WS        | 0,016<br>3/8<br>1                            |
| Absch $F_{K_1}$ $F_{K_2}$ $D_{KF_1}$                                     | hnitt<br>m²<br>m²<br>m             | 10,4<br>4,5<br>2,07<br>1,3         | Shnitt ein $F_{KA_1}$ $F_{KA_2}$ $D_{KA_3}$                                  | m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup><br>m        | 4,5<br>10,4<br>2,2<br>3,15         | $\lambda_{F_2}$ $a_F$ $b_F$             | Ť                   | -<br>-<br>-       | ws        | 0,016<br>3/8<br>1                            |
| Absch $F_{K_1}$ $F_{K_2}$ $D_{KF_1}$ $D_{KF_2}$ $W_F$                    | hnitt<br>m²<br>m²<br>m<br>m<br>m/s | 10,4<br>4,5<br>2,07<br>1,3         | Phnitt ein $F_{KA_1}$ $F_{KA_2}$ $D_{KA_1}$ $D_{KA_2}$                       | m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup><br>m<br>m/s | 4,5<br>10,4<br>2,2<br>3,15         | $\lambda_{F_2}$ $a_F$ $b_F$             | 346 m               | -<br>-<br>-       | ws        | 0,016<br>3/8<br>1                            |
| Absch $F_{K_1}$ $F_{K_2}$ $D_{KF_1}$ $D_{KF_2}$ $W_F$ $\lambda_{F_1}$    | hnitt<br>m²<br>m²<br>m<br>m<br>m/s | 10,4<br>4,5<br>2,07<br>1,3<br>12,8 | Phnitt ein $F_{KA_1}$ $F_{KA_2}$ $D_{KA_1}$ $D_{KA_2}$ $W_A$                 | m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup><br>m<br>m/s | 4,5<br>10,4<br>2,2<br>3,15<br>13,2 | $\lambda_{F2}$ $a_F$ $b_F$ $\Delta p_F$ | 346 m               | -<br>-<br>mm \    | 10        | 0,016<br>3/8<br>1<br>26,5                    |
| Abscl $F_{K_1}$ $F_{K_2}$ $D_{KF_1}$                                     | hnitt<br>m²<br>m²<br>m<br>m<br>m/s | 10,4<br>4,5<br>2,07<br>1,3<br>12,8 | Shnitt ein $F_{KA_1}$ $F_{KA_2}$ $D_{KA_1}$ $D_{KA_2}$ $w_A$ $\lambda_{A_1}$ | m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup><br>m<br>m/s | 0,0145                             | $\lambda_{F2}$ $a_F$ $b_F$ $\Delta p_F$ | 346 m               | -<br>-<br>mm \    | 10        | 0,016<br>3/8<br>1<br>26,5                    |
| Absch $F_{K_1}$ $F_{K_2}$ $D_{KF_1}$ $D_{KF_2}$ $\lambda_{F_1}$ $\alpha$ | hnitt<br>m²<br>m²<br>m<br>m<br>m/s | 10,4<br>4,5<br>2,07<br>1,3<br>12,8 | Shnitt ein $F_{KA_1}$ $F_{KA_2}$ $D_{KA_1}$ $D_{KA_2}$ $w_A$ $\lambda_{A_1}$ | m <sup>2</sup> m <sup>2</sup> m <sup>2</sup> m m/s                               | 0,0145                             | $\lambda_{F2}$ $a_F$ $b_F$ $\Delta p_F$ | 346 m (1-2) 45 grap | mm \ - hisch [10] | 10<br>gra | 0,016<br>3/8<br>1<br>26,5<br>0,134<br>phisch |

| $a$ $b_{A_1}$ $b_{A_2}$ |            | 0,0102 | o –                   |            | 90   | 45<br>-0,92<br>-0,4        |       | 10<br>-1,45<br>-0,85 |
|-------------------------|------------|--------|-----------------------|------------|------|----------------------------|-------|----------------------|
| $w_{F_1}$<br>$w_{F_2}$  | m/s<br>m/s | 12,8   | $w_{A_1}$ $w_{A_2}$   | m/s<br>m/s | 13,2 | $\Delta p_{F (1-2)}$ $a_A$ | mm WS | 8,8                  |
| $F_{KF_1}$ $D_{KF_1}$   |            |        | $F_{KA_1}$ $D_{KA_1}$ |            |      | $a_F$<br>$b_F$             | _     | $\frac{3}{-0,11}$    |

Ganzer Tunnel L = 865 m

| $\Delta p_{F(1-2)}$ mmWS | 58 | $\varDelta p_{F~(2^{-3})}$ | mm WS 2 | $20  \Delta p_{F (1-3)}$ | mm WS 78 |
|--------------------------|----|----------------------------|---------|--------------------------|----------|
| α                        | 0  |                            | 90      | 45                       | 10       |
| $\Delta p_{A (1-2)}$     | mm | WS                         | 57,1    | 20,9                     | 12,7     |
| $\Delta p_{A (3-1)}$     | mm | WS                         | 20      | 20                       | 20       |
| $\Delta p_{A (3-2)}$     | mm | WS                         | 77,1    | 40,9                     | 32,7     |
|                          | kW |                            | 285     | 225                      | 209      |
| $\sum_{(i)} N_K$         |    |                            |         |                          | 207      |

heisst beim Frischluftkanal am Ende und beim Abluftkanal am Anfang. Um diesem Nachteil zu begegnen, wurde eine Kombination zwischen Kanälen mit konstanten Querschnitten und Spitzkanälen untersucht. Dabei lässt sich durch Variieren der Flächen bzw. Teilkanallängen der Abschnitte mit konstantem Querschnitt die Kombination für minimalen Leistungsaufwand des Ventilators finden.

Für den Fall mit den Angaben von Beispiel 2.1.1. und mittels der Bilder 10a und 10b wurden die Optimalwerte nach Tabelle 7 gefunden.

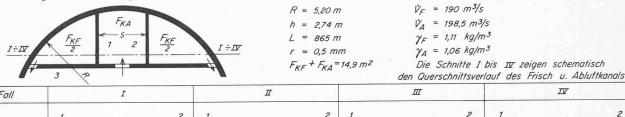
# 2.2.3. Drittes Beispiel zu 2.2.: abgestufte Kanäle (Fall IV Tabelle 9)

Bei Lüftungskanälen mit längs x veränderlichen Querschnitten ist es schwierig und mit erhöhten Kosten verbunden, die Trennwände schief in den Lüftungsraum des Tunnels einzubauen. Herstellungsmässig wesentlich einfacher ist eine längs x veränderliche Kanalunterteilung, wenn abschnittsweise Kanalstücke mit konstanten Querschnitten und sprunghaften Übergängen vorgesehen werden. Im vorliegenden Beispiel, dem wiederum die Daten des Beispiels 2.1.2. zugrunde liegen, wird mit zehn Stufen von der gleichen Länge von 86,5 m gerechnet. Tabelle 8a enthält die Querschnittsflächen und die hydraulischen Durchmesser der einzelnen Abschnitte a bis j.

Für die Berechnung der Druckverluste in den Kanalabschnitten wurden Ansätze aus [8] herangezogen. Die Verluste für die unstetige Verengung in den Frischluftkanälen wurden nach [9], hingegen die infolge plötzlicher Erweiterungen im Abluftkanal mit dem Stossverlustansatz ermittelt. Die ausführliche Berechnung ist im Bericht [10] enthalten. Hier interessieren nur die Ergebnisse; sie sind in Tabelle 8b zusammengestellt.

#### 2.3. Schlussfolgerung

In Tabelle 9 sind die wesentlichen Ergebnisse der vier angegebenen Beispiele zusammengestellt, für welche der Querschnittsverlauf der Frisch- und Abluftkanäle (Querlüftung) über die Kanallänge variiert wurde. Als Vergleichsmass können die Ventilatorleistungen  $\sum N_K$  herangezogen werden. Spitz zu- oder auslaufende Kanäle (Fall I) mit konstanter Durchströmgeschwindigkeit sind sehr ungünstig, weil gerade in den engen Kanalteilen hohe Druckverluste entstehen. Auch eine optimale Kombination von Kanälen mit konstanten Querschnitten (Fall II) stellt noch keine befriedigende Lösung


Tabelle 8a. Beispiel 2.2.3. Querschnitte und hydraulische Durchmesser der zehn Abschnitte

| Abschnitt | $F_{KF}$ | $D_{KF}$ | $F_{KA}$       | $D_{KA}$ |
|-----------|----------|----------|----------------|----------|
|           | m²       | m        | m <sup>2</sup> | m        |
| a         | 12,8     | 2,29     | 2,1            | 1,27     |
| b         | 11,7     | 2,19     | 3,2            | 1,71     |
| c         | 10,6     | 2,10     | 4,3            | 2,11     |
| d         | 9,5      | 1,96     | 5,4            | 2,40     |
| e         | 8,4      | 1,84     | 6,5            | 2,62     |
| f         | 7,3      | 1,71     | 7,6            | 2,83     |
| g         | 6,2      | 1,56     | 8,7            | 2,96     |
| h         | 5,1      | 1,48     | 9,8            | 3,19     |
| i         | 4,0      | 1,22     | 10,9           | 3,23     |
| i         | 2,9      | 1,02     | 12,0           | 3,28     |

Tabelle 8b. Beispiel 2.2.3.; Ergebnisse

| $\Delta p_{F(1-2)}$ mm | ws 45,6 | $\Delta p_F$ (2- | -3) mm WS 20 | $\Delta p_{F(1-3)}$ m | nm WS 65,6 |
|------------------------|---------|------------------|--------------|-----------------------|------------|
| x                      | 0       |                  | 90           | 45                    | 10         |
| SA                     | _       |                  | 0            | 0,1                   | 0,2        |
| $\Delta p_{A(1-2)}$    | mm      | WS               | 87,4         | 25,2                  | 12,2       |
| $\Delta p_{A (3-1)}$   | mm      | WS               | 20           | 20                    | 20         |
| $\Delta p_{A (3-2)}$   | mm      | WS               | 107,4        | 45,2                  | 32,5       |
| $\sum N_K$             | kW      |                  | 334          | 210                   | 185        |
| $(\vec{i})$            |         |                  |              |                       |            |

Tabelle 9. Ergebnisse der Beispiele 2.2.1 bis 2.2.4



| Fall                                                                 |                  |                  | I                |                  |              |              |                  | <b>I</b>   |      |            |                           |                | Ш           |       | Lley.       |                   | IV            |                 |
|----------------------------------------------------------------------|------------------|------------------|------------------|------------------|--------------|--------------|------------------|------------|------|------------|---------------------------|----------------|-------------|-------|-------------|-------------------|---------------|-----------------|
|                                                                      | <                | VF/2 L           | -                | 2<br>            | 7            | <b>→</b>     | V <sub>F/2</sub> |            | ->   | 2<br>VA >  | <                         | >VF/2<br>>VF/2 | → \/        | 2<br> | F           | V <sub>F</sub>  2 | ,,,,,<br>,,,, | -V <sub>A</sub> |
|                                                                      | F                | А                | А                | А                | F            | А            | F                | А          | F    | А          | F                         | А              | А           | А     | F           | А                 | A             | А               |
| α                                                                    |                  | 90               | 45               | 10               |              | 90           |                  | 45         | 10   | 10         |                           | 90             | 45          | 10    |             | 90                | 45            | 10              |
| F <sub>F1</sub> /F <sub>F2</sub><br>F <sub>A1</sub> /F <sub>A2</sub> | <u>14,9</u><br>0 | <u>0</u><br>14,9 | <u>0</u><br>14,9 | <u>0</u><br>14,9 | 7,45<br>7,45 | 7,45<br>7,45 | 8,0              | 6,9<br>6,9 | 8,2  | <u>6,7</u> | <u>10,4</u><br><u>4,5</u> | 4,5<br>10,4    | 4,5<br>10,4 | 4,5   | 12,8<br>2,1 | 2,9<br>12,0       | 2,9<br>12,0   | 2,9<br>12,0     |
| $\Delta p_{F(1-3)} kp/m^2$                                           | 140              |                  |                  |                  | 103          |              | 90               |            | 85,7 |            | 78                        |                |             |       | 65,6        |                   | - 35          |                 |
| $\Delta p_{F(3-2)} kp/m^2$                                           |                  | 167,5            | 60               | 32,6             |              | 110,5        |                  | 78,5       |      | 66,9       |                           | 77,1           | 40,9        | 32,7  |             | 87,4              | 25,2          | 12,2            |
| ≥N <sub>K</sub> kW                                                   |                  | 586              | 378              | 325              | 40           | 08           | 3.               | 20         | 2    | 90         |                           | 285            | 225         | 209   |             | 334               | 210           | 185             |
| $\sum_{(i)} N_K / \sum_{(i)} N_{K min}$                              | %                | 317              | 204              | 175              | 22           | 21           | 1.               | 73         | 15   | 57         |                           | 154            | 122         | 113   | 17          | 181               | 113           | 100             |

dar, da die Luftgeschwindigkeiten am Anfang des Frischluftkanals bzw. am Ende des Abluftkanals relativ gross sind und entsprechende Druckverluste verursachen. Gute Lösungen ergeben sich durch Kombination der beiden Fälle I und II.

Fall III stellt eine optimale Anordnung mit zwei Teilen konstanten Querschnitts und einem konisch verlaufenden Mittelstück dar. In vielen Abstufungen verlaufende Zwischenwände (Fall IV), wobei die Endquerschnitte für die Frischluft bzw. der Anfangsquerschnitt für die Abluft bestimmte Grössen aufweisen müssen, liefern ebenfalls günstige Ergebnisse. Die erforderlichen Ventilatorleistungen der Kombinationen III und IV sind etwa gleich.

Aus Tabelle 9 geht ferner der Einfluss des Eintrittswinkels  $\alpha$  der Luft in den Abluftsammelkanal hervor (Bild 8). Die Leistungsreduktion bei schräger Ablufteinmündung ist beträchtlich und rechtfertigt vollauf den Mehraufwand der Abluftklappen.

## 3. Regelung der Lüftung

Die Ventilatoren einer Tunnellüftung werden hinsichtlich Förderstrom, zu überwindender Druckdifferenz und Leistungsbedarf für die maximal zu erwartende Verkehrsmenge M bemessen, das heisst für die Anzahl der Personenwageneinheiten, die den Tunnel pro Stunde passieren. Der erforderliche Frischluftstrom ergibt sich unter Annahme einer höchstzulässigen CO-Konzentration c (ppm) [4]. Aufgrund von Zählungen und Prognosen stellt man für eine Strasse die Dauerkurve des Verkehrs auf, welche die Verkehrsmenge M' als Funktion der Stunden pro Jahr wiedergibt. Bild 11 zeigt beispielsweise die relative Menge M'/M für eine Fahrrichtung für einen häufig auftretenden Fall. Der horizontale Teil der Kurve entspricht der Leistungsgrenze des Tunnels.

Die CO-Produktion steigt proportional mit der Fahrzeugmenge. Der Zusammenhang zwischen dem Frischluftstrom  $\dot{V}$ , der CO-Konzentration c und der Verkehrsmenge M in relativen Grössen ausgedrückt lautet:

$$(33) \quad \frac{\dot{V}'}{\dot{V}} = \frac{M'}{M} \frac{c}{c'}$$

Die Werte mit (') beziehen sich auf die jeweili ge Teillast während die nicht bezeichneten der Maximallast (Bemessungspunkt) entsprechen.

Im Interesse einer wirtschaftlichen Lüftung ist es erforderlich, den Frischluftstrom  $\dot{V}'$  den tages- und jahreszeitlichen Schwankungen des Verkehrs so anzupassen, dass c' möglichst gleich oder nur wenig kleiner als der höchstzulässige Wert c gehalten wird. Dies bedingt regeltechnische Einrichtungen. Die Regulierung der Luftströme kann für kontinuierlichen oder sprunghaft sich ändernden Betrieb gebaut sein. Sie erfolgt wahlweise über Messeinrichtungen des CO-Gehalts oder der Sichttrübung oder über Verkehrszählanlagen.

Die zum Betrieb der Lüftung erforderliche Leistung bei Teillast  $N_{L'}$  berechnet sich unter Annahme einer quadratischen Widerstandslinie gemäss der Gleichung

(33a) 
$$\frac{\Delta p'_{ges}}{\Delta p_{ges}} = \left(\frac{\dot{V}'}{\dot{V}}\right)^2$$

(abgesehen von den sekundären Reynoldszahl-Einflüssen) für ein Lüftungssystem zu

$$(34) \quad \frac{N'_L}{N_L} = \left(\frac{M'c}{Mc'}\right)^3 \left(\frac{\eta_V}{\eta'_V} \frac{\eta_{\bar{U}}}{\eta_{\bar{U}'}} \frac{\eta_M}{\eta'_M} \frac{\eta_{TR}}{\eta'_{TR}}\right)$$

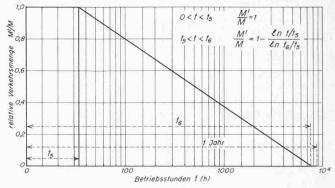



Bild 11. Häufiger Fall einer Dauerkurve des Verkehrs

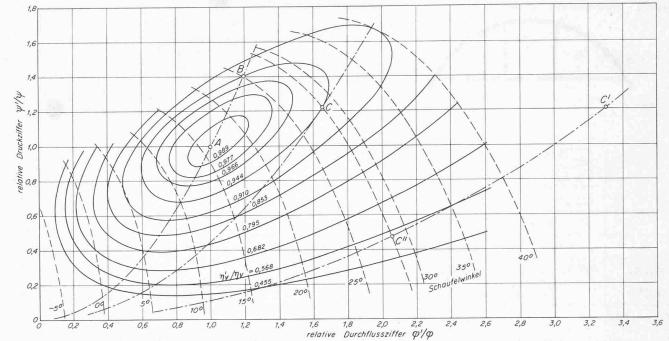



Bild 12. Charakteristiken und Wirkungsgradlinien eines Axialventilators mit verstellbaren Laufschaufeln in dimensionsloser Darstellung

Der Jahresverbrauch E eines Tunnels an elektrischer Energie hängt stark von der Anpassungsfähigkeit der Regelung an den Verkehr ab, er ergibt sich zu

(35) 
$$E = \sum_{(A)} \begin{cases} 8760 \\ \circ \int_{0}^{8760} N_L' dt \end{cases}$$

Die Integration erfolgt über die gesamte Betriebsstundenzahl pro Jahr und die Summierung  $\sum$  über alle Lüftungssysteme im

Als wesentlicher Parameter für die Güte einer Regulierung gilt die Vollastbetriebsstundenzahl O. Diese ergibt sich durch Einführung von Gleichung (34) zu:

(36) 
$$\Theta = \frac{E}{\sum N_L} = \sum_{(A)} \left\{ \int_0^{8760} \left( \frac{M'}{M} \frac{c}{c'} \right)^3 \left( \frac{\eta v}{\eta' v} \frac{\eta v}{\eta v'} \frac{\eta M}{\eta M'} \frac{\eta TR}{\eta' TR} \right) dt \right\}$$

Es genügt, Gleichung (36) auf ein einziges Lüftungssystem anzuwenden, wenn alle Ventilatoren in gleicher Weise und gleichzeitig geregelt werden. Eine Summierung über alle Systeme im Tunnel ist alsdann nicht erforderlich.

Das Wirtschaftlichkeitskriterium für die Auswahl der Regelung leitet sich direkt aus der Jahreskostenzusammenstellung ab. Die für einen Kanalabschnitt aufgestellte Gleichung (20) lässt sich auf ein ganzes Lüftungssystem anwenden. Wird Gleichung (16) in Gleichung (20) eingeführt, so folgt:

stellung ab. Die für einen Kanalabschnitt aufgestellte Gleichung (20) lässt sich auf ein ganzes Lüftungssystem anwenden. Wird Gleichung (16) in Gleichung (20) eingeführt, so folgt: 
$$\sum_{(L)} Pj = \sum_{(L)} \tau_B F_K L p_B + \tau_{MA} p_V \dot{V} + \frac{\dot{V} \Delta p_{ges}}{102 \eta_V \eta \dot{v}} \left\{ 1,1 \tau_{MA} \left[ p_M f_M / n + \sum p_E \right] + p_U + \frac{\Theta p_S}{\eta_M \eta_{TR}} \right\}$$
Setzt man die baulichen Anteile als gegeben voraus so

Setzt man die baulichen Anteile als gegeben voraus, so lässt sich die Bedingung für optimale Regelung ausdrücken:

(38) 
$$p_R = p_V + \frac{\Delta p_{ges}}{102 \, \eta_V \, \eta_V} \left\{ 1, 1 \left[ p_M \, f_M / n + \sum p_E \right] + \frac{p_U}{\tau_{MA}} + \frac{\Theta \, p_S}{\tau_{MA} \, \eta_M \, \eta_{TR}} = Min \right\}$$
 (40)  $\frac{1 - \eta_V'}{1 - \eta_V} = 0,50 + 0,50 \left( \frac{R_e}{R_{e'}} \right)^{0,2} = 0,50 - 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 = 0,50 =$ 

Der Preisvergleichsfaktor pR ist ein Mass für die Wirtschaftlichkeit einer Regelung. Die Jahreskostenersparnis einer Regelung 1 gegenüber einer anderen 2 für ein Lüftungssystem beträgt:

(39) 
$$\Delta P j_R = \sum [\tau_{MA} \dot{V}(p_{R_1} - p_{R_2})]$$

Gleichung (38) zeigt, dass eine direkte Aussage über das wirtschaftlichste Regelsystem nicht gemacht werden kann. Je mehr Einrichtungen zum Erreichen eines besseren regeltechnischen Verhaltens in eine Ventilatoreinheit eingebaut werden, um so höher sind die Anschaffungskosten. Zugleich sinkt die Vollastbetriebsstundenzahl. Nun sind die Einflüsse der Kosten für Motoren, elektrische Schaltanlagen und der Vollastbetriebsstundenzahl von der Leistung abhängig. Hierfür ist bei gegebenem Förderstrom der vom Ventilator zu überwindende Druckverlust des Lüftungssystems massgebend. Je kleiner also dieser Druckverlust ist, um so weniger lohnt sich der Aufwand von teuren Reguliereinrichtungen. So wird aus den nachfolgenden Beispielen ersichtlich, dass für Förderdrücke unterhalb 40 bis 50 mm WS Ventilatoren mit im Betrieb verstellbaren Laufschaufeln keinen wirtschaftlichen Vorteil

Von der Vielzahl der für Ventilatoren möglichen Regelarten sollen nachfolgend nur die am häufigsten verwendeten näher betrachtet werden.

## 3.1. Regelung durch stufenweise Verringerung der Ventilatordrehzahl mit polumschaltbaren Asynchronmotoren

Bei einer festgelegten Anzahl von Drehzahlstufen ist die Optimierung dahingehend durchzuführen, dass unter den möglichen Synchrondrehzahlen ni diejenigen herausgefunden werden müssen, deren Abstufung die kleinsten Jahreskosten bzw. den kleinsten Wert für pR gibt. Obwohl der Betriebspunkt des Ventilators seine Lage auf der  $\psi$ ,  $\varphi$ -Charakteristik nicht ändert, sinkt der Wirkungsgrad  $\eta \nu'$  mit kleiner werdender Drehzahl ab. Die Wirkungsgradänderung kann mit Hilfe der gebräuchlichsten Aufwertungsformel

40) 
$$\frac{1 - \eta v'}{1 - \eta v} = 0,50 + 0,50 \left(\frac{R_e}{R_{e'}}\right)^{0,2} =$$
$$= 0,50 + 0,50 \left(\frac{n}{n_i}\right)^{0,2}$$

ermittelt werden. Hierin ist

(41) 
$$R_e = \frac{\pi n_i D_V^2}{60 v_L}$$

Für Teillast gilt:

$$\frac{\dot{V}'}{\dot{V}} = \frac{n_i}{n} \frac{c}{c'};$$

Der Wirkungsgrad  $\eta_{V'}$  ist nach Gleichung (40) zu berechnen;  $\eta_{M'}$  ist den Bildern 13 und 14 zu entnehmen. Für die Motorleistung gilt die Gleichung:

(42) 
$$\frac{N_{M'}}{N_{M}} = \left(\frac{\dot{V}'}{\dot{V}}\right)^{3} \left(\frac{\eta_{V}}{\eta_{V'}} \frac{\eta_{U}}{\eta_{U'}}\right)$$

Der Transformator-Wirkungsgrad  $\eta_{TR}$  bleibt im Lastbereich zwischen 100 und 5% angenähert konstant.

#### 3.1.1. Beispiel zu 3.1.

Um die Grössenordnung der Vollast-Betriebsstundenzahl  $\Theta$  und der spezifischen Regelkosten  $p_R$  zu veranschaulichen, seien die in Tabelle 10 untersuchten Fälle mit optimierter Drehzahlabstufung betrachtet. Dabei werden folgende Daten zugrunde gelegt: Dauerkurve nach Bild 11, Vollastwirkungsgrade des Motors nach Bild 13, Teillastwirkungsgrade nach Bild 14. Die CO-Konzentration bleibe konstant. Ferner seien:

Die Ergebnisse der Berechnungen sind in Tabelle 10 für verschiedene Druckdifferenzen und für 2, 3, 4 und 5 Drehzahlstufen zusammengestellt.

#### 3.2. Verstellung der Laufschaufeln im Betrieb

Mit dieser Regelungsart kann der Förderstrom kontinuierlich verändert und der jeweiligen Fahrzeugbelastung unter Konstanthaltung der zulässigen CO-Konzentration genau angepasst werden. Als Nachteil ist anzuführen, dass der Ventilatorwirkungsgrad besonders bei kleinen Förderströmen stark abfällt. Es ist daher angebracht, zusätzlich eine Drehzahlabstufung einzubauen.

Zur Ermittlung der Vollastbetriebsstundenzahl müssen die Charakteristiken und Wirkungsgradlinien des betreffenden Ventilators bekannt sein. Bild 12 zeigt den Zusammenhang der interessierenden relativen Grössen, nämlich der relativen Druckziffer  $\psi'/\psi$  in Abhängigkeit von der relativen Durchflussziffer  $\psi'/\psi$  für die Schaufel-Anstellwinkel von  $-5^{\circ}$  bis  $+40^{\circ}$  (gestrichelte Kurven) sowie die relativen Wirkungsgrade  $\eta_V'/\eta_V$  (ausgezogene Kurven). Ferner sind strichpunktiert einige Widerstandslinien entsprechender Lüftungsnetze eingetragen; es sind Parabeln, die angenähert dem Gesetz folgen

(43) 
$$\psi'/\psi = d(\varphi'/\varphi)^2$$
,

worin *d* eine Konstante ist. Je nach der Lage des Vollastbetriebspunktes des betreffenden Ventilators (A, B oder C) liegen die Teillastbetriebspunkte auf den durch die Punkte A, B oder C gehenden Parabeln.

Während die Ventilatorcharakteristiken je nach Ausführung verschieden sein können, zeigen die Wirkungsgrade von Antriebsmotoren kaum Unterschiede. Der Vollastwir-

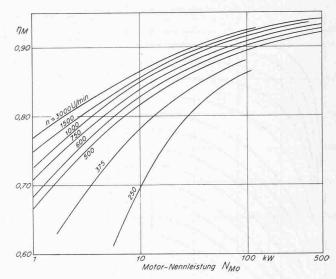



Bild 13. Angenäherte Vollastwirkungsgrade  $\eta_M$  von Asynchron-Käfigmotoren in Funktion von Drehzahl und Motorleistung

kungsgrad von Asynchron-Käfigmotoren ist, wie aus Bild 13 hervorgeht, primär von der Leistung und der Drehzahl abhängig. Bei Motoren mit mehreren Drehzahlstufen sind die Wirkungsgrade bei den Vollastleistungen der einzelnen Drehzahlen ebenfalls Bild 13 zu entnehmen. Wie die Wirkungsgrade in Abhängigkeit der Motorteillast und der Vollastwirkungsgrade abfallen, zeigt Bild 14.

### 3.2.1. Erstes Beispiel zu 3.2.

Untersucht wurde eine kontinuierliche Luftstromregelung auf konstanten CO-Gehalt über alle vorkommenden Verkehrszustände durch Schaufelverstellung während des Betriebs. Zugrunde liegen folgende Daten: Dauerkurve nach Bild 11, Ventilatorcharakteristik nach Bild 12, in welchem die Vollastbetriebspunkte A, B und C eingetragen sind; Motor-Vollastwirkungsgrade nach Bild 13; Motor-Teillastwirkungsgrade nach Bild 14. Ferner seien:

$$\eta_V = 0.87 \quad p_V = 325 \, \text{Fr./m}^3/\text{s} \qquad p_{E_3} = 30 \, \text{Fr./kW}$$
(für A)

 $\eta_V = 0.82 \quad p_M = 7.10^4 \, \text{Fr./kW min} \quad p_S = 0.07 \, \text{Fr./kWh}$ 
(B und C)  $(N_M = 400 \, \text{kW})$ 
 $\eta_U = 1 \qquad \qquad \tau_{MA} = 0.0674$ 
 $\eta_M = 0.94 \quad p_{E_1} = 240 \, \text{Fr./kW} \qquad p_U = 10 \, \text{Fr./kW}$ 
 $\eta_{TR} = 0.98 \quad p_{E_2} = 90 \, \text{Fr./kW}$ 

Tabelle 11 enthält die Zahlen für die Vollbetriebsstundenzahl  $\Theta$  und für die spezifischen Kosten der Regelung  $p_R$  bei einer einzigen Drehzahlstufe ( $n_1 = 1000 \text{ U/min}$ ). Wie aus ihr hervorgeht, spielt die Lage des Betriebspunktes im Charakteristikenfeld Bild 12 eine wesentliche Rolle. Bei der Mengenregelung mit verstellbaren Laufschaufeln ist es nicht wirtschaftlich, den Betriebspunkt mit dem grössten Förderstrom

Tabelle 10. Beispiel 3.1.1.; Vollast-Betriebsstundenzahl  $\Theta$  in h und spezifische Kosten der Regelung  $p_R$  in Fr. pro m³/s bei verschiedenen, vom Ventilator zu überwindenden Druckdifferenzen  $\Delta p_{ges}$  in mm WS bei 2, 3, 4 und 5 Drehzahlstufen

| Drehzahlen<br>U/min              | ⊕<br>h | 50<br>mm WS | 100<br>mm WS | 150<br>mm WS | 200<br>mm WS | 250<br>mm WS |
|----------------------------------|--------|-------------|--------------|--------------|--------------|--------------|
| 1000/500                         | 1216   | 1475        | 2750         | 3925         | 5150         | 6375         |
| 1000/600/300                     | 759    | 1195        | 2140         | 3085         | 4030         | 4975         |
| 1000/750/500/250<br>1000/750/500 | 591    | 1132        | 2035         | 2897         | 3779         | 4661         |
| 375/250                          | 521    | 1114        | 1979         | 2843         | 3707         | 4571         |

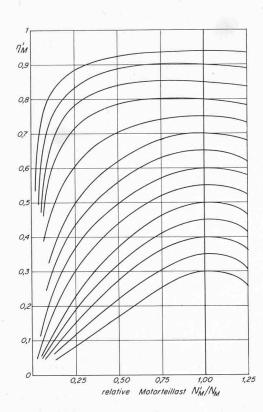



Bild 14 (links). Abhängigkeit der Wirkungsgrade  $\eta_M$  für Asynchron-Käfigmotoren von der Belastung

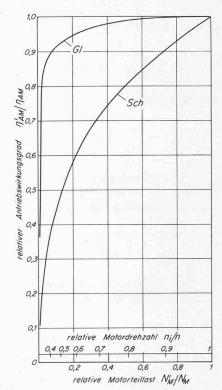



Bild 15 (rechts). Wirkungsgrade für drehzahlregelbare elektrische Ventilatorantriebe. *Gl* Gleichstrommotor mit Thyristorspeisegerät, *Sch* Schleifringankermotor mit Wasserwiderstand

(A) in das Gebiet des Wirkungsgradmaximums zu verlegen. Ventilatoren mit den Betriebspunkten B und C ergeben einen niedrigeren Energieverbrauch.

#### 3.2.2. Zweites Beispiel zu 3.2.

Kontinuierliche Luftstromregelung für die gleichen Daten wie bei Beispiel 3.2.1., jedoch mit mehreren Drehzahlstufen, der Vollastbetriebspunkt des Ventilators entspreche dem Punkt C in Bild 12. Die Ergebnisse der Untersuchung sind für 2, 3 und 4 Drehzahlstufen in Tabelle 12 zusammengestellt, wobei im ersten Fall mit zwei Stufen sechs verschiedene Möglichkeiten untersucht wurden. Wie ersichtlich, verläuft das Optimum in diesem Fall sehr flach. Bei drei Drehzahlstufen ergeben sich die niedrigsten spezifischen Regelungskosten.

## 3.3. Regelung parallel arbeitender Ventilatoren

Die Parallelschaltung von zwei oder mehreren Ventilatoren wird hauptsächlich angewendet, wenn grosse Förderströme bei kleinen Drücken zu bewältigen sind, wenn sich mehrere Normtypen verwenden lassen statt nur einer grösseren Ventilatoreinheit, die speziell anzufertigen wäre, wenn auf grössere Betriebssicherheit und wenn auf einfache Regelung Wert gelegt wird. Nachteilig ist der grössere Platzbedarf.

Arbeiten zwei oder mehrere Ventilatoren parallel auf ein Lüftungssystem, so ergibt sich eine einfache Regelmöglichkeit, indem einzelne Einheiten abgeschaltet und die zugehörigen Klappen geschlossen werden. Eine zusätzliche Drehzahlabstufung erhöht die Wirtschaftlichkeit der Regelung. Um einen stabilen Betrieb zu gewährleisten, müssen aber alle Ventilatoren auf der gleichen Drehzahlstufe laufen. Durch das Abschalten einzelner Einheiten rutschen die Betriebspunkte der in Betrieb verbliebenen Ventilatoren entlang der Charakteristik nach unten in ein Gebiet mit schlechterem Wirkungsgrad, wie das nachfolgende Beispiel erkennen lässt.

## 3.3.1. Beispiel zu 3.3.

Untersucht wurde eine Tunnellüftungsanlage mit zwei gleichen, parallel arbeitenden Ventilatoren und sonst gleichen Daten wie im Beispiel 3.1.1. Die Charakteristik eines Ventilators für sich allein sei durch Bild 12 gegeben, wobei C den Vollastbetriebspunkt bei Parallelbetrieb angibt, während C'

den Betriebspunkt beider Ventilatoren zusammen bezeichnet. Für C' ist die Druckziffer gleich wie für C, dagegen ist die Durchflussziffer doppelt so gross. C' liegt auf der Widerstandskennlinie des zu versorgenden Netzes. Steht nur ein Ventilator in Betrieb, so liegt dessen Betriebspunkt C" im Schnittpunkt der Ventilatorcharakteristik durch C und der Widerstandskennlinie. Wie ersichtlich, liegt C" in einem Gebiet schlechten Wirkungsgrades. Der dadurch bedingte Nachteil lässt sich durch eine zusätzliche Drehzahlabstufung mildern. Wählt man die Drehzahlen des Antriebsmotors zu 1000/500 U/min, so ergeben sich 865 Vollbetriebsstunden und spezifische Regelungskosten  $p_R$  in Fr. pro m<sup>3</sup>/s von: 1246 (bei  $\Delta p_{ges} = 50 \text{ mm WS}$ ), 2242 (bei 100), 3240 (bei 150), 4240 (bei 200) und 5230 (bei 250). Vergleicht man diese Zahlen mit denen von Beispiel 3.1.1. (Tabelle 10), so lässt sich sagen, dass für die angenommenen Verhältnisse die kombinierte Abschaltregelung

Tabelle 11. Beispiel 3.2.1.; Vollast-Betriebsstundenzahl  $\Theta$  in h und spezifische Kosten der Regelung  $p_R$  in Fr. pro m³/s bei verschiedenen, vom Ventilator zu überwindenden Druckdifferenzen  $\Delta p_{ges}$  in mm WS, berechnet für die drei Fälle A, B und C, die den Bemessungspunkten A, B, C des Ventilators nach Bild 12 entsprechen

| Fall | Θ<br>h | 50<br>mm WS | 100<br>mm WS | 150<br>mm WS | 200<br>mm WS | 250<br>mm WS |
|------|--------|-------------|--------------|--------------|--------------|--------------|
| A    | 802    | 1186        | 2047         | 2905         | 3769         | 4630         |
| В    | 637    | 1082        | 1837         | 2595         | 3355         | 4107         |
| C    | 653    | 1090        | 1855         | 2620         | 3385         | 4150         |

Tabelle 12. Beispiel 3.2.2.; Vollast-Betriebsstundenzahl  $\Theta$  in h und spezifische Regelungskosten  $p_R$  in Fr. pro m³/s bei verschiedenen Druckdifferenzen  $\Delta p_{ges}$  in mm WS bei 2, 3 und 4 Drehzahlstufen

| Drehzahlen       | $\Theta$ | 50    | 100   | 150   | 200   | 250   |
|------------------|----------|-------|-------|-------|-------|-------|
| U/min            | h        | mm WS |
| 1000/600         | 424      | 1035  | 1745  | 2455  | 3165  | 3875  |
| 1000/500         | 381      | 983   | 1661  | 2325  | 2995  | 3665  |
| 1000/428         | 372      | 980   | 1635  | 2290  | 2945  | 3605  |
| 1000/375         | 373      | 977   | 1630  | 2282  | 2925  | 3585  |
| 1000/333         | 373      | 975   | 1625  | 2275  | 2925  | 3575  |
| 1000/300         | 379      | 975   | 1625  | 2275  | 2925  | 3575  |
| 1000/500/250     | 320      | 970   | 1615  | 2260  | 2905  | 3555  |
| 1000/750/500/250 | 312      | 999   | 1671  | 2345  | 3015  | 3685  |
|                  |          |       |       |       |       |       |

mit zwei Ventilatoren und je zwei Drehzahlen etwa gleich wirtschaftlich ist, wie die Regelung mit einem Ventilator und drei Drehzahlstufen.

#### 3.4. Drehzahlregelung

Vom lüftungstechnischen Standpunkt gesehen, ist die kontinuierliche Drehzahlveränderung am günstigsten, weil sich der geförderte Volumenstrom genau proportional mit der Drehzahl verändert. Der Betriebspunkt des Ventilators in der  $\psi$ ,  $\varphi$ -Charakteristik ändert seine Lage nicht. Jedoch sinkt der Wirkungsgrad mit fallender Drehzahl entsprechend Gleichung (40) ab.

Drehzahlveränderliche elektrische Antriebe sind entweder sehr aufwendig oder weisen im Teillastgebiet schlechte Wirkungsgrade auf. Nachstehend werden die zwei häufigsten Antriebe an Zahlenbeispielen näher untersucht.

## 3.4.1. Erstes Beispiel zu 3.4.

Zum Antrieb dient ein Gleichstrommotor mit Thyristor-Speisegerät. Der Antriebswirkungsgrad  $\eta_{AM}$  von Umformung und Motor zusammen ist in Bild 15 in Abhängigkeit von der Teillast bzw. der Drehzahl dargestellt.  $\Theta$  und  $p_R$  folgen aus den Gleichungen (36) und (38), wobei  $\eta_M$  durch  $\eta_{AM}$  ersetzt wird. Dem Beispiel liegen folgende Zahlen zugrunde:

$$p_{E_1} = 200 \text{ Fr./kW}$$
  $\eta_{AM} = 0.91$   
 $p_{E_2} = 490 \text{ Fr./kW}$   $n = 1000 \text{ U/min}$   
 $p_{E_3} = 30 \text{ Fr./kW}$   $\eta_V = 0.82$ 

Als Dauerkurve gilt Bild 11, die übrigen Angaben sind gleich wie Beispiel 3.1.1. Die obere Zeile in Tabelle 13 enthält die Ergebnisse.

#### 3.4.2. Zweites Beispiel zu 3.4.

Der Antrieb besteht aus einem Asynchron-Schleifringläufermotor mit stufenlos regelbarem Flüssigkeitswiderstand. Der Vollastantriebswirkungsgrad ist etwa gleich wie beim Gleichstrommotor mit Thyristorgerät. Er sinkt jedoch im Teillastgebiet infolge der grossen Verluste sehr stark ab, Bild 15. Für dieselben Annahmen wie beim Beispiel 3.4.1., jedoch mit

$$p_M = 8 \cdot 10^4 \,\text{Fr./kW min}, p_{E_2} = 180 \,\text{Fr./kW}, \eta_{AM} = 0.91,$$

erhält man die Zahlen der unteren Zeile von Tabelle 13.

Die beiden hier aufgeführten, drehzahlvariablen Antriebe liegen hinsichtlich  $\Theta$  und  $p_R$  höher als andere Regelungsarten, weil die Teillastwirkungsgrade schlecht und die Anschaffungskosten hoch sind. Für den Antrieb von Tunnellüftungs-Ventilatoren ist diese Regelart daher derzeit noch nicht zu empfehlen. Es ist aber denkbar, dass in nächster Zukunft auf dem Gebiet des frequenzgesteuerten Drehstrommotors und des thyristorgespeisten Gleichstrommotors weitere technische Fortschritte erzielt und die jetzt noch hohen Anschaffungskosten wesentlich verringert werden.

## 4. Optimale Ventilatorgeometrie

In den vorliegenden Untersuchungen wird nur auf axiale Ventilatoren eingegangen. Dieser Ventilatortyp wird in Tunnellüftungen aus nachfolgenden Gründen wesentlich

Tabelle 13. Vollast-Betriebsstundenzahlen  $\Theta$  in h und spezifische Kosten der Regelung  $p_R$  in Fr. pro m³/s bei den Beispielen 3.4.1. und 3.4.2. bei verschiedenen Druckdifferenzen  $\Delta p_{ges}$  in mm WS

| Beispiel | Θ<br>h | 50<br>mm WS | 100<br>mm WS | 150<br>mm WS | 200<br>mm WS | 250<br>mm WS |
|----------|--------|-------------|--------------|--------------|--------------|--------------|
| 3.4.1.   | 390    | 1170        | 2090         | 3010         | 3930         | 4850         |
| 3.4.2.   | 892    | 1280        | 2310         | 3340         | 4370         | 4850         |

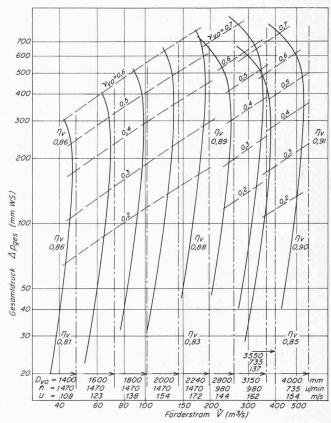



Bild 16. Auswahldiagramm für optimal bemessene Axialventilatoren im Kanaleinbau, wenn die Abmessungen nicht durch den Elektromotor beeinflusst werden

häufiger eingesetzt als Radialventilatoren: Er ergibt ein grosses Fördervolumen bei geringerem baulichem Aufwand, ist preisgünstig, lässt grosse Umfangsgeschwindigkeiten und grosse Leistungsdichten zu, zeichnet sich durch hohe Wirkungsgrade und einfache Konstruktion (z. B. Laufrad direkt auf Motorwelle) sowie günstige Strömungsführung aus.

In den Wirtschaftlichkeitsbetrachtungen über Tunnellüftung spielen die Wirkungsgrade der Ventilatoren eine wesentliche Rolle. Optimal bemessen hinsichtlich Aussendurchmesser  $D_{Va}$  und Nabenverhältnis  $v_V = D_{Vi}/D_{Va}$  ist ein Ventilator, für den bei gegebenem Förderstrom  $\dot{V}$ , Förderdruck  $\Delta p_{ges}$  und bekannter Drehzahl n der Wirkungsgrad am höchsten liegt.

## 4.1. Diagramme für die Bestimmung der Hauptdaten

Eine allgemeine Abhängigkeit zwischen den optimalen Durchmesserkennwerten  $\delta_0$  und Drehzahlkennziffern  $\sigma_0$  stellt die Cordier-Kurve dar [11]. Bei Tunnellüftungen kommt für den Ventilator (Laufrad, Leitrad, Diffusor) praktisch nur die Einbauart nach Bild 18 in Betracht, womit sich aus dem Cordier-Diagramm etwa die Werte nach Tabelle 14 ergeben. Mit diesen Werten wurde Bild 16 entworfen, das zur raschen Ermittlung der optimalen Ventilatorabmessungen dient. Dabei wurden zu gegebenen Ventilatorabmessern und Drehzahlen die zugehörigen Werte  $\dot{V}$  und  $\Delta p_{ges}$  wie folgt berechnet: Wird aus den Definitionsgleichungen für  $\delta$  und  $\sigma$  nach [11] der Förderstrom eliminiert, so ergibt sich

(44) 
$$\Delta p_{ges} = \frac{\gamma}{2g} \frac{\pi^2}{60} \left( \frac{D_V n}{\delta_0 \sigma_0} \right)$$

Tabelle 14. Zusammengehörige Verhältniszahlen für optimale Ventilatoren in Rohrbauart nach [11]

| $\sigma_0$ | 6   | 4    | 2,1  | 1,3  | 0,95 |
|------------|-----|------|------|------|------|
| $\delta_0$ | 0,9 | 1,0  | 1,2  | 1,4  | 1,6  |
| $\nu V_0$  | -   | 0,25 | 0,30 | 0,55 | 0,60 |

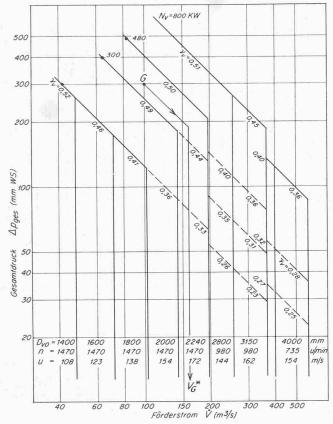



Bild 17. Auswahldiagramm für Axialventilatoren im Kanaleinbau, wenn der Elektromotor und sein Kühlsystem in der Nabe untergebracht sind (vgl. Bild 18)

Weiter folgt aus der Definitionsgleichung für

(45) 
$$\dot{V} = \frac{\pi}{4} \sqrt{\frac{2g}{\gamma}} \left(\frac{\delta_0}{D_V}\right)^2 \sqrt{\Delta p_{ges}}$$

Dem Diagramm Bild 16 liegen folgende Annahmen zugrunde:

- spezifisches Gewicht der Luft  $\gamma = 1,20 \text{ kg/m}^3$ .
- Um kostspielige Zwischengetriebe zu vermeiden, werden die Ventilatordrehzahlen gleich den Motordrehzahlen gewählt (direktes Kuppeln). Für Kurzschlussankermotoren sind bei 50 Hz Netzfrequenz die Drehzahlen bei maximaler Ventilatorleistung 1470, 980, 735 U/min.
- Wegen der Festigkeit der aus Aluminiumguss hergestellten Laufschaufeln soll die äussere Umfangsgeschwindigkeit nicht über 180 m/s liegen.
- Die Herstellerfirmen sind bestrebt, mit wenig Grössen auszukommen. Vorzugsweise wird die Abstufung der Durchmesser  $D_V$  nach einer geometrischen Reihe vorgenommen. Dem Bild 16 liegt die Normreihe R 20 zugrunde.

Die optimalen Ventilatorwirkungsgrade  $\eta_{V_0}$  sind in [11] und [12] in Abhängigkeit von  $\sigma$  und  $v_V$  angegeben. Dazu muss noch der Einfluss der Reynolds-Zahl nach Gleichung (40) berücksichtigt werden. In Bild 16 sind für die dort aufgeführten Grössen und Drehzahlen an einigen Stellen die approximativen optimalen Wirkungsgrade eingetragen. Dabei sei noch besonders darauf hingewiesen, dass die Ventilatoren im praktischen Betrieb meistens nicht mit  $\eta_{V_0}$  laufen (siehe Bild 12) und daher  $\eta_V < \eta_{V_0}$  ist.

In Bild 16 sind als strichpunktierte Linien die oberen Grenzen der Förderströme eingetragen, die für die Bemessung des Ventilators unter Berücksichtigung einer nicht zu grossen Abweichung vom Wirkungsgradoptimum noch in Betracht kommen können. Bei gegebener Förderhöhe sinken die opti-

malen Nabenverhältnisse  $v_{V_0}$  (gestrichelt eingetragen) mit wachsendem Förderstrom. Sie lassen sich nur verwirklichen, wenn der Elektromotor ausserhalb des Ventilators aufgestellt ist (vgl. z. B. Bilder 19 und 20).

Für Ventilatoren der hier angegebenen Grössen- und Leistungsklassen können die optimalen Nabenverhältnisse  $v_{V_0}$  nicht immer eingehalten werden, wenn der Motor wie in Bild 18 in der Nabe eingebaut ist. Durch die Abweichung von der optimalen Geometrie verschlechtert sich der Wirkungsgrad aber nicht wesentlich [11].

Bild 17 dient zur Auswahl der Ventilatoren, wenn  $\dot{V}$  und  $\Delta p_{ges}$  gegeben sind. Es wurde aus Bild 16 unter folgenden Voraussetzungen entwickelt:

- Elektromotor und Motorkühlsystem nach Bild 18 in der Nabe untergebracht
- Berücksichtigung der Abhängigkeit der Motorgrösse von der Ventilatorleistung und der Drehzahl
- maximales Nabenverhältnis  $v_V = 0,50$
- obere Grenze für  $\dot{V}_{max} = 0,012 \ n \ Dv^3 \ m^3/s$
- der grösste Motor, der noch für den Nabeneinbau in Frage kommt, leistet etwa 800 kW bei 1000 U/min (6700 kg).

## 4.2. Vor- und Nachteile der betrachteten Bauarten

In welchen Anlagen Axialventilatoren des einen oder eines anderen Typs günstiger sind, hängt von den jeweiligen Einbauund Platzverhältnissen ab. In Tabelle 15 sind die Vor- und Nachteile der gebräuchlichsten Einbaufälle einander gegenübergestellt.

#### 4.3. Gesichtspunkte für die Anordnung der Krümmer

Aus bautechnischen Gründen kommt es häufig vor, dass Lüftungskanäle in der Nähe der Ventilatoren mehr oder weniger starke Richtungsänderungen aufweisen. Dabei stellt sich die Frage, welche Einflüsse auf die Betriebseigenschaften der Ventilatoren entstehen und welche Konsequenzen bei der Planung des Lüftungssystemes zu berücksichtigen sind.

Um die Krümmerverluste sowie die Störung des gleichmässigen Geschwindigkeitsprofiles kleinzuhalten, sollen Krümmer stets an Orten kleiner Geschwindigkeiten eingebaut werden, da die Verluste nahezu quadratisch mit der Durchströmgeschwindigkeit wachsen.

#### 4.3.1. Krümmer vor dem Ventilator

Krümmer ohne Umlenkgitter bewirken eine starke Verzerrung des Geschwindigkeitsprofiles [14]. Je nach Form und Umlenkwinkel sollte der Krümmer einen Abstand zwischen 4 und 6 hydraulischen Durchmessern  $D_K$  des Kanals vom Ventilatorlaufrad haben. Krümmer mit gut ausgebildeten Umlenkgittern erfordern praktisch keinen Abstand vom Ventilator, wenn gegen das Laufrad hin noch eine ausreichende Beschleunigung erfolgt, um das nur wenig verzerrte Geschwindigkeitsprofil und die vom Umlenkgitter erzeugten Strömungsdellen auszugleichen.

## 4.3.2. Krümmer nach dem Ventilator

Für Krümmer ohne Umlenkbleche wird ein Abstand vom Ventilator- bzw. Diffusorende von (2 bis 3)  $\cdot$   $D_R$  empfohlen, um eine Rückwirkung auf den Ventilator zu verhindern. Krümmer mit guten Umlenkgittern können praktisch unmittelbar an den Ventilator bzw. Diffusor angeschlossen werden, ohne dass eine nachteilige Wirkung entsteht. Anders verhalten sich die Verluste der Krümmer selbst. Der an der Nabe des Ventilators entstehende Wirbelkern ist in einem geraden Kanal erst nach etwa 15  $D_K$  ausgeglichen. Durch die ungleichmässige Anströmung eines Krümmers in diesem Gebiet werden die Krümmerverluste erhöht. Bezüglich dieser Zusatzverluste spielt es aber praktisch keine Rolle, wo der Krümmer innerhalb der genannten Strecke liegt.

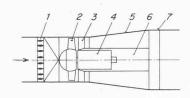



Bild 18. Einfachste Anordnung eines Axialventilators im Kanaleinbau

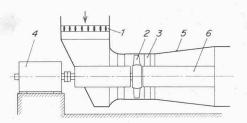



Bild 19. Axialventilator mit saugseitigem Umlenkkasten; der Antriebsmotor liegt ausserhalb des Ventilators

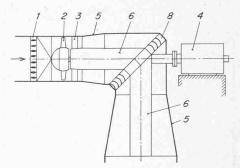



Bild 20. Axialventilator mit nachgeschaltetem Krümmer. Der Diffusor ist unterteilt. Zur Verbesserung der Strömung sind Umlenkbleche erforderlich. Der Motor liegt ausserhalb des Ventilators

einfache Wartung des Motors,

nicht empfohlen

jedoch mehr Aufwand infolge

Legende (B. 18-20):

2 Laufrad 1 Abschlussklappe 3 Leitrad

- 4 Antriebsmotor 5 Diffusor
- 6 Nabe 7 Dilatation

Tabelle 15. Vor- und Nachteile der betrachteten Ventilatorbauarten

| Bauart nach           | Bild 18                                                                                                                                                                                                                            | Bild 19                                                                               | Bild 20                               |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------|
| Zuströmung            | sehr gut                                                                                                                                                                                                                           | schlecht,<br>Umlenkverlust<br>am Eintritt,<br>Beinflussung<br>des Wirkungs-<br>grades | sehr gut                              |
| Umlenkung             | keine;<br>wenn Änderung<br>der Kanal-<br>richtung<br>erwünscht, dann<br>soll die Um-<br>lenkung an einer<br>Stelle grösseren<br>Querschnitts<br>erfolgen                                                                           | Eintritt<br>manchmal erwün<br>Kanal seine Rich                                        |                                       |
| Platzbedarf           | kompakte<br>Anordnung mit<br>geringem<br>Platzbedarf                                                                                                                                                                               | grosse Baulänge                                                                       | grosser<br>Platzbedarf                |
| Aufwand und<br>Kosten | gering                                                                                                                                                                                                                             | teurer<br>Einlauf kasten,<br>zusätzliche Welle<br>Wellendurchführ                     |                                       |
| Antriebsmotor         | Flansch-<br>aufhängung,<br>Abstützung<br>bei grösseren<br>Maschinen,<br>Motor teurer                                                                                                                                               | einfache Normau<br>mit Füssen                                                         | sführung                              |
| Motorgrösse           | beeinflusst die<br>Geometrie des<br>Ventilators                                                                                                                                                                                    | optimale Ventilat<br>eingehalten werde<br>besonders für gro<br>leistungen             |                                       |
| Motorkühlung          | durch Innen-<br>ventilation mit<br>Tunnelluft über<br>Filter und<br>Kühlluftgebläse<br>oder indirektes<br>Kühlsystem<br>mit Luft<br>(Kühlrippen)<br>oder Wasser<br>(Röhrenwärme-<br>austauscher),<br>mehr Aufwand,<br>daher teurer | durch Innenventi<br>weil keine Versch                                                 | lation mit Umluft,<br>nmutzungsgefahr |
| Fundamente            | gering                                                                                                                                                                                                                             | umfangreicher, d                                                                      | a Ventilator und                      |

bei Wartung, zusätzlicher Lager, einfache
Anspeisung für Anspeisung für elektrische Energie
Strom und
Schmierleitungen
müssen durch
den Luftstrom
geführt werden
Folgerungen für Tunnellüftungen gut geeignet zum Einbau

## 5. Wahl des Ventilator-Bemessungspunktes

Zugänglichkeit

Zugänglichkeit schlechtere

Als Bemessungspunkt 0 wird jener Punkt im Charakteristikenfeld des Ventilators bezeichnet, der den höchsten Wirkungsgrad  $\eta_V$  aufweist. Der Ventilator wird für die dem Punkt 0 zugehörigen Daten optimal berechnet und hergestellt. Im  $\psi$ ,  $\varphi$ -Diagramm lässt sich der Punkt 0 innerhalb bestimmter Extremwerte für  $\varphi$  an jede beliebige Stelle setzen. Selbstverständlich gehört zu jedem Punkt 0 ein etwas anderer Ventilator mit voneinander verschiedenen Charakteristiken und Wirkungsgradlinien.

In diesem Abschnitt soll die Frage nach der optimalen Lage des oder der Ventilatorbetriebspunkte B bei grösstem Förderstrom zum Bemessungspunkt 0 erörtert werden.

## 5.1. Der Betriebspunkt ändert seine Lage im Charakteristikenfeld nicht

Bei Anlagen mit nur einem Ventilator oder mit identischen Ventilatoren für genau gleiche Betriebsdaten soll der Betriebspunkt gleich dem Bemessungspunkt 0 sein. Mit dieser Bedingung ist die Forderung nach minimalem Energieverbrauch erfüllt.

Sind für die Lüftung eines Tunnels mehrere Ventilatoren erforderlich, die nicht denselben Betriebsdaten genügen, so ist man aufgrund einiger praktischer Erwägungen bestrebt, alle Ventilatoren identisch auszuführen, das heisst, dass sie nicht nur geometrisch, sondern auch hinsichtlich der Drehzahl  $n_{max}$ , ihrer Kennlinien und Wirkungsgrade gleich sind. Zur Anpassung an die verschiedenen Betriebspunkte werden die Laufschaufeln verschieden gestellt. Die gestellte Optimierungsaufgabe wird vom Ventilatorhersteller gelöst, der die Charakteristiken und Wirkungsgrad-Kurvenscharen seiner verschiedenen Ventilatortypen kennt.

Gegeben sind die Betriebsdaten einer Anzahl von 1 bis z Ventilatoren, nämlich die Förderströme  $\dot{V}_1, \ \dot{V}_2, \ \dot{V}_3 \dots$ , die Förderdrücke  $\Delta p_{ges_1}, \ \Delta p_{ges_2}, \ \Delta p_{ges_3} \dots$  und die spezifischen Gewichte der Luft  $\gamma_1, \ \gamma_2, \ \gamma_3 \dots$  Aus den Bildern 16 und 17 folgen die für alle Ventilatoren einheitlichen Optimalwerte für die Ventilatordurchmesser  $D_{V \ 01} = D_{V \ 02} = D_{V \ 03} = \dots$  und die Ventilatordrehzahlen  $n_1 = n_2 = n_3 = \dots$ , womit die zugehörigen Druck- und Durchflussziffern nach den Gleichungen

Motor getrennt aufgestellt sind

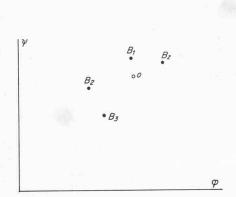



Bild 21. Lage der Betriebspunkte in dimensionsloser Darstellung, wenn ein und derselbe Ventilatortyp für verschiedene Lüftungssysteme im Tunnel verwendet wird

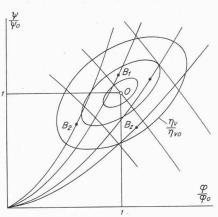



Bild 22. Dimensionsloses relatives Charakteristikenfeld eines gegebenen Ventilators. Bemessungspunkt O mit bestem Wirkungsgrad

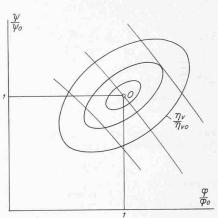



Bild 23. Verschiedene Betriebspunkte im Charakteristikenfeld eines Axialventilators. Durch Verstellen der Laufschaufeln ändern diese Punkte ihre Lage

(46) 
$$\psi = \frac{2 g \Delta p_{ges}}{\gamma u^2}$$

$$(47) \quad \varphi = \frac{4 \, \dot{V}}{u \, D v^2}$$

berechnet werden können.

Im  $\psi$ ,  $\varphi$ -Diagramm Bild 21 liegen diese Betriebspunkte  $B_1$  bis  $B_z$  mehr oder weniger verstreut. Die Lage des optimalen Bemessungspunktes  $0_0$  kann nur durch Probieren gefunden werden. Dabei muss, wie bereits erwähnt, ein relatives Charakteristikenfeld (Bild 22) eines ähnlichen Ventilators bekannt sein. Man sucht  $0_0$  durch Annahme eines beliebigen Punktes 0 mit den zugehörigen Werten  $\psi_0$  und  $\varphi_0$  in Bild 21, worauf die relativen Werte  $\psi_1/\psi_0, \ \psi_2/\psi_0 \dots$  und  $\varphi_1/\varphi_0, \ \varphi_2/\varphi_0 \dots$  der Betriebspunkte gebildet, in Bild 22 eingetragen und die entsprechenden Wirkungsgrade bzw. relativen Wirkungsgrade  $\eta_1/\eta_0, \ \eta_2/\eta_0 \dots$  abgelesen werden.

Das Optimalkriterium  $\sum_{(Z)} P_j = \text{Min}$  ist unter den vorliegenden Verhältnissen gleichbedeutend mit

$$(48) \quad \sum_{(Z)} N_K = Min$$

oder

(49) 
$$\sum_{(Z)} \left( \frac{\varphi \ \psi}{\eta_V} \right) = \text{Min}$$

bzw

(50) 
$$\sum_{(Z)} \left( \frac{\varphi}{\varphi_0} \frac{\psi}{\psi_0} \frac{\eta_{V_0}}{\eta_V} \right) = \text{Min}$$

Die Summierung erfolgt über alle Betriebspunkte von 1 bis z. Der Rechnungsgang muss solange wiederholt werden, bis das Endergebnis Gleichung (50) wirklich den kleinsten Wert erreicht hat. Durch systematisches Vorgehen, das heisst dadurch, dass man zuerst  $\varphi_0$  konstant hält und  $\varphi_0$  variiert und daraufhin  $\varphi_0$  konstant lässt und  $\varphi_0$  ändert, lässt sich das Ziel relativ schnell erreichen.

## 5.2. Der Betriebspunkt ändert seine Lage im Charakteristikenfeld

Andere Verhältnisse ergeben sich, wenn der oder die obengenannten Ventilatoren von ihren Betriebspunkten abwärts zu kleineren Fördermengen durch Verstellen der Laufschaufeln im Betrieb geregelt werden, Bild 23. Dabei durchwandert der Betriebspunkt auf der zugehörigen Widerstandslinie des Kanalsystems das Charakteristikenfeld. Im Beispiel 3.2.1. wurde bereits darauf hingewiesen, dass die Lage des

Betriebspunktes (B oder C in Bild 12) die Wirtschaftlichkeit wesentlich beeinflusst. Auf keinen Fall soll bei Vorhandensein nur eines Ventilators oder mehrerer Maschinen mit genau gleichen Betriebsdaten der Betriebspunkt mit 0 zusammenfallen. Die Frage nach der optimalen Lage des Bemessungspunktes für einen oder mehrere Ventilatoren mit verschiedenen Betriebsdaten in einem bekannten Charakteristikendiagramm ist nur durch Probieren in einer mühevollen Arbeit zu ermitteln. Dabei ist die Optimalbedingung

(51) 
$$\sum_{(Z)} p_R = \text{Min}$$

anzustreben, wobei  $p_R$  nach Gleichung (38) bestimmt ist. Infolge der grossen Anzahl von Einflussparametern (Anzahl und Betriebsdaten der Ventilatoren, Dauerkurve des Verkehrs, Drehzahlabstufung, Motorteillastwirkungsgrade) lohnt sich der Aufwand dieser Optimierung nur bei grösseren Anlagen. Das prinzipielle Vorgehen ist gleich wie in Abschnitt 5.1. Hinzu kommt die Berücksichtigung der Veränderung der Betriebspunkte durch Integration der Ventilatorteillast in Abhängigkeit der jährlichen Betriebsdauer.

## 6. Projektoptimierung

Die Planung eines Strassentunnels mit künstlicher Lüftung stellt gesamthaft eine Optimierungsaufgabe dar. Bei festgelegter Trassenführung stellt sich die Frage, wieviele Luftschächte und an welchen Stellen Lüftungszentralen vorzusehen sind, die einerseits zwar die Baukosten erhöhen, anderseits aber die für die Lüftung erforderliche Leistung vermindern und damit die Betriebskosten senken. Das wirtschaftlichste Projekt ist durch minimale Gesamtjahreskosten gekennzeichnet. Diese setzen sich zusammen aus:

- a. Annuität der Kosten aller Bauten. Dazu gehören: eigentlicher Tunnel mit Verkehrsraum und Luftkanälen, Luftschächte, unter- und oberirdische Lüftungszentralen (Portalstationen), Lufteinsaug- und -ausblasbauwerke. Dabei können die Lüftungskanalquerschnitte einzelner Abschnitte nach Abschnitt 1 für sich optimiert und die entsprechenden Kosten berechnet werden.
- b. Annuität der Kosten sämtlicher Lüftungsanlagen. Dazu gehören: Ventilatoren, Klappen, Antriebsmotoren, elektrische Schalt- und Steuereinrichtungen, Transformatoren und Leitungen, Schalldämpfer.
- c. Energiekosten für den Betrieb der Lüftung. Die gesamte Leistung ergibt sich aus den Förderströmen und Förderhöhen aller Lüftungssysteme. Die Förderhöhen setzen sich aus den Einzelwiderständen (Kanäle, Übergänge, Krümmer, Schächte, Einsaug- und Ausblasbauwerke, Frischluftpfeifen, Schalldämpfer usw.) zusammen. Dabei sind zu

berücksichtigen: alle Umsetzungswirkungsgrade, die jährlichen Betriebsstundenzahlen, die Art der Regelung.

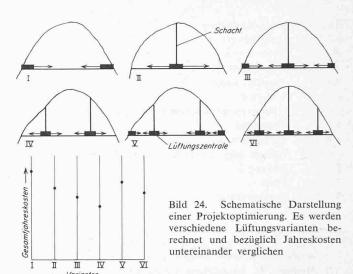
d. Unterhaltskosten für alle bau- und lüftungstechnischen Anlagen

Projektoptimalisierungen sind meist sehr umfangreich. Sie machen es erforderlich, die einzelnen Projektvarianten mit verschiedenen Lüftungssystemen im Detail durchzurechnen, um die Gesamtjahreskosten direkt miteinander vergleichen zu können, wie das in Bild 24 schematisch angedeutet ist.

Die Art der Lüftung wird vorwiegend von der Tunnellänge, der Trassensteigung, der Art und Frequenz des Verkehrs, sicherheitstechnischen und lufthygienischen Erwägungen sowie den meteorologischen Verhältnissen bestimmt.

Als grobe Abstufung gilt:

- Natürliche Lüftung für kurze Tunnels, Grenzlänge 500–800 m mit schwachem oder richtungsgetrenntem Verkehr [15]
- Längslüftung für Tunnels um 1000 m Länge [1], [2]
- Halbquer lüftung für Tunnellängen bis etwa 2000 m [4]
- Querlüftung für lange und stark frequentierte Tunnels [4]


## Schlussfolgerungen

Der vorliegende Aufsatz soll zeigen, dass die Probleme der Optimierung von Lüftungen für Autostrassentunnel erst nach eingehendem Studium verschiedener Detailfragen gelöst werden können. Infolge der sehr zahlreichen Einflussparameter und der Komplexität der Gleichungen sind die meisten Optimierungsaufgaben nicht explizit lösbar, so dass nur numerische Berechnungen und direktes Vergleichen der Resultate zum Ziele führt. Wenn es auch nicht gelingt, alle Einflüsse, die in der Optimierung eine Rolle spielen, exakt zu erfassen, so führen Untersuchungen mit Näherungswerten trotzdem zu guten Ergebnissen, weil die Minima meist einen relativ flachen Verlauf aufweisen.

Obwohl der Bemessung einer Tunnelanlage nach optimalwirtschaftlichen Gesichtspunkten sicher ein wesentliches Gewicht zukommt, gibt es häufig noch andere Gesichtspunkte, die bei der Projektierung berücksichtigt werden müssen. Zu diesen zählen beispielsweise Verkehrssicherheit, Zivilschutz oder militärische Erfordernisse.

#### Zeichenerklärung

| a                | Konstante                                     |
|------------------|-----------------------------------------------|
| b                | Konstante                                     |
| c                | CO-Konzentrationswert in ppm                  |
| d                | Konstante                                     |
| $D^*$            | Schachtdurchmesser in m                       |
| $D_V$            | Ventilatornenndurchmesser, Laufradaussen-     |
|                  | durchmesser in m                              |
| $D_K$            | hydraulischer Durchmesser des Kanals in m     |
| E                | verbrauchte Energie für die Lüftung in kWh    |
| f                | Preiskorrekturfaktor                          |
| f, F             | Querschnittsfläche in m²                      |
| g                | Erdbeschleunigung in m/s <sup>2</sup>         |
| h                | Höhe in m                                     |
| i                | Anzahl Ventilatoren zu einer Schaltgruppe     |
|                  | zusammengefasst                               |
| $kz_0, kz_1, ka$ | Konstanten                                    |
| K                | Kosten                                        |
| 1                | Teilkanallänge in m                           |
| L                | Kanallänge in m                               |
| m                | Formfaktor                                    |
| M                | Verkehrsdichte in PWE/h                       |
| n                | Drehzahl des Ventilators bzw. Motors in U/min |
| N                | Leistungsbedarf in kW                         |
| p                | Preisfaktor in Fr. pro m³/s oder Fr./kW/min.  |
| $\Delta p_{ges}$ | Gesamtdruckverlust in kp/m <sup>2</sup>       |
| $\Delta p$       | Ventilatorförderdruck in kp/m <sup>2</sup>    |
|                  |                                               |



| Apstat statischer Druckunterschied in kp/m² P Kapital- bzw. Betriebskosten in Fr. r absolute Wandrauhigkeit in m R innerer Radius des Tunnelgewölbes in m Re Reynolds-Zahl s Abluftkanalbreite in m t Betriebszeit in h u äussere Umfangsgeschwindigkeit des Ven lators in m/s |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| r absolute Wandrauhigkeit in m R innerer Radius des Tunnelgewölbes in m Re Reynolds-Zahl s Abluftkanalbreite in m t Betriebszeit in h u äussere Umfangsgeschwindigkeit des Ven lators in m/s                                                                                   |     |
| R innerer Radius des Tunnelgewölbes in m Re Reynolds-Zahl s Abluftkanalbreite in m t Betriebszeit in h u äussere Umfangsgeschwindigkeit des Ven lators in m/s                                                                                                                  |     |
| Re Reynolds-Zahl  s Abluftkanalbreite in m  t Betriebszeit in h  u äussere Umfangsgeschwindigkeit des Ven lators in m/s                                                                                                                                                        |     |
| Re Reynolds-Zahl s Abluftkanalbreite in m t Betriebszeit in h u äussere Umfangsgeschwindigkeit des Ven lators in m/s                                                                                                                                                           |     |
| t Betriebszeit in h u äussere Umfangsgeschwindigkeit des Ven lators in m/s                                                                                                                                                                                                     |     |
| u äussere Umfangsgeschwindigkeit des Ven lators in m/s                                                                                                                                                                                                                         |     |
| lators in m/s                                                                                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                                                                                                | i-  |
| II II I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                          |     |
| $U_K$ Umfang des Kanals in m                                                                                                                                                                                                                                                   |     |
| $\dot{V}$ Förderstrom in m <sup>3</sup> /s                                                                                                                                                                                                                                     |     |
| w Luftgeschwindigkeit in m/s                                                                                                                                                                                                                                                   |     |
| x Koordinate in Kanallängsrichtung in m                                                                                                                                                                                                                                        |     |
| zi Polpaarzahl der Asynchronmotoren                                                                                                                                                                                                                                            |     |
| α Eintrittswinkel der Luft in den Abluftkar                                                                                                                                                                                                                                    | al  |
| γ spezifisches Gewicht der Luft in kg/m³                                                                                                                                                                                                                                       |     |
| δ Durchmesserkennwert des Ventilators                                                                                                                                                                                                                                          |     |
| ζ <sub>A</sub> Widerstandsbeiwert der Öffnung im Ablu                                                                                                                                                                                                                          | it- |
| kanal                                                                                                                                                                                                                                                                          |     |
| η Wirkungsgrad                                                                                                                                                                                                                                                                 |     |
| λ Reibungskoef fizient                                                                                                                                                                                                                                                         |     |
| ν <sub>V</sub> Nabenverhältnis                                                                                                                                                                                                                                                 |     |
| v Netzfrequenz in Hz                                                                                                                                                                                                                                                           |     |
| kinematische Zähigkeit der Luft in m²/s                                                                                                                                                                                                                                        |     |
| II <sub>A</sub> Druckverhältnis für Abluftsammelkanäle                                                                                                                                                                                                                         |     |
| $\Pi_A = (p_2 - p_1) / \gamma_A (w_A^2 / 2g)$                                                                                                                                                                                                                                  |     |
| g Dichte der Luft                                                                                                                                                                                                                                                              |     |
| σ Drehzahlkennziffer des Ventilators                                                                                                                                                                                                                                           |     |
| τ Annuität                                                                                                                                                                                                                                                                     |     |
| $\varphi$ Durchflussziffer des Ventilators                                                                                                                                                                                                                                     |     |
| ψ Druckziffer des Ventilators                                                                                                                                                                                                                                                  |     |
| Θ Vollastbetriebsstundenzahl in h                                                                                                                                                                                                                                              |     |
| Indices                                                                                                                                                                                                                                                                        |     |
| A Abluft                                                                                                                                                                                                                                                                       |     |

| A  | Abluft             |
|----|--------------------|
| AM | Antrieb            |
| B  | bautechnische Teil |
| Di | Diffusor           |
| E  | Elektroanlagen     |
| F  | Frischluft         |
| j  | jährlich           |
| K  | Kanal              |
| Kl | Klappe             |
| L  | Lüftungssystem     |
| La | Laufrad            |
| Le | Leitrad            |
| M  | Motor              |
| MA | Maschinen          |
|    |                    |

Mo Motorauslegung
Optimalwert

R Regulierung

S elektrischer Strom

TR Transformator U Unterhalt

ü Übersetzung zwischen Ventilator-Motor

V Ventilator VR Verkehrsraum

(') Teillast oder Abweichung vom Bemessungspunkt 0

1 Anfang 2 Ende

3 Verkehrsraum

#### Literaturverzeichnis

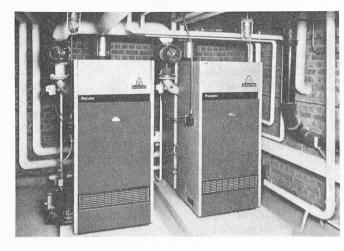
- [1] Rohne, E.: Über die Längslüftung von Autotunneln mit Strahlventilatoren «Schweiz. Bauzeitung» 82 (1964) H. 48, S. 840.
- [2] Meidinger, U.: Längslüftung von Autotunnels mit Strahlgebläsen. «Schweiz. Bauzeitung» 82 (1964) H. 28, S. 498.
- [3] Kempf, J.: Einfluss der Wandeffekte auf die Treibstrahlwirkung eines Strahlgebläses. «Schweiz. Bauzeitung» 83 (1965) H. 4, S. 47.
- [4] Die Lüftung der Autotunnel. Bericht der Expertenkommission für Tunnellüftung, Institut für Strassenbau, ETH-Mitteilung Nr. 10.
- [5] Hütte I, Auflage 27, Seite 80.
- [6] Wintersichere Strassenverbindung durch den Gotthard. Schluss-

- bericht der Studiengruppe Gotthard-Tunnel, Eidg. Departement des Innern, Bern, September 1963. Eidg. Drucksachen- und Materialzentrale. Bern 3.
- [7] Rakoczy, T.: Optimale Auslegung des Lauf- und Leitgitters für Axialventilatoren. «Heizung, Lüftung, Haustechnik» 13 (1962) Nr. 6, 295.
- [8] Haerter, A.: Theoretische und experimentelle Untersuchungen über die Lüftungsanlagen von Strassentunneln. Dissertation ETH Zürich, 1961, Verlag Leemann.
- [9] Eck, B.: Technische Strömungslehre, Berlin, Göttingen, Heidelberg 1958, Springer-Verlag.
- [10] Berechnungen zum Belüftungssystem «Belchentunnel, Nationalstrasse N 2», Luwa AG Zürich, Nr. 26 41 767 (13.5.69).
- [11] Marcinowski, H.: Optimalprobleme bei Axialventilatoren «Heizung, Lüftung, Haustechnik» 8 (1957), Nr. 11, S. 273.
- [12] Eck. B.: Ventilatoren. 4. Aufl. Berlin, Göttingen, Heidelberg 1962, Springer-Verlag.
- [13] Marcinowski, H.: Experimentelle Untersuchungen in der lufttechnischen Abteilung. «Voith – Forschung und Konstruktion» Heidenheim 1958, H. 4.
- [14] Sprenger, H.: Druckverluste in 90°-Krümmer für Rechteckrohre «Schweiz. Bauzeitung» 87 (1969), H. 13, S. 223.
- [15] Gruner, G., und Bürkel, P.: Maximale Länge von Autotunneln ohne künstliche Belüftung. «Schweiz. Bauzeitung», 81 (1963) H. 29, S. 511.

Die Literaturhinweise [1], [2] u. [3] betreffen Arbeiten über Strahlventilatoren, die in diesem Aufsatz nicht berücksichtigt werden.

## Erdgasbefeuerte Kessel in Heizzentralen auf dem Dach

DK 697.3:697.245


Vor wenigen Jahren war der Brennstoff Gas für die Beheizung von Zentralheizungsanlagen preislich uninteressant. Das günstige Angebot aus Holland und die zu erwartenden Gaslieferungen aus der Sowjetunion werden dazu führen, dass immer mehr Objekte mit Erdgas beheizt werden<sup>1</sup>).

Für Dachheizzentralen, deren Verbreitung ständig wächst, bietet sich Gas als Brennstoff geradezu an. Die Brennstofflagerung und zusätzliche Fördereinrichtungen, wie sie bei Ölnotwendig sind, entfallen. Überdruckkessel mit Gebläsebrennern sowie Kessel mit atmosphärischen Brennern benötigen keinen Kaminzug. Es genügen kurze Rauchrohre, um die Abgase abzuführen. Eine Gefährdung der Kamine durch Schwitzwasserbildung, die bei mehrstufigem Brennerbetrieb und hohen Kaminen häufig vorkommt, ist nicht mehr möglich.

Die Kosten für diese Dachheizzentralen sind im allgemeinen nicht höher als bei Kellerzentralen, da die bei grösseren

<sup>1</sup>) Vergleiche K. Saner: Aktuelle Probleme der Gasversorgung, sowie G. Weber und O. Erb: Projektierung und Bau des Gas-Fernleitungsnetzes der Gasverbund Ostschweiz AG, SBZ 88 (1970), H. 40, S. 889–890 bzw. 890–909.

Bild 1. Rheinstahl-Heizkessel GAF 300 mit atmosphärischen Erdgasbrennern in einer Dachheizzentrale



Heizzentralen mit mehreren Kesseln notwendigen einzelnen Kamine entfallen. Nach DIN 4751 Blatt 2 (geschlossene Anlagen) können Zentralheizungsanlagen auch als geschlossene Anlagen ausgeführt werden, wenn das zu beheizende Objekt höher als 15 m ist, sofern der entsprechende statische Druck am tiefsten Punkt des Wärmeerzeugers nicht überschritten wird.

Die Gefahr, die sich bei einem plötzlichen Wasserverlust in der Heizungsanlage für den Wärmeerzeuger ergeben kann, lässt sich durch den Einbau einer Wassermangelsicherung beseitigen. Diese Wassermangelsicherungen – sie kosten noch nicht einmal 150 DM – sind in geschlossenen Anlagen von 130000 bis 300000 kcal/h sowieso vorgeschrieben. Aber auch

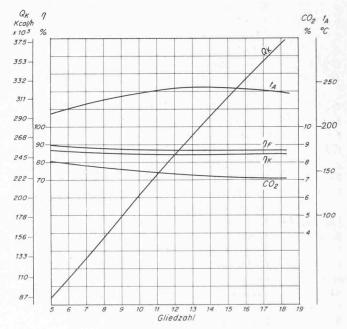



Bild 2. Leistungsdiagramm des Kessels GAF 300

QK Kesselleistung

 $\eta_K$  Kesselwirkungsgrad

 $\eta_F$  Feuerungstechnischer Wirkungsgrad

t<sub>A</sub> Abgastemperatur