Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 88 (1970)

Heft: 34

Artikel: Rohrkosten-Minimum für verzweigte Wasserleitungsnetze

Autor: Widmoser, P.

DOI: https://doi.org/10.5169/seals-84596

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH, POSTFACH 880

Rohrkosten-Minimum für verzweigte Wasserleitungsnetze

DK 621.643.003.1

Von P. Widmoser, Dr. nat. techn., Zürich

Zusammenfassung

Es werden die grundlegenden Bedingungen dafür aufgezeigt, dass bei vorgegebenen Druck- und Leitungsverhältnissen sowie bekannter Preisliste diejenigen Rohrdurchmesser gewählt werden, welche die minimalen Kosten für das Rohrmaterial ergeben. Diese Studie befasst sich nur mit verzweigten Druckrohrnetzen und wurde in Hinblick auf Bewässerungsanlagen ausgearbeitet.

Problemstellung

Druckrohre müssen an definierten Netzpunkten (Hydranten) bestimmte Wasserströme mit dem Mindestdruck H_{ii} abgeben. Die volle Druckhöhe H_D steht an der Pumpstation oder am Hochbehälter zur Verfügung und wird durch Druckverluste in der Leitung abgebaut, Bild 1.

Die Berechnung der Druckverluste infolge Rohrreibung ist mathematisch unbestimmt. Es gibt nämlich unendlich viele Rohrdurchmesser-Kombinationen, welche die verlangte Druckhöhe an den Hydranten gewährleisten. Unbestimmt ist das System auch dann, wenn nur die handelsüblichen, genormten Rohrnennweiten eingesetzt werden. Es wird aber durch eine zusätzliche, ökonomische Bedingung eindeutig: Die Kosten für das Rohrnetz, allenfalls einschliesslich des Baues und Betriebes des Hochbehälters oder der Pumpen, sollen minimal werden. Bei der Planung von Druckrohrnetzen muss diese Bedingung in möglichst guter Annäherung erfüllt werden. Hierbei spielen praktische Erfahrung und Fingerspitzengefühl eine wesentliche Rolle.

Pumpstation oder

Hochbehälter

Hy 8

Links:
Bild 2. Re
nungen
S = Strar
Hy = Hyd

Rechts:
Bild 3. Re
Schweiz u
hängigkeit
Eine stetig

Links:
Bild 2. Rohrnetz mit Bezeichnungen
S = Strangabschnitt
Hy = Hydrant

Bild 3. Rohrpreise (1969) aus der Schweiz und Österreich in Abhängigkeit von der Nennweite. Eine stetige Preisfunktion wurde eingepasst. Der Fixkostenanteil *r* lässt sich an der Ordinate ablesen

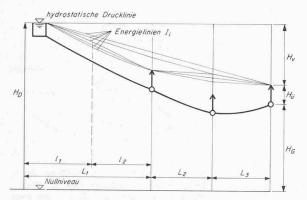


Bild 1. Theoretisch mögliche Energielinien entsprechend verschiedener Rohrdurchmesser-Kombinationen

Es soll nun für vereinfachte Fälle die ökonomische Bedingung mathematisch festgelegt werden. Bezüglich der verwendeten Bezeichnungen wird auf die Liste im Anhang sowie auf die Bilder 1 und 2 verwiesen.

Fall 1: Nicht genormte Rohrdurchmesser; die Rohrpreise bilden eine stetige Funktion des Durchmessers

Fall 1.1: Der Strang ohne Abzweigung

Die Druckbedingung für den Hydranten Hy_n , Gleichung (1), und die Preisgleichung, Gleichung (2), lauten:

(1)
$$I_1 L_1 + I_2 L_2 + \dots I_n L_n - H_v = 0$$

(2)
$$p_1 L_1 + p_2 L_2 + \dots p_n L_n = I$$

Ii Gefälle der Energielinie

Li Länge eines Strangabschnittes [m]

pi Preis in Währungseinheiten pro Laufmeter Rohr [WE/m]

Es wird verlangt, dass P unter Einhaltung von Gleichung (1) minimal werde. In der mathematischen Formulierung wird (1) demnach auch Restriktions- oder Bedingungsgleichung und Gleichung (2) Zielfunktion genannt. Die gesuchten abhängigen Variablen sind die Energiegefälle I_t . Um diese in die Preisgleichung einführen zu können, muss der Einheitspreis p_t als Funktion von I_t festgelegt werden.

Der Einheitspreis als Funktion des Durchmessers

Aus der Preisliste für Rohrmaterial (einschl. Kupplungsanteil) kann der Laufmeterpreis in bestimmten Punkten ab-

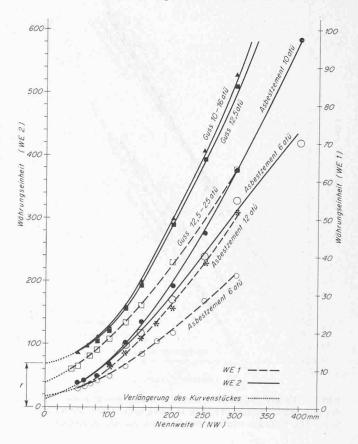


Tabelle 1. Preisparameter für Asbestzement- und Gussrohre

Material	Währung	Druckklasse atü	r	S	t
Eternit	öS	6	15	1,90	1,50
	öS	10	15	1,50	1,62
	sFr.	6	3	0,16	1,55
Guss	öS	12,5	66	0,78	1,85
	öS	10 bis 16	66	0,72	1,88
	sFr.	12,5 bis 25	6,5	0,52	1,36

hängig von der Rohrnennweite dargestellt werden, Bild 3. Soll dieser Zusammenhang in einer stetigen Funktion erfasst werden, so ist es sinnvoll, diese in folgender Bauart aufzustellen

(3)
$$p = r + s D^t$$
 (Einheitspreis als stete Funktion des Durchmessers)

p Preis pro Laufmeter Rohr [WE/m]

r Fixkostenanteil [WE/m]

s, t Parameter 1)

D Rohrdurchmesser [m]

Einige Parameter sind für Preislisten (1969) aus Österreich und der Schweiz in Tabelle 1 zusammengestellt.

¹⁾ Ermittlung von r, s, t: Der Fixkostenanteil r wird am besten graphisch ermittelt, indem die optisch an die vorgegebenen Preislistenpunkte angepasste Kurve bis zur Preisachse verlängert wird. Der Achsenabschnitt auf dieser gibt r an. Die Nennweiten sowie die dazugehörigen, um r verringerten Einheitspreise werden dann auf doppellogarithmischem Papier aufgetragen und eine Gerade in bester Annäherung (optisch oder rechnerisch mit Tschebischeff-Ausgleich) eingepasst, Bild 4. Der Schnittpunkt der Geraden mit der Einheitsordinate schneidet auf der Preisachse den Wert s ab, während t durch die Neigung der Geraden gegeben ist

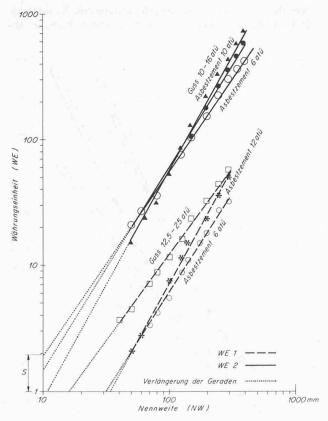


Bild 4. Die um den Fixkostenanteil r reduzierten Rohrpreise in doppellogarithmischem Massstab in Abhängigkeit von der Nennweite. Die Geraden wurden den Punkten optisch eingepasst

Tabelle 2. Zahlenwerte für die Grössen der Potenzformel

Material	Name der Formel	C	α	β
Asbestzement	Scimeni (1950)	0,95	1,8	4,8
	Strickler	0,70	2,0	5,3
	Wiener Rechenschieber	1,1	1,8	4,8
Guss alt	Wiener Rechenschieber	1,8	1,8	4,8

Aus der Literatur [3] geht hervor, dass die Werte von t der Grössenordnung nach für Röhrenerzeugnisse auch anderer Länder gültig sind. Über die Funktion der Einheitspreise kann I_i mit Hilfe einer Beziehung zwischen dem Energiegefälle I und dem Rohrdurchmesser D in die Preisfunktion Gleichung (2) eingeführt werden.

Rohrreibungsformeln

Hiefür sind zwei Arten üblich: die Potenzformeln und die Gleichung von Prantdl-Colebrook. Unter dem Namen Potenzformeln werden alle Beziehungen mit dem generellen Aufbau

(4)
$$I = c q^{\alpha} D^{-\beta}$$
 (Potenzformel)

zusammengefasst. Tabelle 2 gibt empirisch ermittelte Werte für c, α und β an.

Die Grundgleichung von Bernoulli lässt sich unter der Annahme, dass die innere Reibung der Flüssigkeit, nicht aber die Wandreibung, vernachlässigt wird, in folgender Form anschreiben:

(5)
$$I = \lambda \cdot \frac{v^2}{2 g D}$$
 (Energiegefälle infolge Wandreibung)

Der Wert λ hängt von der Strömungsform ab; er ist z. B. im laminaren Bereich (Re < 2320) $\lambda = 64/Re$. Für die turbulente Strömung (meist in Druckrohrnetzen) gilt die Formel von Prandtl-Colebrook:

(6)
$$\frac{1}{\sqrt{\lambda}} = -2 \lg \left(\frac{2,51}{Re \sqrt{\lambda}} + \frac{K}{3,71 D} \right)$$

K mittlere wirksame Wandrauhigkeit

Re Reynoldssche Zahl Re = v D / v

ν kinematische Zähigkeit; für Wasser von 10°C ist $ν = 1,31 \cdot 10^{-6} \,\mathrm{m^2/s}$

Im folgenden werden die Beweise der besseren Anschaulichkeit wegen unter Benützung der Potenzformeln gebracht. Alle wesentlichen Aussagen gelten aber auch bei Verwendung der Gleichung nach Prandtl-Colebrook.

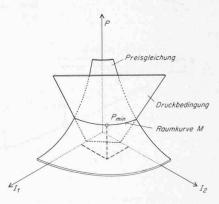


Bild 5. Geometrische Darstellung der Druckbedingung, Gl. (7), und der Preisgleichung, Gl. (8), für Fall 1.1 mit zwei Strangabschnitten; Kostenminimum bei P_{min}

Die Ausgangsgleichungen (1) und (2) werden nun unter Verwendung der Gleichungen (3) und (4) wie folgt geschrieben:

(7)
$$I_1 L_1 + I_2 L_2 + \dots I_n L_n - H_v = 0$$

(8)
$$f_1 L_1 + f_2 L_2 + \dots f_n L_n = F$$

wobei
$$f_i = r + s \left(\frac{I_i}{c \cdot q^{\alpha}} \right)^{-\frac{t}{\beta}}$$

Für n=2 können die Gleichungen (7) und (8) im dreidimensionalen Raum dargestellt werden. Bild 5 zeigt die hyperbolische Mantelfläche der Preisfunktion Gleichung (8), welche von der Ebene der Druckbedingung in der Raumkurve M geschnitten wird. Aus den Möglichkeiten, welche diese Raumkurve für den Fall mit zwei Strangabschnitten 1 und 2 für die Wahl von I_1 und I_2 zulässt, wird jene gewählt, bei der P minimal ist.

Die mathematische Lösung mit Hilfe der Lagrangeschen Multiplikatoren (siehe dazu z. B. [2], S. 276) soll erst später für den Fall 1.2 gezeigt werden. Hier wird sie übersprungen und die Lösung direkt angeschrieben.

(9)
$$\frac{I_n}{I_1} = \left(\frac{q_n}{q_1}\right)^{\frac{\alpha t}{t+\beta}}$$
 (Minimalbedingungen für Fall 1.1)

Zusammen mit Gleichung (7) liefert diese Bedingung die minimalen Rohrkosten unter Einhaltung der Druckbedingungen.

Folgende wesentliche Erkenntnisse seien aus Gleichung (9) zusammengefasst:

- a) Die Faktoren r und s der Einheitspreisfunktion sind in den Gleichungen (7) und (9) nicht mehr enthalten, d. h. Fixkosten, pauschale oder prozentuale Preisabschläge (oder Zuschläge), Währungsumrechnungen usw. wirken sich auf die günstigste Auswahl der Rohrdurchmesser nicht aus.
- b) Die Grössenordnung des Exponenten liegt für Gussrohre bei etwa 0,5 und darüber, für Asbestzementrohre etwas unter 0,5. Gleichung (9) kann deshalb in grober Annäherung auch geschrieben werden:

$$\frac{I_n}{I_1} \approx \sqrt{\frac{q_n}{q_1}}$$

Weitere Beziehungen können leicht aus dem bisher Gesagten abgeleitet werden, wie z. B.:

$$rac{D_n}{D_1} = \left(rac{q_n}{q_1}
ight)^{rac{lpha}{l+eta}} pprox \sqrt[3]{rac{q_n}{q_1}}$$

$$\frac{v_n}{v_1} = \left(\frac{q_n}{q_1}\right)^{1 - \frac{2\alpha}{t + \beta}} \approx \left(\frac{q_n}{q_1}\right)^{0,43}$$

c) Eine Abnahme der Wasserströme bewirkt auch eine Abnahme des Energiegefälles bei sonst gleichen Bedingungen,

siehe Gleichung (4). Aus Gleichung (9) folgt aber zusätzlich die Forderung, wonach in einem Einzelstrang ohne Abzweigung mit abnehmender Wassermenge die Rohrdurchmesser so gewählt werden müssen, dass auch das Energieliniengefälle in Fliessrichtung von Hydrant zu Hydrant abnimmt. Daraus ergibt sich die Bedingung des konvexen Energielinienverlaufes bei ideellen Durchmessern innerhalb einer Strangfolge, Bild 6.

d) Wenn nach Definition innerhalb eines Strangabschnittes der Strom q_i unverändert bleibt, also $q_i/q_{i+1}=1$, dann ist ein und nur ein Durchmesser optimal und keine Kombination von mehreren Durchmessern.

Fall 1.2: Strang mit Abzweigungen (Ästen)

Die Druckbedingungen und die Preisgleichung lauten für die einfache Abzweigung, Bild 7:

$$\begin{cases} \varphi = 0 = I_1 L_1 + I_2 L_2 - H_{v_1} \\ \psi = 0 = I_1 L_1 + I_3 L_3 - H_{v_2} \end{cases}$$
 (Druckbedingungen)

(11)
$$P = p_1 L_1 + p_2 L_2 + p_3 L_3$$
 (Preisgleichung)

Die Auflösung der Gleichungen (10) und (11) mit den Langrangeschen Multiplikatoren wird kurz skizziert: Anzahl der Veränderlichen $I_1,\,I_2,\,I_3=3$ Anzahl der Nebenbedingungen (Stränge) = 2

$$rac{\partial arphi}{\partial I_1} = L_1, \qquad rac{\partial arphi}{\partial I_2} = L_2, \qquad rac{\partial arphi}{\partial I_3} = 0,$$

$$rac{\partial \psi}{\partial I_1} = L_1, \qquad rac{\partial \psi}{\partial I_2} = 0, \qquad rac{\partial \psi}{\partial I_3} = L_3$$

Die ersten Ableitungen des Lagrangeschen Ansatzes nach I_1 , I_2 und I_3 liefern das Gleichungssystem (11a) mit den Unbekannten I_1 , I_2 , I_3 , λ_1 , λ_2 .

(11a)
$$\begin{cases} -L_1 s a_1^f f I_1^{-(f+1)} + \lambda_1 L_1 + \lambda_2 L_1 = 0 \\ -L_2 s a_2^f f I_2^{-(f+1)} + \lambda_1 L_2 = 0 \\ -L_3 s a_3^f f I_3^{-(f+1)} + \lambda_2 L_3 = 0 \end{cases}$$

Aus (11a) folgt nach Kürzen:

(12)
$$\lambda_1 + \lambda_2 - s a_1^f f I_1^{-(f+1)} = 0$$

(13)
$$\lambda_1 - s a_2^f f I_2^{-(f+1)} = 0$$

(14)
$$\lambda_2 - s \, a_3^f f I_3^{-(f+1)} = 0$$

wobei
$$a_i = c \ q_i^{\alpha}$$
; $f = \frac{t}{\beta}$

Addiert man Gleichungen (13) und (14), so ergibt sich

$$\lambda_1 + \lambda_2 = (a_2^f I_2^{-(f+1)} + a_3^f I_3^{-(f+1)}) s f$$

Nach Gleichung (12) ist

$$\lambda_1 + \lambda_2 = (a_1^f I_1^{-(f+1)}) s f$$

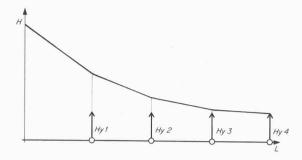


Bild 6 (links). Der konvexe Verlauf der Energielinie für den Fall 1.1

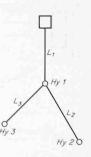


Bild 7 (rechts). Strang mit einer Abzweigung

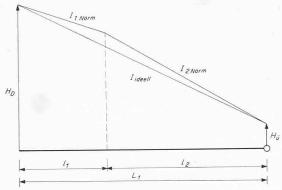


Bild 8. Energielinien bei einzelnem Strangabschnitt mit zwei Normnennweiten bzw. einem ideellen Rohrdurchmesser (Fall 2.1)

Aus den letzten beiden Gleichungen folgt

$$a_1^f I_1^{-(f+1)} = a_2^f I_2^{-(f+1)} + a_3^f I_3^{-(f+1)}$$

und schliesslich als Minimalbedingung

(15)
$$I_1 = \left(\frac{q_2}{q_1}\right)^{\frac{\alpha t}{t+\beta}} I_2 + \left(\frac{q_3}{q_1}\right)^{\frac{\alpha t}{t+\beta}} I_3$$

Aus Gleichung (15) folgt, dass die Regel des in Fliessrichtung abnehmenden Energieliniengefälles nicht über Abzweigpunkte hinweg gilt.

Die Gleichungen (12), (13) und (14) sowie die zwei Druckbedingungen (10), die sich auf die einfache Verzweigung nach Bild 7 beziehen, liefern zusammen das Gleichungssystem, aus welchem die Unbekannten I_1 , I_2 , I_3 sowie λ_1 und λ_2 berechnet werden können. Mehrfache Verzweigungen und Strangfolgen mit mehreren Strangabschnitten werden analog behandelt.

Fall 2: Genormte Rohrnennweiten. Die Rohrpreise werden der Preisliste entnommen

Fall 2.1 Einzelner Strangabschnitt mit genormten Rohrnennweiten

Es wird zunächst die Annahme getroffen, dass nur zwei genormte Nennweiten die optimale Lösung ergeben, Bild 8. Dass dies tatsächlich zutrifft, wird nachträglich bewiesen. Die Gleichungen lauten dann (siehe dazu auch Bild 9):

(16a)
$$p_1 l_1 + p_2 l_2 = P$$
 (Zielfunktion [P-Fläche])

(16b)
$$I_1 l_1 + I_2 l_2 - H_v = 0$$

(Restriktions-Ungleichung [Halbebene links der H-Geraden])

(16c)
$$l_1 + l_2 - L = 0$$
 (Restriktions-Gleichung [L-Gerade])

(16d) $l_1 \ge 0, l_2 \ge 0$ (Restriktions-Ungleichungen, nur gültig innerhalb der Halbebene im 1. Quadranten)

Die Lösung ist für diesen einfachen Fall durch die Auflösung des Gleichungssystems (16b) und (16c) gegeben

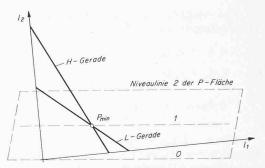


Bild 9. Geometrische Darstellung der Gleichungen (16), (Fall 2.1); Kostenminimum bei P_{min}

(2 Unbekannte l_1 und l_2 aus 2 Gleichungen). Das Problem ist ohne Preisgleichung bereits bestimmt. Die abhängigen Variablen sind l_1 und l_2 . Die Lösung liegt in Punkt P_{\min} (Bild 9). Man beachte, dass die L-Gerade unter -45° geneigt ist. Weiter ist die H-Gerade steiler als die L-Gerade und die Null-Linie der P-Fläche flacher als die L-Gerade. Dies folgt zwingend aus der Annahme, dass $D_1 < D_2$ und damit $I_2 > I_1$, wie auch $p_1 < p_2$ ist.

Die Rohrnetzkosten P sind gleich dem Wert der Niveaulinie, die durch Punkt P_{\min} geht, Bild 9. Aus den angegebenen Neigungsverhältnissen geht hervor, dass diese dann amkleinsten werden, wenn die H-Gerade mit der L-Geraden zusammenfällt, oder, was gleichbedeutend ist, $l_1 = l_2 = L$ bzw. $I_1 = I_2$. Das heisst, dass die genormte Rohrnennweite identisch ist mit dem optimalen, ideellen Rohrdurchmesser. Ergibt die Lösung nicht diesen Sonderfall, so ist das Preisminimum mit der Kombination aus genormten Nennweiten stets grösser als für den Sonderfall.

Es folgt der Beweis, dass unter der Optimalbedingung tatsächlich nur zwei Nennweiten, und nicht eine Kombination aus mehreren, den ideellen Durchmesser ersetzen können: Wird in den Strangabschnitt von Bild 9 eine weitere Nennweite D_3 von der Länge l'_3 eingeschaltet, so gilt statt Gleichung (16c):

$$l'_1 + l'_2 + l'_3 - L = 0$$

wobei

$$l'_3 = \Delta l_1 + \Delta l_2$$

und

$$\Delta l_1 = l_1 - l'_1$$
 $\Delta l_2 = l_2 - l'_2$

Gleichung (16a) lautet dann:

$$p_1(l_1 - \Delta l_1) + p_2(l_2 - \Delta l_2) + p_3(\Delta l_1 + \Delta l_2) = P'$$

Unter der Bedingung, dass $l_1 \ge 0$, $l_2 \ge 0$, $l_3 \ge 0$, ist P' nur dann minimal, wenn Δl_1 und Δl_2 den Wert 0 annehmen. Es ist also P in Gleichung (16a) kleiner als P'.

Die Erkenntnisse aus der Betrachtung des Fall 2.1 lassen sich etwas erweitert so zusammenfassen:

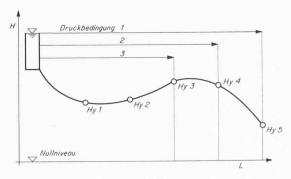
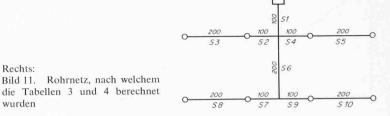



Bild 10. Druckbedingungen in hügeligem Gelände

- a) Ein ideeller Durchmesser wird, wenn er nicht mit dem Normdurchmesser identisch ist, durch den nächst grösseren und nächst kleineren Normdurchmesser ersetzt.
- b) Eine Kombination von mehr als zwei Durchmessern ist in einem Strangabschnitt mit konstantem Wasserstrom q nicht optimal.

Fall 2.2: Strang mit Abzweigungen

Dieser Fall ist wiederum überbestimmt, nur zusammen mit der Minimalbedingung für den Preis (= Zielfunktion) ergibt sich die Lösung. Das Problem fällt in den Bereich der mathematischen Optimierung. Die Lösung erfolgt mit Hilfe der linearen Programmierung. Bei ebenem Gelände werden stets die Hydranten an den Astenden die Gleichungen für die Druckbedingungen liefern. In hügeligem Land hingegen wird man auch die Hydranten an den hochgelegenen Punkten in den Druck-Ungleichungen berücksichtigen, Bild 10. Im übrigen wird auf die Literatur [4], [5] verwiesen. Eine Folgerung aus dem Haupttheorem der linearen Programmierung (siehe z. B. [5] S. 12) ist erwähnenswert: Die optimale Lösung kann jeweils pro Ast nur einen Nennweiten-Sprung innerhalb eines Strangabschnittes (zwischen zwei Hydranten) haben. Alle weiteren Änderungen in einem Ast erfolgen an den Hydranten (siehe dazu auch [1], S. 64.).

Der Autor hat ein Computerprogramm ausgearbeitet, mit dessen Hilfe sich verzweigte Druckrohrnetze auch grösseren Umfanges noch wirtschaftlich berechnen lassen. Zwei Lösungen für das in Bild 11 dargestellte Testnetz sind in den

Tabellen 3 und 4 angegeben. Die Berechnung erfolgte mit der Formel von Prandtl-Colebrook. Wegen hydraulischen Druckstössen, die z. B. beim plötzlichen Abstellen der Pumpe auftreten können, werden bei der Bemessung obere Geschwindigkeitsgrenzen, meist in Abhängigkeit vom Rohrdurchmesser, angegeben. Diese sind ebenfalls im Rechenprogramm berücksichtigt.

Verwendete Symbole

a	Hilfsvariable	
c	Koeffizient der Potenzformeln	
D [m]	Rohrdurchmesser	
f	Hilfsvariable	
H_D [m]	vorhandene Druckhöhe bei Netzeintritt	
H_G [m]	Geodätische Höhe	
H_{ii} [m]	Überdruck an den Hydranten	
H_V [m]	Druckhöhenverlust	
Hy	Hydrant	
i, k, n	Indices	
I[]	Energieliniengefälle	
K [mm]	mittlere Wandrauhigkeit	
<i>l</i> [m]	Länge einer Rohrfolge mit gleichem Durchmesser innerhal eines Strangabschnitts	
L [m]	Länge eines Strangabschnittes (von Hydrant zu Hydrant)	
NW [mm]	Nennweite (genormt)	
P [WE]	Preis des Rohrnetzes in Währungseinheiten	
p [WE/m]	Preis pro Laufmeter Rohr	
q_i [m ³ /s]	Wasserstrom im Strangabschnitt i	

sungen für das in Bild 11 dargestellte Test		q _i [m ² /s] Wasserstrom im Strangabschnitt i Re [—] Reynoldssche Zahl					
Tabelle 3		Tabelle 4					
ROHRNETZOPTIMIERUNG		ROHRNETZ OPTIMIERUNG					
PREISLISTE : NW [MM] PREIS		PREISLISTE : NW [MH] PREIS					
65 96,00 80 100,00 100 126,00 125 162,00 150 201,00 200 302,00 250 408,00 300 529,00 350 669,00 400 813,00 500 1194,00		50					
KENNZAHLEN : VISC=1,31E-06 VMAX=3,0 K=		KENNZAHLEN : VISC=1,31E-06 VMAX=3,0 K= ,025					
	L/S1	ROHRNETZ : STRANG LAENGE [M] Q [L/S]					
2 100 4 3 2000 2 4 100 3 5 200 8 6 200 8 7 100 4 8 200 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 100 160,0 2 100 40,0 3 20,0 4 100 40,0 5 200 20,0 6 200 80,0 7 100 40,0 8 200 20,0 9 100 40,0					
DRUCKKOTE BEI NETZEINTRITT= 100,0 UEBERDRUCK AN D	EN KNOTEN=3.0 ATUE	DRUCKKOTE BEI NETZEINTRITT= 100,0 UEBERDRUCK AN DEN KNOTEN=3.0 ATUE					
STRANGKOMBINATION		STRANGKOMBINATION KOTE STRANGENDE					
1 2 3 1 4 5 1 6 7 8 1 6 9 10	50 50 50 50	1 2 3 1 4 5 1 6 7 3 1 6 9 10 50					
RESULTAT							
DER MINIMALE PREIS VON 309 978.21 WE ERGIBT SICH N	ACH FOLGENDER LISTE	DER MINIMALE PREIS VON 185 427.54 WE ERGIBT SICH NACH FOLGENDER LISTE					
STRANG NW LFM DRUCKVERLUST 0 (MM) (M) (L/S) 1 300 100 1.69 160.0	V (M/S)	STRANG NN LFM DRUCKVERLUST Q V [MM] (M) (M) (L/S) (M/S)					
2 150 100 4 03 40 0 3 125 45 1,20 20,0 3 100 155 13,09 20.0 4 150 100 4,03 40,0 5 125 45 1,20 20,0 6 200 200 7,23 80,0 7 150 100 4,03 40,0 8 125 169 4,47 20,0 8 100 31 2,58 20.0 9 150 100 4,03 40,0 10 125 169 4,47 20,0 10 125 169 4,47 20,0	2.26 2.26 1.63 2.55 2.26 1.63 2.55 2.26 1.63 2.55 2.26 1.63 2.55	1 300 109 1.25 160.0 2.26 2 150 109 2.94 40.0 2.26 3 100 209 11.15 20.0 2.55 4 150 109 2.94 40.0 2.26 5 100 209 11.15 20.0 2.55 6 200 2.09 5.16 80.0 2.55 7 150 109 2.94 40.0 2.26 8 125 14 .28 20.0 1.63 8 100 186 10.37 20.0 2.55 9 150 109 2.94 44.0 2.26 10 125 14 .28 20.0 1.63 10* 100 186 10.37 20.0 2.55 NACH PRANDIL-COLEBROOK ERGASEN SICH LAMBDAMERTE ZWISCHEN .014 UND .018					
NACH PRANDTL-COLEBROOK ERGABEN SICH LAMBDAWERTE ZHIS DAS ENTSPRICHT AM WIENER RECHENSCHIEBER DEN STUFENMA	CHEN '01A OMD '059	DAS ENTSPRICHT AM WIENER RECHENSCHIEBER DEN STUFENMARKEN 1,4 UND 1,3 DIE DRUCKHOEHE WURDE WEGEN VMAX-BESCHRAENKUNG NICHT AUSGENUETZT					

r [WE] Fixkostenanteil

s, t Parameter der Rohrkostenfunktion

S Strangabschnitt (von Hydrant zu Hydrant)

v [m/s] Geschwindigkeit

 α, β Koeffizienten der Potenzformeln

λ Reibungsbeiwert nach Prandtl-Colebrook

 λ_i Multiplikator nach Lagrange ν [m²/s] kinematische Zähigkeit

 φ, ψ Nebenbedingungen (nach Langrangescher Multiplikatoren-

methode)

Literaturverzeichnis

- [1] Bonnal, C.: Manual of Collective Sprinkler Irrigation OECD, 1963
- [2] Bronstein, I. N. und Semendjajew, K. A.: Taschenbuch der Mathematik, 1968. Verlag H. Deutsch Zürich u. Frankfurt/M.

- [3] Irmay, S.: Calcul économique des réseaux de distribution d'eau. «La Houille Blanche», 1954 Nr. 2, p. 135
- [4] Jacoby, L. S.: Design of optimal hydraulic networks. ASCE, No. Hy 3, May 1968, p. 641
- [5] Künzi, H. P., H. G. Tzschach und C. A. Zehnder: Numerische Methoden der mathematischen Optimierung, Stuttgart 1966, Verlag Teubner
- [6] Labye, Y.: Etude des procédés de calcul ayant pour but de rendre minimal le coût d'un réseau de distribution d'eau sous pression, «La Houille Blanche», 1966, Nr. 5, p. 577
- [7] Mandry, J. E.: Design of pipe distribution systems for sprinkler projects, ASCE, No. IR 3, Sept. 1967, p. 243

Adresse des Verfassers: P. Widmoser, Dr. nat. techn. Institut für Kulturtechnik an der ETH, Leonhardstr. 33, 8006 Zürich.

Die Beurteilung von Schäden in tragenden Holzbauteilen

DK 69.02:691.11.004.64

Von Prof. H. Kühne, dipl. Arch. ETH, SIA, EMPA, Dübendorf 1)

Holzbaulichen Schäden und Mängeln können in der Hauptsache zugrunde liegen:

Die einer stetigen Veränderung unterworfenen Bauformen, vorwiegend bedingt durch ökonomische oder ästhetische Forderungen

Die rasche Entwicklung auf dem Gebiet der Baumaterialien. Während man früher höchstens 20—30 Materialien kannte, sind davon heute eine Vielzahl auf dem Markt erhältlich, wobei die nicht erprobte oder unsachgemässe Anwendung häufig Ursache auftretender Mängel oder Schäden ist.

Mängel in der Projektierung, sei dies konstruktiver oder statischer Art, sowie Mängel bei der Ausführung, bedingt durch unsachgemässe Materialbereitstellung, Materialfehler oder unzweckmässige Ausführung durch nicht qualifizierte Arbeitskräfte.

Vorabklärung über den Bauvorgang

Durch Befragung der am Bau Beteiligten und durch das Anfordern von beweiskräftigen Unterlagen wie Plänen, Baubeschrieben, Korrespondenzen, Offerten, Tagesrapporten, meteorologischen Berichten und Zusammenstellungen sind in der Regel folgende Angaben (zur Klärung der technischen Ursachen) zu ermitteln:

Daten des Bauvorganges, das heisst Beginn und Ende der möglicherweise mit dem Schaden im Zusammenhang stehenden Bauarbeiten

Wetterverhältnisse in dieser Zeitperiode

Allfällige Arbeiten in den fraglichen Räumen zwischen Fertigstellung und definitiver Benützung

Art der definitiven Benützung der Räumlichkeiten Angaben über Heizung und Lüftung

Schadenauftritt

Angaben über allfällige, temporäre, anormale äussere Bedingungen, wie zum Beispiel Überschwemmung, Überhitzung von Heizanlagen, Befahren mit Transport- und Hebegeräten

Möglichst spezifische Angaben über die verwendeten Bau- und Hilfsmaterialien sowie über konstruktive Ausbildung

Ergänzende Bemerkungen der möglichst vollzählig zum Augenschein zitierten Beteiligten wie Bauherrschaft, bauleitender Architekt und Ingenieur sowie an den fraglichen Arbeiten direkt oder indirekt beteiligten Unternehmungen

Die äussere Erscheinung der Schäden oder Mängel kann hierauf durch Beschreibung und photographische Dokumentation festgestellt werden. Dabei ist folgenden Beobachtungen Bedeutung beizumessen: Art des Mangels (mechanische Schäden, Formveränderungen infolge Auftreten von Feuchtigkeit, Wassereintritt, Zersetzungserscheinungen durch physikalische, chemische oder biologische Einwirkungen, Verfärbungen, Auftreten von Pilzen, anormale Formänderungen)

Örliche Lage, Ausmass und Verteilung der Erschei-

Festhalten von Anzeichen, welche Schlüsse auf die Richtung und den zeitlichen Ablauf der Schadenbildung erlauben

Freilegen von verdeckten Teilen der Konstruktion, im Hinblick auf die Klärung der baukonstruktiven Ausbildung, die Beschaffenheit der verwendeten Materialien, die Tiefeneinwirkung der Schäden und besondere Schadenquellen, wie etwa undichte Feuchtigkeitsisolationen, Kondenswasserbildung u. a. m.

Sinnvolles weiteres Vorgehen

Auf Grund der in den Erhebungen gewonnenen Übersicht über Natur und Umfang des Schadens oder Mangels wird es in der Regel möglich sein, sichere Aussagen über geeignete Massnahmen zu dessen Behebung zu machen. Ist dies der Fall, können die örtlichen Untersuchungen abgebrochen und die gemachten Beobachtungen in ihren für den vorliegenden Fall wesentlichen Teilen schriftlich festgehalten und mit einem Kommentar über Ursachen und geeignete Instandstellungsmassnahmen versehen werden. Unter Umständen können ergänzende Untersuchungen im Laboratorium oder durch rechnerische Nachkontrollen für eine endgültige Abklärung sinnvoll sein. Ist zudem ein im Aufwand vorläufig nicht zu übersehendes Studium auf breiter Basis notwendig, um die Ursachen und Behebungsmöglichkeiten klarzustellen, oder drängt sich das Zuziehen weiterer Fachleute auf, ist es empfehlenswert, die Fragesteller auf diese Umstände aufmerksam zu machen und mit ihnen das weitere Vorgehen zu vereinbaren. Handelt es sich um Probleme grosser Tragweite und allgemeiner Bedeutung, so ist es unter Umständen möglich, weitere Interessentenkreise an einer Finanzierung der Abklärung zu beteiligen.

Im Anschluss an die Klärung der Schadensursache müssen sodann in der Regel die Möglichkeiten der Instandstellung abgesprochen werden. Dabei ist es oftmals nicht mehr möglich, in ökonomischer Weise nachträglich jene praktischen Lösungen auszuführen, die eigentlich von Anfang an angezeigt gewesen wären. Es drängen sich deshalb vielfach solche unkonventioneller Art auf.

1) Zusammenfassung eines Referates anlässlich des durch den Schweizerischen Polierverband am 31. Januar 1970 in Brugg veranstalteten Kurses für Holzfachleute (aus dem Pressedienst der «Lignum», Zürich).