Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 88 (1970)

Heft: 24: Sonderheft zum 70. Geburtstag von Dr. C. Seippel

Artikel: Axialverdichterbeschauflung für grosse Fördermengen

Autor: Pfenninger, H.

DOI: https://doi.org/10.5169/seals-84536

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Von Dr. H. Pfenninger, dipl. Ing., Baden

Danisha	-	
Bezeichn		f . 1
r	Schaufelradius	[m]
δ	grösste Schaufeldicke	[m]
S	Schaufelsehne	[m]
F_{ax}	Eintrittsfläche der Beschauflung	$[m^2]$
F	Schaufelfläche	$[m^2]$
ε	Verjüngungsfaktor der Beschaufelung	p ====
Z	Stufenzahl des Verdichters	
и	Umfangsgeschwindigkeit	[m/s]
W	Strömungsgeschw. an der Laufschaufel	[m/s]
c	Strömungsgeschw. an der Leitschaufel	[m/s]
Cax	Axialgeschw. (normal zu F_{ax})	[m/s]
n	Drehzahl des Verdichterrotors	[U/min]
ω	Winkelgeschwindigkeit $\omega = \pi n/30$	[1/s]
ü	Übersetzungsverhältnis	
Q	Dichte des Fördermediums	$[kg/m^3]$
C_p	spez. Wärme bei konst. Druck	[J/kg °C]
κ	Isentropenexponent	
R	Gaskonstante	[J/kg °C]
T	absolute Temperatur	[°K]
_	abs. Druck	$[N/m^2]$
p		$[m^3/kg]$
v	spez. Volumen	
c_s	Schallgeschwindigkeit $c_S = \sqrt{\kappa RT}$	[m/s]
M	Massenstrom	[kg/s]
P	Leistungsbedarf	[kW]
R	Reaktionsgrad einer Beschauflungsstufe	
	(Verhältnis der Druckerzeugung im Laufra	ıd
	zu der in der Stufe)	_
σ_Z	Fliehkraftbeanspruchung der Schaufel	[kp/cm ²]
12	Auftriebsbeiwert $c_a = \frac{A}{F c^2 \varrho/2} (A = Au$	ftmiob)
Ca	Auftriebsbeiwert $c_a = \frac{A}{F c^2 \varrho/2} (A = Au$	(tileb)
c_w	Widerstandsbeiwert $c_w = \frac{W}{F c^2 \varrho/2} (W = W)$	iderstand)
е	Gleitzahl $e = c_w/c_a$	_
c_{ax}/c_{S_1}	relative Schluckziffer	_
ν	Geschwindigkeitsziffer $v = c_{ax}/u$ relative Drehzahlziffer $k_u = ui/c_{S_1}$	
k_u		_
K	Kinetische Energie $K = c^2/2$	$[m^2/s^2]$
	T_{2}	
a	spez. Schaufelarbeit $a = \int c_p dT$	[J/kg]
	T_{1}	
	p_2	
y	polytrope Stufenarbeit $y = \int v dp$	[J/kg]
	p_{1}	
η *	Arbeitswirkungsgrad $\eta^* = (y + K_2 - \dots + K_2$	$K_1)/a$
		_
μ_a	Schaufelarbeitsziffer $\mu_a = a/z u_i^2$	_
x 7:		
Indices		
1, 2	Ortsbezeichnung (1 Eintritt, 2 Austritt)	
i	innen (ri Radius des Laufschaufelfusses)	
а	aussen (r_a Radius des Leitschaufelfusses)	
∞	ungestörter Geschwindigkeitsfaktor	
t	tangential (Komponente der Geschwindig	keit)
ax	axial (Komponente der Geschwindigkeit)	
V	Verlust	
VG	Getriebeverlust	
VL	Lagerverlust	
S	Schaufel	

1. Grundsätzliche Überlegungen

Um den Bau von Gasturbinen mit grösserer Einheitsleistung, im besondern mit höherer Leistung bei gegebener Drehzahl zu ermöglichen, war es notwendig, einen Axialverdichter für grösseren Förderstrom zu entwickeln. Zur raschen Verwirklichung dieser Forderung wollte man noch im bekannten Unterschallgebiet bleiben und schloss deshalb die Entwicklung eines Überschallverdichters für diesen Schritt aus

Zur Erreichung grosser Förderströme ist es notwendig, einerseits die Eintrittsfläche in den Verdichter so gross als möglich zu machen und anderseits die Axialgeschwindigkeit bis an die zulässige Grenze zu erhöhen. Der eintretende Strom kann durch folgenden Ausdruck angegeben werden:

(1)
$$\dot{M} = \int_{r_i}^{r_a} 2 \pi r \, dr \, \varrho \, \overline{c}_{ax} = F_{ax} \, \overline{c}_{ax} \, \varrho$$

Für die Fliehkraftbeanspruchung der Laufschaufel gilt:

(2)
$$\sigma_Z = {}^{1}/{}_{2} \cdot \varrho_S \, u_i^{2} \, [(r_a/r_i)^2 - 1] \, \varepsilon$$

Weiter ist:

(3)
$$F_{ax} = \pi/4 \cdot (2 r_i)^2 \cdot [(r_a/r_i)^2 - 1]$$

Hieraus ergibt sich:

(4)
$$F_{ax} = \frac{\sigma_Z}{2 \pi (n/60)^2 \varrho_S}$$

Hiermit ist der Zusammenhang zwischen Fliehkraftbeanspruchung und Eintrittsfläche der Beschauflung gegeben. Hierzu muss selbstverständlich noch die Biegebeanspruchung dazu gerechnet werden, welche wieder eine Funktion der Kanalhöhe, bzw. der Eintrittsfläche, des Förderstromes und der Druckerzeugung pro Stufe ist. Auf die Aufstellung der Formel für die Biegebeanspruchung sei hier im Interesse der Kürze verzichtet. Es ist nicht schwierig, die Biegebeanspruchung in Formel (4) auch noch einzubauen. Man kann somit für die jeweils zulässige Machzahl die optimalen Verhältnisse für eine gestellte Bedingung bestimmen. Dabei ist folgendes zu beachten:

Einerseits ist man mit der Eintrittsfläche, das heisst mit dem entsprechenden Durchmesserverhältnis wegen der zulässigen Schaufelbeanspruchung und dem Fächerungseinfluss im Schaufelkanal begrenzt, anderseits ist die maximale Strömungsgeschwindigkeit durch die zulässige Machzahl gegeben. Diese ist aber, wie Bild 1 zeigt, auch noch von der relativen Profildicke abhängig, die ihrerseits bei sonst gleichen Verhältnissen die Schaufelbeanspruchung bei gegebener Konizität bestimmt. Somit besteht auch ein eindeutiger Zusammenhang zwischen Fliehkraftbeanspruchung und zulässiger Strömungsgeschwindigkeit. Es ist nun notwendig, den günstigsten Kompromiss zu finden.

Zum besseren Verständnis der weiteren Überlegungen sollen vorerst drei typische Fälle der Stufenstaffelungswinkel einer Axialverdichterstufe betrachtet werden. Bild 2 zeigt diese Fälle. Der Fachmann charakterisiert die Stufe unter anderem durch den Reaktionsgrad R. Darunter versteht man das Verhältnis der Druckerzeugung im Laufrad zur gesamten Druckerzeugung in der Stufe. Man kann nun entweder in der Laufreihe oder in der Leitreihe mehr Druck erzeugen, oder die Druckerzeugung auf Lauf- und Leitreihe gleichmässig verteilen. Es scheint eine allgemeine Erfahrung zu sein, dass bis zu einer bestimmten Grenze das rotierende Schaufelgitter eine Druckerhöhung mit besserem Umsetzungsgrad erzeugen kann, als ein stationäres. Der Grund ist nicht ganz klar, doch spielen sicher die Sekundärströmungen, wie zum Beispiel Grenzschichtabschleuderung eine Rolle.

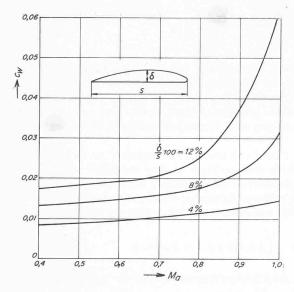


Bild 1. Widerstandsbeiwert c_w eines Tragflügelprofils in Funktion der Machzahl Ma. Als Parameter ist die relative Profildicke δ/s aufgetragen. Man sieht, dass bei gleichem Wert c_w das Profil kleinerer Dicke δ/s eine höhere Machzahl zulässt. So ist z. B. der Widerstandsbeiwert bei einer Schaufeldicke von 4% und Ma=0.98 gleich gross, wie bei Ma=0.54 und 8% Schaufeldicke.

Einerseits wäre es vorteilhaft, den Reaktionsgrad gross zu wählen, anderseits führt dies aber bei sonst gleichen Bedingungen zu einer höheren Machzahl, die in Anbetracht der grösseren relativen Schaufeldicke der Laufschaufel an der Einspannstelle wieder eine Verschlechterung des Wirkungsgrades zur Folge hat. Der Reaktionsgrad der Beschauflung ist definiert durch (Bild 2)

$$(5) R = \frac{w_{\infty}t}{w_{\infty}t + c_{\infty}t}$$

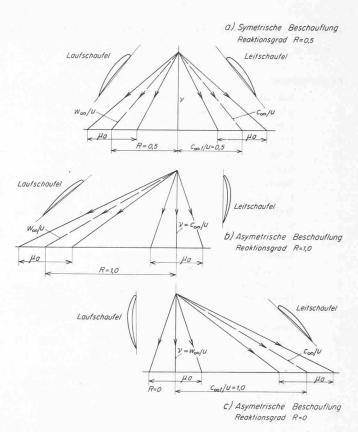
Da
$$w_{\infty t} + c_{\infty t} = u$$
 ist, folgt

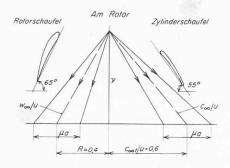
(5a)
$$R = \frac{w_{\infty}t/u}{(w_{\infty}t + c_{\infty}t)/u} = w_{\infty}t/u$$

Bild 2a zeigt eine symetrische Beschauflung, bei der die Staffelungswinkel der Laufreihe und die der Leitreihe gleich gross sind; damit wird $w_{\infty t}/u=0,5$. Dies bedeutet einen Reaktionsgrad von 50%. Lauf- und Leitreihe erzeugen gleich viel Druck.

Bei einer gegebenen Umfangs- und einer gegebenen Durchflussgeschwindigkeit sind bei dieser Staffelung die Absolutgeschwindigkeiten am Profil von allen möglichen Winkelvarianten am kleinsten. Umgekehrt ausgedrückt erlaubt somit diese Schaufelwinkelanordnung bei gleicher Machzahl die höchste Schluckfähigkeit. Trotzdem ergibt sich bei Berücksichtigung aller Faktoren, dass diese Kombination wie später gezeigt werden soll, nicht das Axialgebläse mit dem grössten Förderstrom darstellt.

Die Bilder 2b und 2c zeigen asymmetrische Beschauflungen, bei denen die Schaufelwinkel von Lauf- und Leitreihe verschieden sind. Bild 2b stellt den Fall dar, bei dem der ganze Druck in der Laufreihe erzeugt wird. Die Leitreihe dient nur noch als Umlenkgitter. Wie wir bereits gesehen haben, geht die Druckerzeugung im Laufrad mit höherem Umsetzungsgrad vor sich als im Leitrad; deshalb kann eine derartige Beschauflung bei gleicher Umfangsgeschwindigkeit einen höheren Druck erzeugen als eine symmetrische. Leider hat sie den Nachteil, dass, wie aus Bild 2b leicht ersichtlich ist, die Zuströmgeschwindigkeit zum Profil um etwa 50% grösser ist,




Bild 2. Geschwindigkeitsdreiecke, Profilstellung und Profilform für drei typische Fälle der Winkelstaffelung einer Axialgebläsestufe. Die Geschwindigkeitsdreiecke wurden dimensionslos aufgetragen, indem alle Geschwindigkeiten durch die Umfangsgeschwindigkeit u dividiert wurden.

als bei der symmetrischen Beschauflung, was dazu zwingt, die Umfangsgeschwindigkeit und damit auch die Axialgeschwindigkeit zu verkleinern, wodurch die Schluckfähigkeit des Verdichters zurückgeht. Man sieht hieraus, dass eine Beschauflung mit dem Reaktionsgrad 1 für einen Axialverdichter grosser spezifischer Schluckfähigkeit nicht geeignet ist.

Vollständigkeitshalber sei auch noch der Fall erwähnt, bei dem der ganze Druck in der Leitreihe erzeugt wird (Bild 2c), wo also der Reaktionsgrad = 0 ist. Da hierbei die Strömungsgeschwindigkeit am Leitrad sehr hoch wird und zudem die Druckerzeugung im Leitrad mit grösseren Verlusten verbunden ist als im Laufrad, ist diese Anordnung nicht vorteilhaft.

Bei diesen Überlegungen darf aber Bild 1 nicht vergessen werden. Es hat sich dort gezeigt, dass die zulässige Machzahl sehr stark von der Profildicke abhängt, weil das dickere Profil eine grössere Übergeschwindigkeit am Profilrücken aufweist, als das dünne.

Aus Festigkeitsgründen muss die Laufschaufel am Rotor mit grösserer relativen Profildicke δ/s ausgeführt werden, weil sie an ihrem Fuss, das heisst, an ihrer Einspannstelle, die volle Fliehkraft der Schaufel und das grösste Biegemoment aufzunehmen hat. Es ist deshalb zweckmässig, bei gegebener Axialgeschwindigkeit die Zuströmgeschwindigkeit am Fusse der Laufschaufel kleiner zu halten, um die zulässige Machzahl nicht zu überschreiten. Umgekehrt ist die Leitschaufel am Rotor mechanisch wenig beansprucht, da dies für diese Schaufel das freie Ende ist. Die Leitschaufel kann also an dieser Stelle dünn gehalten werden; somit ist dort eine höhere Zuströmgeschwindigkeit zum Profil ohne Schaden zulässig (die zulässige Machzahl ist höher als bei der Laufschaufel). Bei gegebener Schluckfähigkeit scheint es somit logisch, den Reaktionsgrad am Rotor zu verkleinern, wodurch die Zu-

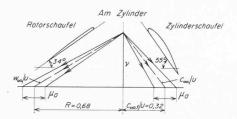


Bild 3. Geschwindigkeitsdreiecke, Schaufelprofile und Schaufelwinkel einer der Versuchsbeschauflungen. Gewählte Profildicken der Laufschaufeln innen 14%, aussen 5%, der Leitschaufeln innen 8%, aussen 12%; gewählter Reaktionsgrad innen 0,4, aussen 0,68.

Da alle Geschwindigkeitsvektoren dimensionslos aufgetragen sind, ist aus Bild 3 nicht zu ersehen, dass die Strömungsgeschwindigkeit an der Laufschaufel auf der Zylinderseite am grössten ist, und deshalb das Profil an dieser Stelle auch am dünnsten sein muss.

strömgeschwindigkeit zur dicken Laufschaufel verkleinert und diejenige zur dünnen Leitschaufel vergrössert wird. Mit dieser Massnahme ist es möglich, bei gegebener Profildicke die Schluckfähigkeit gegenüber der symmetrischen Beschauflung zu vergrössern.

Aussen sind die Verhältnisse gerade umgekehrt. Das freie Ende der Laufschaufel kann mit kleiner relativer Profildicke ausgeführt werden, während die Leitschaufel an dieser, das heisst an ihrer Einspannstelle, relativ dick ausgeführt werden muss, um das zur Aufnahme der Biegemomente notwendige Widerstandsmoment zu erhalten. Es ist deshalb zweckmässig, auf der Zylinderseite der Beschauflung die Zuströmgeschwindigkeit zur Laufschaufel grösser zu wählen als die Zuströmgeschwindigkeit zur Leitschaufel. Die Rechnung hat nach den vorliegenden Unterlagen für die zulässige Machzahl ergeben, dass es vorteilhaft ist, den Reaktionsgrad am Rotor zu etwa 0,4 und am Zylinder zu etwa 0,68 zu wählen.

Bild 3 zeigt die Geschwindigkeitsdreiecke, die Schaufelprofile und die Schaufelwinkel, und zwar oben in unmittelbarer Nähe des Rotors, also an den Einspannstellen der Lauf-

Tabelle 1. Hauptdaten des Versuchs-Verdichters für die Grundausführung

Rotordurchmesser	280 mm	
Stufenzahl	8	
Durchmesserverhältnis Da/Di am Eintritt	1,5	
Drehzahl	15000 U/min	
Umfangsgeschwindigkeit der ersten	To a second control of the control o	
Laufschaufel am Rotor	220 m/s	
Umfangsgeschwindigkeit der ersten Laufscha	ıufel	
an der Spitze	330 m/s	
Druckverhältnis	3,2	
Volumenstrom am Eintritt	$12 \text{ m}^3/\text{s}$.	
Leistungsaufnahme bei einem Ansaugedruck		
von 0,35 bar abs	700 kW	

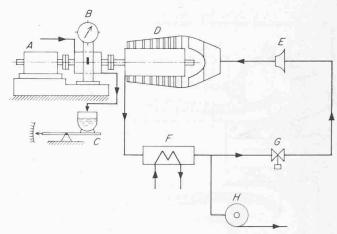


Bild 4. Versuchsordnung im Windkanal. Der Windkanal kann evakuiert oder aufgeladen werden; damit lässt sich ein Gebläse mit verschiedenen Reynoldszahlen prüfen. In Bild 4 ist nur das Evakuierungsgebläse eingezeichnet.

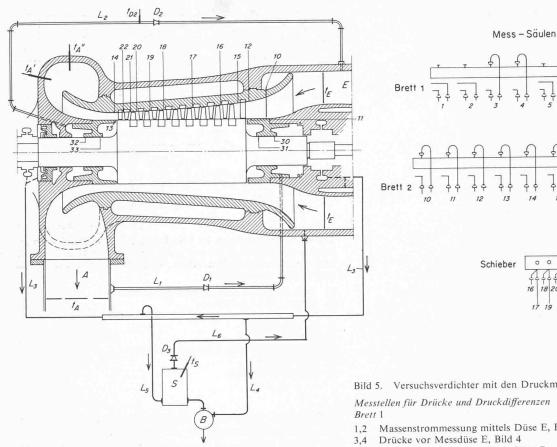
- A Anwurfmotor, maximale Leistung 750 kW
- B Pendelgetriebe mit Waage
- C Schmierölbassin mit Waage
- D Axialverdichter
- E Messdüse
- F Luftrückkühler (mit Kühlwasser gekühlt)
- G Drosselventil
- H Evakuierungsgebläse

radschaufeln, und unten in unmittelbarer Nähe des Zylinders, also an den Einspannstellen der Leitradschaufeln. In jedem der beiden Bilder sind links die Verhältnisse für die Rotorschaufeln, rechts jene für die Zylinderschaufeln dargestellt.

2. Messungen

Um die Richtigkeit der rechnerischen Voraussagen zu überprüfen, wurde ein Modellverdichter im Massstab 1:5 des wirklichen Gebläses gebaut und durchgemessen.

2.1 Die Versuchsanordnung


Bild 4 zeigt die Versuchsanordnung und Tabelle 1 die Hauptdaten der Versuchsmaschine. Diese wurde in einen Windkanal eingebaut, der im geschlossenem Kreislauf arbeitet. Mit Zusatzkompressoren kann der Druck in der Saugleitung über oder unter dem Atmosphärendruck eingestellt werden. Da die Antriebsleistung des Windkanals mit nur etwa 750 kW beschränkt ist, musste der Ansaugedruck bei der grössten Drehzahl und der höchsten Schluckfähigkeit des Verdichters auf etwa 0,31 ata gesenkt werden. Für kleinere Drehzahlen und Schluckfähigkeiten konnte der Ansaugdruck entsprechend erhöht werden.

2.2 Die Drehzahlmessung

Hiefür diente ein elektronischer Zähler (Beckmann/Berkeley). Der Eingang erfolgte mit einem elektromagnetischen Schwingungsaufnehmer von Philips. Am freien Wellenende des Antriebmotors wurde ein Zahnrad mit 60 Zähnen als Geber zum elektromagnetischen Schwingungsaufnehmer montiert. Zur Kontrolle der Drehzahl verwendete man einen SmithStichdrehzahl-Zähler, der ebenfalls vom freien Wellenende des Antriebsmotor angetrieben wurde.

2.3 Die Drehmomentmessung

Hiezu stand ein Pendelgetriebe mit Drehmomentenwaage zur Verfügung. Zur Bestimmung des Getriebeverlustes wurden die Ein- und Austrittstemperaturen des Schmieröls mit Thermometern gemessen. Die Öldurchflussmenge ermittelte man durch Wägen. Die Leitungen und das Pendelgetriebe

Lufteintritt in den Ver-E dichter

Luftaustritt aus dem Ver-A dichter

untere Ausgleichleitung L_1

obere Ausgleichleitung L_2 Ablaufleitung für Öl und L_3 Luft aus den Lagern

 L_4 Ölablaufleitung

Luftleitungen L_5, L_6

Ölabscheider

B Ölsammelhehälter Düsen für Massenstrom-D

messung Temperaturmessstellen

eintretender Luftstrom (Bild 6 rechts)

austretender Luftstrom (Bild 6 links)

Bild 5. Versuchsverdichter mit den Druckmessanschlüssen

Messtellen für Drücke und Druckdifferenzen

1,2 Massenstrommessung mittels Düse E, Bild 4 (Druckdifferenzen)

Massenstrommessung mittels Düse D3 der Leckluft aus den Lagern 5.6 (5 Druckdifferenz, 6 Druck)

0 0 0 0 0 0

Massenstrommessung mittels Düse D2 in L2 (7 Druckdifferenz, 8 Druck) L1 war geschlossen

Brett 2 und Schieber

Die Messstellen und die Messinstrumente tragen die gleichen Ziffern. Es sind ausschliesslich Drücke, die mit Quecksilbersäulen gemessen wurden. Die Stellen 16 bis 22 und 30 bis 33 können durch den Schieber auf die beiden Quecksilbersäulen auf Brett 2 rechts aussen geschaltet werden.

waren gegen Wärmeverluste gut isoliert. Der Getriebeverlust P_{VG} war somit:

1E

$P_{VG} = c_{\ddot{o}l} M_{\ddot{o}l} \Delta t_{\ddot{o}l} [kW]$ (6)

2.4. Die Leistungsmessung

Der Leistungsverbrauch PK des Verdichters ergab sich aus der Messung des Drehmomentes Ma am Gehäuse des Getriebes unter Berücksichtigung des Getriebeverlustes P_{VG} , der Lagerverluste P_{VL} und des Übersetzungsverhältnisses \ddot{u} des Getriebes zu:

(7)
$$P_K = \frac{\ddot{u}}{\ddot{u} - 1} \left[M_d \, \omega_M - P_{VG} \right] - P_{VL}$$

Zur Bestimmung der Umfangsleistung des Verdichters wurde die Gebläsewelle ohne Beschauflung angetrieben. Durch Einstellen verschiedener Luftdichten φ konnte auf $\varrho = 0$ extrapoliert werden.

2.5. Die Messung des Förderstromes

Diese erfolgte mit einer Normdüse.

2.6. Die Druckmessung

Hiefür verwendete man Wasser- bzw. Quecksilbersäulen. Der Totaldruck vor der Vorleitreihe wurde mit speziell hierfür entwickelten Sonden gemessen. Vor jeder Messreihe hat man das Gebläse sorgfältig abgepresst, um undichte Stellen in den Messleitungen und am Gebläsegehäuse aufzudecken. Bild 5 zeigt die Druckmessanschlüsse.

2.7. Die Temperaturmessung

Vor und nach dem Gebläse sind je 2 × 8 Thermoelemente nach Bild 6 angebracht und in Serie geschaltet worden. Die Thermospannung wurde mit einem Trüb-Täuber-Kompensator gemessen. Die Ansaugleitung, welche zugleich Messstrecke zur Bestimmung des Massenstromes ist (Bild 4) hat man sorgfältig isoliert. Die Totaltemperatur T^* wurde aus der gemessenen Temperatur T_{gem} unter Berücksichtigung des Eigentemperaturverhältnisses $\check{\beta}$ bestimmt und zwar:

(8)
$$T^* = T_{gem} + (1 - \beta) \, \bar{c}^2 / 2 \, c_p$$
,

wobei c die Luftgeschwindigkeit an der Messstelle und β ein Korrekturfaktor bedeutet, der die Anordnung der Thermoelemente berücksichtigt und je nach Messstelle 0,6 bis 0,9 beträgt.

Bild 7 zeigt den Versuchsverdichter mit abgedecktem Zvlinderoberteil. Deutlich erkennbar sind die vielen Messanschlüsse innerhalb des Gehäuses. Es würde zu weit führen, auf die Messungen innerhalb der Verdichterbeschauflung einzugehen und deren Resultate zu diskutieren. Wir möchten uns hier auf das Gesamtergebnis konzentrieren.

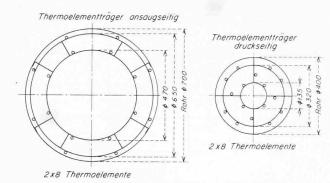


Bild 6. Anordnung der Temperaturmessung mit Thermoelementen am Eintritt (links) und Austritt (rechts) des Verdichters. Die Temperaturmessung erfolgte mit je 2 ± 8 Thermoelementen in Serieschaltung.

Tabelle 2. Gemessene Kombinationen der Schaufelwinkel

Laufschaufelwinkel	51°	58°	65°
	55°	55°	55°
Leitschaufelwinkel	61°	61°	61°
	67°	67°	67°

Im vorliegenden Bericht wurden die Messergebnisse der drei fettgedruckten Schaufelwinkelkombination zur Diskussion gestellt.

4. Ergebnisse

Um die beste Zuordnung von Leitrad- zu Laufradwinkel zu finden, wurden Versuche mit verschiedenen Schaufelwinkeln und verschiedenen Reaktionsgraden durchgeführt. Die Konizität der Beschauflung konnte durch auswechselbare Schaufelträger den jeweiligen Erfordernissen angepasst wer-

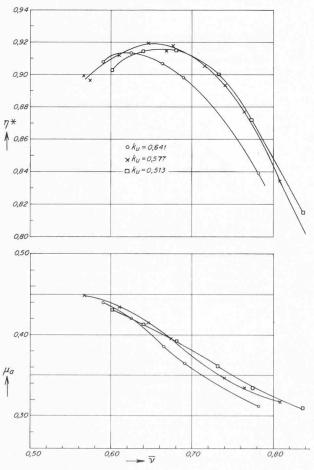


Bild 8. Messergebnisse mit der Schaufelwinkelkombination 65°/55°. Arbeitswirkungsgrad η^* und Schaufelarbeitsziffer μ_a in Abhängigkeit von der mittleren Geschwindigkeitsziffer $\overline{\nu}$ für drei verschiedene relative Drehzahlziffern k_u .

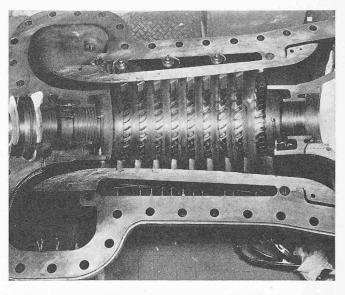


Bild 7. Versuchsverdichter mit abgedecktem Oberteil. Man sieht die vielen Messanschlüsse, welche zur genauen Abklärung der Druckerzeugung in den Zwischenstufen notwendig waren.

den. In Tabelle 2 sind die gemessenen Kombinationen der Schaufelstaffelungswinkel zusammengestellt.

Wir greifen hier drei Messreihen heraus. Die Versuchswerte wurden auf die gleichen Reynoldsschen Zahlen bezogen und das Schaufelspiel auf das Spiel 0 extrapoliert. Die Beschauflung hat man zuerst mit einem Schaufelwinkel von 65° für die Laufschaufeln und 55° für die Leitschaufeln durchgemessen. Es entspricht dies einem Reaktionsgrad von 0,4 am Rotor und von 0,68 am Zylinder.

In Bild 8 sind der Arbeitwirkungsgrad η^* und die Schaufelarbeitsziffer μ_a in Abhängigkeit von der mittleren

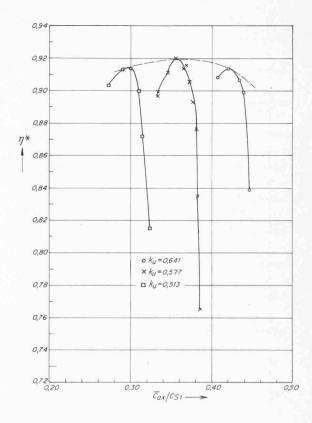


Bild 9. Arbeitswirkungsgrad η^* in Abhängigkeit von der relativen Schluckziffer \overline{c}_{ax}/c_{S1} , für die drei Fälle nach Bild 8

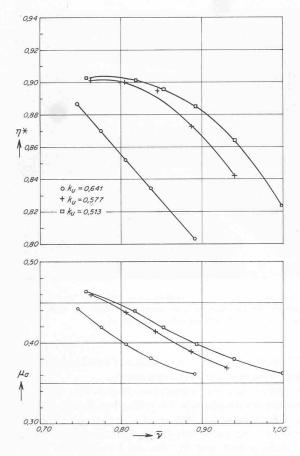


Bild 10. Messergebnisse mit der Schaufelwinkelkombination 65°/67°. Arbeitswirkungsgrad η^* und Schaufelarbeitsziffer μ_a in Abhängigkeit von der mittleren Geschwindigkeitsziffer \overline{v} für drei verschiedene relative Drehzahlziffern k_u

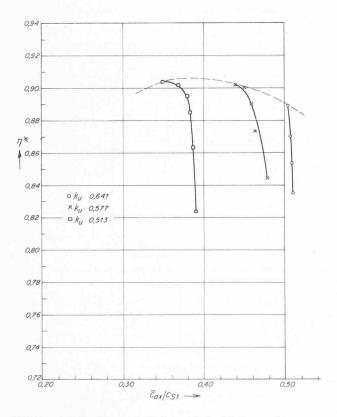


Bild 11. Arbeitswirkungsgrad η^* in Abhängigkeit von der relativen Schluckziffer c_{ax}/c_{S1} für die drei Fälle nach Bild 10

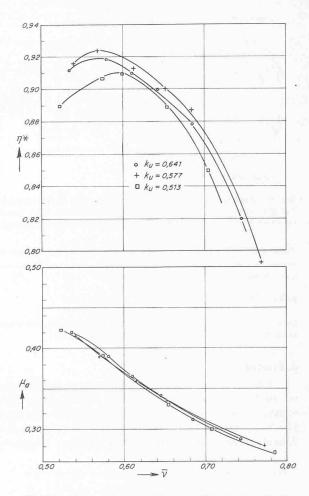


Bild 12. Messergebnisse mit der Schaufelwinkelkombination $58^{\circ}/55^{\circ}$. Arbeitswirkungsgrad η^* und Schaufelarbeitsziffer μ_a in Abhängigkeit von der mittleren Geschwindigkeitsziffer $\overline{\nu}$ für drei verschiedene relative Drehzahlziffern k_u

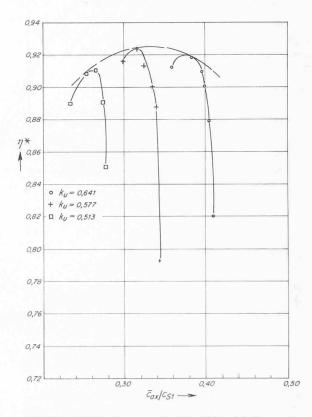


Bild 13. Arbeitswirkungsgrad η^* in Abhängigkeit von der relativen Schluckziffer c_{ax}/c_{S1} für die drei Fälle nach Bild 12

Geschwindigkeitsziffer v aufgetragen. Aus den Messungen geht hervor, dass durch den Einfluss der Machzahl bei der höchsten Drehzahl ($k_u = 0,641$) bereits eine Einbusse am Wirkungsgrad eintritt. Der höchste Wirkungsgrad wird nicht am Bemessungspunkt erreicht, wo $k_u = 0,641$ ist, sondern bei $k_u = 0,577$.

In Bild 9 sind die gleichen Messdaten in Funktion der relativen Schluckziffer c_{ax}/c_{S_1} aufgetragen. Hier sieht man sehr deutlich, wie der Wirkungsgrad bei der höchsten Drehzahl ($k_u=0,641$) bereits wieder abgenommen hat, obgleich dies der Bemessungspunkt der Beschauflung ist.

Auf den Bildern 10 und 11 sind die gleichen Kurven für die Winkelkombination $65^{\circ}/67^{\circ}$ (Laufschaufel/Leitschaufel) zu sehen. Auch hier nimmt der Wirkungsgrad bei grosser Machzahl wieder ab. Diese Winkelkombination ergibt grosse Schluckziffern. Auch die Schaufelarbeitsziffer μ_a (Druckziffer) ist relativ hoch. Der Wirkungsgrad ist allerdings geringer als bei der vorhin besprochenen Winkelkombination, was wieder in erster Linie auf grössere Widerstände wegen höheren Machzahlen zurückzuführen ist. Es ist das eine Winkelkombination, die dann interessant ist, wenn man Wert auf grössere Förderströme legt und etwas bescheidenere Wirkungsgrade in Kauf nehmen kann.

Die Bilder 12 und 13 beziehen sich auf die Winkelkombination mit dem höchsten Wirkungsgrad. Aus ihnen ist ersichtlich, dass bei etwas kleinerer Machzahl und etwas grösserem Reaktionsgrad die besten Resultate erzielt werden. Dies war auch zu erwarten, da einerseits, wie weiter vorn bereits angedeutet wurde, das rotierende Schaufelgitter die Druckerhöhung mit besserem Umsetzungsgrad erzeugt als das stehende, und anderseits bei dieser Kombination die Machzahl am Fusse der Schaufel noch im Bereich kleiner Verluste

Tabelle 3. Vergleich der Messergebnisse der drei Schaufelwinkelkombinationen bei den verschiedenen Kennzahlen

Schaufelwinkelkombination	rel. Schluckziffer konst.			rel. Drehzahlziffer konst.		
(Laufschaufel/Leitschaufel) relative Schluckziffer	65°/55	° 65°/67	° 58°/55°	65°/55	° 65°/67	° 58°/55
c_{ax}/c_{S1}	0,35	0,35	0,35	0,42	0,505	0,3785
relative Drehzahlziffer k_u	0,577	0,513	0,605	0,641	0,641	0,641
Schaufelarbeitsziffer μ_a	0,415	0,46	0,39	0,42	0,445	0,39
Max. Arbeitswirkungsgrad	92%	90,3%	92,6%	91,3%	88,7%	91,8%

liegt. Der günstigste Reaktionsgrad scheint somit zwischen dem für die Grundausführung gewählten Wert R=0,4 und einer symmetrischen Beschauflung mit R=0,5 zu liegen.

Vergleichen wir nun zum Abschluss die Messergebnisse der drei diskutierten Beschauflungen, so zeigt sich folgendes, Tabelle 3: Bei gleicher relativer *Schluckziffer* hat die Beschauflung mit der Winkelkombination $58^{\circ}/55^{\circ}$ den höchsten Wirkungsgrad, nämlich $\eta^* = 92.6^{\circ}$, gefolgt von der Beschauflung mit der Winkelkombination $65^{\circ}/55^{\circ}$. Die Schaufelarbeitsziffer μ_a ist bei der Winkelkombination $65^{\circ}/67^{\circ}$ am höchsten, nämlich $\mu_a = 0.46$.

Bei gleicher relativer *Drehzahlziffer* ist die Beschauflung mit der Winkelkombination 58°/55° ebenfalls diejenige mit dem höchsten Wirkungsgrad. Die Winkelkombination 65°/67° ergibt aber einen um etwa 30% grösseren Luftdurchsatz bei allerdings etwa 3% schlechterem Wirkungsgrad. Diese neu entwickelte Beschauflung erlaubt bei einer Gebläsedrehzahl von 3000 U/min einen Luftdurchsatz von fast 300 m³/s mit gutem Wirkungsgrad zuzulassen. Damit sind Gasturbinen mit einer Grenzleistung von 60000 bis 70000 kW möglich geworden.

Messung der Schaufelbeanspruchung von Axialgebläsebeschauflungen bei rotierender Ablösung und beim Pumpvorgang DK 621.515.5:62-553.5:539.4.014

Von Hans Baumann, dipl. Ing., Nussbaumen bei Baden (AG)

Bekanntlich treten bei Axialverdichtern zwei Phänomene auf, welche beide zu hohen Schaufelbeanspruchungen führen können. Es sind dies die umlaufende Ablösung (rotating stall) und der Pumpvorgang. Unter umlaufender Ablösung versteht man strömungssperrende Gebiete, welche sich in einzelnen Reihen eines Axialverdichters bilden und sich relativ zu den Laufreihen bewegen, aber die Förderung des Verdichters in positiver Richtung noch nicht verhindern. Beim Pumpen hingegen bricht die Förderung vollkommen zusammen und es tritt Rückströmung auf. Anschliessend setzt die Förderung wieder ein und der Verdichter durchfährt die ganze Kennlinie, bei Teildrehzahl somit auch das Gebiet der umlaufenden Ablösung. Für den Konstrukteur ist es wichtig, die Schaufelbeanspruchung bei umlaufender Ablösung und beim Pumpvorgang zu kennen. Es war deshalb notwendig aus eigener Anschauung das Verhalten eines vielstufigen Axialverdichters bei den erwähnten Betriebszuständen zu untersuchen.

Im ersten Schritt, welcher hier besprochen wird, wurde nur das Verhalten der Leitschaufeln untersucht, da es erheblich einfacher ist, derer Beanspruchung zu messen, als die der Laufschaufeln. Als Versuchsobjekt diente ein vielstufiger Axialverdichter, der in den Windkanal eingebaut wurde. Wie bereits im Aufsatz von Dr. H. Pfenninger: über Axialverdichter grosser Fördermengen mitgeteilt wurde, musste der Saugdruck bei der höchsten Drehzahl wegen der beschränkten Antriebsleistung auf 0,3 bar abs absichtlich gesenkt werden. Dies hatte den Vorteil, dass die Beanspruchungen der Schaufeln selbst bei den gefährlichsten Betriebszuständen gemessen werden konnten, ohne dabei die Bruchgrenze der Schaufeln zu er-

reichen. Bei einem Ansaugdruck von 1,0 bar abs hätte man sehr wahrscheinlich mit Schaufelbrüchen rechnen müssen.

Die Messeinrichtung wurde vor jedem Versuch durch eine Paralellschaltung von Widerständen zu der Messstreifenschaltung geeicht. Die Widerstände haben eine Genauigkeit von \pm 0,5% und \pm 1%

Da die Dehnung ε des Drahtes im Messgitter bei konstantem Volumen V stattfindet, gilt:

$$\frac{dV}{V} = \frac{dS}{S} + \frac{dl}{l} = 0$$

$$\frac{dR}{R} = -\frac{dS}{S} + \frac{dl}{l} = +2\frac{dl}{l} = +2\varepsilon$$

und somit wird

$$\frac{\Delta R}{R} = K \, \varepsilon = 2 \, \varepsilon$$

Hierbei bedeuten S den Drahtquerschnitt, l die Drahtlänge und ϱ die spezifische Masse des Drahtes. Weiter ist $R=\varrho S/l$. Deshalb konnte zur Umrechnung der gemessenen relativen Widerstandsänderung in Dehnung der Faktor K=2 verwendet werden.

Der K-Faktor wich bei den verwendeten Dehnmessstreifen höchstens um 2,5 % vom theoretischen Wert ab. Die Widerstände des verwendeten Dehnmesstreifens wurden mit