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Die Beanspruchung schwingender Schaufeln in Resonanz dk 621.1 es62-253.5:539.433

Von Prof. Dr. W. Traupel, ETH, Zürich

Zusammenfassung

Die Arbeit, die durch pea^dische Kräfte an einer schwingenden

Schaufel geleistet wird, hängt davon ab, ob diese Kräfte
längs der ganzen Schaufel in gleicher Phase sind oder ob
Phasenverschiebungenauftreten. Diese Arbeit ist ihrerseitsmassgebend
für die Resonanzamplitude und damitfjfur die schwingende
Beanspruchung der Schaufel. Eslgeigt sich, dass Schwingungen

höherer Ordnung beim Vorhandensein solcher
Phasenverschiebungen unter Umständen sehr viel stärker angefacht
werden können als bei längs der Schaufel konstanter Phase.

Bezeichnungen

B Dämpfungskonstante
c die Phasenverschiebung kennzeichnende Konstante
D n dynamischer Faktor (Ordnung n)
E Elastizitätsmodul

f Schaufelquerschnitt
G Schubmodul
Hn Ausdruck Gl. (32)
H„* Ausdruck Gl. (36)
Hm Ausdruck Gl. (53)
Hm* Ausdruck Gl. (58)

/ Trägheitsmoment
Jp polares Trägheitsmoment
Jt Trägheitsmoment gegen Torsion
K verallgemeinerte Federkonstante
/ Schaufellänge
M verallgemeinerte Masse
Mt> Biegemoment
Mbt Vergleichs-Biegemoment
Mt Torsionsmoment
Mh Vergleichs-Torsionsmoment
AM0 Ausdruck Gl. (46)
A/n oszillierendes Torsionsmoment pro Längeneinheit
Am0 Amplitude von Am
n Ordnungszahl
P mittlere statische Schaufelkraft
AP0 Ausdruck Gl. (15)
AP0 * Amplitude der am Schaufelende angreifend gedachten

oszillierenden Kraft
p Kraft pro Längeneinheit (statisch)

p oszillierende Kraft pro Längeneinheit
p0 Amplitude von/»
q Auslenkung an ausgezeichneter Stelle (z.B. Schaufelende)
q0 Amplitude von q
S,St Stimulus für Biegeschwingung bzw. Torsionsschwingung
S*, Stimulus für Biegeschwingung bzw..Torsionschwingung,
St * wenn Einzelkraft an freiem Schaufelende
s Profilsehnenlänge
T Bewegungsenergie
t Zeit
un die Verformung bei der Schwingung «-ter Ordnimg kenn¬

zeichnende Funktion
W Arbeit
Wa Dämpfungsarbeit
Wt Widerstandsmoment gegen Torsion
x Koordinate längs Schaufel
Y örtliche Amplitude
y momentane örtliche Auslenkung
Y Verdrillungswinkel
ö logarithmisches Dekrement
dt logarithmisches Dekrement bei Torsionsschwingung
S- Verhältnis J/J0
9v Verhältnis Jt/Jt0

Eigenwert, Ordnung n
Eigenfrequenz
dimensionslose Koordinate x/l
Dichte
Spannungsamplitude
Vergleichs-Biegespannung
Winkel in Ansatz Gl. (2)
Schubspannungsamplitude
Vergleichs-Schubspannung
Phasenwinkel
potentielle Energie
Kreisfrequenz

1. Gleichung der Spannungsamplitude von Biegeschwingungen

In den nachfolgenden Ausführungen wird teilweise
Bekanntes wiederholt, damit die Zusammenhänge vollständig
überblickt werden können. - Wir betrachten die Schaufel als

einen prismatischen Stab. Eine Eigenschwingung mit bestimmter

Frequenz, die wir herausgreifen, erfolgt dann in einer Ebene,
auf welcher die massgebenden Hauptträgheitsachsen der
sämtlichen Schaufelquerschnittesenkrechtstehen. Die in diese Ebene
fallende Komponente des zeitlichen Mittelwertes der auf die
Schaufel einwirkenden Strömungskräfte sei P. Wir nehmen

an, dass diese Kraft über die Schaufelhöhe gleichmässig
verteilt sei. Sind in der Tat die Durchtrittsgeschwindigkeit des

Mediums durch die betrachtete Schaufelreihe und der
spezifische Arbeitsumsatz in der Stufe längs des Radius r
konstant, dann wird die innerhalb eines Ringelementes von der
radialen Ausdehnung dr umgesetzte Leistung proportional
dem Querschnitt des Ringelementes, also proportional r dr. Da
aber auch die Umfangsgeschwindigkeit proportional r ist, folgt
daraus, dass die Kraft pro Einheit der radialen Schaufelerstrek-
kung längs r konstant ist, womit die getroffene Annahme ihre
Berechtigung erhält. Mit / als Schaufelhöhe wird der Wert der

Kraft pro Längeneinheit

P
(1) P — •

Diesem Wert überlagert sich ein periodisch variierender
Anteil, von dem wir nur diejenige Ordnung herausgreifen, die
nach Voraussetzung mit der betrachteten Schaufelschwingung
in Resonanz trete. Sie möge durch

(2) L\p — L\p0 [sin t sin of + cos x cos cot]

beschrieben werden. Hier ist x ein Winkel, der dazu dient, die
Phase der erregenden Kraft anzugeben. Lässt man x längs der
Schaufel variieren, so ist damit jene Phasenverschiebung
eingeführt, deren Einfluss wir untersuchen. Die Amplitude L\p0,

die längs der Schaufel konstant sei, wird zu p in Beziehung
gebracht durch

(3) i\Po Sp.

Der dadurch definierte Faktor S ist der durch Prohl [1]
eingeführte Stimulus.

Die Bewegung der Schaufel in Resonanz kann beschrieben
werden durch

(4) y Y(x) sin {cot — tp),

vgl. auch Bild 1. Wenn wir setzenl)

(5) y(l,i) q(t), Y(l) q0,

') Bei beidseitig gehaltener oder eingespannter Schaufel ist g0 der
Wert Y an der Stelle, wo der Ausschlag maximal wird.
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So ist offenbar

(6) q ?„sin(cuf — 9).

Ebenso lässt sich dann setzen

d2y

4o-<

(7) y qu (x),
dx2

Q
d2u

mix1'

wo u(x) h Y(x)/Y(l) die Schwingungsform in geeignet
normierter, dimensionsloser Weise darstellt.

Die potentielle Energie der ausgebogenen Schaufel ist in
einer beliebigen Lage

(8)
M»

1EJ
dx mlh

ET ld2u
dx,

wobei von der Dillerentialgleichung der elastischen Linie
Gebrauch gemacht ist. Da

(9) Sldi'1
eine Konstante ist, (die u.a. für die gegebene Schwingungsform

u (x) charakteristisch ist), kann (8) auch in der Form

oo) Wmm

dargestellt werden.

Die Bewegungsenergie der Schaufel ist

RH ly2fdx q2 I u2(x)fdx

oder mit der Konstanten

(12) M=pju2fdx
0

auch

Mail
(13) T=^$m

Die Arbeit der äusseren Kräfte, die an der Schaufel
während eines Zeitintervalls dt geleistet wird, während dessen
ein Punkt der Schaufel den Weg dy zurücklegt, ist

/ / /
(14) dW•= J(Apdy)dx dt / (L\py)dx qdt / L\pudx000q At0 dt [(J* u sin/? dx) sin tat + (J* u cos | dx) cos tat].

0 0

Die beiden in runder Klammer geschriebenen Integrale
sind konstante Grössen. Damit lässt sich aber der Ausdruck
in eckiger Klammer als reine Sinusfunktion der Zeit schreiben,
wenn man nur den an sich willkürlichen Nullpunkt des
Zeitmassstabes um einen Betrag verschiebt, der durch den Winkel y>

von Bild 2 gegeben ist. Die entsprechende Amplitude ist dann

/ / 1

(15) AP0 L\Po [(f u sin t dx)2 + (f « cos t dx)2] 2

ttoff« sin X dx

Bild 1. Zur Biegeschwingung
einer Schaufel

Bild 2. Zur VeranscHaÜlf-
chung von Gl. (15)

und die Arbeit dW kann ohne Einschränkung der Allgemeinheit
in der Form

ill dW AP0 sin (cot) q dt

geschrieben werden.
Die Arbeit, die durch Dämpfung dissipiert wird, während

sich die Koordinate q um dq verschiebt, lässt sich durch einen
Ausdruck von der Form

(17) dWä=Bqdq

wiedergeben, wo B eine Konstante ist. In der Tat sind alle
Deformationsänderungen proportional dq, alle
Deformationsgeschwindigkeiten proportional q. Das Ergebnis einer
Integration, welche die dissipierte Arbeit liefern würde, lässt sich
also sicher in eine Konstante einschliessen.

Die Energiebilanz einer unendlich kleinen Teilbewegung
lautet nun

(18) d"¥ + dT+dWa dW.

Die Ausdrücke für d*? und dT gewinnen wir aus (10) und (13)
durch Ableiten nach der Zeit und Multiplikation mit dt. Wenn
wir dann noch in (17) dq durch q dt ersetzen, wird die
Energiegleichung

Kqqdt + Mq qdt + Bq2dt APa sin (cot) q dt

oder, wenn wir die triviale Lösung q 0 ausschliessen

(19) Mq +Bq + Kq AP0sinfof.

Dies ist die klassische Differentialgleichung der erzwungenen
Schwingung eines einfachen Oszillators. Ist die Dämpfungskonstante

B klein, so ist die Kreisfrequenz der Eigenschwingung

bekanntlich

(20) co
K_
M

1 hr ist nach Voraussetzung die Frequenz der rechts erscheinenden

Erregungskraft gleich. Auch die Resonanzamplitude q0
lässt sich aus der Theorie des einfachen Oszillators übernehmen.
Sie ist

(21) q0
n L\Pa

T K

wo ö das logarithmische Dekrement der freien Schwingung ist.
Man beachte, dass bei kleiner Dämpfung u(x) in Resonanz
stets mit einer Eigenschwingungsform (Eigenfunktion) praktisch

identisch ist. Für jede Schwingungsordnung ergeben sich
so besondere Werte der Konstanten K, Mund AP0.
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Wenn wir nun in Sä) K und AP0 durch die Ausdrücke
nach (9) und (15||sansetzen, folgt

(30) DnOb

(22) q.

i i _L
Aj50 [(J u sin t dx)2 + (J u cos | rfx)2] 2

0 0

/ ff
In dieseSeichung führen wir noch die dimensionslosen Grössen

(23) Ü (24) »
J

ein, wobei /„ das Trägheitsmoment an einer ausgezeichneten

Stelle, zweckmässig der Einspannstffle ist. Ausserdem ersetzen

wir Ap0 nach (1) und (3) durch SP/l. Wenn wir schliesslich noch

Ableitungen nach % durch Akzente andeutet, schreÄ sich
GL (22) in der Form

TT PI3
(25) q9 S — —- X

o EJ0
i i j_

[(/ u © sin |© dQ2 + (J « © cos | ©§|)2] gl
0 0

x j
/»(Qu"2©«
0

Nun interessiert allerdings letzten Endes nicht der
Ausschlag der Schaufel an einer ausgezeichneten Stelle, sondern die

grösste durch die Schwingung hervorgerufene Spannungsamplitude

ßa,, die in der Regel an der Einspannstelle, also in
E, 0 auftritt. Das Biegemoment an jener Stelle ist

d2Y d2u EJa q0
(26) Mb(0) EJ9 —- EJ0 q0 — y° ""(0)

(31) Dn S

(32) Hn

-Hn

2 «»"«) [(j «» © sin 1 © <©2 + (J «n © cos x © <©2] 2
0 0

\\\\\\\\\\\&<sm
0

Der Index n deutet an, dass lf jeweils' mit derjenigen
Eigenfunktion Un zu bilden ist, die der Ordnung n der Schwingung
zugeordnet ist, die mit der periodischen Strömungskraft in
Resonanz tritt. Dn wird bei Schaufelfestigkeitsrechnungen
gelegentlich «dynamischer Faktor» genannt; tc/ö ist der

Vergrösserungsfaktor der Schwingungstheorie, weshalb es

zweckmässig ist, 7t nicht in Hn mit einzuschliessen.

Zwei Bemerkungen müssen hier noch angeschlossen werden.

Die Spannung crM ist strenggenommen die statische

Biegespannung, die entstehen würde, wenn die Strömungskraft P
auf der massgebenden (J0 zugeordneten) Hauptträgheitsachse
senkrecht stehen würde. Das ist normalerweise nicht genau der

Fall, doch ist der Fehler, der entsteht, wenn man das an
einsetzt, wie es der wirklichen Rraftrichtung entspricht, bei der
hier geforderten Genauigkeit nicht von Belang. Weiter wurde
der Einfluss der Fliehkraft vernachlässigt, der bei Laufschaufeln
oft eine merkliche Verschiebung der Eigenfrequenzen bewirkt.
In die hier durchgeführte Untersuchung würde er so
hineinspielen, dass im Ausdruck für die potentielle Energie Y ein
Zusatzghed erscheinen würde, während gleichzeitig die
Funktionen Un geringfügig verändert würden. Dieser letztere Einfluss
ist äusserst gering, so dass praktisch nur die Rückwirkung auf
1F eingeführt werden musste. Die Durchführung dieses Gedankens

fü hrt auf

oder, nach Ersatz von q„ durch den Ausdruck nach Gl. (25)

(27) Mt,(0) S-rPl x
o

u" (0) [(/ u © sin I © dl)2 + (J u © cos | © dl)2] 2

0 0
x - -T- m

S^Ml"2(l)dl
0

Hieraus liesse sich auf die Biegespannung im Einspannquerschnitt

schliessen. Besonders anschaulich wird das Ergebnis
indessen, wenn man Mb (0) dividiert durch das Biegemoment

(33)

(28) Mb
PI

das die freistehende Schaufel an ihrer Einspannstelle durch den
zeitlichen Mittelwert der Strömungskräfte erfährt. Bei der nicht
freistehenden Schaufel ist dies zwar nicht das tatsächliche,
sondern ein ideelles Biegemoment, (was durch den Index i
angedeutet ist), das oft aber als hinreichende Näherung für das

wirkliche verwendet werden kann. Nun ist aber

(29)
M»(0)
Mu

aa

Obt

wo cm die mit dieser einfachen Annahme berechnete statische,
durch die Strömungskräfte hervorgerufene Biegespannung an
der Einspannstelle ist, also ein Wert, den man aus der üblichen
Festigkeitsrechnung kennen wird. Bildet man aber den in (29)
links stehenden Ausdruck aus (27) und (28), so kann man
schliesslich das Ergebnis in folgender Form darstellen:

Dn S — Hn
o

wo veB* die Eigenfrequenz n-ter Ordnung ohne Einfluss der
Fliehkraft ist und ve„ diejenige mit diesem Einfluss. Auch diese

Korrektur ist aber zumeist belanglos.

2. Schwingungserregung am freien Schaufelende

Bei den Betrachtungen des vorangehenden Abschnittes
wurde stets vorausgesetzt, dass die Amplitude L\p0 der (auf die

Längeneinheit bezogenen) Störungskraft längs der Schaufel
konstant sei. Nun besteht aber bekanntlich an den Schaufelenden

eine Konzentration der Verluste (Randverluste), deshalb
auch eine erhöhte Unregelmässigkeit der Strömung. Es ist also

dort eine grössere Amplitude der Störungskraft zu erwarten,
wenn auch kaum etwas Genaueres darüber bekannt sein
dürfte. - Man könnte diesen Effekt keineswegs etwa aus der
Grösse des Randverlustes erschliessen, denn dieser muss
sich ja vor allem in einer Verminderung der «statischen»

(zeitlich gemittelten) Schaufelkraft gegen die Schaufelenden zu
äussern. - Um trotzdem ein Bild über die möglichen Auswirkungen

dieses Effektes zu bekommen, betrachten wir folgendes

idealisiertes Problem:

Wir nehmen an, eine Störkraft mit der Amplitude
AP0* S*P greife als konzentrierte Einzelkraft am freien
Schaufelende an. Ist dies die einzigeaufdie Schaufeleinwirkende
Störung, so ist die an der Schaufel bei einer unendlich kleinen
Teilbewegung geleistete Arbeit

(34) drV AP0 * sin (wf) q dt S * P sin (cor) q dt

530 Schweizerische Bauzeitung * 68. Jahrgang Halt 24 • 11. Juni 1970



und die Weiterführung der Überlegung führt dann auf

(35) ff« S* -Hn*
a

(Tbl

mit

(36) Hn*
2Un '(0)

1

/»©«' '2(l)dl

Um die wirklichen Verhältnisse zu approximiert muss
man allerdings diesen Typus der Erregung mit dem im
vorangehenden Abschnitt behandelten überlagern, womit aber wieder

ein Problem der Phasenverschiebung erscheint. Bei der
getrennten Berechnung der beiden Fälle wurde jedesmal der
Nullpunkt der Sit so gesetzt, dass für dW ein möglichst
einfacher Ausdruck entstand, was nicht mehr möglich ist, wenn
beide zugleich auftreten. Da aber über die hier einzuführende
Phasenverschiebung nichts bekannt ist, wird man gegebener-
massen die ungünstigste Annahme treffen, die in diesem Falle
zugleich die einfachste ist: Man nimmt an, die Verhältnisse
lägen gerade so, dass beide Effekte sich gerade addieren. Dann
wird

(37) (SHn+S*Hn*)Obi.

Damit ist allerdings nur eän grundsätzlicher Anhaltspunkt
gewonnen, denn hier müssen ja S und S* aufgefasst werden als
die Teilstimuli der beiden Erregungstypen. Wir besitzen aber
bis heute keine Kenntnis über diese Aufffilung des Stimulus in
zwei Anteile.

Un

a)

0

Wm >K Uj. 7
^mn /

-1
Uj \u?

O 0,5 1

Un

Ui,
~^ &>e

b)
0 / ¦SI K

|i / 1
-1 ÜJ \us I

0 0,5 1

Un

ü§ m
c)

0

ls 'u3

-f

3. Numerische Angaben für Biegeschwingungen

Die allgemeinen Gleichungen, die in den vorangehenden
Abschnitten aufgestellt wurden, werden hier für einige typische
Fälle ausgewertet. Wir betrachten die Schaufel konstanten
Querschnittes. In diesem Falle sind die Eigenfunktionen ttn

genau bekannt, weil die Differentialgleichung des schwingenden
Stabes exakt gelöst werden kann. Die allgemeine Lösung

lautet (vgl. etwa [2])

(38) M C1sinx5 + C2cosx5-r-C3Sinx5 + C4Cosx£.

Die Abstimmung der Konstanten C, und die Folge der Eigenwerte

Xj, x2> .x„ mit denen die Kreisfrequenzen der
Eigenschwingungen gemäss

(39)
l2

EL
?f

zusammenhängen, sind durch die besonderen Grenzbedingungen

des jeweils vorliegenden Falles gegeben. So entstehen
in den drei Fällen, die wir hier betrachten wollen, - einseitig
eingespannter Stab, beidseitig eingespannter Stab und einseitig
eingespannter, auf der anderen Seite aufliegender Stab -je die
in Bild 3 dargestellten Eigenfunktionen uu u2, u3. Höhere
Ordnungen interessieren kaum.

Zur Berechnung der Hn nach Gl. (22) muss noch t ©
eingeführt werden. Wie dies zweckmässig geschehen kann,
veranschaulicht Bild 4. Dort ist schematisch eine Laufschaufel
dargestellt und gestrichelt das zugehörige Leitrad. Dass aus
Gründen der konstruktiven Gestaltung dieses letzteren
tatsächlich die im Bild dargestellte Situation entstehen kann, ist
wohlbekannt. Übrigens sind es ja eigentlich die von den
Leitradaustrittskanten abgehenden Nachlaufdellen, die für die
Erregung der Laufschaufelschwingungen massgebend sind,
und gerade diese werden im allgemeinen die Tendenz haben, in
der Laufradeintrittsebene eine Lage einzunehmen, wie sie
durch die gestrichelten Linien dargestellt ist. Die so entstehende

Bild 3. Eigenfunktionen u„ der Biegeschwingungen

a) einseitig eingespannt
b) beidseitig eingespannt
c) auf der einen Seite eingespannt, auf der anderen gehalten

Phasenverschiebung derErregungskräfte längs der Schaufel lässt
sich beschreiben durch den Ansatz

(40) t= 2-(l-cO,

wobei die Konstante c eben das Mass dieser Phasenverschiebung

darstellt.
Wenn man, um einen besonders leicht überblickbaren Fall

vor sich zu haben, etwa c 1 setzt, ergeben sich nach Gl. (2)
folgende Verhältnisse:

In£ 0: t —, sin f 1, cos t 0

Ap Ap0 sin cot

In 5 1 '• x 0, sin t 0, cos x 1

Ap Ap0cosa>t

l /
i ^J,

Bild 4. Entstehung der
phasenverschobenen Erregung
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Bild 5. Hn in Funktion der
die Phasenverschiebung
kennzeichnenden Konstanten c für
Biegeschwingungen

Die Erregung am Schaufelende eilt also derjenigen an der

Einspannstelle voraus, wie es Bild 4 entspricht. Im hier
angegebenen Beispiel c 1 entspricht dieses Voreilen einer vierteis

Leitradteilung. Es sind aber noch wesentlich grössere
Phasenverschiebungen möglich, d.h. c kann weit über 1 liegen.

Analoge Verhältnisse bestehen bezüglich der Erregung von
Leitschaufelschwingungen durch Laufräder. Die Frage, an
welchem Ende die Störung voreilt - d.h. die Frage des Vorzeichens

von c - ist dabei übrigens unwesentlich. Das lässt sich

anhand der Gleichungen verifizieren, und auch die unmittelbare

Vorstellung bestätigt es: Denkt man sich bei einem

Bewegung|j|organg den zeitlichen Ablauf genau umgekehrt
und ebenso alle Kraftrichtungen, dann bleiben die Gesetze der

Mechanik erfüllt.

Mit dem Ansatz (40) lassen sich nun die Hn in Funktion
von c berechnen. Di^Ergebnisse sind in BUd 5 dargestellt. Zur
anschaulichen Interpretation beachte man, dass c 4 einer

grössten Phasenverschiebung von einer vollen Leitradteilung
entspricht. Dass bei Bor ersten Ordnung das Maximum stets in

c 0 zu findeflöst, leuchtet unmittelbar ein. Der Verlauf der

Kurven für die Hn höherer Ordnung dürfte hingegen eine

wesedpiche neue Information darstellen. Bei der freistehenden

Schaufel erreicht H2 einen höchsten Wert, der immerhin 1,47

mal grösser ist als bei Erregung mit konstanter Phase, während

der Maximalwert von H3 sogar das 2,53-fache des Wertes bei

c 0 ist. -Bei der beidseitig eingespannten Schaufel (annähernd
verwirklicht bei gewissen Leitradkonstruktionen) wird mit c

0 auch H2 0, während der Höchstwert von H2 immerhin
beträchtlich werden kann, und das H2 der einseitig eingespannten,

einseitig gehaltenen Schaufel erreicht das 8,6-fache seines

Wertes bei c 0. - Der Verfasser hat früher aufgrund einer

überschlägigen Untersuchung eine Empfehlung zur Abschätzung

des Effektes der Phasenverschiebung angegeben, vgl. [3].

Es zeigt sich nun, dass jene Angaben im Falle der freistehenden

Schaufel recht gut stimmen, nicht aber bei den H2 der beiden

anderen Fälle.

In Tabelle 1 sind die wichtigsten Werte zusammengefasst.

Im Falle der freistehenden Schaufel (einseitig eingespannt)

wurden auch die Hn * beigefügt, die einer Erregung durch eine

Einzelkraft am freien Schaufelende entsprechen, vgl. die Aus¬

Tabelle 1

Einseitig
eingespannt

Beidseitig
eingespannt

Eingespannt-
gestützt

H,*
Himaz 0,8908

2,2754
0,1485 0,2231

H2(c=ö)

H2

0,0788
0,1159
0,3630

0
0,0450

0,0066
0,0569

H3'c=0)
H^tnax
H3*

0,0165
0,0417
0,1296

0,0120
0,0120

0,0128
0,0128

Z>,(c=0) D\max 14,0 2,33 3,51

D2(c=0)
L^imax

1,24
1,82

0
0,707

0,104
0,895

D3(c=0)
ls3tnax

0,259
0,652

0,189
0,189

0,201
0,201

führungen in Abschnitt 2. In den beiden anderen Fällen ist
diese Art der Erregung voraussetzungsgemäss unmöglich.

Ausser den Hn sind noch die Dn gemäss Gl. (31) angegeben,

wobei S — 0,1, S (Ä2 gesetzt wurden. Die Annahme S 0,1

trifft vor allem für die Erregung mit der Periode des

vorausgehenden Schaufelkranzes die richtige Grössenordnung;

von M.Naguib [4] berechnetete Werte bewegen sich zwischen

0,05 und 0,22. - Die Dn, die ja mit den gegebenen Annahmen

proportional den Hn sind, geben ein unmittelbares Bild von
den zu erwartenden Wechselspannungsamplituden aa, denn

man hat nur die «statischen» Biegespannungen au mit Dn zu
multiplizieren, um aa zu erhalten.

Die Folgerungen, die man aus diesen Zahlen ziehen kann,
stehen mit der Erfahrung im Einklang. Die Grundschwingung
wird weitaus am stärksten erregt. Bei relativ gedrungenen
Schaufeln kann sie mit der Periode des vorausgehenden
Schaufelkranzes in Resonanz treten. In diesem Falle entstehen so

grosse Spannungsamplituden, dass meist mit dem Schaufelbruch

zu rechnen sein wird. — Bei schlanken Schaufeln sind es

die Schwingungen höherer Ordnung, die mit der Periode des

vorausgehenden Kranzes in Resonanz treten können.
Betrachtet man die D-Werte zweiter und selbst dritter Ordnung,
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so wird deutlich, dass diese Resonanzerregung zwar stets weit
unter derjenigen der ersten Ordnung liegt, unter bestimmten
Umständen aber doch genügen kann, um die Schaufel zu
gefährden (besonders wenn S grösser ist als der angenommene
Wert und gleichzeitig aM an und für sich schon gross ist). Die
angegebenen Hn-Werte beseitigen jedenfalls die Unsicherheit,

die bisher in Bezug auf den Einfluss von Phasenverschiebungen

der erregenden Kräfte längs der Schaufel bestanden.
Eine zusätzliche Überlegung ist allerdings noch nötig

bezüglich des Einflusses von am Schaufelende konzentrierten
Kräften. Um diesen abzuschätzen, machen wir zunächst
folgende Gegenüberstellung:

Ohne PhasenveiÄiiebung(c=0): HJHimax =0,088;
H3/Himax 10,019

Maximalwerte:

Einzelkraft an Schaufelende:

ti.2max\ti\max — U,1jU;
H3max/H1max 0,047

H2*IHt*
H3*IH.*

0,160;
0,057

Wir entnehmen daraus, dass die Hn * mit zunehmender
Ordnungszahl n nicht viel weniger abnehmen als die Hn »i.
Dazu muss man beachten, dass die Annahme einer am
Schaufelende konzentrierten Einzelkraft stark und im
ungünstigen Sinne idealisiert ist. Denkt man sich die durch die
Endeffekte entstehende Zusatzkraft in l 0,9 (also 10% vom
Schaufelende entfernt) angreifend, so werden die entsprechenden

Verhältniszahlen 0,097 und 0,016, d.h. sie bewegen sich

sogar in der gleichen Grössenordnung wie die Werte ohne
Phasenverschiebung. Wäre nun aber genau Hn *IHX * HnlHu
so wäre es nach Gl. (37) möglich, wieder auf aa (n/ö) SHn Obi

zurückzugehen, sofern man nur die gesamte Erregung in S
einschliessen würde. Da die Erregung durch Endeffekte nur
einenTeil der Gesamterregung bildet, kann diese vereinfachende
Annahme im Rahmen der hier geforderten Genauigkeit ohne
Bedenken gemacht werden, so dass die in Abschnitt 1

angegebenen theoretischen Grundlagen genügen dürften.
Die hier angegebenen Rechenergebnisse beschränken sich

auf Schaufeln konstanten Querschnitts, doch werden die
Grössenordnungen auch bei verjüngten Schaufeln nicht
verschoben, da die u © eine ähnliche Gestalt beibehalten und die
Unterschiede auch dadurch teilweise ausgeglichen werden, dass
die Hn aus den un durch Integration hervorgehen.

4. Spannungsamplitude von Drehschwingungen

Die Herleitung der massgebenden Gleichungen ist der im
Falle der Biegeschwingungen gegebenen völlig analog, weshalb
hier eine abgekürzte Darstellung genügt. Das oszillierende
Moment der Strömungskräfte pro Längeneinheit sei gegeben
durch

(41) Am Am0 [sin x sin cor + cos t cos cor].

Mit y (x) als Verdrillungswinkel setzen wir

(42) q^-i(l), y(x)=qu(x).
Dann ist die potentielle Energie

(43) W ^-q2, mm

wo Jt das Trägheitsmoment gegen Torsion, Jp das polare
Trägheitsmoment bedeuten. Die Arbeit der Strömungskräfte
bei einer unendlich kleinen Teilbewegung ist

i / /
dW j (Am di) dx dt\ (Am y) dx q dt J" Am udx

0 0 0

/ ;
q Am0 dt[(l u sin x dx) sin cor + J" u cos t dx) cos cot],

0 0

was man wie früher durch geeignete Nullpunktsverschiebung
des Zeitmassstabes überfuhren kann in

(45) dW AM„ sin (cor) q dt

mit
/ t %w&

(46) AM0 Am0 [(j u sin t dx)2 + (J- u cos t dx)2] 2
0 0

Die Gl. (llföter die Dämpfungsarbeit kann unverändert,
übernommen werden, womit auch die nachfolgende Überlegung
die selbe bleibt und anstelle von (21) die Gleichung

(47) q0
ti AM0

~öt K~

folgt. Hier ist öt das logarithmische Dekrement der
Torsionsschwingung. Mit &t Jt/Jt~ kann diese Gleichung durch
Einsetzen von (46) und (43) in die Form

i i H
l2 Am0 [(J* « sin t dl)2 + (J" u cos x dl)2] 2

(48) ||H i 1 '—
GJt0j&tu'2dl

gebracht werden. Anderseits ist an der Einspannstelle das
Torsionsmoment

dy du
(49) Mt (0) GJ,0 |§ G Jt0 q0 -j-dx dx

G Jt~ q0«' (0)

/

Als ideelles Vergleichs-Torsionsmoment M« wählen wir
nun dasjenige, das entstehen würde, wenn die statische Schaufelkraft

P im Abstand der halben Sehnenlänge s vom Schubmittelpunkt

des Einspannprofiles angreifen würde (d.h. die Kraft P
würde in der Nähe der Vorderkante angreifen). Die so entstehende

ideelle statische Schubspannung ti ist mit Wt als
Torsions-Widerstandsmoment

(50)
Mu
Wt

Ps

2Wt

Wenrifwir nun den Stimulus St der Torsionsschwingung
definieren durch

(51) lAm0 StMH

und beachten, dass sich die Schubspannungen verhalten wie die
Drillmomente, können wir folgendermassen vorgehen. Wir
ersetzen in (48) / Am„ durch St Mu, führen den so erhaltenen
Ausdruck in (49) ein und dividieren beidseitig durch Mu. Dann
erhalten wir für die Spannungsamplitude x„ schliesslich

(52) St Hin Xt

und die Bewegungsenergie

(44) T= -q2, M p / Jp u2 dx,

(53) Htn

Un'(0)[(Sun(l)smx(l)diy + ($Un(l)cOSx(l)dl)2]2

$&t(l)u'n2(l)dl
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Bild 6. fljn in Funktion der die Phasenverschiebung
kennzeichnenden Konstanten c für
Torsionsschwingungen

Tabelle 2

Einseitig gehalten
1 2 3

Beidseitig gehalten
1 2 3

Htn(c=0)
Htn max

0,8106
0,8106

0,0901
0,2169

0,0324
0,1284

0,4053
0,4053

0

0,1658
0,0450
0,1080

Htn* 1,2732 0,4244, 0,2546 — — —

Wiederum behandeln wir den Sonderfall der Schaufel
konstanten Querschnittes, wo ®e allgemeine Lösung der
Differentialgleichung der Drehschwingung lautet

(54) u Cl sin x l Ä2 cos x l.
Beim einseitig gehaltenen Stab wird C2 0 und die Eigenwerte

werden

(55) x„
2n— 1

Beim beidseitig gehaltenen Stab ist ebenfalls C2 0, während
die Eigenwerte

(56) ycn — nn

sind. Mit dem Ansatz

was für den Stab konstanten Querschnitts, also &t l,in
Tabelle 2 ebenfalls eingetragen ist.

Wie im Falle der Biegeschwingung ergibt sich auch hier,
dass unter dem Einfluss der Phasenverschiebung die Erregung
der Schwingungen höherer Ordnung wesentlich stärker sein

kann, als man bei Erregung mit konstanter Phase erwarten
würde. Bezüglich des Einflusses zusätzlicher konzentrierter
Erregung am Schaufelende machen wir die gleiche Überlegung
wie oben. Die massgebenden Verhältniszahlen sind die folgenden:

Ohne Phasenverschiebung (c

Maximalwerte:

0): HtJHtimax
Jxt3lHti max

0,111;
0,040

Ht2 maxiHtimax 0,268 ;

Ht3 max/Htimax 0,158

Einzelmoment an Schaufelende: HtJHt^ =0,333;
Ht3\HH 0,200

Denkt man sich das Moment in l 0,9 statt am Schaufelende

angreifend, so werden die Werte 0,303 und 0,144. Die Verhältnisse

liegen also hier etwas ungünstiger als im Falle der
Biegeschwingung, denn die Hm* nehmen höchstens etwa wie die

Hm max ab, selbst wenn man den Ort des Angriffs des

Momentes etwas vom Schaufelende wegschiebt. Es folgt daraus,
dass man die Erregung von Torsionsschwingungen höherer
Ordnung vorsichtigerweise verhältnismässig gross ansetzen

muss.
Die richtige Einschätzung der Gefährdung von Schaufeln

durch Drehschwingungen ist nach dem derzeitigen Stande

unserer Kenntnisse bedeutend schwieriger als im Falle der
Biegeschwingung, vor allem weil über den Stimulus St kaum
zuverlässige Angaben gemacht werden können, obwohl er
durch (51) einwandfrei definiert ist. Die Ausführungen dieses

Abschnittes geben daher zunächst nur einen Anhaltspunkt über
die relative Grösse der Erregung in Resonanz.

5. Schlussbemerkung

Ganz allgemein wären zur hinreichend genauen Voraussage

der in Resonanz zu erwartenden Spannungsamplituden
vor allem bessere Unterlagen über den Stimulus wünschbar.
Hier musste also die experimentelle Forschung einsetzen. Auch
über die Mindestgrösse des logarithmischen Dekrementes, die
man sicher einsetzen darf, wären zusätzliche Informationen
sehr erwünscht. Besonders betrifft dies die Einflüsse der Art der
Befestigung und die Wirksamkeit dämpfender Konstruktionselemente

(z.B. Dämpfungsdrähte). Wenn man beachtet, dass

Schaufelschwingungen wahrscheinlich immer noch die wichtigste

Störungsursache im Turbomaschinenbau darstellen, so
würde sich hier ein gewisser Aufwand lohnen.

Würdigung. Die sämtlichen Berechnungen zu dieser
Studie sind durchgeführt worden von meinem Assistenten,
dipl. Ing. Rolf Girsberger, dem ich an dieser Stelle für seine

sorgfältige Arbeit danken möchte.

(57) (1-cl)
lassen sich dann die Htn in Funktion von c berechnen. Die
Ergebnisse sind in Bild 6 und in Tabelle 2 zusammengefasst.

Betrachtet man ausserdem noch, wie im Falle der
Biegeschwingung, den einfachen Grenzfall, wo das ganze erregende
Moment am freien Ende angreifen würde, so ist Hm zu
ersetzen durch

(58) Hm*
Un (0)

f&t(l)Un'2(l)dl
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