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Die Beanspruchung schwingender Schaufeln in Resonanz

Von Prof. Dr. W. Traupel, ETH, Zirich

Zusammenfassung

Die Arbeit, die durch periodische Kréfte an einer schwin-
genden Schaufel geleistet wird, hidngt davon ab, ob diese Kréfte
lings der ganzen Schaufel in gleicher Phase sind oder ob Phasen-
verschiebungenauftreten. Diese Arbeit istihrerseits massgebend
fiir die Resonanzamplitude und damit fiir die schwingende
Beanspruchung der Schaufel. Es zeigt sich, dass Schwin-
gungen hoherer Ordnung beim Vorhandensein solcher Phasen-
verschiebungen unter Umstidnden sehr viel stdrker angefacht
werden konnen als bei lings der Schaufel konstanter Phase.

Bezeichnungen

B Dampfungskonstante

¢ die Phasenverschiebung kennzeichnende Konstante

D, dynamischer Faktor (Ordnung n)

E Elastizitdtsmodul

) Schaufelquerschnitt

G Schubmodul

H, Ausdruck Gl. (32)

Ausdruck Gl. (36)

H:» Ausdruck GI. (53)

H.,* Ausdruck GI. (58)

I Trigheitsmoment

Jp»  polares Triagheitsmoment

Ji Trédgheitsmoment gegen Torsion

K verallgemeinerte Federkonstante

/ Schaufellinge

M verallgemeinerte Masse

M, Biegemoment

Vergleichs-Biegemoment

M, Torsionsmoment

Vergleichs-Torsionsmoment

AM, Ausdruck Gl. (46)

oszillierendes Torsionsmoment pro Ladngeneinheit

Amplitude von Am

n Ordnungszahl

P mittlere statische Schaufelkraft

Ausdruck Gl. (15)

AP, * Amplitude der am Schaufelende angreifend gedachten
oszillierenden Kraft

P Kraft pro Lingeneinheit (statisch)

P oszillierende Kraft pro Langeneinheit

po  Amplitude von p

q Auslenkung an ausgezeichneter Stelle (z.B. Schaufelende)

q, Amplitude von g

S,S: Stimulus fiir Biegeschwingung bzw. Torsionsschwingung

S*,  Stimulus fiir Biegeschwingung bzw. Torsionschwingung,

S:* wenn Einzelkraft an freiem Schaufelende

s Profilsehnenldnge

T  Bewegungsenergie

t Zeit

un  die Verformung bei der Schwingung n-ter Ordnung kenn-
zeichnende Funktion

W Arbeit

Wa Diampfungsarbeit

W: Widerstandsmoment gegen Torsion
Koordinate ldngs Schaufel

7] ortliche Amplitude

=

y momentane Ortliche Auslenkung
Y Verdrillungswinkel
) logarithmisches Dekrement

o logarithmisches Dekrement bei Torsionsschwingung
& Verhéltnis J/J,
e Verhéltnis J¢/J¢,
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»n  Eigenwert, Ordnung n

v Eigenfrequenz

£ dimensionslose Koordinate x//
0 Dichte

6.  Spannungsamplitude

oy Vergleichs-Biegespannung

T Winkel in Ansatz Gl. (2)

7o  Schubspannungsamplitude
Ty Vergleichs-Schubspannung
) Phasenwinkel

YV potentielle Energie

15) Kreisfrequenz

1. Gleichung der Spannungsamplitude von Biegeschwingungen

In den nachfolgenden Ausfiihrungen wird teilweise Be-
kanntes wiederholt, damit die Zusammenhdnge vollstindig
iiberblickt werden konnen. — Wir betrachten die Schaufel als
einen prismatischen Stab. Eine Eigenschwingung mit bestimm-
ter Frequenz, die wir herausgreifen, erfolgt dann in einer Ebene,
auf welcher die massgebenden Haupttrégheitsachsen der samt-
lichen Schaufelquerschnittesenkrechtstehen. Die in diese Ebene
fallende Komponente des zeitlichen Mittelwertes der auf die
Schaufel einwirkenden Strémungskrifte sei P. Wir nehmen
an, dass diese Kraft iiber die Schaufelhdhe gleichméssig ver-
teilt sei. Sind in der Tat die Durchtrittsgeschwindigkeit des
Mediums durch die betrachtete Schaufelreihe und der spezi-
fische Arbeitsumsatz in der Stufe lings des Radius r kon-
stant, dann wird die innerhalb eines Ringelementes von der
radialen Ausdehnung dr umgesetzte Leistung proportional
dem Querschnitt des Ringelementes, also proportional r dr. Da
aber auch die Umfangsgeschwindigkeit proportional r ist, folgt
daraus, dass die Kraft pro Einheit der radialen Schaufelerstrek-
kung lidngs r konstant ist, womit die getroffene Annahme ihre
Berechtigung erhilt. Mit / als Schaufelhohe wird der Wert der
Kraft pro Langeneinheit

(1) p=—:

Diesem Wert iiberlagert sich ein periodisch variierender
Anteil, von dem wir nur diejenige Ordnung herausgreifen, die
nach Voraussetzung mit der betrachteten Schaufelschwingung
in Resonanz trete. Sie moge durch

(2)  Ap = Ap, [sin 7 sin wt + cos 7 cos wf]

beschrieben werden. Hier ist = ein Winkel, der dazu dient, die
Phase der erregenden Kraft anzugeben. Lésst man 7 langs der
Schaufel variieren, so ist damit jene Phasenverschiebung ein-
gefiihrt, deren Einfluss wir untersuchen. Die Amplitude Ap,,
die lings der Schaufel konstant sei, wird zu p in Beziehung
gebracht durch

(3) Ap,=Sp.
Der dadurch definierte Faktor .S ist der durch Prohl [1] ein-
gefiihrte Stimulus.

Die Bewegung der Schaufel in Resonanz kann beschrieben
werden durch
4) y= Y(x)sin(wt—q),
vgl. auch Bild 1. Wenn wir setzen ')

5) yn=q(, Y (1) = 4o,

1) Bei beidseitig gehaltener oder eingespannter Schaufel ist g, der
Wert Y an der Stelle, wo der Ausschlag maximal wird.
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so ist offenbar
(6) q = q, sin (wt — o).
Ebenso ldsst sich dann setzen

2y
N y=qu), e

d*u
dx? 4 dx?

wo u(x) = Y(x)/Y(/) die Schwingungsform in geeignet nor-
mierter, dimensionsloser Weise darstellt.
Die potentielle Energie der ausgebogenen Schaufel ist in
einer beliebigen Lage
/

/
sz E ® d*y\ 2
=27 dx —
267 2/ (de) :

/
E d?u\?
*"Zz[’(dxz) i
0

wobei von der Differentialgleichung der elastischen Linie
Gebrauch gemacht ist. Da

!

dl 2
©) K:E[J(”) dx
dx2

0

eine Konstante ist, (die u.a. fiir die gegebene Schwingungs-
form u (x) charakteristisch ist), kann (8) auch in der Form

2

K
¥ =

(10) 5 4

dargestellt werden.

Die Bewegungsenergie der Schaufel ist

! !

T = ;fjﬂfdx = ¢ /IIZ(X)de

0 o

(amn

Do

oder mit der Konstanten

!
(12) M=o [u*fdx
0

auch

(13) T= M

= 2 q ¥
Die Arbeit der &dusseren Krifte, die an der Schaufel
wihrend eines Zeitintervalls df geleistet wird, wihrend dessen
ein Punkt der Schaufel den Weg dy zuriicklegt, ist

l ! !
dW = [(Apdy)dx =dt [ (Apy)dx = g dt [ Apudx =
0 0

0

(14)

/ I
= q Aty dt[([usinp dx)sin o + ([ ucos = dx) cos wi).

0 0

Die beiden in runder Klammer geschriebenen Integrale
sind konstante Grossen. Damit lédsst sich aber der Ausdruck
in eckiger Klammer als reine Sinusfunktion der Zeit schreiben,
wenn man nur den an sich willkiirlichen Nullpunkt des Zeit-
massstabes um einen Betrag verschiebt, der durch den Winkel
von Bild 2 gegeben ist. Die entsprechende Amplitude ist dann

! / I
APy = Ap, [(J usin dx)* + ([ ucos tdx)] 2,

0 0

(15)

Schweizerische Bauzeitung - 88. Jahrgang Heft 24 - 11. Juni 1970

S
o
>
b §
S
QU
Y <
Ap,Llu sinT dx
Bild 1. Zur Biegeschwingung Bild 2. Zur Veranschauli-

einer Schaufel chung von GIl. (15)

und die Arbeit ¢ kann ohne Einschrinkung der Allgemein-
heit in der Form

16)

geschrieben werden.

Die Arbeit, die durch Ddmpfung dissipiert wird, wihrend
sich die Koordinate ¢ um dg verschiebt, ldsst sich durch einen
Ausdruck von der Form

(17) dWa.= Bqdg

wiedergeben, wo B eine Konstante ist. In der Tat sind alle
Deformationsédnderungen proportional dg, alle Deformations-
geschwindigkeiten proportional g. Das Ergebnis einer Inte-
gration, welche die dissipierte Arbeit liefern wiirde, lisst sich
also sicher in eine Konstante einschliessen.

Die Energiebilanz einer unendlich kleinen Teilbewegung
lautet nun

(18)

Die Ausdriicke fiir %" und d7T gewinnen wir aus (10) und (13)
durch Ableiten nach der Zeit und Multiplikation mit ¢z. Wenn
wir dann noch in (17) dg durch g dr ersetzen, wird die Energie-
gleichung

dW = AP, sin (wt) g dt

d¥ +dT + dWa = dW.

Kqqdt + M qqdt + Bq*dt = AP, sin (w?) g dt
oder, wenn wir die triviale Losung ¢ = 0 ausschliessen

(199 Mq -+ Bq -+ Kq = AP,sin of.

Dies ist die klassische Differentialgleichung der erzwunge-
nen Schwingung eines einfachen Oszillators. Ist die Ddmpfungs-
konstante B klein, so ist die Kreisfrequenz der Eigenschwin-
gung bekanntlich

(20) o = l/% y

Ihr ist nach Voraussetzung die Frequenz der rechts erscheinen-
den Erregungskraft gleich. Auch die Resonanzamplitude g,
lasst sich aus der Theorie des einfachen Oszillators iibernehmen.
Sie ist

n AP,

21) g, = 5 K

wo o das logarithmische Dekrement der freien Schwingung ist.
Man beachte, dass bei kleiner Ddmpfung u(x) in Resonanz
stets mit einer Eigenschwingungsform (Eigenfunktion) prak-
tisch identisch ist. Fiir jede Schwingungsordnung ergeben sich
so besondere Werte der Konstanten K, M und AP,.
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Wenn wir nun in (21) K und AP, durch die Ausdriicke
nach (9) und (15) einsetzen, folgt

1

i !
Ap, [([ usin = dx)* + ([ ucos = dx)¥] 2
0 0

F1
(22) qo = — ]
£ 7 d*u Z/
— 1 dx
dx*
0

In diese Gleichung fithren wir noch die dimensionslosen Grossen

J
@) £=-, @) o=
e I

ein, wobei J, das Trigheitsmoment an einer ausgezeichneten
Stelle, zweckmissig der Einspannstelle ist. Ausserdem ersetzen
wir Ap, nach (1) und (3) durch SP//. Wenn wir schliesslich noch

Ableitungen nach % durch Akzente andeuten, schreibt sich
Gl. (22) in der Form

© PP

25 =5 —— X
25) g SdEJOA

1 L 1
([ u(E)sin = (2) d2)* 4 ([ u (§) cos = (8) dE)?] 2.

)

X 1
[9@u=E)de

Nun interessiert allerdings letzten Endes nicht der Aus-
schlag der Schaufel an einer ausgezeichneten Stelle, sondern die
grosste durch die Schwingung hervorgerufene Spannungs-
amplitude o4, die in der Regel an der Einspannstelle, also in
£ = 0 auftritt. Das Biegemoment an jener Stelle ist

72 2
26 My©) =EJy LY | — Erg | = Bl
dx* dx? 2

z=0 x=0

u”’(0)

oder, nach Ersatz von ¢, durch den Ausdruck nach Gl. (25)

7

27) M, (0) = S--(;—T’[ %

1 1 1
W’ (0) [(f u(Z)sin = (E) dE)* + (| u(Z)cos 7 (£) d2)] 2
0 0
% - =

J9E u™@)de
0

Hieraus liesse sich auf die Biegespannung im Einspannquer-
schnitt schliessen. Besonders anschaulich wird das Ergebnis
indessen, wenn man M, (0) dividiert durch das Biegemoment

~l

/

(28) Ml}i —

|

das die freistehende Schaufel an ihrer Einspannstelle durch den
zeitlichen Mittelwert der Stromungskrifte erféhrt. Bei der nicht
freistehenden Schaufel ist dies zwar nicht das tatsdchliche,
sondern ein ideelles Biegemoment, (was durch den Index 7
angedeutet ist), das oft aber als hinreichende Néherung fiir das
wirkliche verwendet werden kann. Nun ist aber
(29) M” (0) = = ’

Moyi Opi
wo oy die mit dieser einfachen Annahme berechnete statische,
durch die Stromungskrifte hervorgerufene Biegespannung an
der Einspannstelle ist, also ein Wert, den man aus der {iblichen
Festigkeitsrechnung kennen wird. Bildet man aber den in (29)
links stehenden Ausdruck aus (27) und (28), so kann man
schliesslich das Ergebnis in folgender Form darstellen:
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(30)

0q = DnGui

Dn:SiHn

(31) 3

(32) Hn=
1 1 1
2un” (0) [([ un (£) sin = (8) d2)* + (f un (£) cos 7 () d)4] 2

0

1
[9 @) u2(E)dE

0

Der Index n deutet an, dass H jeweils mit derjenigen Eigen-
funktion u. zu bilden ist, die der Ordnung »n der Schwingung
zugeordnet ist, die mit der periodischen Strémungskraft in
Resonanz tritt. D, wird bei Schaufelfestigkeitsrechnungen
gelegentlich «dynamischer Faktor» genannt; =/ ist der
Vergrosserungsfaktor der Schwingungstheorie, weshalb es
zweckmissig ist, = nicht in H, mit einzuschliessen.

Zwei Bemerkungen miissen hier noch angeschlossen wer-
den. Die Spannung o,; ist strenggenommen die statische Bie-
gespannung, die entstehen wiirde, wenn die Stromungskraft P
auf der massgebenden (J, zugeordneten) Haupttrdgheitsachse
senkrecht stehen wiirde. Das ist normalerweise nicht genau der
Fall, doch ist der Fehler, der entsteht, wenn man das oo:
einsetzt, wie es der wirklichen Kraftrichtung entspricht, bei der
hier geforderten Genauigkeit nicht von Belang. Weiter wurde
der Einfluss der Fliehkraft vernachlissigt, der bei Laufschaufeln
oft eine merkliche Verschiebung der Eigenfrequenzen bewirkt.
In die hier durchgefiihrte Untersuchung wiirde er so hinein-
spielen, dass im Ausdruck fiir die potentielle Energie 1" ein
Zusatzglied erscheinen wiirde, wihrend gleichzeitig die Funk-
tionen u, geringfiigig verindert wiirden. Dieser letztere Einfluss
ist dusserst gering, so dass praktisch nur die Riickwirkung auf
" eingefiihrt werden miisste. Die Durchfiihrung dieses Gedan-
kens fiihrt auf

TT / *® 2
(33) Du=S- Hi (V“‘ ) i

vCIl

wo v,,* die Eigenfrequenz n-ter Ordnung ohne Einfluss der
Fliehkraft ist und v,, diejenige mit diesem Einfluss. Auch diese
Korrektur ist aber zumeist belanglos.

2. Schwingungserregung am freien Schaufelende

Bei den Betrachtungen des vorangehenden Abschnittes
wurde stets vorausgesetzt, dass die Amplitude Ap, der (auf die
Lingeneinheit bezogenen) Storungskraft lings der Schaufel
konstant sei. Nun besteht aber bekanntlich an den Schaufel-
enden eine Konzentration der Verluste (Randverluste), deshalb
auch eine erhohte Unregelmissigkeit der Stromung. Es ist also
dort eine grossere Amplitude der Storungskraft zu erwarten,
wenn auch kaum etwas Genaueres dariiber bekannt sein
diirfte. — Man konnte diesen Effekt keineswegs etwa aus der
Grosse des Randverlustes erschliessen, denn dieser muss
sich ja vor allem in einer Verminderung der «statischen»
(zeitlich gemittelten) Schaufelkraft gegen die Schaufelenden zu
dussern. — Um trotzdem ein Bild iiber die moglichen Auswir-
kungen dieses Effektes zu bekommen, betrachten wir folgen-
des idealisiertes Problem:

Wir nehmen an, eine Storkraft mit der Amplitude
AP,* = S*P greife als konzentrierte Einzelkraft am freien
Schaufelende an. Ist dies die einzigeaufdie Schaufeleinwirkende
Storung, so ist die an der Schaufel bei einer unendlich kleinen
Teilbewegung geleistete Arbeit

(34)  dW — AP *sin (wf) g dt — S* Psin (wt) q dt
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und die Weiterfiihrung der Uberlegung fiihrt dann auf
(35) o0a=S* T Hu* ou
ag

mit

2 un'’ (0)7

(36) H,* =

1

[9E) w2 E)dE

Um die wirklichen Verhiltnisse zu approximieren, muss
man allerdings diesen Typus der Erregung mit dem im voran-
gehenden Abschnitt behandelten {iberlagern, womit aber wie-
der ein Problem der Phasenverschiebung erscheint. Bei der
getrennten Berechnung der beiden Fille wurde jedesmal der
Nullpunkt der Zeit so gesetzt, dass fiir W ein moglichst ein-
facher Ausdruck entstand, was nicht mehr moglich ist, wenn
beide zugleich auftreten. Da aber iiber die hier einzufiihrende
Phasenverschiebung nichts bekannt ist, wird man gegebener-
massen die ungiinstigste Annahme treffen, die in diesem Falle
zugleich die einfachste ist: Man nimmt an, die Verhiltnisse
ldgen gerade so, dass beide Effekte sich gerade addieren. Dann
wird

@7 Gg— % (SHu + S* Ho*) 4.

Damit ist allerdings nur ein grundsitzlicher Anhaltspunkt
gewonnen, denn hier miissen ja S und S* aufgefasst werden als
die Teilstimuli der beiden Erregungstypen. Wir besitzen aber
bis heute keine Kenntnis iiber diese Aufteilung des Stimulus in
zwei Anteile.

3. Numerische Angaben fiir Biegeschwingungen

Die allgemeinen Gleichungen, die in den vorangehenden
Abschnitten aufgestellt wurden, werden hier fiir einige typische
Fille ausgewertet. Wir betrachten die Schaufel konstanten
Querschnittes. In diesem Falle sind die Eigenfunktionen ux
genau bekannt, weil die Differentialgleichung des schwingen-
den Stabes exakt geldst werden kann. Die allgemeine Losung
lautet (vgl. etwa [2])

(38) u=C;sinxk 4 C,cosx& + C;Sinx& + C, Cos % £.

Die Abstimmung der Konstanten C; und die Folge der Eigen-
werte %,, %,, ., mit denen die Kreisfrequenzen der
Eigenschwingungen geméss

oWty oo

p—

*n? EJ
r fo

zusammenhédngen, sind durch die besonderen Grenzbedin-
gungen des jeweils vorliegenden Falles gegeben. So entstehen
in den drei Fillen, die wir hier betrachten wollen, — einseitig
eingespannter Stab, beidseitig eingespannter Stab und einseitig
eingespannter, auf der anderen Seite aufliegender Stab — je die
in Bild 3 dargestellten Eigenfunktionen u,, u,, wu,. Hohere
Ordnungen interessieren kaum.

Zur Berechnung der H, nach Gl.(22) muss noch = (£) ein-
gefithrt werden. Wie dies zweckmissig geschehen kann,
veranschaulicht Bild 4. Dort ist schematisch eine Laufschaufel
dargestellt und gestrichelt das zugehorige Leitrad. Dass aus
Griinden der konstruktiven Gestaltung dieses letzteren tat-
sichlich die im Bild dargestellte Situation entstehen kann, ist
wohlbekannt. Ubrigens sind es ja eigentlich die von den Leit-
radaustrittskanten abgehenden Nachlaufdellen, die fiir die
Erregung der Laufschaufelschwingungen massgebend sind,
und gerade diese werden im allgemeinen diec Tendenz haben, in
der Laufradeintrittsebene eine Lage einzunehmen, wie sie
durch die gestrichelten Linien dargestellt ist. Die so entstehende

(39) Wen =
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Bild 3.
a) einseitig eingespannt

b) beidseitig eingespannt

¢) auf der einen Seite eingespannt, auf der anderen gehalten

Eigenfunktionen u, der Biegeschwingungen

Phasenverschiebung der Erregungskrifte lings der Schaufel lisst
sich beschreiben durch den Ansatz

wobei die Konstante ¢ eben das Mass dieser Phasenverschie-
bung darstellt.

Wenn man, um einen besonders leicht {iberblickbaren Fall
vor sich zu haben, etwa ¢ = 1 setzt, ergeben sich nach G/. (2)
folgende Verhéltnisse:

v
Iné =0k %= 5 sint =1, cost =20
Ap = Ap, sin ot
[hé=1: v=0, sint =0, eos.w=1
Ap = A p, cos ot
le
Bild 4. Entstehung der pha- “ A

senverschobenen Erregung
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F g 7 . T Bild 5. Hn. in Funktion der
;/// o // 7 % die Phasenverschiebung kenn-
Z 7 //4 7 zeichnenden Konstanten ¢ fiir
Biegeschwingungen
10 T ] 70 T T 1,0 ]‘ {
{ Hy T i ! f
b ! gz ] 05 :
|
03 3 03 - 03 ‘ } =i
‘ | ] |
02 T 02 t 0.2 H,
Hh [ N | J LY
2 | Hy
or . E—— o1 ‘ I ﬂ or
I Ha ===
0,05 0,05 0,05
| Lo «
| | Ho
003 Hs | ‘ 003 T 0,03
|
ooz 0,02 002
— — Z / |
—~£ |
001 o,0r - o,01 - -
= T F—Ps—|
'3 / Hs
0,005 0,005 _Ili T \\i 0,005 \\
0,003 . 0,003 [l ‘i\\ 0003 T
0002 ‘ 0,002 T n - 0,002 T 4
0,001 | 0001 ‘\ ‘ i I | l i
4 o 7 2 3 4 5 ! o 7 2 3 4 0'00’0 7 2: F 4
—— —_— —_
¢ c <
Die Erregung am Schaufelende eilt also derjenigen an der Tabelle 1
Einspannstelle voraus, wie es Bild 4 entspricht. Im hier ange- — — -
gebenen Beispiel ¢ = 1 entspricht dieses Voreilen einer viertels Ei‘:sg“gnm B,'i‘d::'t;im Eelfslt%?tszpta““t‘

o = . . e € €1 u
Leitradteilung. Es sind aber noch wesentlich grossere Phasen- gesp 0 Z
verschiebungen moglich, d.h. ¢ kann weit iiber 1 liegen. H\(¢c=0) = Himaxz 0,8908 0,1485 0,2231

H* 2,2754 — -

) Analoge Verhéiltnisse bestehen beziiglich der Erregung VON A, (c=0) 0,0788 0 0,0066
Leitschaufelschwingungen durch Laufrdder. Die Frage, an  Himazx 0,1159 0,0450 0,0569
welchem Ende die Storung voreilt — d.h. die Frage des Vorzei- 2 0,3630 = -
chens von ¢ — ist dabei iibrigens unwesentlich. Das ldsst sich ~ Hs(c=0) 0,0165 0,0120 0,0138
anhand der Gleichungen verifizieren, und auch die unmittel- Z”;““‘ 8’?‘2‘;2 0_’0120 0_’0'~8
bare Vorstellung bestitigt es: Denkt man sich bei einem D° Bl 140 )3 35
Bewegungsvorgang den zeitlichen Ablauf genau umgekehrt Dl (c=0) e T 8’ 0’ post
und eber'150 alle Kraftrichtungen, dann bleiben die Gesetze der Dimux 1:82 0.707 0:895
Mechanik erfiillt. D;3(c=0) 0,259 0,189 0,201

Dimaz 0,652 0,189 0,201

Mit dem Ansatz (40) lassen sich nun die H» in Funktion
von ¢ berechnen. Die Ergebnisse sind in Bild 5 dargestellt. Zur
anschaulichen Interpretation beachte man, dass ¢ = 4 einer
grossten Phasenverschiebung von einer vollen Leitradteilung
entspricht. Dass bei der ersten Ordnung das Maximum stets in
¢ = 0 zu finden ist, leuchtet unmittelbar ein. Der Verlauf der
Kurven fiir die H, hoherer Ordnung diirfte hingegen eine
wesentliche neue Information darstellen. Bei der freistehenden
Schaufel erreicht H, einen hochsten Wert, der immerhin 1,47
mal grosser ist als bei Erregung mit konstanter Phase, wiahrend
der Maximalwert von H, sogar das 2,53-fache des Wertes bei
¢ — 0ist. — Bei der beidseitig eingespannten Schaufel (anndhernd
verwirklicht bei gewissen Leitradkonstruktionen) wird mit ¢ =
0 auch H, — 0, wihrend der Hochstwert von H, immerhin be-
triachtlich werden kann, und das H, der einseitig eingespannten,
einseitig gehaltenen Schaufel erreicht das 8,6-fache seines
Wertes bei ¢ = 0. — Der Verfasser hat friiher aufgrund einer
{iberschligigen Untersuchung eine Empfehlung zur Abschiit-
zung des Effektes der Phasenverschiebung angegeben, vel. [3].
Es zeigt sich nun, dass jene Angaben im Falle der freistehenden
Schaufel recht gut stimmen, nicht aber bei den H, der beiden
anderen Fille.

In Tabelle 1 sind die wichtigsten Werte zusammengefasst.
Im Falle der freistehenden Schaufel (einseitig eingespannt)
wurden auch die H,* beigefiigt, die einer Erregung durch eine
Einzelkraft am freien Schaufelende entsprechen, vgl. die Aus-
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fithrungen in Abschnitt 2. In den beiden anderen Fillen ist
diese Art der Erregung voraussetzungsgeméss unmaoglich.

Ausser den H, sind noch die D, gemiss Gl. (31) angegeben,
wobei § = 0,1, = 0,02 gesetzt wurden. Die Annahme S = 0,1
trifft vor allem fiir die Erregung mit der Periode des voraus-
gehenden Schaufelkranzes die richtige Grossenordnung;
von M. Naguib [4] berechnetete Werte bewegen sich zwischen
0,05 und 0,22. — Die D, die ja mit den gegebenen Annahmen
proportional den H, sind, geben ein unmittelbares Bild von
den zu erwartenden Wechselspannungsamplituden ¢, denn
man hat nur die «statischen» Biegespannungen opi mit Dn zu
multiplizieren, um o, zu erhalten.

Die Folgerungen, die man aus diesen Zahlen zichen kann,
stehen mit der Erfahrung im Einklang. Die Grundschwingung
wird weitaus am stirksten erregt. Bei relativ gedrungenen
Schaufeln kann sie mit der Periode des vorausgehenden Schau-
felkranzes in Resonanz treten. In diesem Falle entstehen so
grosse Spannungsamplituden, dass meist mit dem Schaufel-
bruch zu rechnen sein wird. — Bei schlanken Schaufeln sind es
die Schwingungen hoherer Ordnung, die mit der Periode des
vorausgehenden Kranzes in Resonanz treten konnen. Be-
trachtet man die D-Werte zweiter und selbst dritter Ordnung,
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so wird deutlich, dass diese Resonanzerregung zwar stets weit
unter derjenigen der ersten Ordnung liegt, unter bestimmten
Umstinden aber doch geniigen kann, um die Schaufel zu
gefidhrden (besonders wenn S grosser ist als der angenommene
Wert und gleichzeitig o5; an und fiir sich schon gross ist). Die
angegebenen H,-Werte beseitigen jedenfalls die Unsicher-
heit, die bisher in Bezug auf den Einfluss von Phasenverschie-
bungen der erregenden Krifte lings der Schaufel bestanden.

Eine zusitzliche Uberlegung ist allerdings noch nétig
beziiglich des Einflusses von am Schaufelende konzentrierten
Kriften. Um diesen abzuschitzen, machen wir zunéchst
folgende Gegeniiberstellung:

Ohne Phasenverschiebung (¢=0): H,/H max = 0,088;
H,/H, maz =0,019

Hzmaz/Hlmax = 0,130,
H3 m (II/HI max — 0,047

H,*|H,*  =0,160;
H,*|H*  =0,057

Maximalwerte:

Einzelkraft an Schaufelende:

Wir entnehmen daraus, dass die H,* mit zunehmender
Ordnungszahl n nicht viel weniger abnehmen als die Hx maz.
Dazu muss man beachten, dass die Annahme einer am
Schaufelende konzentrierten Einzelkraft stark und im un-
giinstigen Sinne idealisiert ist. Denkt man sich die durch die
Endeffekte entstehende Zusatzkraft in £ = 0,9 (also 109 vom
Schaufelende entfernt) angreifend, so werden die entsprechen-
den Verhéltniszahlen 0,097 und 0,016, d.h. sie bewegen sich
sogar in der gleichen Grossenordnung wie die Werte ohne
Phasenverschiebung. Wire nun aber genau A, */H,* = Hn/H,,
so wire es nach Gl. (37) moglich, wieder auf oo = (/0) SHnu 0v:
zuriickzugehen, sofern man nur die gesamte Erregung in S
einschliessen wiirde. Da die Erregung durch Endeffekte nur
einen Teil der Gesamterregung bildet, kann diese vereinfachende
Annahme im Rahmen der hier geforderten Genauigkeit ohne
Bedenken gemacht werden, so dass die in Abschnitt 1 ange-
gebenen theoretischen Grundlagen gentigen diirften.

Die hier angegebenen Rechenergebnisse beschrianken sich
auf Schaufeln konstanten Querschnitts, doch werden die
Grossenordnungen auch bei verjiingten Schaufeln nicht ver-
schoben, da die « (£) eine dhnliche Gestalt beibehalten und die
Unterschiede auch dadurch teilweise ausgeglichen werden, dass
die H, aus den u, durch Integration hervorgehen.

4. Spannungsamplitude von Drehschwingungen

Die Herleitung der massgebenden Gleichungen ist der im
Falle der Biegeschwingungen gegebenen vollig analog, weshalb
hier eine abgekiirzte Darstellung geniigt. Das oszillierende
Moment der Stromungskrifte pro Lidngeneinheit sei gegeben

durch
(41) Am = Am, [sin 7 sin ot + cos T cos wi].

Mit y (x) als Verdrillungswinkel setzen wir

42) q=xW), Y (x) = qu(x).
Dann ist die potentielle Energie
s
43 W= 12( 7, K=G / J. (Z’\') Cdx

0
und die Bewegungsenergie
!

M =p /Jp u? dx,

.
0

M .
T= g2,

(44) )
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wo J: das Trigheitsmoment gegen Torsion, Jp das polare
Trigheitsmoment bedeuten. Die Arbeit der Stromungskréfte
bei einer unendlich kleinen Teilbewegung ist

/ l !
dW = [(Amdy)dx = dt [(Amy)dx = qdt [ Amudx =
0 0 0

! !
= g Am, dt [( [ usin = dx)sin ot + ( [ ucos = dx) cos wt],
(1] 0

was man wie frither durch geeignete Nullpunktsverschiebung
des Zeitmassstabes tiberfiihren kann in

(45) dW = AM,sin (of) g dt
mit

14 4 1
(46) AM, = Am[([ usin vdx)> + ([ ucos = dx)*] 2 .
0 o

Die GI. (17) fiir die Ddmpfungsarbeit kann unveré‘._ndert iiber-
nommen werden, womit auch die nachfolgende Uberlegung
die selbe bleibt und anstelle von (21) die Gleichung

© AM,

47) b K

qo =
folgt. Hier ist d, das logarithmische Dekrement der Torsions-
schwingung. Mit 9 = J:/Ji, kann diese Gleichung durch Ein-
setzen von (46) und (43) in die Form

1 1 1
P> Amy [([ usin = d&)* + ([ ucos td%)*4] 2
0 0

13
do — 5,

(48) 1
GJLO J Yo u’? dE,

0

gebracht werden. Anderseits ist an der Einspannstelle das
Torsionsmoment

1 T | GJ (0
49 M© =Gl Y| =Glng, @ = Clot©
dx ‘ dx i /
z=0 z=0

Als ideelles Vergleichs-Torsionsmoment M,;; wihlen wir
nun dasjenige, das entstehen wiirde, wenn die statische Schaufel-
kraft Pim Abstand der halben Sehnenlinge s vom Schubmittel-
punkt des Einspannprofiles angreifen wiirde (d.h. die Kraft P
wiirde in der Néhe der Vorderkante angreifen). Die so entste-
hende ideelle statische Schubspannung =:; ist mit W, als
Torsions-Widerstandsmoment

M Ps

50) T = =,
e We  2We

Wenn wir nun den Stimulus S¢ der Torsionsschwingung defi-
nieren durch

(51) [Amy= St Mu

und beachten, dass sich die Schubspannungen verhalten wie die
Drillmomente, konnen wir folgendermassen vorgehen. Wir
ersetzen in (48) / Am, durch S: My;, fithren den so erhaltenen
Ausdruck in (49) ein und dividieren beidseitig durch M;;. Dann
erhalten wir fiir die Spannungsamplitude 7. schliesslich

T

(52) Ta= — St Hin 7t
oy

(53) th =

1 1 1
wn’ (0) [([ un (E) sinw(E) dE)* + (Jun(E)cos = (£)dE)] 2
0 0

1
[ D¢ (B) u'n? () dE

0
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Bild 6. H;n in Funktion der die Phasenverschiebung

kennzeichnenden Konstanten ¢ fiir Torsions-

schwingungen

Tabelle 2

Einseitig gehalten Beidseitig gehalten
n 1 2 3 1 2 3
Hin (c=0) 0,8106 0,0901 0,0324 0,4053 0 0,0450
Hin maz 0,8106 0,2169 0,1284 0,4053 0,1658 0,1080
Hin* 1,2732  0,4244, 0,2546 — — —

Wiederum behandeln wir den Sonderfall der Schaufel
konstanten Querschnittes, wo die allgemeine Losung der

Differentialgleichung der Drehschwingung lautet
(54) u= C,sinxk + C,cosxE.

Beim einseitig gehaltenen Stab wird C, = 0 und die Eigen-
werte werden

2n—1
Hp = ———— T

(55) 3

Beim beidseitig gehaltenen Stab ist ebenfalls C, = 0, wihrend
die Eigenwerte
(56)

sind. Mit dem Ansatz

An = TR

(57)

<

= (l=—ck)
_7 —ct

lassen sich dann die H:» in Funktion von ¢ berechnen. Die
Ergebnisse sind in Bild 6 und in Tabelle 2 zusammengefasst.

Betrachtet man ausserdem noch, wie im Falle der Biege-
schwingung, den einfachen Grenzfall, wo das ganze erregende
Moment am freien Ende angreifen wiirde, so ist Hin zu
ersetzen durch

1 nl (0)

1 ’

[ i (E) Un (2) (I’:

0

(58) Hln* -
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was fiir den Stab konstanten Querschnitts, also 9: = 1,in
Tabelle 2 ebenfalls eingetragen ist.

Wie im Falle der Biegeschwingung ergibt sich auch hier,
dass unter dem Einfluss der Phasenverschiebung die Erregung
der Schwingungen hoherer Ordnung wesentlich stdrker sesin
kann, als man bei Erregung mit konstanter Phase erwarten
wiirde. Beziiglich des Einflusses zusitzlicher konzentrierter
Erregung am Schaufelende machen wir die gleiche Uberlegung
wie oben. Die massgebenden Verhéltniszahlen sind die folgen-
den:

Ohne Phasenverschiebung (¢ = 0): Hi,/Htymax
Ht3/H11771aI

le maz/Htlmaz — 0,268,
H13 maz/Ht;max = 0,158

HlZ/Hll = 0,333;
Hu/H., = 0,200

Denkt man sich das Moment in £ = 0,9 statt am Schaufelende
angreifend, so werden die Werte 0,303 und 0,144. Die Verhilt-
nisse liegen also hier etwas ungiinstiger als im Falle der Biege-
schwingung, denn die H:»* nehmen hdchstens etwa wie die
Hin maz ab, selbst wenn man den Ort des Angriffs des Mo-
mentes etwas vom Schaufelende wegschiebt. Es folgt daraus,
dass man die Erregung von Torsionsschwingungen hdherer
Ordnung vorsichtigerweise verhéltnisméssig gross ansetzen
muss.

Die richtige Einschitzung der Gefihrdung von Schaufeln
durch Drehschwingungen ist nach dem derzeitigen Stande
unserer Kenntnisse bedeutend schwieriger als im Falle der
Biegeschwingung, vor allem weil tiber den Stimulus S: kaum
zuverldssige Angaben gemacht werden konnen, obwohl er
durch (51) einwandfrei definiert ist. Die Ausfiihrungen dieses
Abschnittes geben daher zunéchst nur einen Anhaltspunkt tiber
die relative Grosse der Erregung in Resonanz.

=0,111;
= 0,040

Maximalwerte:

Einzelmoment an Schaufelende:

5. Schlussbemerkung

Ganz allgemein wiéren zur hinreichend genauen Voraus-
sage der in Resonanz zu erwartenden Spannungsamplituden
vor allem bessere Unterlagen iiber den Stimulus wiinschbar.
Hier miisste also die experimentelle Forschung einsetzen. Auch
iiber die Mindestgrosse des logarithmischen Dekrementes, die
man sicher einsetzen darf, wéren zusédtzliche Informationen
sehr erwiinscht. Besonders betrifft dies die Einfliisse der Art der
Befestigung und die Wirksamkeit dimpfender Konstruktions-
elemente (z.B. Ddmpfungsdridhte). Wenn man beachtet, dass
Schaufelschwingungen wahrscheinlich immer noch die wich-
tigste Storungsursache im Turbomaschinenbau darstellen, so
wiirde sich hier ein gewisser Aufwand lohnen.

Wiirdigung. Die sdmtlichen Berechnungen zu dieser
Studie sind durchgefiihrt worden von meinem Assistenten,
dipl. Ing. Rolf Girsberger, dem ich an dieser Stelle fiir seine
sorgfiltige Arbeit danken mochte.

Literaturverzeichnis

[1] Prohl, M.A.: A Method for calculating vibration frequency and stress
of a banded group of turbine buckets. Trans. ASME 80 (1958), Nr. I,
S. 169-180.

[2] Jacobsen, L.S. and R.S. Ayre: Engineering vibrations. Mc.Graw-Hill,
New York, Toronto, London 1958.

[3]1 Traupel, W.: Thermische Turbomaschinen, Bd. 11, 2. Aufl., Springer,
Berlin 1968.

[4] Naguib, M : Theoretical estimation of dynamic forces and vibratory

stresses for a turbine blade. Mitt. a.d.Inst. . Therm. Turbomaschinen,
ETH Ziirich, 1965.

Adresse des Verfassers: Prof. Dr. Walter Traupel, Schmiedhalden-
strasse 44, 8700 Kiisnacht ZH.

Schweizerische Bauzeitung - 88. Jahrgang Heft 24 - 11, Juni 1970




	Die Beanspruchung schwingender Schaufeln in Resonanz

