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HERAUSGEGEBEN VON DER VERL AG S- AKTIEN GESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH. POSTFACH 630

Berechnung segmentierter Radialgleitlager endlicher Breite bei instationärem Betrieb
Von Prof. Dr. H. H. Ott, ETH Zürich DK 621.822.5.001.2

Zusammenfassung

Das Verhalten von Radialgleitlagern endlicher Breite, die aus
mehreren festen Segmenten zusammengesetzt sind, wird bei instationärem

Betrieb theoretisch untersucht. Die Reynoldssche Differentialgleichung

für den zeitabhängigen Fall wird mit einem Parabelansatz
für den axialen Druckverlauf integriert, wobei für die Randbedingungen

bisher nicht verwendete Annahmen gemacht werden. Die
Theorie erlaubt, aus einer gegebenen Bewegung des Wellenzentrums
die resultierende Kraft des Schmiermittels auf die Welle zu berechnen.
Damit verfügt man auch über die Grundlagen, um das inverse Problem,
die Berechnung der Wellenbewegung aus einer äusseren Belastung, zu
behandeln. - Mit der vorhegenden Theorie kann das dynamische
Verhalten verschiedener Lagertypen, die im Turbomaschinen- und
Motorenbau vorkommen, rechnerisch erfasst und verglichen werden. -
Das angewandte Berechnungsverfahren ist mit beträchtlichem
Aufwand verbunden und verlangt den Einsatz einer schnellen elektronischen

Rechenanlage.

Verzeichnis der wichtigsten Bezeichnungen

Da alle angegebenen Beziehungen dimensionsrichtige Grössen-
gleichungen sind, kann ein beliebiges kohärentes Masssystem
verwendet werden. Zu empfehlen ist vor allem das MKSA-System. Nicht
aufgeführte Zeichen sind im Text erklärt.

c Konstanter Faktor im Differenzengleichungssystem
e Exzentrizität (Abstand zwischen Wellen- und Schalenzentrum)

/ Fläche
h Schmierspalthöhe zwischen Welle und Schale
Ah Spalthöhenteil zwischen Maximalkreis und Schale
m Parabelexponent
n Zahl der Aq>-lntsrvaüe im Segment
p Druck im Schmierspalt (Überdruck gegenüber Umgebungsdruck)
p Druck in der Mittelebene des Lagers
q Volumetrischer Ölausfluss pro Zeit- und Breiteneinheit
t Zeit
« Transformationsvariable (Druck-Differentialgleichung)
w Geschwindigkeit im Schmierspalt (in Bewegungsrichtung der

Welle)
x Koordinate in Bewegungsrichtung der Gleitfläche
v Koordinate senkrecht zur bewegten Gleitfläche
z Koordinate in Richtung der Wellenachse
A Koeffizient in der transformierten Druck-Differentialgleichung
B Lagerbreite (in axialer Richtung)
AB Fiktiver Breitenzuschlag für Randleiste
D Wellendurchmesser
E Radialgeschwindigkeitszahl (radiale Verschiebung des Wellen¬

zentrums)
F Dimensionslose Reibungskraft an der Welle
AF Dimensionsloser Reibungskraftanteil des drucklosen Schmier¬

spaltteils
AFo Dimensionsloser Reibungskraftanteil des drucklosen Schmier¬

spaltteils im stationären Fall
öF Korrektur der dimensionslosen Reibungskraft für Randleisten-

einfluss
G Tangentialgeschwindigkeitszahl (Rotation des Wellenzentrums)
H Dimensionslose horizontale Ölkraft auf Welle
K Dimensionslose öldurchflusszahl
6K Korrektur der Öldurchflusszahl für Randleisteneinfluss
L Segmentlänge (in Bewegungsrichtung der Welle)
P Kraft (vom Öl auf Welle wirkend)
AP Reibungskraft im drucklosen Teil des Schmierspaltes
Q Öldurchsatz (Volumen pro Zeiteinheit)
R Wellenradius
AR Radiales Spiel zwischen Maximalkreis und Welle
So Sommerfeldzahl (resultierende dimensionslose Ölkraft auf Welle)

V Dimensionslose vertikale Ölkraft auf Welle
Wi, Wi Oberflächengeschwindigkeit der Gleitflächen (in Umfangsrich-

tung)
Z Absolutes Glied in der transformierten Druck-Differential¬

gleichung

a Zahl der Zly-Intervalle bis zur ersten Minimalstelle im «-Verlauf
ß Relative Lagerbreite
ßü Relative Randleistenbreite (bezogen auf B)
y Lagewinkel des Wellenzentrums
6 Relative Exzentrizität
C Dimensionslose, auf halbe Lagerbreite bezogene Koordinate in

Achsrichtung
>1 Dynamische Zähigkeit des Schmiermittels
1? Dimensionslose Zeit
x Exponent
A Seitenverhältnis des Segmentes
p. Reibungszahl
v Laufnummer der .dy-Intervallgrenzen im Segment
| Zahl der zjp-lntervalle bis zur zweiten Minimalstelle im «-Verlauf
o Richtungswinkel der resultierenden Wellenkraft
r Schubspannung

Umfangswinkel, von Horizontalachse aus gemessen
Winkel eines Differenzintervalls
Relative, auf AR bezogene Spalthöhe
Relativer, auf AR bezogener Spalthöhenteil zwischen Maximalkreis

und Schale (relative Segmentvertiefung)
Relatives Lagerspiel zwischen Welle und Maximalkreis
Winkelgeschwindigkeit der Welle
Dimensionsloser Druck
Winkelausdehnung des Segmentes

<P

Aq>

X

*X

V
0)

n
0

Indices:

m 1, m 2 Minimalstellen im «-Verlauf
n
A
A'
E
E'
F
Fo

H
R
AR
S
V
W

OL

Ende des letzten /davlntervalls im Segment
Austritt des Segmentes
Austrittseitige Grenze des Druckgebietes
Eintritt des Segmentes
Eintrittseitige Grenze des Druckgebietes
Reibungskraft (instationär)
Reibung im stationären Fall
Horizontal
Rand; Randleiste; Ende der Randleiste •

Spalt zwischen Welle und Maximalkreis
Spalthöhenänderung
Vertikal
Welle
Erstes Minimum im «-Verlauf

& Ableitung nach der dimensionslosen Zeit
ß Zweites Minimum im «-Verlauf
v Laufnummer für Ja>-Intervallgrenzen im Segment
q> Ableitung nach dem Umfangswinkel q>

1 Lagerschale
2 WeUe
I, n, III, Nummer des betr. Segmentes
0, 1, 2 v n Nummern der A y-Intervallgrenzen im Segment

)* Lösung mit Nullstellen an Segmentanfang und
-ende

)'; )" Schrittweise Näherungen bei der Ermittlung des
«-Verlaufes

)tot für ganzes Lager
)res resultierend; für alle Segmente

(1
)min

Mittelwert
an der Stelle des kleinsten Spaltes
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Bild 2.1. Segmentiertes Radiallager mit Welle
scher Lage

1. Problemstellung und Voraussetzungen

Aus der Literatur sind eine grössere Anzahl von Veröffentlichungen

bekannt, in denen kreiszylindrische Gleitlager bei instatio-
närem Betrieb untersucht werden. Unter instationärem Betrieb sei

hier ein Betriebszustand verstanden, bei dem sich die mit konstanter
Drehgeschwindigkeit laufende Welle gegenüber der Lagerschale senkrecht

zur Achsrichtung innerhalb des Lagerspiels beliebig bewegt; bei
allen Wellenbewegungen bleiben somit die Achsen von Schale und
Welle parallel. Ältere Arbeiten haben das «unendlich breite» (d.h.
seitlich abgeschlossene) Lager zum Gegenstand, während in neueren
Veröffentlichungen auch Lager endlicher Breite behandelt werden.
Eine gute Übersicht über eine Reihe von Untersuchungen ist bei
K. Radermacher [5] zu finden, wo u.a. die Arbeiten [1] [2] [3] [4] [6]
[71 [8] [9] und [10] erwähnt sind. In [14] werden neben den
kreiszylindrischen auch nichtkreisförmige Lager experimentell untersucht.
G.Schaffrath hat in [15] das instationär belastete Lager mit beliebiger
Spaltform behandelt. Dasselbe Problem behandelt auch die vorl iegende

Arbeit, jedoch mit wesentlich anderen Randbedingungen, als sie

Schaffrath gewählt hat.
Bei der Behandlung von instationär laufenden Gleitlagern sind

zwei fundamentale Problemstellungen zu unterscheiden: es kann
erstens bei einer vorgegebenen Wellenbewegung nach der vom
Schmierfilm auf den Zapfen wirkenden resultierenden Kraft gefragt
werden (wobei auch Reibungsmoment und Öldurchsatz interessieren)
oder es kann zweitens die (zeitlich nach Richtung und Grösse
veränderliche) Zapfenkraft gegeben und die sich ergebende Bahn des

Wellenzentrums gesucht sein (erste und zweite Hauptaufgabe).

Die Lösung der ersten Hauptaufgabe ist zum Beispiel notwendig,
wenn die Feder- und Dämpfungszahlen des Schmierfilms für die
genauere Berechnung der kritischen Drehzahlen einer in Gleitlagern
laufenden Welle benötigt werden. Auf die zweite Hauptaufgabe wird
man insbesondere bei Lagerstabilitätsuntersuchungen im Falle von
periodischen Kräften geführt. Das instationäre Verhalten eines radialen

Gleitlagers kann erst als vollständig geklärt betrachtet werden,

wenn beide Fundamentalaufgaben gelöst sind. In der vorliegenden
Abhandlung wird die Theorie für die Lösung der ersten Hauptaufgabe
dargestellt. In weiteren Veröffentlichungen werden Anwendungen
dieser Theorie und die Lösung der zweiten Hauptaufgabe folgen.

tPa

an

mm

1*¦?*>

Horizontale <p*0
(Bezugsebene)

Welle

Maximalkreis

Bild 2.2.
leisten

Segment mit Rand-

Bild 2.3. Segment mit Welle in allgemeiner Lage

Es wurde oben erwähnt, dass die bisherigen theoretischen und
experimentellen Untersuchungen sich vorwiegend auf kreiszylindrische
Gleitlager beschränkten, während über Lager, die aus mehreren
Teilgleitflächen (starren Segmenten) zusammengesetzt sind und eine nicht-
kreiszylindrische Oberfläche aufweisen, nur wenige Untersuchungen
existieren [14] [15].

Die nachstehende theoretische Untersuchung gibt eine Methode
für die Berechnung des instationär laufenden segmentierten Radiallagers

endlicher Breite, wobei (mit gewissen Einschränkungen) beliebige

Schmierspaltformen zugelassen sind. Dabei werden die in der
elementaren Lagertheorie üblichen vereinfachenden Voraussetzungen
gemacht: inkompressibles Schmiermittel (im folgenden «öl» genannt)
von konstanter Zähigkeit, Gültigkeit des Newtonschen Flüssigkeits-
reibungsgesetzes, laminarer Strömungszustand mit vernachlässigbaren
Trägheitskräften, verschwindender Druckgradient senkrecht zur
Gleitfläche, vernachlässigbare Krümmung der Schmierschicht, glatte
Oberflächen, starre Lagerschale, konstante Drehzahl der Welle; siehe

zum Beispiel [5].

Da für allgemeine Schmierspaltformen die Lösung der
auftretenden Differentialgleichungen hier durch Überführung in ein
Differenzengleichungssystem vorgenommen wird, ist das nachstehend
entwickelte Berechnungsverfahren auf die Verwendung von digitalen
Rechenautomaten zugeschnitten. Auch wenn sehr schnelle Maschinen

zur Verfügung stehen, zeigt es sich, dass das gestellte Problem (und
insbesondere die zweite Fundamentalaufgabe) bei den gewählten
Randbedingungen nur dann mit tragbarem Aufwand an Rechenzeit

bewältigt werden kann, wenn bei der Lösung vereinfachende Ansätze
gemacht werden. Das gilt insbesondere für die Berücksichtigung der
endlichen Lagerbreite.

Die nachstehend entwickelte instationäre Theorie enthält
selbstverständlich als Spezialfall auch den stationären Betriebszustand der
untersuchten Lager. In einzelnen Abschnitten wird auf den stationären
Fall besonders eingegangen.

2. Geometrie des Lagers

Bild 2.1 zeigt ein Lager, das mehrere feste Teilgleitflächen
(Segmente) aufweist. Zwischen diesen Segmenten wird öl zugeführt. Im
Grenzfall kann sich das Lager auf ein Segment mit einer Ölzufuhr-
stelle beschränken («360°-Lager» mit einem einzigen Öleintritt). Auch
können zwischen den Segmenten in Umfangsrichtung nicht nur Ölzu-
führungen, sondern auch grössere Lücken hegen.

Zunächst werde nur der Fall betrachtet, in welchem die Spaltform

über die Lagerbreite konstant ist. Im Anhang wird ein
Näherungsverfahren angegeben, mit dem auch Segmente mit Randleisten
(wie'sie bei Dreikeil- und Taschenlagern vorkommen, Bild 2.2)
berechnet werden können.

Der grösste Kreis, der in das Lagerprofil eingeschrieben werden
kann, werde als Maximalkreis bezeichnet.1) Sein Radius ist um AR
grösser als der Wellenradius R. Wir bezeichnen die durch den Mittelpunkt

M des Maximalkreises laufende Parallele zur Wellenachse als
Achse der (aus Segmenten zusammengesetzten) Lagerschale. Die in
Bild 2.1 gezeigte Wellenlage wird als zentrisch bezeichnet. Die
Oberflächenform der Lagerschalen-Segmente ist gegeben durch den Verlauf

Ah (cp); die Länge eines Segmentes sei begrenzt durch den
Eintrittswinkel <pe und den Endwinkel <pa. Die Grössen AR und Ah seien
klein gegenüber dem Radius R.

Für die Einführung des Maximalkreises besteht kein zwingender
Grund. Die ganze Betrachtung könnte auch ohne diesen Kreis
durchgeführt werden. Er erweist sich jedoch als praktisch, weil viele Lager-

*) Wenn mehrere gleich grosse Maximalkreise existieren (was praktisch

denkbar ist), wird einer davon ausgewählt und als Maximalkreis
definiert.
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Bild 2.4. Längsschnitt durch Lager

Welle

Schale

Bili! 3.1. Geschwindigkeitsverteilung Im Schmierspalt

formen relativ wenig von einem Kreiszylinder abweichen. Im folgenden
wird zunächst ein einziges Segment behandelt. Wenn mehrere
vorhanden sind, ist die Berechnung für diese analog durchzuführen.

Bild 2.3 zeigt ein Segment mit der Welle in allgemeiner Lage. Für
die Spaltweite h an der Stelle q> folgt

(2.1) hAR + Ah

wobei Ah als Segmentvertiefung bezeichnet wird.
Mit Rücksicht auf eine später vorzunehmende Variablentransformation,

bei der eine Potenz von h als Faktor auftritt, wird vorausgesetzt,

dass h (<p) eine stetige Funktion ist. Die Ableitungen brauchen
hingegen nicht stetig zu sein.

Der Spaltanteil h^s zwischen Welle und Maximalkreis beträgt,
wenn die Exzentrizität e gegenüber dem Wellenradius R klein ist,

(2.2) hAR AR — e cos (9» — y).

Darin ist y der Lagewinkel des Wellenzentrums Z. Die ganze Spalthöhe

beträgt

(2.3) h AR — e cos (<p — y) + Ah.

Um diese Beziehung dimensionslos zu schreiben, führt man folgende
bezogenen Grössen ein:

(2.4) relative Exzentrizität e

(2.5) relative Spalthöhe %

(2.6) relative Segmentvertiefung A%

e

~ÄR

h
~A~R

Ah
~A~R

Ausserdem wird später das relative Maximalkreis-Lagerspiel y
verwendet, das durch die Gleichung

(2.7) y>
AR
~~R~

definiert ist.
Gleichung (2.3) lässt sich mit den eingeführten Grössen auf

folgende Form bringen:

(2.8) 1 — e cos (<p — y) + Ax

Es ist hier darauf hinzuweisen, dass e auch grösser als Eins werden
kann, doch wird % immer positiv oder Null sein:

(2.9) (>0 und X>0.

Für jede Lagerform existiert für e eine Grenzlinie emax, die im
allgemeinen vom Lagewinkel y abhängt (anschauliches Beispiel:
Zitronenspiellager). Bei instationärem Betrieb ändern sich die Grössen
e und y und damit auch % zeitlich, während Ax nur vom Winkel cp des
festen Polarkoordinatensystems abhängt. Die relative Spalthöhe ist
somit vom Ort auf dem Segment und von der Zeit abhängig. Auf die
zeitliche Änderung des Schmierspaltes werden wir im Abschnitt 6 noch
näher eingehen.

Für den Spezialfall einer kreiszylindrischen Lagerschale ist in
den Gleichungen dieses Kapitels Ah bzw. Ay_ gleich Null zu setzen.
Für die relative Exzentrizität gilt dann 0 < e < 1 und x variiert im
Bereich 0 < x < 2.

Die Breite des betrachteten Lagers betrage B (Bild 2.4). Der
Nullpunkt der z-Achse wird in die Symmetrieebehe des Lagers gelegt.
Die seitlichen Ränder des Lagers liegen folglich bei z ±5/2. In
z-Richtung führt man als dimensionslose Koordinate

(2.10)
Bß

ein. Das Lager erstreckt sich somit über den Bereich — 1 < f < + 1.

Hinsichtlich der Spaltform halten wir fest, dass in unserer Rechnung

der Schmierspalt über die Lagerbreite konstant ist.

(2.11) h(<p,t) 0

Wir werden jedoch in Abschnitt 17 ein Näherungsverfahren für die
Berücksichtigung von seitlichen Randleisten (Staurändern) angeben.

3. Differentialgleichung für den Druck im Schmierspalt
Die bekannte Differentialgleichung für den Druck p in einem

Schmierspalt, dessen Grenzflächen gemäss Bild 3.1 die tangentialen
Geschwindigkeiten W\ und Wz besitzen und dessen örtliche Spalthöhe
h (x, t) beträgt, lautet (siehe z. B. [4]):

(3.1)
8

~dx
'•V_j>P_\ ^
\ V <>x)

8 / h3

8z \ tj

dp

8z

6 [nm+m 8h
~8x

dh

8t

Unter dem Druck p sei hier der Überdruck gegenüber dem
Umgebungsdruck, das heisst dem (konstanten) Druck an den Rändern der
Segmente verstanden.

Für die Berechnung der Reibungskräfte an der Welle benötigt
man ausserdem später den Geschwindigkeitsgradienten an der oberen,
mit Wz bewegten Spaltfläche. Aus der bekannten Geschwindigkeitsverteilung

über die Spalthöhe (siehe z. B. [4])

(3.2) wiy)

folgt

(3.3)
8w

~dj

und daraus

(3.4)
8w

1 8p

21] 8x

1 8p

in 8x

y —

y —

1 dp h Wz— Wi

tj dx 2 y+Wi

1 8p

2 n dx
h +

Wz — Wi

Wz— Wi

Wir wenden uns wieder der Differentialgleichung. (3:1) für den
Druck im Schmierspalt zu. Sie wird dem Fall des Radiallagers ange-
passt, indem wir in Bild 3.1 annehmen, dass die obere Gleitfläche die
mit a> rotierende Welle und die untere Fläche die ruhende Lagerschale
darstellt. Folglich gilt

mi
Wx 0

Wz Reo.

Die Koordinate x in Umfangsrichtung geht über in

(3.6) x Rtp.
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Bild 4.1 (links). Axiale Druckverteilung im Schmierspalt

Bild 4.2 (rechts]. Abmessungen des endlich breiten Segmentes

Wenn man die Gleichungen (2.5) und (2.7) und die Voraussetzung

(3.7) r\ konst

berücksichtigt und den Druck p gemäss

(3.8)
PV

7](0
n

in den dimensionslosen Druck Tl überführt, so wird aus der
Differentialgleichung (3.1)

(3.9)
H 2 8%

8<p to 8t
8

3 sn \ e / s dn
dtp \ dtp 8z \ dz

Diese Gleichung kann mit dtedimensionsloseh Zeit ff gemäss

(3.10) & mt

und der relativen Lagerbreite

B B
(3.11) ß' D 2R

sowie unter Berücksichtigung der Gleichung (2.10) auf die Form

(3.12)
8

d<p

sn
8<p

1 8

~dj
dn

~d7 dtp Ui
gebracht werden.

Die Gleichung (3.12) stellt bezüglich der gesuchten Funktion
77 (tp, £, ff) eine partielle Differentialgleidfiung zweiter Ordnung dar. Da
keine Ableitungen der gesuchten Funktion II nach der dimensionslosen

Zeit ff vorkommen, hat & die Bedeutung eines Parameters. Für
jeden Zeitpunkt ergibt sich auf der rechten Seite eine bestimmte

Funktion / (tp), die das Störglied der inhomogenen Differentialgleichung

für die dem betreffenden Zeitpunkt & zugeordnete gesuchte

Funktion 77 (<p, ff) darstellt.

4. Vereinfachung der Differentialgleichung durch einen Ansatz für den

axialen Druckverlauf im Schmierspalt

Die Lösung der vorliegenden partiellen Differentialgleichung für
ein Segment mit allgemeiner Spaltform und physi kaiisch vertretbaren
Randbedingungen in Umfangsrichtung ist nur mit numerischen
Methoden möglich. Erfahrung mit der Integration der partiellen
Druckdifferentialgleichung für segmentierte Gleitlager im stationären Fall
zeigt, dass die numerische Integration der partiellen Differentialgleichung

mit sehr beträchtlichem Rechenaufwand verbunden ist. Im
Hinblick darauf, dass die Druckgleichung bei der Behandlung der

zweiten Fundamentalaufgab^ffieheAbschnitt 1) für sehr viele Fälle
gelöst werden muss, drängt sich ein vereinfachtes Lösungsverfahren für
die Integration der Gleichung (3.12) auf.

Man erreicht die Vereinfachung in bekannter Weise (siehe z. B.

[4]) durch einen parabolischen Ansatz für den Druckverlauf in axialer

Richtung,

(4.1)
1 B/2 I

der zugleich automatisch die Randbedingungen an den Seitenrändern

(z ± B/2) erfüllt, wo der Druck verschwindet (p 0). Mit p
bezeichnen wir den Druck in der Mittelebene des Lagers. Analog zur
Gleichung (4.1) lautet die entsprechende dimensionslose Beziehung

wobei für 77 eine zu (3.8) analoge Definitionsgleichung gilt. Es wird

vorausgesetzt, dass dieser Ansatz ohne Unterschied sowohl für den

stationären als auch den instationären Betrieb eines Lagers gilt, was

als Annahme naheliegend, aber nicht nachgewiesen ist.
Der Ansatz für die axiale Druckverteilung gemäss Gleichung

(4.2) wird in die Differentialgleichung (3.1) eingesetzt und diese gliedweise

über den Bereich von J — 1 bis £ +1 integriert:

(4.3)

1

+ 1

1
— Ix3—\aX x3—(n Cm

dtp \ dtp I ß2 dt, \ ' / \t

dtp dff '

Daraus folgt nach Auswertung der einzelnen Summanden

mm dtp \ d<p
±Z3Jj=6^±i 8* „ dx-A-L. 2 —

dtp dff,

Damit hat man die partielle Differentialgleichung (3.9) für die

s5||uekverteilung auf eine gewöhnliche Differentialgleichung (4.4) für

den dimensionslosen Druck 77 in der Mittelebene des Lagers
zurückgeführt; auch hier spielt die dimensionslose Zeit ff wieder die Rolle
eines Parameters.

Die dimensionslose Spaltfunktion x ist durch die Gleichung (2.8)

gegeben. Ihre zeitliche Ableitung, die auf der rechten Seite von
Gleichung (4.4) auftritt, werden wir in Abschnitt 6 noch näher betrachten.

Zur Lösung der Differentialgleichung (4.4) für eine gegebene
Spaltfunktion x (v) muss der Parabelexponent bekannt sein. Beim stationär
betriebenen Lager existieren zwei Grenzfälle. Für das sehr schmale

Lager liefert die Theorie ([2], [4]) den Wert m 2; beim «unendlich

breiten», das heisst seitlich abgeschlossenen Lager beträgt m oo.

Für Lager endlicher Breite muss mit einem m-Wert zwischen diesen

Grenzfällen gerechnet werden.
Aus der Literatur ist bekannt, dass bei kreiszylindrischen Lagern

der Exponent m einer Näherungsparabel über die Länge der
Gleitfläche nicht konstant ist und auch mit der relativen Exzentrizität
variiert. Der als konstant festzulegende «mittlere» m-Wert kann nach
verschiedenen Gesichtspunkten gewählt werden. Beispielsweise könnte
gefordert werden, dass er so angenommen werden soll, dass das

Druckmaximum im Spalt möglichst genau wiedergegeben wird. Im
allgemeinen interessiert jedoch vor allem die Tragfähigkeit des Lagers, so

dass man m so wählen wird; dass in erster Linie das Integral des Druk-
kes über die ganze Druckzone mit der exakten Lösung möglichst gut
übereinstimmt.

Vergleiche mit exakten Lösungen zeigen, dass der Parabelexponent

wesentlich vom Seitenverhältnis

(4.5) X
B

abhängt (Bild 4.2). Ferner hat auch die Spaltform einen Einfluss auf
m. Dabei zeigt sich, dass bei relativ einfachen Spaltformen, wie sie

praktisch vorkommen, das Verhältnis der mittleren Spalthöhe fiL in
der Druckzone zur minimalen Spalthöhe h,„i,, als Parameter eingeführt

werden kann.

Für Kreisschalen hat sich der heuristische Ansatz

(4.6)
3 tl hlhmin

2 + hz/hmt

X2

1 + 0,55 X

(4.2) 77 77(1 — |C|m)

als brauchbar erwiesen.2) Anstelle des Verhältnisses hLlhmin kann auch

Zz/Zmin geschrieben werden.
Der Aufbau und die Konstante des Ansatzes (4.6) wurden so

gewählt, dass für eine Reihe von Kreisschalen mit verschiedenen

2) Unveröffentlichte Untersuchung aus dem Institut für Grundlagen
der Maschinenkonstruktion an der ETH Zürich. In [16] ist anstelle von
Gleichung (4.6) ein früherer Ansatz verwendet worden. Der Unterschied
ist nicht erheblich.
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p(tp)

Ftp
Fftp

Links!

Bild 4.3. Zur Definition der mittleren Spalthöhe

des druckbeaufschlagten Spaltteils
(Länge der Druckzone L)

Rechts:

Bild 5.4. Druckverteilung im zylindrischen
Gleitlager (bei stationärer Wellenlage und
bei Rotation des Wellenzentrums mit w)

<U/M
rotierendes
Wellenzentr. M

M W stationär

Breiten und Umfangslängen bei gegebenen Wellenlagen (Exzentrizität
und Lagewinkel) mit der Näherungsgleichung (4.4) genügend genau
die gleiche SchalentragkrafArhalten wird wie bei Ipsungen der
partiellen Differentialgleichung; auf solche exakten Lösungen ist in
[16] verwiesen. Der verwendete m-Ansatz (4.6) führt auch auf gute
Näherungen für Reibung und Schmiermitteldurchsatz.

Der Wert von m ist gemäss den gemachten Annahmen von der
Erstreckung des Segmentes in Umfangsrichtung abhängig. Das
Längsverhältnis X, das durch Gleichung (4.5) definiert ist, beträgt für das

Segment eines Radialgleitlagers

(4.7) X
B

R®
B

R (<Pa — <Pe)

Wenn die Druckzone nicht die ganze Segmentlänge ausfüllt,
muss bei der Bestimmung des Seitenverhältnisses X im Hinblick auf
die Ermittlung des Exponenten m nicht die geometrische Segmentlänge,

sondern nur die druckbeaufschlagte Länge eingesetzt werden
(Bild 4.3). Da die Umfangslänge des Druckberges zunächst unbekannt
ist, muss ein iteratives Verfahren angewandt werden.

S. Randbedingungen in Umfangsrichtung

Es wird angenommen, dass bei jedem Segment an den Grenzen
tpE und tpA Schmiermittel mit dem Druck/; 0 vorhanden ist. Da
gemäss dem Ansatz (4.1) auch der Druck an den Seitenrändern
verschwindet, beträgt der Druck somit an allen Segmentgrenzen Null.

Im einfachsten Fall hat man somit einen Druckverlauf, der sich
nach Bild 5.1 über die ganze Segmentlänge erstreckt: Fall a. Aus
Experimenten an stationär belasteten Lagern ist bekannt, dass im
Schmierspalt keine oder im Vergleich zu den vorkommenden
Überdrücken nur verschwindend kleine Unterdrücke auftreten können.
Dieser Tatsache tragen die schon von O. Reynolds [1] vorgeschlagenen
und durch Gümbel verwendeten Auslauf-Randbedingungen Rechnung,

nach denen die Druckentwicklung dort endet, wo gleichzeitig die
Bedingungen

m
d(p

(5.1) 0 und 0

erfüllt sind. In einem Schmierspalt, der gemäss Bild 5.2 mit den
Randbedingungen p 0 an den Stellen tpA und tps den Druckverlauf nach
Kurve 1 ergeben würde, stellt sich mit den Randbedingungen (5.1)
der Druckverlauf gemäss Kurve 2 ein: Fall bt. Im Gebiet zwischen
tpA und tpA reisst der Schmierfilm bei konstantem Druck p 0 auf
und füllt den Spalt nur teilweise [12]. Es sei hier daran erinnert, dass

unter/? der Überdruck gegenüber dem Umgebungsdruck zu verstehen
ist.

Sowohl beim stationär wie beim instationär betriebenen Lager
kommen Fälle vor, bei denen sich gemäss Bild 5.3 mit den
Randbedingungen p 0 für tps und tpA im Segment ein Druckverlauf
entsprechend Kurve 1 einstellen würde. Da auch in diesem Fall keine
Unterdrücke zu erwarten sind, drängt sich die Annahme auf, dass hier
auf Eintrittsseite die Randbedingungsgleichungen (5.1) anzusetzen
sind und sich ein Druckverlauf gemäss Bild 5.3, Kurve 2 einstellt:
Fall b2. Ein einfaches Beispiel eines derartigen Falles ist das
kreiszylindrische Lager, dessen Wellenachse mit der Winkelgeschwindigkeit

der Welle um die Lagerachse rotiert. Wie leicht zu zeigen ist,
erhält man hier eine Druckverteilung, die bezüglich der Verbindungsgeraden

Lage'rmitte - Wellenmitte zur Druckverteilung im stationären
Fall spiegelbildlich ist (sofern in beiden Fällen der Druck an der
weitesten Spaltstelle gleich Null angenommen wird). Wenn die
Randbedingungen gemäss Bild 5.2, Kurve 2 für den stationären Fall
zutreffen, so mfissen sie naheliegenderweise für eine drehende und gleichzeitig

synchron umlaufende Welle entsprechend Bild 5.3, Kurve 2
angesetzt werden, was auf die in Bild 5.4 aufgezeichnete Druckverteilung
führt.

Weiter ziehen wir einen Fall b3 in Betracht, in welchem die
Differentialgleichung beim Druck Null am Ein- und Austritt auf
Unterdruckgebiete an beiden Enden führt (Bild 5.5, Kurve 1). Analog zu den
Fällen bx und b2 setzen wir bei Fall b3 am Ein- und Austritt die
Randbedingungsgleichungen (5.1) an, so dass sich ein Druckverlauf nach
Bild 5.4, Kurve 2 ergibt. Der Fall b3 kann beispielsweise im stationären

Betrieb bei einer 360°-Kreisschale mit einem einzigen öleintritt
auftreten. Dieser Fall lässt sich mit den oben vorgeschlagenen
Randbedingungen allerdings nur näherungsweise erfassen; eine exakte
Betrachtung führt auf eine etwas andere Eintrittsseiten-Randbedingung

/, Segment

Weile Welle

<pE IPa

Welle

Segment 'A 'Ar Segment

Weile

¦e 9
9>£ <P'a <Pa <pE <P'e <Pa <pe p'e <pÄ <Pa

Bild 5.1 Druckverteilung im Fall a Bild 5.2 Druckverteilung im Fall Aj Bild 5.3 Druckverteilung im Fall bo Bild 5.5 Druckverteilung im Fall63
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'// SummenI

Welle

P=0
<pr <Pa

Bild 5.6 Druckverteilung im Fälle

Schliesslich kann ein Fall c eintreten, bei dem sich mit Druck Null
am Rand im ganzen Segment Unterdruck ergeben würde. Hier reisst
der Schmierfilm auf, und es stellt sich annähernd der Umgebungsdruck

ein, so dass wir mit p 0 rechnen (Bild 5.6).

Wir setzen im Hinblick auf die Programmierung voraus, dass

keine Segmentformen in Betracht gezogen werden, die auf andere als
die fünf aufgeführten Druckverteilungsfälle führen. Auf eine Formulierung

der dafür notwendigen Bedingungen wird hier jedoch
verzichtet, weil man bei zweckmässigen Lagerformen mit den obigen
Fällen auskommt3).

Man muss sich an dieser Stelle fragen, wie weit die hier angenommenen

Randbedingungen mit experimentellen Befunden
übereinstimmen. Unter den wenigen diesbezüglichen Untersuchungen sind
die Messungen von Th. E. Carl [9] zu erwähnen, aus denen hervorgeht,
dass die hier vorgeschlagenen Randbedingungen nicht in Widerspruch
zu den gemessenen Druckverläufen stehen.

Oben wurde bereits angedeutet, dass bei komplizierten
Spaltformen noch andere als die aufgezählten Lösungsfälle denkbar sind.
Wir beschränken uns hier jedoch ausdrücklich auf solche Spaltformen,
deren Lösungen im Bereich der oben erwähnten Fälle hegen. Die bei
sinnvollen Lagerkonstruktionen in der Praxis vorkommenden Fälle
erfüllen diese Bedingung.

Es ist an dieser Stelle darauf hinzuweisen, dass der Parabelansatz
für die axiale Druckverteilung und die hier in Betracht gezogenen
Randbedingungen für den Druck in der Mittelebene die Aussage in
sich schliessen, dass der Druckberg im Schmierspalt über die ganze
Lagerbreite an der gleichen Stelle tp beginnt bzw. endet. Wie
Rechnungen von H. W. Hahn [4] und von H. Sassenfeld und A. Walter [11]
und die Messungen von Th.E. Carl [9] zeigen, ist dies nicht genau,
aber immerhin mit annehmbarer Näherung erfüllt.

Die in diesem ganzen Abschnitt für den Überdruck p gemachten
Überlegungen gelten auch für die durch Gleichung (3.8) definierte
dimensionslose Druckgrösse 77 und insbesondere für den dimensionslosen

Druck 77 in der Mittelebene des Lagers.

Zu den in älteren Arbeiten über das instationäre Lager verwendeten

Randbedingungen ist zu sagen, dass dort vorwiegend kreiszylindrische

Lager mit periodisch angesetzten Druckverteilungen betrachtet
werden; in den Bereichen, wo die Rechnung negative Drücke liefert,
setzt man für die Ermittlung der resultierenden Kraft in der Regel
den Druck gleich Null. Dieses vom physikalischen Standpunkt aus
unbefriedigende Vorgehen wurde meist damit begründet, dass ohne
diese Vereinfachung der mathematische Aufwand untragbar gross
geworden wäre.

Auch G. Schaffrath [15] rechnet in seiner Theorie des segmentierten

Radiallagers so, dass er an allen Rändern den Überdruck Null
vorschreibt und negative Drücke im Segmentinnern einfach gleich
Null setzt. Hier besteht ein wesentlicher Unterschied gegenüber der
vorliegenden Abhandlung.

3) Man kann zum Beispiel zeigen, dass mit ungünstig gewähltem Öl-
eintritt bei einer stationär belasteten 360 "-Schale ein mit b* zu bezeichnender

Fall eintreten kann, der am Anfang und am Ende des Segmentes eine
Druckzone und dazwischen ein Unterdruckgebiet aufweist. Als Näherungslösung

bietet sich hier eine Aufteilung in zwei getrennt zu behandelnde
Segmente an.

6. Die zeitliche Änderung des Schmierspaltes

Für die Gleichung (4.4) benötigt man die Ableitung der
dimensionslosen Spalthöhe % nach der dimensionslosen Zeit ff. Aus
Gleichung (2.8) folgt unmittelbar:

dy
(6.1)

dx
¦ cos (tp — y)

de

dff
¦ s sin (tp — y)

dff

Mit Rücksicht darauf, dass in Gleichung (4.4) die Grösse
dff

mit dem Faktor 2 vorkommt, definieren wir

(6.2)

~ dy

2^=E
dff

(6.3)
dff

Wegen der Definitionsgleichung (3.10) für ff kann man auch schreiben

(6.4) HIB
to dt

(6sy>
_2_ dy

to dt

E ist die dimensionslose Radial- und G die dimensionslose Tangential-
geschwindigkeit des Wellenzentrums.

Somit folgt

(6.6)
dff

E cos (tp — y) + G e sin (tp — y)

7. Transformation der Differentialgleichung für den Druckverlauf

Aus der Literatur ist bekannt (siehe z. B. [4]), dass die Differential-

gleichung (4.4) einfacher wird, wenn man statt der Variablen 77 eine

neue Grösse

(7.1) u x*n.
einführt. Wird * 3/z gesetzt, so verschwindet in der Differentialgleichung

die erste Ableitung nach tp. Wir setzen also

(7.2) 77

und die erforderlichen Ableitungen dieser Transformationsgleichung
in Gleichung (4.4) ein. Mit der vereinfachten Schreibweise

(7.3)

(7.4)

und
8

dtp \ I \ /<P

lautet die umgeformte Differentialgleichung

3

2*

s
Uff

¦ 1 2\ m + 1

1 »i + i6 X Xtp + 2 Xq

Da die dimensionslose Zeit ff die Bedeutung eines Parameters
besitzt, hegt eine lineare, gewöhnliche, inhomogene Differentialgleichung

für u vor.
Wir schreiben die Gleichung (7.4) mit

(7.5)

(7.6)

2x2 ¦x + -x> + m + 1

m + 1 '
6 —X

m
Xtp + 2 x^

in der abgekürzten Form

(7.7) uvv — Au Z.

Die in den Gleichungen (7.4) bis (7.6) vorkommende Spaltfunktion
ist durch Gleichung (2.8) gegeben. Ihre Ableitungen nach tp lauten
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(7.8) Xtp « sin (tp — y) + Ax,p

(7.9) Xtptp * cos (tp — y) + A Xtptp.

Für das durch Gleichung (7.6.) definierte Störglied Z kann unter
Berücksichtigung der Gleichungen (2.8), (6.6) un|p|(7.8) geschrieben
werden

(7.10) Z 6
-1-1 (1 —G)s sin (tp—y)—E cos (tp—y) + Ax<p

m [1 — e cos (tp — y) + A x\ 'l2

In einigen Spezialfällen ergeben sich wesentHÄe Vereinfachungen des

Störgliedes:

- stationärer Betrieb:

- reine Radialbewegung des Wellenzentrums:

- reine Tangentialbewegung des Wellenzentrums:

- tö/2-Rotation des Wellenzentrums:

G 0
£• 0

G 0

E 0

E 0

SiSii
- Radialbewegung bei gleichzeitiger <w/2-Rotation des

Wellenzentrums («reine Verdrängungsströmung»): G 1

8. Randbedingungen für die Variable «

Im Anschluss an die Umformung der Differentialgleichung sind
noch die für u geltenden Randbedingungen anzugeben. Da an den
Spaltstellen, wo nach Abschnitt 5 der Druck p Null wird, weder der
in Gleichung (3.8) vorkommende Faktor y>2/rito noch die in der
Gleichung (7.2) auftretende dimensionslose Spalthöhe x verschwinden,
gelten die Randbedingungen für p auch für die neue Variable «, und
man hat auch hier die in Abschnitt 5 aufgeführten fünf Fälle.

9. Integration der Differentialgleichung für u

Die vorhegende Differentialgleichung für u lässt sich nicht
geschlossen integrieren. Sie kann in ein lineares Differenzen-Gleichungssystem

übergeführt werden, das numerisch gelöst wird. Wie sich
zeigen wird, ist die Anpassung der Lösung an die Randbedingungen
in bestimmten Fällen nur mit einem iterativen Verfahren möglich.

Gemäss der gestellten Aufgabe suchen wir die Lösung u der
gegebenen Gleichung (7i||| für ein Segment im Bereich tpE < tp < tpA.
Wir teilen dieses Segment in n gleiche Teile ein, deren Länge

(9.1) Atp
tpA tpE

n

0
n

beträgt. Die Intervall-Grenzen werden nach Bild 9.1 mit q>0, tpx, q>2,

<Pn-i, <Pn bezeichnet.

Es gilt also

(9.2) 9>o s <PE und Pn tpA.

Da die Differenzenausdrücke im nachfolgenden Verfahren im
allgemeinen mit 5 Stützstellen gebildet werden, soll

(9-3) n >4

Die Ersetzung der Differentialgleichung durch ein
Differenzengleichungssystem geht so vor sich, dass man von der gesuchten Lösung
u die Werte «0, uu...un an den Intervall-Grenzen sucht. Diese
Werte u? sind gegenseitig durch lineare Gleichungen verknüpft, die
durch Überführung der gegebenen Differentialgleichung in eine
Differenzengleichung entstehen.

Die gegebene Gleichung (7.7) verlangt einen Differenzenausdruck
für die zweite Ableitung «„,„,- Dieser lautet nach [13] für eine Stelle tpv,

bei der beidseitig des Aufpunktes noch je 2 Stützstellen herangezogen
werden können [2 < v < (n-2)]

(9.4) u,tptp

1

12 (Atp)2
16 tu ¦ 30 uv + 16 «,,., — uv

Liegt der Aufpunkt tpv in der Nähe der Segmentränder, so stehen

uns nicht beidseitig je 2 Stützstellen zur Verfügung. Es lassen sich
jedoch auch Differenzenausdrücke für asymmetrische Verteilung der

Stürzstellen angeben. Die hier benötigten Gleichungen lauten (sie
stammen entweder aus [13] oder wurden speziell hergeleitet):

(9.5) «w

(9.6) uvq)

(9.7) kw

(9.8) «™J

1

12 (Atp)2

1

12 (Atp)2

1

v «-1 12 (Atp)2

1

12 (Atp)2

35 «o — 104 «, + 114 «j — 56 «3 +

+ 11««

11 «o 20tt1 + 6«2 + 4«3 «4

— «n-4 + 4 «n-3 + 6 Un-z —

— 20 «n-i + 11 «n

11 «n-4 — 56 Hn-3 +

+ 114«n-2 — 104ttn-i + 35«»

Dabei sind die Ausdrücke direkt für jene v-Werte hingeschrieben, für
welche die Gleichungen verwendet werden (Randpunkte und je der
erste Punkt innerhalb des Segment-Bereiches).

Mit Hilfe der obigen Differenzenausdrücke lässt sich für jeden
Punkt tpv tp0 + v (Atp) des Segment-Bereiches die der Differentialgleichung

entsprechende Differenzengleichung schreiben:

(9.9) v 0: (35 —c/40)«o—104«!+ 114M2 —
— 56 «3 + 11 «4 cZ0

(9.10) v l: 11«0 —(20 + c^1)«1 + 6«2 +
+ 4 «3 «4 c Zx

§§111 2 < v < (n—1): — u„_2 + 16 «,_, — (30 + c Av) u\ +
16«y+1 —Uy+2 cZv

(9.12)

(9.13)

— «n-4 + 4 «n-3 + 6 Un-2 —
— (20 + C An-t) «n-i + 11 «n C Zn-i

11 «n-4 — 56 ttn-3 + 114 «n-2 —104 «n-i +
+ (35 - C An) Un — C Zn.

In diesen Gleichungen bedeuten

(9.14) c 12 (Atp)2

(9.15)

(9.16) ZV Z

tp tps + v Atp

tp <Pe + v Atp

wobei die Grössen A und Z durch die Gleichungen (7.5) und (7.10)
gegeben sind.

Bis hierher wurde rein formal die Differentialgleichung für u in
ein System von (n + 1) linearen Gleichungen für die Grössen «0,...
un übergeführt, ohne die Randbedingungen zu berücksichtigen. Wie
aus Abschnitt 8 hervorgeht, hegt der einfachste Fall a dann vor, wenn
mit den Randwerten « 0 für tpB und tpA die Lösung « im ganzen
Segment positiv ist. Aber auch wenn dies nicht zutrifft, muss die
Differentialgleichung in jedem Fall zunächst einmal mit diesen
Randbedingungen gelöst werden, damit festgestellt werden kann, ob
tatsächlich Fall a oder möglicherweise ein anderer Fall vorliegt. Die
Frage, wie die anderen Fälle festgestellt werden, soll vorerst nicht
weiter verfolgt werden, und wir wenden uns der Lösung für « 0 an
den Rändern zu. Diese wird einfach dadurch erhalten, dass die
Gleichungen (9.9) für v 0 und (9.13) für v — n durch die Bedingungen

(9.17)

(9.18)

«0=0
«n 0

ersetzt werden. Das Gleichungssystem reduziert sich damit auf (n-i)
Gleichungen mit («-!) Unbekannten, die somit bestimmt sind.
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Wir bezeichnen diese Lösung, die die Grundlage für die Ermittlung

der verschiedenen Fälle bildet, mit u*.

(9.19) (0, «7., ¦ u*-u 0).

JSiejjstellt die Lösung dar, die sich unabhängig von der Art des
Verlaufes von « ergirj|wenn « an den Rändern tps und tpA des Segmentes
gleich Null gesetztwird. Wenn alle «J > 0 sind, hegt Fall a vor.

10. Ausscheidung der verschiedenen Randbedingungsfälle

Wir behandeln in diesem Abschnitt ein Verfahren, mit dem bei
einer zahlenmässig vorhegenden Lösung «* festgestellt werden kann,
welchen Randbedingungsfall man vor sich hat; die Bedeutung von «*
ist aus Gleichung (9.19) ersichtlich. Wir erinnern daran, dass wir nur
solche Spaltformen voraussetzen, die auf keine anderen Druckverläufe

führen als solche, die nach Abschnitt 5 zugelassen sind4).
Die Identifikation der Lösungen kann nach dem auf Bild 10.1

dargestellten Schema erfolgen, das auf die Anwendung von digitalen
Rechenautomaten zugeschnitten ist. Wie aus Bild 10.1 hervorgeht,
werden für die Identifikation der Fälle blt b2 und b3 die Tangentensteigungen

du*/dtp an den Stellen tps und tpA benötigt. Da uns «* in
der Form von Gleichung (9.19) gegeben ist, haben wir diese Tangentenneigungen

durch die gegebenen Funktionswerte «J auszudrücken.
Wenn wir für die Neigungen an den Rändern noch je diegvier benachbarten

Funktionswerte heranziehen, so ergibt sich nach [13], wenn wir
noch «* 0 und «* 0 berücksichtigen:

(10.1)

(10.2)

du*
dtp

du*
dtp

1

\2Atp

\2Atp

48«?

3«*,-

36 «5

16«?

16 «3* -

36«* — 48«*

Wie aus dem Schema in Bild 10.1 hervorgeht, ist die gesuchte
Funktion « bekannt, wenn die Lösung «* auf die Fälle a oder c führt.
Im Falle a ist u* bereits die gesuchte Lösung, und im Fall c lautet die
Lösung (gemäss Bild 5.6) u„ 0, das heisst « ist an allen Stellen im
betreffenden Segment gleich Null zu setzen.

In den Fällen blt b2 und b3 ist das Gleichungssystem (9.9)
(9.13) entsprechend den Bildern 5.2... 5.4 mit geänderten
Randbedingungen zu lösen (Druckberggrenzen im Innern des Segmentes;
siehe Abschnitt 11).

11. Ermittlung der Lösung u für die Fälle mit tangentialen Grenzen des

Druckberges im Schmierspalt-Innern (Fälle blt b2 und b3)

Zunächst soll der komplizierteste der drei FäUeJIer Fall b3
behandelt werden. Wenn er gelöst ist, lassen sich die Lösungen für die
beiden übrigen Fälle durch Spezialisierung gewinnen.

4) Mathematisch kann diese Bedingung so formuliert werden, dass
die Lösung u* ausser am Rand höchstens noch an zwei weiteren Stellen
verschwinden darf und im Fall von 2 inneren Nullstellen zwischen diesen
ein Maximum besitzt.

U* (0,U?.....,Uf-1,0)

'

u*. H so Fall cjo
1

nein
(für Wi Verrechnung

Uf, ,£/„*, * O Fall o1°

(u*=t1

nein
*

iefint'tlve Lö\

4t£l<0 und iulj>0
dtpjE zugleich gq,jA Fall b3jo

nein
*

dtpjE Fall b,J°
1

nein

\
Fall b2

Bild 10.1. Identifikationsschema für die verschiedenen Lösungen

464

11.1 Fallb3
Wir setzen voraus, dass die Lösung u* unseres Problems die in

Bild 11.1 dargestellte Form hat. Verändert man nach Bild 11.2 die
Randwerte «o und un, so ergeben sich zu jedem Wertepaar («0, un)
für die beiden Minima die Ordinaten umi und um2. Wir können somit
schreiben

HH*ti /l ("o. «n)

«m2 fz («o» "n)

Die Funktionen f und f2 können als gekrümmte Flächen über der
Ebene («0, «n) aufgefasst werden.

Wir suchen nun jenes Wertepaar (um, «no). das gleichzeitig
Um\ 0 und umz 0 liefert, das heisst jene Lösung, bei der die

^^Hima auf der Achse « 0 hegen (Bild 11.3).

Da die Lösung u (tp) in einer Form entsprechend Gleichung (9.19)

j|il|ilten wird, können die vorerwähnten Minima-Bedingungen als
erfüllt betrachtet werden, wenn die Randwerte «oo und «no so hegen,
dass die tiefsten Ordinaten ua und «| im Bereich der beiden Minima
gleich Null sind (Bild 11.4). Bei genügend feiner Einteilung des Inte-
grationsintervalls kann auf ein verfeinertes Verfahren (etwa mit
Approximation der Lösungsfunktion im Bereich des Minimums durch
eine Parabel) verzichtet werden.

Auf die praktische Durchführung der iterativen Randwertanpassung

zur Erfüllung der Tangenten-Bedingungen sei hier nicht
eingegangen, da es sich hier um ein Problem der numerischen Rechentechnik

handelt.

77.2 Fälle bx und b2

Wie in der Einleitung zu diesem Abschnitt bemerkt, ergeben sich
diese Fälle als Spezialfälle von Fall b3. Die Spezialisierung besteht

darin, dass am einen oder anderen Rand des Segmentes (d. h. bei tps
oder tpA) die feste Randbedingung « 0 gegeben ist. Das andere Ende
des Druckberges mit der horizontalen» Drucktangente wird
entsprechend dem Fall b3 behandelt.

*
Abschliessend ist noch darauf hinzuweisen, dass Fälle, die sich

aufgrund der Lösung «* als Fall b3 mit einem sehr schwachen
Unterdruckgebiet an einem der beiden Enden ergeben, nach
durchgeführter Anpassung an die Randbedingung in den Fall bt oder b2

übergehen können; dies bedeutet jedoch für die praktische
Durchführung der Rechnung keine Komplikation.

12. Resultierende Ölkräfte eines Segmentes (Druck- und Schubkräfte)
Nachdem der Verlauf von « und damit der Druckverlauf im

Spalt bekannt ist, können die auf die Welle wirkende resultierende
ölkraft und das Moment berechnet werden.

Am Flächenelement df wirken der Druck p und die Schubspannung

tw. Daraus ergeben sich an der Welle eine resultierende Kraft
und ein Moment.

12.1 Resultierende Wellenkraft eines Segmentes (auf die Welle wir¬
kende Ölkraft)
Auf das Flächenelement wirken die Komponenten

(12.1)
dPv [ sin tp 1 [ cos tp

\= — p{ \df+rw{
dPH j [costp] \-siatp

df

Wir ersetzen df durch R dtp dz und integrieren:

B
tpA

(12.2) PV\ fsinp)
P\ \+rw<

{costp) {—sin

cos y

<p

R dz dtp

<Pe

Aus den Komponenten folgt als Resultierende

(12.3) P | YPv2 + Ph2

und der Richtungswinkel a beträgt

(12.4) are tg —
Pn
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<Pa•P£

Bild 11.1. Verlauf der Funktion «*
im Fall 63

9e Va

Bild 11.2. Verlauf der Funktion u

mit angehobenen Randwerten

(Fall b3)

m2

K
VA <PAPf <Pe

Bild 11.3. Verlauf der Funktion « mit erfüllten
Tangenten-Bedingungen (Fall 63)

Für die an der Welle angreifende Schubspannung rw, deren posi- diesen neuen Grössen, wenn wir ausserdem für p nach Gleichung (3.

tive Richtung durch Bild 12.1 definiert ist, gilt unter Berücksichtigung ^en djmensionslosen Druck 77 einfuhren:
der Gleichungen (3.4), (3.5), (3.6), (2.5) und (2.7) nach Newton

(12.5)
dw 1 dp

—- -r— XV
dy \y h \ 2 dtp

Setzt man Gleichung (12.5) in (12.2) ein, so folgt

r\tü

XV

<PA

(12.11)
V

H.

tpA

(12.6)
Pv

Ph ' J J ' cos tp

\ — [\ m nf™9}
J 2 (1 +m) l cos o> JI

tpE

1 dp nto\-^Lxv + -L-
im dtp xv>

cos 07 I

-sin?) J
R dz dtp

4 (1 +m) dtp 2;

Bei glieäfveiser Integration tritt das Integral

<PA

C 377 f cos f \
1111111 J= I -x{ \dv

J dtp [ _ sm tp

<Pe'

Als Grenzen des Integrationsbereichs sind die Grenzen des

Druckberges tps' und tpA' angeschrieben, weil Gleichung (12.6) nur auf. Durch partielle Integration erhält man
dann gilt, wenn der Schmierspalt feit öl gefüllt ist. Dort, wo sich die
Druckzone bis an den Rand erstieaSIät als Grenze tps bzw. tpA

einzusetzen.

Wir greifen auf den Ansatz (4.1) für p (z) zurück, setzen ihn in
Gleichung (12.6) ein und integrieren diese Gleichung über die Lager-

+

COS q>]

sin tp

dtp

{.

tpA tPA

(12.13) J Hx
l COS tp

\ - sin tp

breite, das heisst von z — — bis z + <S§ Das Ergebnis lautet

ffl
tps' tps'

dx
dtp

9A

(12.7)
Ph]

m

m + 1

tpE

1 m
— jo XV

2 (m + 1) ?<Ib$B&

/-. I sin tp
Bp\ +

[ COS tp

cos tp 1

- sin tp

sin tp 1

cos tp

dtp

COStp \

-sine; J

Der erste Summand ist Null, weil 77 an den Rändern verschwindet.
Das velbleibende Integral setzen wir in Gleichung (12.11) ein und
gelangen zu

Rdtp

Nun definieren wir

Pv v2

V

H 2(1+171)

<Pa

/(•+fH::} dt?

(12.1

(12.9)

2 RB rito

Ph V2

m v
tPA

H
2RB T)to

und analog auch für die Resultierende

— v

IPE

27
77

8z

4(1+7«) dtp) l—siny
\ j cos tp 1

/ I — sincp J
dtp

(12.10)
2 RB §§|

So

Die neu eingeführten Grössen V, H, und So sind die Sommerfeldzahlen

der Kräfte TV, Ph und P. Gleichung (12.7) schreibt sich mit

afp

9e 9>amPE <P(-<Pa- 9>a
<P

Va

<Pe
A.X-»

df"R-dtsdz

^
Bild 11.4. Verlauf der Funktion u als Lösung des Differenzen-
gleichungs-Systems (Fall /V{)

ild 12.1. Vom Ol her auf die Welle wirkenda Kräfte
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Im ersten Integralst in allen interessierenden Fällen XV "^ 1, so
dass sich

tPA

(12-14) h)
m

2(\+m)
^ f sin tp

\ COS tp

dtp-

<PB

<PA

1

27 4 (1 +m)
77

dtp

\ cos tp\

I l - sin <p J
dtp

<fE

ergibt. Im allgemeinen sind das erste und das zweite Integral von
gleicher Grössenordnung, so dass man das mit y multiplizierte zweite
Integral gegenüber dem ersten vernachlässigen kann. Dann erhält man

tPA

(12.15) "1- 2(l+m)
-fn{sia(p}
J [costp)

dtp

tps

Dieses Resultat ergibt sich auch direkt, wenn man in Gleichung
(12.2) nur die Druckkräfte auf die Welle berücksichtigt. Es gibt auch
Fälle, in denen die beiden Summanden in Gleichung (12.14) klein und
etwa gleich gross sind, so dass Gleichung (12.15) einen grossen
relativen Fehler ergibt.

An Stehe VOM-TT kann nach Gleichung (7.2) u eingeführt werden.
Das Resultat (12.14) schreibt sich dann

tPA

(12.16)
H]

m f _
3

2 { Sbl " 1 1
2(l+m) J X

1 [
V COS tp

?e'
<Pa'

— V
r i f cos^i

J 2* |_sin?)
tps'

tPA'

m 1
~ — dx {-

cos tp \
\d<p

-sin 9» J4 (1+m) J ""• '8j
<PB

wobei auch hier wieder die mit y> multiplizierte eckige Klammer in
vielen Fällen vernachlässigt werden kann.

Es ist hier noch darauf hinzuweisen, dass in Gleichung (12.16)
im ersten und dritten Integral in allen Fällen <pE und tpA als Grenzen
eingesetzt werden dürfen, da die Funktion u dann, wenn sich der
Druckberg nicht über die ganze Segmentlänge erstreckt, zwischen tps
und tps' einerseits und zwischen tpA und tpA' anderseits Null gesetzt
wird (vgl. Bilder 5.5 und 11.4). Beim mittleren Integral ist jedoch nur
über das Gebiet tps' < <p < <pa' ffl integrieren, da ausserhalb dieses
Bereiches der Spalt beim Druck p 0 nur teilweise gefüllt ist und
sich dort die Schubspannung im allgemeinen instationären Fall nicht
angeben lässt. (Für den stationären Fall besteht ein Ansatz; siehe
Abschnitt 12.2).

Da in unserem Berechnungsverfahren sich die Funktion « in der
Form von gleichmässig verteilten Funktionswerten ergibt, sind in
Gleichung (12.16) zum mindesten das erste und das dritte Integral mit
einer numerischen Methode zu berechnen.

VeQR.u

_*.— h(g>

f
x "Rtp

xE=RtpE r 1/2 Qß

Bild 13.1. ölfluss an den Segmentrindern

Vit Gleichung (12.16) sind die dimensionslosen Komponenten
der resultierenden Kraft gefunden. Grösse und Richtung der
Resultierenden sind daraus nach den Gleichungen

(12.17) So i J/7T2-)- V2

V
(12.18) <r

zu berechnen.

are tg
H

12.2 Resultierende Umfangskraft eines Segmentes
Die am Wellenelement ^wirkende Umfangskraft dPp, die das

an der Wehe angreifende Reibungsmoment bewirkt, beträgt

(12.23) dPF iw df

<PA

wobei die Kraft Pf positiv ist, wenn sie in positiver tu-Richtung läuft
(Bild 12.1). Für rw setzen wir den Wert aus Gleichung (12.5) ein und
erhalten

B_
2

1 dp rjtos

2 dtp

B
~2

(12.24) Pf "/ / R dz dtp + APF.

tPE

Die Integrationsgrenzen sind auch hier (wie bei der Berechnung
der resultierenden Kraft) für den allgemeinsten Fall angeschrieben, in
Welchem sich der Druckberg nur über den Bereich tps' <tp< tpA'
erstreckt. Die Fähe, in denen die Druckentwicklung am Rand
beginnt, können als Spezialfälle aufgefasst werden.

Das Glied APp ist die Umfangskraft in den nur teilweise mit Öl
gefüllten Schmierspaltteilen tps < tp < tps' und tpÄ < <p < <pa. Für
den instationären Fall lässt sich über den Füllungszustand dieser
Spaltteile im allgemeinen kaum etwas aussagen. Es liegt jedoch nahe,
den Reibungsanteil APp der teilweise gefüllten Spaltbereiche in
Anlehnung an den Ansatz von W. Frössel [12], der für den stationären
Fall gilt, näherungsweise zu berechnen, was hier nicht näher ausgeführt
wird.

Sowohl Pf wie APp können entsprechend Gleichung (12.8)...
(12.10) dimensionslos dargestellt werden. Die entsprechenden
dimensionslosen Grössen lauten

(12.25)

(12.26)

F-

AF-

PfV2
2RBr)to

APpy,2

2RBr]w.

Entsprechend der Vorzeichenfestlegung für iw und Pf in Bild 12.1

wird F im allgemeinen negativ sein.

13. Öldurchsatz eines Segmentes
Wir betrachten das in Bild 13.1 abgewickelt dargestellte Segment.

Die angeschriebenen ÖTströme Qu, Qe und QA sind pro Zeiteinheit
fliessende Volumina.

Zunächst sei angenommen, dass im ganzen Segment innerer
Überdruck herrsche, das heisst wir betrachten Fall a (vgl. Bild 5.1).
Das an beiden seitlichen Rändern austretende öl beträgt gemäss dem
bekannten Gesetz für die laminare Strömung in einem Parallelspalt
von der Weite h *)

tPA

8p

8z '(13.1) Qr J nr,
Rdtp

tPE

Der Druckgradient am Rand ergibt sich aus Gleichung (4.1) zu

(13.2)

so dass

2 mp
B

<PA

(13.3) ß*= m (ph*R
3r)B J

dtp

tpE

s) durch Integration der sinngemäss angepassten Gl. (3.2) leicht
herzuleiten.
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folgt. Eine elementare Umrechnung führt auf die dimensionslose
Darstellung

tpA

(13.4)
Qr

R3 toyi 1
tPE

nx3dtp

wobei ß die durch Gleichung (3.11) definierte relative Lagerbreite
bedeutet.

Wenn wir allgemein

(13.5)
Q |§e K

R3 toxp

definieren und ausserdem Gleichung (7.2) berücksichtigen, so lautet
Gleichung (13.4)

(13.6) Kr m C

JßJ"X
tpE

Für das eintretende Öl Qe ergibt si® durch Integration von
Gleichung (3.2) über die Spalthöhe hs

[—Rtohs
h3E dp

dz
12»? 7? dtp,

Die Integration über die Lagerbreite führt auf

ßs — Rtohs —
J [2 12VR \

dp
dz

Unter Berücksichtigung der axialen Druckverteilung nach
Gleichung (4.1) erhält man

(13.8) ßj

und in dimensionsloser Darstellung

(13.9) KB ßxE

-RtohsB- ——2 (m + 1) \2r,R
8p

1 - — X
6(m + l) **

dn\
dtp j

Für 77 kann wiederum nach Gleichung (7.2) % 2 « eingesetzt

S77 8 1 i_werden. Auf die Berechnung der Ableitung -gsj- \ x~ 2 u
dtp dtp \

treten wir später ein.

In völlig analoger Weise berechnet man den Öldurchsatz am Austritt

des Segmentes:

(13.10) KA-ßtA 1 - 6 (m + 1)
Xa

8n
dtp

Da unser Rechnungsgang die Druckverteilung II — x 2 « über
die diskret verteilten «-Werte liefert, ist eine Rechenvorschrift für die

HM / dß\ /377\
Ableitungen I und zu geben.

\ dtp I E \ dtp A

Wir benützen dieselben Formeln wie in den Gleichungen (10.1) und
(10.2) und erhalten

(13.11)

(13.12)

077 1

dtp j b 12 Atp

8H\ 1

dtp j a 12 Atp

wobei Atp nach Gleichung (9.1) zu berechnen ist

48 77i - 36 77z + 16 773 - 3 774

3 77„_4 - 16 77„_3 + 36 77„-:

-48 77,,.

Die vorstehende Betrachtung bezieht sich auf ein Segment,
welches der Druckberg völlig ausfüllt. Wenn dies nicht zutrifft, das heisst
wenn einer der Fälle p„ b2 oder b3 vorliegt, rücken die Integrationsgrenzen

in der Gleichung (13.6) an die Stehen tpE' und/oder tpA. In
den Gleichungen (13.9) und (13.10) ist sodann bei nicht bis an den
Rand reichendem Druckberg der Druckgradient Null. Für den Fall b3

lauten somit die Ölmengen-Gleichungen:

tpA tPA

m i *** ml(13.13) KR -^jJnx3d<p -—JuXYdtp

(13.14)

(13.15)

Ke'

Ka'

tPE

ßxE'

m
Im Fall bt gelten die Gleichungen (13.9) und (13.15), im Fall b2 die
Gleichungen (13.14) und (13.10).

Im Fall c, in welchem für das ganze Segment 72 0 gesetzt wird,
ist der seitliche Ausfluss Null, dass heisst

(13.16) KR 0

Im Einströmquerschnitt kann ein Einströmen ohne Druckgefälle
angenommen werden; folglich gilt

(13.17) K* ßxf

Über den Ölstrom am Segmentaustritt (Stelle tpA) lässt sich nichts
Sicheres aussagen, da der Ölfilm im Innern des Schmierspaltes als
strähnig zerteilt anzunehmen ist und dieser somit nicht mit Sicherheit

als ausgefüllt betrachtet werden kann.
In den Fällen, in welchen der Segment-Schmierspalt oder

bestimmte Teile davon mit öl ausgefüllt sind, lässt sich eine Volumenbilanz

aufstellen. Dazu benötigt man ausser den Durchsatzzahlen Kr,
Ke und Ka die dimensionslose Änderung des Schmierspaltvolumens
pro Zeiteinheit.

Die Änderung ßs des Spaltvolumens beträgt — wir betrachten
zunächst wieder Fall a —

<Pa

(13.18) itpE

„ 8h „ iB Rdtp
8t

Rein formal kann diese Grösse in gleicher Weise wie ein volumetri-
scher öldurchsatz dimensionslos gemacht werden. Wir führen

(13.19) Ks

ein und erhalten

Qs
R3 coy>

tPA

(13.20) Ks 2ß\-^-dtp
J 8&

tpE

H

wobei die dimensionslose Zeit ff durch Gleichung (3.10) definiert und
8X ~ •nach Gleichung (6.6) zu berechnen ist.
d&

In den Fällen bu b2 und b3 ergibt sich ein zu Gleichung (13.20)
analoger Ausdruck, nur sind für die Integrationsgrenzen die Grenzen
des positiven Druckbereiches einzusetzen.
Die Volumenbilanz lautet für den Schmierspaltteil, der den Druckberg

enthält,

(13.21) Kb Kr + Ka + Ks

Alle Glieder dieser Gleichung wurden einzeln direkt berechnet. Da
jedoch die Druckdifferentialgleichung nicht streng gelöst ist, wird die
Gleichung (13.21) nicht exakt stimmen.

Unter den Grössen Kb, Kr und Ka interessiert im Hinblick auf
die Berechnung ganzer zusammengesetzter Lager vor allem die Grösse
Kr. Wir können nun die Volumenbilanz dazu benützen, tun Kr auf
einem zweiten, indirekten Weg über Ks, Ka und Ks zu bestimmen
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(13.22) K's Kb — KA — Ks

und den Mittelwert Kr aus dem nach Gleichung (13.13) direkt und

dem nach Gleichung (13.22) indirekt berechneten Wert zu bilden,
wodurch ein verbessertes Ergebnis zu erwarten ist:

mWma Kr Kr+Ke-Ka- Ks

Alle in diesem Abschnitt berechneten Öldurchsätze sind - sofern

man nicht einen stationären Sp«alfal] vor sich hat - Momentanwerte.

In der Praxis interess^^M»t der zeitliche Mittelwert über
bestimmte Zeitintervalle; bei periodisch varn^&idem Betriebszustand

ergibt sich der Dröchschnittsdurchsatz durch Mittelbildung überIdas!

Periodenintervall.

14. Resultierende Kraft, Reibung und Öldurchsatz des mehrsegmenrigen

Lagers

Wir betrachten ein mehrsegmentiges Radiallager gemäss Bild 14.1.

Alle Grössen der einzelnen Segmente sind mit den Indizes I, II, Ell...
gekennzeichnet.

Für jedes Segment sind nach Gleichung (12.14) oder gegebenenfalls

(12.15) die Komponenten der resultierenden (dimensionslosen)

Kraft zu berechnen und zu summieren

(14.1)

(14.2) Hr

Vre, g
i I,...

i 1,

Die Resultierende ist gleich der resultierenden, momentanen Sommerfeldzahl

des Lagers

(14.3) Sores ]/V\e, + H2re,

Die Richtung o>e8 der resultierenden Kraft ist gegeben durch

(14.4) are tg
Vre,

Hre,

Die Sommerfeldzahl ist durch Gleichung (12.10) definiert; die

Bedeutung des Winkels a ist aus Bild 12.2 ersichtlich.
Mit vorstehenden Gleichungen ist das in der Einleitung

(Abschnitt 1) als «erste Hauptaufgabe» bezeichnete Problem gelöst.
Die gesamte Rewikigskraft ist die Summe der Reibungskräfte

der einzelnen Segmente. Folglich gilt auch

(14.5) Fr„ V,Ft

wobei die Bedeutung von Faus Gleichung (12.25) hervorgeht.
Die Reibungszahl des gesamten Lagers beträgt

(14.6) Mre,
| Ppre, j Freb

Pres SOre,

und die auf y> bezogene Reibungszahl berechnet sich zu

|F
\V(14.7)

9ei

Urea

V

yLi
1 1,..

^Ore,

mm

Sg,
S"»e

VAW A\\\\W^\\\\nM"P'r/'^'PAM
yEB

'

Segment M

Bild 14.1. Mehrsegmentiges Lager

Der gesamte volumetrische Öldurchsatz ist die Summe des am

Seitenrand aller Segmente austretenden Öls. Für die Gesamtdurchsatz-Zahl

gilt folglich

(14.8) Kto 7 ,Kri

wobei die Kr der einzelnen Segmente nach Gleichung (13.23) zu rechnen

sind und die Bedeutung von K aus Gleichung (13.5) hervorgeht6).

Aus Reibungsarbeit und Öldurchsatz lässt sich bei bekannter

spezifischer Wärme des Öls dessen Temperaturerhöhung im Lager
berechnen, wobei das Lager als adiabat vorausgesetzt werden kann.

Alle vorstehend berechneten Werte sind Momentanwerte und es gilt
auch hier die am Schluss von Abschnitt 13 gemachte Bemerkung.

15. Anwendungsbeispiele und Vergleich mit Berechnungsverfahren

anderer Autoren

Vor allem stellt sich hier die Frage, wie die Ergebnisse des

vorhegenden Berechnungsverfahrens zu den Ergebnissen anderer Autoren
hegen. Insbesondere ist ein Vergleich mit dem Rechnungsgang von
G. Schaffrath [15] wichtig, da dort wesentlich andere Randbedingungen
verwendet werden. Diese Gegenüberstellung und einige Berechnungsbeispiele

werden demnächst hier veröffentlicht [17].

16. Bahn des Wellenzentrums bei vorgegebenem Verlaufder resultieren¬

den Kraft
Es handelt sich hier um das in der Einleitung als zweite

Hauptaufgabe bezeichnete Problem, bei dem aus einer gegebenen zeitlich
veränderlichen Kraft die Bewegung des Wellenmittelpunktes zu
ermitteln ist.

Die Aufgabe kann entweder so gestellt sein, dass bei irgend einer

Anfangs-Wellenlage eine in ihrem zeitlichen Verlauf gegebene Kraft
einsetzt und die zugehörige Wehen-Bahn zu ermitteln ist
(Anfangswertproblem), oder dass ein zeitlich periodischer Kraftverlauf gegeben

ist und die zugehörige periodische Bewegung der Welle gesucht wird
(periodisches Problem). Da eine direkte Lösung des periodischen
Problems nicht möglich erscheint, führt man es auf das Anfangswertproblem

zurück. Man rechnet mit einer zweckmässigen Anfangslage der

Wehe die ganze Kraft-Periode durch und vergleicht die Endlage mit
der Anfangslage; wenn die beiden übereinstimmen, ist die gesuchte

periodische Wellenbewegung gefunden. Im allgemeinen wird man die

Anfangslage mehrfach korrigieren und den Zyklus durchrechnen

müssen, bis sich die gesuchte periodische Lösung einstellt. Man kann
auch den Kraftzyklus (ohne die erwähnte Anfangslagen-Korrektur)
so lange wiederholend durchrechnen, bis die Bewegungsbahn periodisch

wird. Diese Methode ist jedoch weniger rasch, als wenn die
Anfangslage immer wieder korrigiert wird. Eine auf der vorhegenden

Abhandlung beruhende Berechnung der Wehenbewegung aus einer

gegebenen Kraft ist bereits durchgeführt und soll demnächst
veröffentlicht werden.

Anhang
17. Segmente mit Staurändern

Nachstehend wird die näherungsweise Ausdehnung der
vorliegenden Theorie auf Lager mit Randleisten behandelt. Es werden
heute zahlreiche Gleitlager verwendet, deren Lauffläche am Einlauf
der Segmente Taschen aufweisen (Bild 2.2). Der Schmierspalt ist
deshalb in Richtung der Wellenachse nicht konstant, wie dies in der
vorliegenden Arbeit vorausgesetzt ist. Die zu beiden Seiten der
eingearbeiteten Taschen vorstehenden Randleisten behindern den seitlichen

Abfluss und führen zu einem «volleren» Druckberg; die axiale
Druckverteilung nähert sich also derjenigen des «unendlich breiten», das

heisst seitlich abgesperrten Lagers. Damit erreicht man bei gegebener

Lagerbreite eine höhere Tragfähigkeit. Die axiale Breite der Randleisten

beträgt normalerweise nur wenige Prozent der Lagerbreite. Es

wird nachstehend ein Näherungsverfahren angegeben, nach welchem
ein Randleisten-Segment auf ein gleichwertiges Segment mit axial
konstantem Spalt umgerechnet werden kann.

Wie erwähnt, führen Randleisten zu volleren axialen Druckprofilen.

Dies kann in unserer Theorie durch Einfuhren eines höheren

") Dies gilt unter der Voraussetzung, dass der Austritt des Schmierspaltes

in eine ölzufuhrnute mündet. Wenn das nicht zutrifft (freier
Ablauf), beträgt Ktot £ Kst-
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Parabelexponenten m berücksichtigt werden. Nach Abschnitt 4 ist m
vom Verhältnis X abhängig (Gl. 4.6). Es muss somit bei Randleisten-
Segmenten für die Berechnung von m eine fiktive Lagerbreite benützt
werden, die grösser ist als die tatsächliche.

Wir betrachten das seitliche Ausströmen unter der Randleiste
eindimensional, das heisst Hr vernachlässigen alle Änderungen in
UmfangsricBnDg^^

Ersetzt man nach Bild 17.1 die Randleistenbreite Br durch einen
fiktiven Spaltabschnitt von der Breite (Br + zl-B) und der Spalthöhe h
so, dass bei gegebener Druckdifferenz Ap axial der gleiche Durchfluss
qz aufött, so erhält man alllBedingung

(17.1)
ha Ap

\2vliR~
Ap

\2r) Br + AB

wobei qz der volumetrische Durchsatz pro UmfangS'Sängeneinheit
des Spaltes bedeutet.
Daraus folgt für die fiktive Segmentverbreiterung AB

(17.2) \B üülij) Br

Für ein Taschensegment gemäss Bild 17.2 folgt als «iltlere fiktive

LagerveMeiterung AB

(17.3) AB Br I
tPE

dtp

Das zur Berechnung von m nach Gleichung (4.5) massgebende
Breitenverhältnis Xfoct beträgt folglich

(17.4) Xftkt
Bflkt B + 2AB

R0
und das Breitenverhältnis ßftict hat den Wert

o Ffikt
(17.5)

27?

Die Grössen AB und damit auch m sind nur von der Geometrie
des Schmierspaltes abhängig; jede Änderung der Wellenlage führt zu
einer Veränderung von AB.

Die Berechnung von Randleisten-Segmenten hat beim vorliegenden

Näherungsverfahren in nachstehender Weise zu geschehen:

Für die dimensionslose Druckverteilung und die Berechnung der
dimensionslosen resultierenden Wellenkraft (Sommerfeldzahl) werden
m und ß gemäss Gleichung (17.4) und (17.5) gerechnet und das Lager
im übrigen behandelt, wie wenn es von der Breite Bftn und
randleistenlos wäre, das heisst man rechnet bis an den Rand mit der Spaltform

in der Mitte.
Für die Reibungsberechnung hingegen ist mit der effektiven

Spalthöhenverteilung zu rechnen. Man kann von Gleichung (12.24)
ausgehen und die auftretenden Integrale gemäss der tatsächlichen Spaltform

ausrechnen. Das Problem wird etwas einfacher, wenn man von
der Reibung für axial konstanten Spalt ausgeht und eine Korrektur

für die grössere Reibung unter den Seitenrändern anbringt. Da die
Ränder schmal sind, kann man den axialen Druckverlauf über den
Rand näherungsweise durch die Randtangente der Druckparabel
ersetzen (Bild 17.3).

Die Randneigung der Parabel p(z) beträgt nach Gleichung (13.2)

(17.5)
dp_>

dz i,
2 mp

und der mittlere Druck über der Randleiste

(17.6) Pr mp
Br
B

Wir setzen im folgenden voraus, dass die Druckentwicklung am
jjjä|j|ang des Segmentes, das heisst bei tps einsetzt. An der Gleichung
(12.24)ra| somit für beide Ränder zusammen die additive Reibungs-
kraft-KBmektur

tpR

(17.7) 6PF

tPE

dpR

dtp

1

n

XV

dpR

dtp

TltO
|_ _

XV

XrV
TJtO

XrV

2BRRdtp

anzubringen. Diese Korrekturgrösse kann entsprechend Gleichung
(12.25) dimensionslos dargestellt werden, und man erhält

(17.8) ÖF B V ßR

tpR

tpR

1

Xr
dtp

tpE

m ßR fux~2i{x«~x) dtp

tps

Brwobei als relative Randbreite ßR definiert ist.
B

Schliesslich ist noch anzugeben, wie der Öldurchsatz von
Randleisten-Segmenten zu rechnen ist. Hier können die Beziehungen für
Kr und Ka aus Abschnitt 13 unverändert übernommen werden, wobei
die Seitenausflusszahl Kr mit der wirklichen Spalthöhe am Rand zu
rechnen ist. Bei der Einströmzahl Kb bzw. K'b ist eine Anpassung
vorzunehmen, da der Einströmquerschnitt durch die Randleisten
vermindert wird. Wir berechnen die Durchfiussänderung wie bei der
Reibung durch ein additives Korrekturglied 6Ke, das mit den gleichen
vereinfachenden Voraussetzungen berechnet wird wie die
Reibungskorrektur.

Die Durchflusskorrektur beträgt (vgl. Gleichung (13.7) für beide
Ränder

hBR (8P«\
VR \ dtp )i

hB

(17.11) öQb Rtohs
6rj

Br

Rtohi
6r,R

dpR

dtp

ÜB

&

trsatzspolt
map

ÜB
ÜB

Ke =RtpE "R -Rtp/t

L=Rh>A-<pE) R

*A=f?fDA

Randleiste

Bild 17.1. Geometrie und Druckverteilung eines
Segmentes mit Staurand

Tangente

Pr

Br

B/2

Bild 17.2. Zur Definition der fiktiven
Segmentverbreiterung

v////////////////////////,

Bild 17.3. Naherungsberechnung der
Druckverteilung in der Staurand-Zone
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Wir setzen pn aus Gleichung (17.6) ein und gehen auf dimensionslose
Grössen über:

(17.12) SKb ßR ß
877,

dtp i e

2 [XE ~ Xr>

Die Neigung der Drucktangente ist nach Gleichung (13.11) zu
berechnen.

Die Korrekturgrösse öKb ist zu Ke aus Gleichung (13.9) zu
addieren. Die Gleichung (17.12) ist sinngemäss anzupassen, wenn die
Druckzone im Segmentinnern mit verschwindender Druckneigung
beginnt. In vielen Fällen sind die Korrekturen SKb und vor allem
deren erstes Glied vernachlässigbar klein.

Adresse des Verfassers: Prof. Dr. H. H. Ott, Institut für Grundlagen
der Maschinenkonstruktion der ETH, Leonhardstrasse 33, 8006 Zürich.
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Buchbesprechungen
Baubeschriebtexte für den Hoch- und Tiefbau. Baubeschrieb-

Lehr- und Textbuch für Architekten, Ingenieure, Bauunternehmer
usw. mit AnwendungsbeispieleniSund Tabellen. Von H. Banz.
478 S. Teufen 1969, Verlag Arthur Niggli AG. Preis 65 Fr.

Es .ist ein alter Wunsch, für das Erstellen von LeisBrngsver-
zeichnissen Vorlagen konsultieren zu können, die mithelfen,
Formulierungsschwierigkeiten zu bewältigen und Vollständigkeit
sicherzustellen. In diesem Sinn sind schon früher Positionensammlungen

herausgegeben worden, die sich jedoch alle nicht
durchzusetzen vermochten. Das Werk von Hans Banz lehnt sich durchaus

an diese herkömmlichen Positionsverzeichnisse an. Die
einleitenden Bedingungen und Messvorschriften, teilweise in
Anlehnung an die SIA-Normen, dienen eher der Verunklärung;
besser wäre eine kompromisslose Übernahme dieset|||Jormen
gewesen. Eine ausdrückliche Bezugnahme auf SIA-Bedingungen
und -Messvorschriften fehlt überhaupt. Es ist schwer verständlich,

wie solch grundlegende und allgemein anerkannte Verstän-
digungsmittel einfach übergangen werden können.

Das selbe wäre in bezug auf Positionssammlungen an sich

zu sagen. Noch vor vier Jahren hätte man ein Werk wie dieses

begrüsst. Nachdem aber heute ein schweizerischer
Normpositionen-Katalog besteht, der sowohl auf den SIA-Normen
aufbaut als auch mit den Unternehmerverbänden zum Erreichen
einer optimalen Kalkulation abgesprochen ist, werden unkoordi-
nierte Arbeiten - ungeachtet ihrer Qualitäten - fragwürdig. Nicht
zuletzt ist daran zu erinnern, dass die moderne Datenverarbeitung,

die wir auf die Dauer nicht entbehren können, nur auf
gesamthaft anerkannten und allgemein verbreiteten Systemen
wirtschaftlich angewendet werden kann. Auch diese Voraussetzung
ist hier nicht gegeben. Heinz Joss, CRB, Zürich

Digitaltechnik H Schaltelemente. Von W. Seifert. Aus der
Reihe «VDI-Taschenflcher, T4». 74 S. mit 93 Abb. Düsseldorf
1969, VDI-Verlag m.b.H., Verlag des Vereins Deutscher
Ingenieure. Preis kart. DM 10.80.

Das Thema des Taschenbuches «Digitaltechnik I» war die
Synthese von digitalen Netzwerken auf Grund von Schaltelementen.

Im Band «Digitaltechnik D> werden diese Elemente genauer
untersucht - es handelt sich im wesentlichen um logische Ver¬

knüpfungselemente (UND- und ODER-Tore, und Inverter) und

Kippstufen (binäre Speicherelemente und Impulsformer). Die
Bauelemente sind Halbleiterdioden und Transistoren, deren wesentliche

Eigenschaften kurz angeführt werden. Darauf folgt eine

übersichtliche und vergleichende Beschreibung der wichtigen
Techniken, mittels welcher die Dioden und Transistoren zu
Schaltelementen verknüpft werden: DTL (Dioden-Transistor-Logik),
DCTL (Direkt gekoppelte Transistor-Logik), TTL (Transistor-
Transistor-Logik) und andere mehr. Auch magnetische Elemente
werden angeführt als Bausteine für logische Netzwerke, doch hegt
berechtigterweise die Betonung in ihrer Anwendung als
Speicherelemente. Ringkerne, Dünnschichtelemente und Biax-Speicher-
kerne werden behandelt. Die verschiedenen Anordnungstechniken
von Magnetkernen (Zwei- und Mehrdrahttechnik) in
Grossspeichern werden erläutert und verglichen.

Ein eigenes, gemessen an ihrer heutigen Bedeutung in der
Technik etwas umfangreich ausgefallenes Kapitel ist den
pneumatischen Schaltelementen gewidmet. Es wird dabei klar
unterschieden zwischen «statischen» Elementen, welche mechanisch
bewegliche Teile enthalten wie Schieber, Kugeln oder Membranen,
und «dynamischen» Elementen, welche auf physikalischen
Eigenschaften und Effekten von Fluidstrahlen beruhen.

Das Taschenbuch bildet eine willkommene und notwendige
Ergänzung zu «Digitaltechnik I». Die beiden Bände eignen sich
bestens als Grundlage eines einführenden Kurses in die (elektronische)

Digitaltechnik. Prof. N. Wirth, ETH Zürich

Die Montagebauarten des Wohnungsbaues in Beton. Von
K. Bemdt. 284 S. mit rund 600 Photos. Grundrissen und
Detailzeichnungen. Wiesbaden 1969, Bauverlag G.m.b.H. Preis 62 DM.

Der Verfasser legt eine umfangreiche und nahezu vollständige
Dokumentation der auf dem mitteleuropäischen Markt für den
Wohnungsbau angebotenen Montagebauarten in Beton vor. Die
einzelnen Verfahren werden durch Knotendetails, Grundrisse
gebauter Beispiele, Isometrien und teilweise auch durch den Nachweis

der Einbindung der sanitären Installation vorgestellt. Eine
Beschreibung der Bauarten ergänzt die Dokumentation.

Die vom Verfasser gewählte alphabetische Katalogisierung
der Bauarten nach dem Namen der Hersteller bzw. Lizenzgeber
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