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88. Jahrgang Heft 21

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER

SCHWEIZERISCHE BAUZEITUNG
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21. Mai 1970

TECHNISCHEN VEREINE, 8021 ZOURICH, POSTFACH 630

Berechnung segmentierter Radialgleitlager
Von Prof. Dr. H. H. Ott, ETH Zirich

Zusammenfassung

Das Verhalten von Radialgleitlagern endlicher Breite, die aus
mehreren festen Segmenten zusammengesetzt sind, wird bei instatio-
ndarem Betrieb theoretisch untersucht. Die Reynoldssche Differential-
gleichung fiir den zeitabhdngigen Fall wird mit einem Parabelansatz
fiir den axialen Druckverlauf integriert, wobei fiir die Randbedin-
gungen bisher nicht verwendete Annahmen gemacht werden. Die
Theorie erlaubt, aus einer gegebenen Bewegung des Wellenzentrums
die resultierende Kraft des Schmiermittels auf die Welle zu berechnen.
Damit verfiigt man auch tiber die Grundlagen, um das inverse Problem,
die Berechnung der Wellenbewegung aus einer dusseren Belastung, zu
behandeln. — Mit der vorliegenden Theorie kann das dynamische Ver-
halten verschiedener Lagertypen, die im Turbomaschinen- und
Motorenbau vorkommen, rechnerisch erfasst und verglichen werden. —
Das angewandte Berechnungsverfahren ist mit betrachtlichem Auf-
wand verbunden und verlangt den Einsatz einer schnellen elektroni-
schen Rechenanlage.

Verzeichnis der wichtigsten Bezeichnungen

Da alle angegebenen Beziehungen dimensionsrichtige Grossen-
gleichungen sind, kann ein beliebiges kohidrentes Masssystem ver-
wendet werden. Zu empfehlen ist vor allem das MKSA-System. Nicht
aufgefiihrte Zeichen sind im Text erklért.

Konstanter Faktor im Differenzengleichungssystem
Exzentrizitdt (Abstand zwischen Wellen- und Schalenzentrum)
Flache

Schmierspalthohe zwischen Welle und Schale

Spalthdhenteil zwischen Maximalkreis und Schale
Parabelexponent

Zahl der Ag-Intervalle im Segment

Druck im Schmierspalt (Uberdruck gegeniiber Umgebungsdruck)
Druck in der Mittelebene des Lagers

Volumetrischer Olausfluss pro Zeit- und Breiteneinheit

Zeit

Transformationsvariable (Druck-Differentialgleichung)
Geschwindigkeit im Schmierspalt (in Bewegungsrichtung der
Welle)

Koordinate in Bewegungsrichtung der Gleitfliche

Koordinate senkrecht zur bewegten Gleitfliche

Koordinate in Richtung der Wellenachse

Koeffizient in der transformierten Druck-Differentialgleichung
Lagerbreite (in axialer Richtung)

Fiktiver Breitenzuschlag fiir Randleiste

Wellendurchmesser

Radialgeschwindigkeitszahl (radiale Verschiebung des Wellen-
zentrums)

Dimensionslose Reibungskraft an der Welle

F Dimensionsloser Reibungskraftanteil des drucklosen Schmier-
spaltteils

Dimensionsloser Reibungskraftanteil des drucklosen Schmier-
spaltteils im stationédren Fall

Korrektur der dimensionslosen Reibungskraft fiir Randleisten-
einfluss

Tangentialgeschwindigkeitszahl (Rotation des Wellenzentrums)
Dimensionslose horizontale Olkraft auf Welle

Dimensionslose Oldurchflusszahl

Korrektur der Oldurchflusszahl fiir Randleisteneinfluss
Segmentlidnge (in Bewegungsrichtung der Welle)

Kraft (vom Ol auf Welle wirkend)

Reibungskraft im drucklosen Teil des Schmierspaltes
Oldurchsatz (Volumen pro Zeiteinheit)

Wellenradius

Radiales Spiel zwischen Maximalkreis und Welle
Sommerfeldzahl (resultierende dimensionslose Olkraft auf Welle)
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14 Dimensionslose vertikale Olkraft auf Welle

Wi, W2 Oberflichengeschwindigkeit der Gleitflichen (in Umfangsrich-
tung)

z Absolutes Glied in der transformierten Druck-Differential-
gleichung

o Zahl der Ag-Intervalle bis zur ersten Minimalstelle im u-Verlauf

B Relative Lagerbreite

Br Relative Randleistenbreite (bezogen auf B)

b2 Lagewinkel des Wellenzentrums

3 Relative Exzentrizitit

¢ Dimensionslose, auf halbe Lagerbreite bezogene Koordinate in
Achsrichtung

7 Dynamische Zdhigkeit des Schmiermittels

? Dimensionslose Zeit

% Exponent

A Seitenverhéltnis des Segmentes

" Reibungszahl

v Laufnummer der dgp-Intervallgrenzen im Segment

3 Zahl der Adp-Intervalle bis zur zweiten Minimalstelle im u-Verlauf

o Richtungswinkel der resultierenden Wellenkraft

T Schubspannung

@ Umfangswinkel, von Horizontalachse aus gemessen

A Winkel eines Differenzintervalls

% Relative, auf 4R bezogene Spalthéhe

Ay Relativer, auf 4R bezogener SpalthShenteil zwischen Maximal-
kreis und Schale (relative Segmentvertiefung)

Y Relatives Lagerspiel zwischen Welle und Maximalkreis

[0} Winkelgeschwindigkeit der Welle

II Dimensionsloser Druck

D Winkelausdehnung des Segmentes

Indices:

m 1, m2 Minimalstellen im u-Verlauf

n Ende des letzten Agp-Intervalls im Segment

A Austritt des Segmentes

A Austrittseitige Grenze des Druckgebietes

E Eintritt des Segmentes

E’ Eintrittseitige Grenze des Druckgebietes

F Reibungskraft (instationir)

Fo Reibung im stationiren Fall

H Horizontal

R Rand; Randleiste; Ende der Randleiste

AR Spalt zwischen Welle und Maximalkreis

S Spalthéhendnderung

vV Vertikal

w Welle

o Erstes Minimum im «-Verlauf

9 Ableitung nach der dimensionslosen Zeit

i Zweites Minimum im u-Verlauf

y Laufnummer fiir 4¢-Intervallgrenzen im Segment

@ Ableitung nach dem Umfangswinkel ¢

1 Lagerschale

2 Welle

I, II, II1, ... Nummer des betr. Segmentes

0,1,2, ...,% ..., n Nummern der d¢p-Intervallgrenzen im Segment

( )* Losung mit Nullstellen an Segmentanfang und

-ende
()y;)y Schrittweise Ndherungen bei der Ermittlung des
u-Verlaufes

( Dot fiir ganzes Lager

( Dres resultierend ; fiir alle Segmente

() Mittelwert

( min an der Stelle des kleinsten Spaltes
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=0 Horizontalebene
(Bezugsebene)

P

Maximalkreis

Bild 2.1. Segmentiertes Radiallager mit Welle in zentri-
scher Lage

1. Problemstellung und Voraussetzungen

Aus der Literatur sind eine grossere Anzahl von Veroffentli-
chungen bekannt, in denen kreiszylindrische Gleitlager bei instatio-
niarem Betrieb untersucht werden. Unter instationirem Betrieb sei
hier ein Betriebszustand verstanden, bei dem sich die mit konstanter
Drehgeschwindigkeit laufende Welle gegeniiber der Lagerschale senk-
recht zur Achsrichtung innerhalb des Lagerspiels beliebig bewegt; bei
allen Wellenbewegungen bleiben somit die Achsen von Schale und
Welle parallel. Altere Arbeiten haben das «unendlich breite» (d.h.
seitlich abgeschlossene) Lager zum Gegenstand, wihrend in neueren
Veroffentlichungen auch Lager endlicher Breite behandelt werden.
Eine gute Ubersicht iiber eine Reihe von Untersuchungen ist bei
K. Radermacher [5] zu finden, wo u.a. die Arbeiten [1] [2] [3] [4] [6]
[71 [8] [9] und [10] erwidhnt sind. In [14] werden neben den kreis-
zylindrischen auch nichtkreisférmige Lager experimentell untersucht.
G. Schaffrath hat in [15] das instationir belastete Lager mit beliebiger
Spaltform behandelt. Dasselbe Problem behandelt auch die vorliegende
Arbeit, jedoch mit wesentlich anderen Randbedingungen, als sie
Schaffrath gewéhlt hat.

Bei der Behandlung von instationdr laufenden Gleitlagern sind
zwei fundamentale Problemstellungen zu unterscheiden: es kann
erstens bei einer vorgegebenen Wellenbewegung nach der vom
Schmierfilm auf den Zapfen wirkenden resultierenden Kraft gefragt
werden (wobei auch Reibungsmoment und Oldurchsatz interessieren)
oder es kann zweitens die (zeitlich nach Richtung und Grosse ver-
inderliche) Zapfenkraft gegeben und die sich ergebende Bahn des
Wellenzentrums gesucht sein (erste und zweite Hauptaufgabe).

Die Losung der ersten Hauptaufgabe ist zum Beispiel notwendig,
wenn die Feder- und Dampfungszahlen des Schmierfilms fiir die ge-
nauere Berechnung der kritischen Drehzahlen einer in Gleitlagern
laufenden Welle bendtigt werden. Auf die zweite Hauptaufgabe wird
man insbesondere bei Lagerstabilititsuntersuchungen im Falle von
periodischen Kriften gefiihrt. Das instationdre Verhalten eines radi-
alen Gleitlagers kann erst als vollstindig gekldrt betrachtet werden,
wenn beide Fundamentalaufgaben gelost sind. In der vorliegenden
Abhandlung wird die Theorie fiir die Losung der ersten Hauptaufgabe
dargestellt. In weiteren Veréffentlichungen werden Anwendungen
dieser Theorie und die Losung der zweiten Hauptaufgabe folgen.

- s —
Horizontale @=0
(Bezugsebene)
Maximalkrels

Bild 2.3. Segment mit Welle in allgemeiner Lage
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Rand/eiste

Bild 2.2.
leisten

Segment mit Rand-

Es wurde oben erwihnt, dass die bisherigen theoretischen und
experimentellen Untersuchungen sich vorwiegend auf kreiszylindrische
Gleitlager beschrinkten, wihrend iiber Lager, die aus mehreren Teil-
gleitflichen (starren Segmenten) zusammengesetzt sind und eine nicht-
kreiszylindrische Oberfliche aufweisen, nur wenige Untersuchungen
existieren [14] [15].

Die nachstehende theoretische Untersuchung gibt eine Methode
fiir die Berechnung des instationdr laufenden segmentierten Radial-
lagers endlicher Breite, wobei (mit gewissen Einschridnkungen) belie-
bige Schmierspaltformen zugelassen sind. Dabei werden die in der
elementaren Lagertheorie iiblichen vereinfachenden Voraussetzungen
gemacht: inkompressibles Schmiermittel (im folgenden «Ol» genannt)
von konstanter Zihigkeit, Giiltigkeit des Newtonschen Fliissigkeits-
reibungsgesetzes, laminarer Stromungszustand mit vernachldssigbaren
Trigheitskriften, verschwindender Druckgradient senkrecht zur
Gleitfliche, vernachlidssigbare Kriimmung der Schmierschicht, glatte
Oberflachen, starre Lagerschale, konstante Drehzahl der Welle; siehe
zum Beispiel [5].

Da fiir allgemeine Schmierspaltformen die Losung der auf-
tretenden Differentialgleichungen hier durch Uberfithrung in ein
Differenzengleichungssystem vorgenommen wird, ist das nachstehend
entwickelte Berechnungsverfahren auf die Verwendung von digitalen
Rechenautomaten zugeschnitten. Auch wenn sehr schnelle Maschinen
zur Verfiigung stehen, zeigt es sich, dass das gestellte Problem (und
insbesondere die zweite Fundamentalaufgabe) bei den gewdihlten
Randbedingungen nur dann mit tragbarem Aufwand an Rechenzeit
bewiltigt werden kann, wenn bei der Losung vereinfachende Ansitze
gemacht werden. Das gilt insbesondere fiir die Beriicksichtigung der
endlichen Lagerbreite.

Die nachstehend entwickelte instationdre Theorie enthélt selbst-
verstandlich als Spezialfall auch den stationdren Betriebszustand der
untersuchten Lager. In einzelnen Abschnitten wird auf den stationdren
Fall besonders eingegangen.

2. Geometrie des Lagers

Bild 2.1 zeigt ein Lager, das mehrere feste Teilgleitflichen (Seg-
mente) aufweist. Zwischen diesen Segmenten wird O1 zugefiihrt. Im
Grenzfall kann sich das Lager auf ein Segment mit einer Olzufuhr-
stelle beschriinken («360°-Lager» mit einem einzigen Oleintritt). Auch
konnen zwischen den Segmenten in Umfangsrichtung nicht nur Olzu-
fithrungen, sondern auch grossere Liicken liegen.

Zunichst werde nur der Fall betrachtet, in welchem die Spalt-
form iiber die Lagerbreite konstant ist. Im Anhang wird ein Néahe-
rungsverfahren angegeben, mit dem auch Segmente mit Randleisten
(wie 'sie bei Dreikeil- und Taschenlagern vorkommen, Bild 2.2) be-
rechnet werden konnen.

Der grosste Kreis, der in das Lagerprofil eingeschrieben werden
kann, werde als Maximalkreis bezeichnet.!) Sein Radius ist um 4R
grosser als der Wellenradius R. Wir bezeichnen die durch den Mittel-
punkt M des Maximalkreises laufende Parallele zur Wellenachse als
Achse der (aus Segmenten zusammengesetzten) Lagerschale. Die in
Bild 2.1 gezeigte Wellenlage wird als zentrisch bezeichnet. Die Ober-
flichenform der Lagerschalen-Segmente ist gegeben durch den Ver-
lauf 4k (¢); die Linge eines Segmentes sei begrenzt durch den Ein-
trittswinkel ¢z und den Endwinkel ¢4. Die Grossen 4R und 4h seien
klein gegeniiber dem Radius R.

Fiir die Einfithrung des Maximalkreises besteht kein zwingender
Grund. Die ganze Betrachtung kénnte auch ohne diesen Kreis durch-
gefiihrt werden. Er erweist sich jedoch als praktisch, weil viele Lager-

1) Wenn mehrere gleich grosse Maximalkreise existieren (was prak-
tisch denkbar ist), wird einer davon ausgewihlt und als Maximalkreis de-
finiert.
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Bild 2.4. Langsschnitt durch Lager

formen relativ wenig von einem Kreiszylinder abweichen. Im folgenden
wird zundchst ein einziges Segment behandelt. Wenn mehrere vor-
handen sind, ist die Berechnung fiir diese analog durchzufiihren.

Bild 2.3 zeigt ein Segment mit der Welle in allgemeiner Lage. Fiir
die Spaltweite 4 an der Stelle ¢ folgt

2.1 h=hgr + 4h
wobei 4h als Segmentvertiefung bezeichnet wird.

Mit Riicksicht auf eine spéter vorzunehmende Variablentrans-
formation, bei der eine Potenz von / als Faktor auftritt, wird voraus-
gesetzt, dass /i () eine stetige Funktion ist. Die Ableitungen brauchen
hingegen nicht stetig zu sein.

Der Spaltanteil # 4z zwischen Welle und Maximalkreis betrigt,

wenn die Exzentrizitit e gegeniiber dem Wellenradius R klein ist,

2.2) hpr = AR — e cos (p — y).

Darin ist y der Lagewinkel des Wellenzentrums Z. Die ganze Spalt-
hohe betrigt
2.3) h=A4R— ecos (p—1yp) + 4h.

Um diese Beziehung dimensionslos zu schreiben, fithrt man folgende
bezogenen Grossen ein:

2.4) relative Exzentrizitat p= -
AR

h
25 lative Spalthoh =
2.5) re D e £ r
. : Ah
(2.6) relative Segmentvertiefung Ay = il

Ausserdem wird spéter das relative Maximalkreis-Lagerspiel y ver-
wendet, das durch die Gleichung

AR

2.7 = —

2.7 p %
definiert ist.

Gleichung (2.3) lasst sich mit den eingefiihrten Grossen auf

folgende Form bringen:

(2.8) x=1—ecos(p—yp) + Ay

Es ist hier darauf hinzuweisen, dass e auch grosser ais Eins werden
kann, doch wird y immer positiv oder Null sein:

[=0
€
|s1

Fiir jede Lagerform existiert fiir € eine Grenzlinie Emaz, die im
allgemeinen vom Lagewinkel y abhingt (anschauliches Beispiel:
Zitronenspiellager). Bei instationdrem Betrieb dndern sich die Grossen
e und y und damit auch y zeitlich, wihrend 4y nur vom Winkel ¢ des
festen Polarkoordinatensystems abhingt. Die relative Spalthohe ist
somit vom Ort auf dem Segment und von der Zeit abhingig. Auf die
zeitliche Anderung des Schmierspaltes werden wir im Abschnitt 6 noch
néiher eingehen.

Fiir den Spezialfall einer kreiszylindrischen Lagerschale ist in
den Gleichungen dieses Kapitels 4k bzw. Ay gleich Null zu setzen.
Fiir die relative Exzentrizitdt gilt dann 0 < ¢ < 1 und y variiert im
Bereich 0 < 4 < 2.

(2.9) und z=0.
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Bild 3.1.

Geschwindigkeitsverteilung im Schmierspalt

Die Breite des betrachteten Lagers betrage B (Bild 2.4). Der Null-
punkt der z-Achse wird in die Symmetrieebene des Lagers gelegt.
Die seitlichen Rénder des Lagers liegen folglich bei z = +B/2. In
z-Richtung fiithrt man als dimensionslose Koordinate

Z

(2.10) B2

i —
C =

ein. Das Lager erstreckt sich somit iiber den Bereich —1 < ¢ < -+ 1.

Hinsichtlich der Spaltform halten wir fest, dass in unserer Rech-
nung der Schmierspalt {iber die Lagerbreite konstant ist.

(2:11) i/1 (p,2) =0
oz

Wir werden jedoch in Abschnitt 17 ein Ndherungsverfahren fiir die
Beriicksichtigung von seitlichen Randleisten (Staurindern) angeben.

3. Differentialgleichung fiir den Druck im Schmierspalt

Die bekannte Differentialgleichung fiir den Druck p in einem
Schmierspalt, dessen Grenzflichen gemiss Bild 3.1 die tangentialen
Geschwindigkeiten W1 und W2 besitzen und dessen 6rtliche Spalthohe
h (x, t) betrédgt, lautet (siche z. B. [4]):

o 3 9 o 3 9
6y (T2 (L2 -
ox n ox oz n 0z

=6[(W1+Wz>a—h+2ﬁ}.
ox ot

Unter dem Druck p sei hier der Uberdruck gegeniiber dem Um-
gebungsdruck, das heisst dem (konstanten) Druck an den Rindern der
Segmente verstanden.

Fiir die Berechnung der Reibungskrifte an der Welle bendtigt
man ausserdem spéter den Geschwindigkeitsgradienten an der oberen,
mit W2 bewegten Spaltfliche. Aus der bekannten Geschwindigkeits-
verteilung tiber die Spalthohe (siehe z. B. [4])

1 op 1-“0p -k W2 — W

3.2 ) = ——"—32 —| —— —— 1%
@:2) w0) 279 ox <r] ax 2 h )y e T
folgt
(3.3) ow _ 19 'J,_,/,) o W2 — Wi

dy n ox 2 h
und daraus
(3.4) w | - T & ) M= :

dy |y=h 27 ox h

Wir wenden uns wieder der Differentialgleichung (3.1) fiir den
Druck im Schmierspalt zu. Sie wird dem Fall des Radiallagers ange-
passt, indem wir in Bild 3.1 annehmen, dass die obere Gleitfliche die
mit o rotierende Welle und die untere Flidche die ruhende Lagerschale
darstellt. Folglich gilt

Wi =0
(3.5)
W2 = Rw.
Die Koordinate x in Umfangsrichtung geht iiber in

(3.6) X = Req.
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Bild 4.1 (links). Axiale Druckverteilung im Schmierspalt

Bild 4.2 (rechts). Abmessungen des endlich breiten Segmentes

Wenn man die Gleichungen (2.5) und (2.7) und die Voraussetzung

(3.7) n = konst
beriicksichtigt und den Druck p gemiss
y2
(3.8) Y _—n
nw

in den dimensionslosen Druck /7 iiberfiihrt, so wird aus der Differen-
tialgleichung (3.1)

5 oll 0 all 7 2 o
f,(lsA)L‘Rzi P Y B QR )
op ap oz o0z g o ot

Diese Gleichung kann mit der dimensionslosen Zeit ©} geméss

(3.9)

(3.10) P = wt

und der relativen Lagerbreite

B B
311 f=——=—
(3.11) B D 2R
sowie unter Beriicksichtigung der Gleichung (2.10) auf die Form
a all 3 oll a a
ERE) S P )+L—(130L —6(Z +2%
op op p* aC Fila ap ct

gebracht werden.

Die Gleichung (3.12) stellt beziiglich der gesuchten Funktion
17 (¢, ¢, 9) eine partielle Differentialgleichung zweiter Ordnung dar. Da
keine Ableitungen der gesuchten Funktion /7 nach der dimensions-
losen Zeit ¢ vorkommen, hat @ die Bedeutung eines Parameters. Fiir
jeden Zeitpunkt ergibt sich auf der rechten Seite eine bestimmte
Funktion f (¢), die das Storglied der inhomogenen Differentialglei-
chung fiir die dem betreffenden Zeitpunkt # zugeordnete gesuchte
Funktion I7 (g, #) darstellt.

4. Vereinfachung der Differentialgleichung durch einen Ansatz fiir den
axialen Druckverlauf im Schmierspalt

Die Losung der vorliegenden partiellen Differentialgleichung fiir
ein Segment mit allgemeiner Spaltform und physikalisch vertretbaren
Randbedingungen in Umfangsrichtung ist nur mit numerischen Me-
thoden moglich. Erfahrung mit der Integration der partiellen Druck-
differentialgleichung fiir segmentierte Gleitlager im stationdren Fall
zeigt, dass die numerische Integration der partiellen Differentialglei-
chung mit sehr betrichtlichem Rechenaufwand verbunden ist. Im
Hinblick darauf, dass die Druckgleichung bei der Behandlung der
zweiten Fundamentalaufgabe (siche Abschnitt 1) fiir sehr viele Fille ge-
16st werden muss, dringt sich ein vereinfachtes Losungsverfahren fiir
die Integration der Gleichung (3.12) auf.

Man erreicht die Vereinfachung in bekannter Weise (siche z. B.
[4]) durch einen parabolischen Ansatz fiir den Druckverlauf in axialer
Richtung,

@.1) p=p [1 —( 2l )'I

der zugleich automatisch die Randbedingungen an den Seitenrdndern

(z = -+ BJ2) erfiillt, wo der Druck verschwindet (p = 0). Mit p be-
zeichnen wir den Druck in der Mittelebene des Lagers. Analog zur
Gleichung (4.1) lautet die entsprechende dimensionslose Beziehung

4.2) I — (1 —cm)
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A
wobei fiir /7 eine zu (3.8) analoge Definitionsgleichung gilt. Es wird
vorausgesetzt, dass dieser Ansatz ohne Unterschied sowohl fiir den
stationidren als auch den instationdren Betrieb eines Lagers gilt, was
als Annahme naheliegend, aber nicht nachgewiesen ist.
Der Ansatz fiir die axiale Druckverteilung gemdss Gleichung
(4.2) wird in die Differentialgleichung (3.1) eingesetzt und diese glied-

&2 o
:f6<f + 27‘)45
ag e}

=1

weise iiber den Bereich von £ = — 1 bis { = +1 integriert:
+1 . ~ o
@.3) [(1 — [¢fm) :/ (2 i’/’)d; /:2, e : (7 :m)f: i :
= .

Daraus folgt nach Auswertung der einzelnen Summanden

(4.4)

o ( ol ~
(s )_,'"ﬂysnz6
o

m—+1 (8;{ ‘ 28){')
paa— m

49T

o o a9
Damit hat man die partielle Differentialgleichung (3.9) fiir die

Druckverteilung auf eine gewdhnliche Differentialgleichung (4.4) fiir

den dimensionslosen Druck /7 in der Mittelebene des Lagers zuriick-
gefiihrt; auch hier spielt die dimensionslose Zeit ¢ wieder die Rolle
eines Parameters.

Die dimensionslose Spaltfunktion y ist durch die Gleichung (2.8)
gegeben. Ihre zeitliche Ableitung, die auf der rechten Seite von Glei-
chung (4.4) auftritt, werden wir in Abschnitt 6 noch néher betrachten.
Zur Losung der Differentialgleichung (4.4) fiir eine gegebene Spalt-
funktion # (p) muss der Parabelexponent bekannt sein. Beim stationér
betriebenen Lager existieren zwei Grenzfille. Fiir das sehr schmale
Lager liefert die Theorie ([2], [4]) den Wert m = 2; beim «unendlich
breiten», das heisst seitlich abgeschlossenen Lager betrdgt m = oo.
Fiir Lager endlicher Breite muss mit einem m-Wert zwischen diesen
Grenzfillen gerechnet werden.

Aus der Literatur ist bekannt, dass bei kreiszylindrischen Lagern
der Exponent m einer Niherungsparabel iiber die Lénge der Gleit-
fliche nicht konstant ist und auch mit der relativen Exzentrizitit
variiert. Der als konstant festzulegende «mittlere» m-Wert kann nach
verschiedenen Gesichtspunkten gewéhlt werden. Beispielsweise konnte
gefordert werden, dass er so angenommen werden soll, dass das Druck-
maximum im Spalt moglichst genau wiedergegeben wird. Im allge-
meinen interessiert jedoch vor allem die Tragféhigkeit des Lagers, so
dass man m so wihlen wird; dass in erster Linie das Integral des Druk-
kes iiber die ganze Druckzone mit der exakten Losung moglichst gut
ibereinstimmt.

Vergleiche mit exakten Ldsungen zeigen, dass der Parabelexpo-
nent wesentlich vom Seitenverhéltnis

4.5) =2

abhiingt (Bild 4.2). Ferner hat auch die Spaltform einen Einfluss auf
m. Dabei zeigt sich, dass bei relativ einfachen Spaltformen, wie sie
praktisch vorkommen, das Verhiltnis der mittleren Spalthdhe hz in
der Druckzone zur minimalen Spalthdhe /i als Parameter einge-
fiihrt werden kann.

Fiir Kreisschalen hat sich der heuristische Ansatz

3 1/hmin o

(4.6) m =2 + ok B
2.+ hL/hmin 1 4 0,554

als brauchbar erwiesen.?) Anstelle des Verhiltnisses ITL//I min kann auch
7L/ zmin geschrieben werden.

Der Aufbau und die Konstante des Ansatzes (4.6) wurden so
gewihlt, dass fiir eine Reihe von Kreisschalen mit verschiedenen

2) Unveroffentlichte Untersuchung aus dem Institut fir Grundlagen
der Maschinenkonstruktion an der ETH Ziirich. In [16] ist anstelle von
Gleichung (4.6) ein fritherer Ansatz verwendet worden. Der Unterschied
ist nicht erheblich.
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Breiten und Umfangslidngen bei gegebenen Wellenlagen (Exzentrizitat
und Lagewinkel) mit der Néherungsgleichung (4.4) geniigend genau
die gleiche Schalentragkraft erhalten wird wie bei Losungen der
partiellen Differentialgleichung; auf solche exakten Losungen ist in
[16] verwiesen. Der verwendete m-Ansatz (4.6) fiihrt auch auf gute
Néherungen fiir Reibung und Schmiermitteldurchsatz.

Der Wert von m ist geméss den gemachten Annahmen von der
Erstreckung des Segmentes in Umfangsrichtung abhéngig. Das Lings-
verhéltnis 2, das durch Gleichung (4.5) definiert ist, betrdgt fiir das
Segment eines Radialgleitlagers

B B

@.7) Al =

R(pa—or)

Wenn die Druckzone nicht die ganze Segmentlinge ausfiillt,
muss bei der Bestimmung des Seitenverhiltnisses 2 im Hinblick auf
die Ermittlung des Exponenten m nicht die geometrische Segment-
linge, sondern nur die druckbeaufschlagte Linge eingesetzt werden
(Bild 4.3). Da die Umfangsldange des Druckberges zunédchst unbekannt
ist, muss ein iteratives Verfahren angewandt werden.

5. Randbedingungen in Umfangsrichtung

Es wird angenommen, dass bei jedem Segment an den Grenzen
e und @4 Schmiermittel mit dem Druck p = 0 vorhanden ist. Da ge-
mdss dem Ansatz (4.1) auch der Druck an den Seitenrdndern ver-
schwindet, betrdgt der Druck somit an allen Segmentgrenzen Null.

Im einfachsten Fall hat man somit einen Druckverlauf, der sich
nach Bild 5.1 iiber die ganze Segmentldnge erstreckt: Fall a. Aus Ex-
perimenten an stationidr belasteten Lagern ist bekannt, dass im
Schmierspalt keine oder im Vergleich zu den vorkommenden Uber-
driicken nur verschwindend kleine Unterdriicke auftreten konnen.
Dieser Tatsache tragen die schon von O. Reynolds [1] vorgeschlagenen
und durch Giimbel verwendeten Auslauf-Randbedingungen Rechnung,

Zur Definition der mittleren Spalt-
héhe des druckbeaufschlagten Spaltteils

Druckverteilung im zylindrischen
Gleitlager (bei stationarer Wellenlage und

Links:
Bild 4.3.
= -Rp (Lange der Druckzone = L)
h
Rechts:
T 7 J Bild 5.4.
E 17 A A A
B b bei Rotation des Wellenzentrums mit )
L min
P 7
l// /’f//
/ 97
/,{,///:;//
B //; 7
S
7
L 4

rotierendes
Wellenzentr M

M = stationdr

nach denen die Druckentwicklung dort endet, wo gleichzeitig die Be-
dingungen

(5.1) und

p=20
erfiillt sind. In einem Schmierspalt, der gemaéss Bild 5.2 mit den Rand-
bedingungen p = 0 an den Stellen ¢4 und ¢z den Druckverlauf nach
Kurve 1 ergeben wiirde, stellt sich mit den Randbedingungen (5.1)
der Druckverlauf gemidss Kurve 2 ein: Fall b;. Im Gebiet zwischen
@4’ und g4 reisst der Schmierfilm bei konstantem Druck p = 0 auf
und fiillt den Spalt nur teilweise [12]. Es sei hier daran erinnert, dass
unter p der Uberdruck gegeniiber dem Umgebungsdruck zu verstehen
ist.

Sowohl beim stationdr wie beim instationdr betriebenen Lager
kommen Fille vor, bei denen sich gemdss Bild 5.3 mit den Rand-
bedingungen p = 0 fiir pz und ¢4 im Segment ein Druckverlauf ent-
sprechend Kurve 1 einstellen wiirde. Da auch in diesem Fall keine
Unterdriicke zu erwarten sind, dréngt sich die Annahme auf, dass hier
auf Eintrittsseite die Randbedingungsgleichungen (5.1) anzusetzen
sind und sich ein Druckverlauf gemaiss Bild 5.3, Kurve 2 einstellt:
Fall b,. Ein einfaches Beispiel eines derartigen Falles ist das kreis-
zylindrische Lager, dessen Wellenachse mit der Winkelgeschwindig-
keit der Welle um die Lagerachse rotiert. Wie leicht zu zeigen ist, er-
hilt man hier eine Druckverteilung, die beziiglich der Verbindungs-
geraden Lagermitte — Wellenmitte zur Druckverteilung im stationdren
Fall spiegelbildlich ist (sofern in beiden Féllen der Druck an der
weitesten Spaltstelle gleich Null angenommen wird). Wenn die Rand-
bedingungen gemdss Bild 5.2, Kurve 2 fiir den stationdren Fall zu-
treffen, so miissen sie naheliegenderweise fiir eine drehende und gleich-
zeitig synchron umlaufende Welle entsprechend Bild 5.3, Kurve 2 an-
gesetzt werden, was auf die in Bild 5.4 aufgezeichnete Druckverteilung
fiihrt.

Weiter ziehen wir einen Fall by in Betracht, in welchem die Dif-
ferentialgleichung beim Druck Null am Ein- und Austritt auf Unter-
druckgebiete an beiden Enden fiihrt (Bild 5.5, Kurve 1). Analog zu den
Fillen b, und b, setzen wir bei Fall b5 am Ein- und Austritt die Rand-
bedingungsgleichungen (5.1) an, so dass sich ein Druckverlauf nach
Bild 5.4, Kurve 2 ergibt. Der Fall b; kann beispielsweise im statio-
néren Betrieb bei einer 360°-Kreisschale mit einem einzigen Oleintritt
auftreten. Dieser Fall ldsst sich mit den oben vorgeschlagenen Rand-
bedingungen allerdings nur ndherungsweise erfassen; eine exakte Be-
trachtung fiihrt auf eine etwas andere Eintrittsseiten-Randbedingung

W @ZM oy M
@ >~ Q@ >
Z 7 / 7 Z 7 %
4 welle i welle welle 4 welle
/4 p P P
/\\7 7//\ 7
DX ® 3
P ®a p P P
2 2
o > ; o i E Se——on D el
Pe Pa  Pa '3 '3 ®a Pe PE ®Pa Pa
Bild 5.1 Druckverteilung im Fall a Bild 5.2 Druckverteilung im Fall by Bild 5.3 Druckverteilung im Fall by Bild 5.5 Druckverteilung im Fall by
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Bild 5.6  Druckverteilung im Fall ¢

Schliesslich kann ein Fall ¢ eintreten, bei dem sich mit Druck Null
am Rand im ganzen Segment Unterdruck ergeben wiirde. Hier reisst
der Schmierfilm auf, und es stellt sich anndhernd der Umgebungs-
druck ein, so dass wir mit p = 0 rechnen (Bild 5.6).

Wir setzen im Hinblick auf die Programmierung voraus, dass
keine Segmentformen in Betracht gezogen werden, die auf andere als
die fiinf aufgefiihrten Druckverteilungsfélle fithren. Auf eine Formu-
lierung der dafiir notwendigen Bedingungen wird hier jedoch ver-
zichtet, weil man bei zweckmissigen Lagerformen mit den obigen
Fillen auskommt3).

Man muss sich an dieser Stelle fragen, wie weit die hier angenom-
menen Randbedingungen mit experimentellen Befunden {iberein-
stimmen. Unter den wenigen diesbeziiglichen Untersuchungen sind
die Messungen von Th. E. Carl [9] zu erwéhnen, aus denen hervorgeht,
dass die hier vorgeschlagenen Randbedingungen nicht in Widerspruch
zu den gemessenen Druckverldufen stehen.

Oben wurde bereits angedeutet, dass bei komplizierten Spalt-
formen noch andere als die aufgezidhlten Losungsfille denkbar sind.
Wir beschrianken uns hier jedoch ausdriicklich auf solche Spaltformen,
deren Losungen im Bereich der oben erwédhnten Félle liegen. Die bei
sinnvollen Lagerkonstruktionen in der Praxis vorkommenden Fille
erfiillen diese Bedingung.

Es ist an dieser Stelle darauf hinzuweisen, dass der Parabelansatz
fiir die axiale Druckverteilung und die hier in Betracht gezogenen
Randbedingungen fiir den Druck in der Mittelebene die Aussage in
sich schliessen, dass der Druckberg im Schmierspalt tiber die ganze
Lagerbreite an der gleichen Stelle ¢ beginnt bzw. endet. Wie Rech-
nungen von H. W. Hahn [4] und von H. Sassenfeld und A. Walter [11]
und die Messungen von 7Th.E.Carl [9] zeigen, ist dies nicht genau,
aber immerhin mit annehmbarer Niherung erfiillt.

: Die in diesem ganzen Abschnitt fiir den Uberdruck p gemachten
Uberlegungen gelten auch fiir die durch Gleichung (3.8) definierte
dimensionslose Druckgrésse I7 und insbesondere fiir den dimensions-

losen Druck ﬁ in der Mittelebene des Lagers.

Zu den in dlteren Arbeiten iiber das instationdre Lager verwende-
ten Randbedingungen ist zu sagen, dass dort vorwiegend kreiszylin-
drische Lager mit periodisch angesetzten Druckverteilungen betrachtet
werden; in den Bereichen, wo die Rechnung negative Driicke liefert,
setzt man fiir die Ermittlung der resultierenden Kraft in der Regel
den Druck gleich Null. Dieses vom physikalischen Standpunkt aus
unbefriedigende Vorgehen wurde meist damit begriindet, dass ohne
diese Vereinfachung der mathematische Aufwand untragbar gross
geworden wire.

Auch G. Schaffrath [15] rechnet in seiner Theorie des segmentier-
ten Radiallagers so, dass er an allen Rindern den Uberdruck Null
vorschreibt und negative Driicke im Segmentinnern einfach gleich
Null setzt. Hier besteht ein wesentlicher Unterschied gegeniiber der
vorliegenden Abhandlung.

3) Man kann zum Beispiel zeigen, dass mit ungiinstig gewihltem Ol-
eintritt bei einer stationir belasteten 360 °-Schale ein mit b4 zu bezeichnen-
der Fall eintreten kann, der am Anfang und am Ende des Segmentes eine
Druckzone und dazwischen ein Unterdruckgebiet aufweist. Als Ndaherungs-
I6sung bietet sich hier eine Aufteilung in zwei getrennt zu behandelnde
Segmente an.
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6. Die zeitliche Anderung des Schmierspaltes
Fiir die Gleichung (4.4) benétigt man die Ableitung der dimen-
sionslosen Spalthdhe x nach der dimensionslosen Zeit ¢. Aus Glei-
chung (2.8) folgt unmittelbar:
dy de dy

(6.1) Yy = —cos (p—7) 7 —esin(q;—y)ﬁ.

Mit Riicksicht darauf, dass in Gleichung (4.4) die Grosse %

mit dem Faktor 2 vorkommt, definieren wir

de
" 2 — =
6.2) ’F) E
dy
5 2 - =
(6.3) 15 G

Wegen der Definitionsgleichung (3.10) fiir ¢ kann man auch schreiben

2 de
6.4 ——=E
L w dt

2 dy
6.5 — =
) w dt

E ist die dimensionslose Radial- und G die dimensionslose Tangential-
geschwindigkeit des Wellenzentrums.
Somit folgt
dy

(6.6) 2 ==

Ecos (p—y) + Gesin (p—7)
7. Transformation der Differentialgleichung fiir den Druckverlauf
Ausder Literatur ist bekannt (sieche z. B. [4]), dass die Differential-

gleichung (4.4) einfacher wird, wenn man statt der Variablen /7 eine
neue Grosse
7.1 u=yx*II

einfithrt. Wird » = 3/2 gesetzt, so verschwindet in der Differential-
gleichung die erste Ableitung nach ¢. Wir setzen also

3

(7.2) ﬁ =iy 2 u
und die erforderlichen Ableitungen dieser Transformationsgleichung
in Gleichung (4.4) ein. Mit der vereinfachten Schreibweise

(1.3) %( )E< >q, i %( )E( )0

lautet die umgeformte Differentialgleichung

L3 ) m+1
(7.4) Upgp — I 2*; (‘:{rpq)x I o X(p> + T] u=
d Mg ;
m-+1 o ( )
=6 4 p + 2
——% K %y

Da die dimensionslose Zeit # die Bedeutung eines Parameters
besitzt, liegt eine lineare, gewohnliche, inhomogene Differential-
gleichung fiir « vor.

Wir schreiben die Gleichung (7.4) mit

3/ 1 m —+
2712 (erq) Tat 5 Xz(p) i 7/37

3

: ((X(p + 22y )

(7.5) A

Il

m-+1 =
b
m

(7.6) Z.='6

in der abgekiirzten Form

(7.7) Upp— A u = Z.

Die in den Gleichungen (7.4) bis (7.6) vorkommende Spaltfunktion
ist durch Gleichung (2.8) gegeben. IThre Ableitungen nach ¢ lauten
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(7.8) tp =¢sin(p—y) + 4 xp

(7.9) App = £€08 (p—7) + 4 sgq.

Fiir das durch Gleichung (7.6.) definierte Storglied Z kann unter
Beriicksichtigung der Gleichungen (2.8), (6.6) und (7.8) geschrieben
werden
m41 10—G)esin(¢p—y)—Ecos(p—y)+4 X

m [1—ecos(p—y) + 4y

(7.10) Z=6

In einigen Spezialfiillen ergeben sich wesentliche Vereinfachungen des
Storgliedes:

I

— stationdrer Betrieb:

I

— reine Radialbewegung des Wellenzentrums:

— reine Tangentialbewegung des Wellenzentrums:

Il

— w/2-Rotation des Wellenzentrums:

A W Q mQ
[ —
L= o o (=N}

Il

— Radialbewegung bei gleichzeitiger ®/2-Rotation des
Wellenzentrums («reine Verdrangungsstromung»):

Q
|

8. Randbedingungen fiir die Variable «

Im Anschluss an die Umformung der Differentialgleichung sind
noch die fiir «# geltenden Randbedingungen anzugeben. Da an den
Spaltstellen, wo nach Abschnitt 5 der Druck p Null wird, weder der
in Gleichung (3.8) vorkommende Faktor 2/nw noch die in der
Gleichung (7.2) auftretende dimensionslose Spalthohe y verschwinden,
gelten die Randbedingungen fiir p auch fiir die neue Variable «, und
man hat auch hier die in Abschnitt 5 aufgefiihrten fiinf Félle.

9. Integration der Differentialgleichung fiir

Die vorliegende Differentialgleichung fiir # ldsst sich nicht ge-
schlossen integrieren. Sie kann in ein lineares Differenzen-Gleichungs-
system {iibergefithrt werden, das numerisch gelost wird. Wie sich
zeigen wird, ist die Anpassung der Losung an die Randbedingungen
in bestimmten Féllen nur mit einem iterativen Verfahren moglich.

Geméss der gestellten Aufgabe suchen wir die Losung « der ge-
gebenen Gleichung (7.7) fiir ein Segment im Bereich ¢ < ¢ < @a.
Wir teilen dieses Segment in n gleiche Teile ein, deren Lidnge
Ap — pa—or _ 9P

n n

9.1)

betrigt. Die Intervall-Grenzen werden nach Bild 9.1 mit ¢y, @1, @, . . .,
@n—1, Pn bezeichnet.

Es gilt also

9.2) o = QE und Pn = Pa.

Da die Differenzenausdriicke im nachfolgenden Verfahren im allge-
meinen mit 5 Stiitzstellen gebildet werden, soll

9.3) n=>4

sein.

Die Ersetzung der Differentialgleichung durch ein Differenzen-
gleichungssystem geht so vor sich, dass man von der gesuchten Losung
u die Werte u,, uy,...un, an den Intervall-Grenzen sucht. Diese
Werte u, sind gegenseitig durch lineare Gleichungen verkniipft, die
durch Uberfithrung der gegebenen Differentialgleichung in eine Dif-
ferenzengleichung entstehen.

Die gegebene Gleichung (7.7) verlangt einen Differenzenausdruck
fiir die zweite Ableitung Ugg- Dieser lautet nach [13] fiir eine Stelle ¢,),
bei der beidseitig des Aufpunktes noch je 2 Stiitzstellen herangezogen
werden konnen [2 < v < (n-2)]

1

o 12 (dp)*

Ugpp ~ (— Uy, +161y_; — 30w, + 161, , — u,,+z>
Liegt der Aufpunkt ¢, in der Nihe der Segmentrinder, so stehen

uns nicht beidseitig je 2 Stiitzstellen zur Verfiigung. Es lassen sich
jedoch auch Differenzenausdriicke fiir asymmetrische Verteilung der
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Stiitzstellen angeben. Die hier bendtigten Gleichungen lauten (sie
stammen entweder aus [13] oder wurden speziell hergeleitet):

1 ,

©.5) "‘Pq"v=o NW(35uo—lo4ul+114u2—56u3—|—
—|—11u4>

1
9.6 ~—— (11 uy— 20 u; + 6 1 +4u—u)
9.6) ”(p(pVZI 12(4(}7)2( 0 1 2 3 4/

1
9.7 w——(— s+ 4un-s+ 6up—2—
©.7 Upep — 12 (dp)? \ Un—g n—3 n—2
— 20 up—1 + 11 u,.)
9 ~ ! 11 56 +
S PIR v

+ 114 up— — 104 un—y + 35 un>

Dabei sind die Ausdriicke direkt fiir jene »-Werte hingeschrieben, fiir
welche die Gleichungen verwendet werden (Randpunkte und je der
erste Punkt innerhalb des Segment-Bereiches).

Mit Hilfe der obigen Differenzenausdriicke ldsst sich fiir jeden
Punkt ¢, = ¢o + v (4p) des Segment-Bereiches die der Differential-

gleichung entsprechende Differenzengleichung schreiben:

9.9) v =0: (35— cAy) ug— 104 uy + 114 u, —
—56u; + 1l uy = cZ,

(9.10) y=1: 10— (20 + ¢ A) uy + 6 u; +
+4du;—u, =cZz;

9.11) 2<v<m—1): —u 5, + 164, , — 30 + ¢ 4)) u, +
+ 16wy, —uy,, =cZ,

9.12) v=n—1 —ln—g + dtn—3 + 6 Un—y—
— (20 + ¢ An—)) Un—y + 11 un = ¢ Zn—,

(9.13) Y= n3 11 tn—y—56 un—3 + 114 un—— 104 un—; +

+ (35—c Ap) un = ¢ Zn.

In diesen Gleichungen bedeuten

(9.14) ¢ =12 (d¢)?
(9.15) Ay=A4|g_ g+ v4p
(9.16) z,=Z|

¢ =ge +vdp

wobei die Grossen 4 und Z durch die Gleichungen (7.5) und (7.10)
gegeben sind.

Bis hierher wurde rein formal die Differentialgleichung fiir # in
ein System von (n -+ 1) linearen Gleichungen fiir die Grossen uo, . . .
un iibergefiihrt, ohne die Randbedingungen zu beriicksichtigen. Wie
aus Abschnitt 8 hervorgeht, liegt der einfachste Fall « dann vor, wenn
mit den Randwerten u = O fiir ¢z und @4 die Lésung # im ganzen
Segment positiv ist. Aber auch wenn dies nicht zutrifft, muss die
Differentialgleichung in jedem Fall zunidchst einmal mit diesen Rand-
bedingungen gelost werden, damit festgestellt werden kann, ob tat-
sdchlich Fall a oder moglicherweise ein anderer Fall vorliegt. Die
Frage, wie die anderen Fille festgestellt werden, soll vorerst nicht
weiter verfolgt werden, und wir wenden uns der Losung fiir # = 0 an
den Ridndern zu. Diese wird einfach dadurch erhalten, dass die Glei-
chungen (9.9) fiir » = 0 und (9.13) fiir » = » durch die Bedingungen

9.17)
(9.18)

ersetzt werden. Das Gleichungssystem reduziert sich damit auf (n—-1)
Gleichungen mit (7—1) Unbekannten, die somit bestimmt sind.

uo =0

un =0
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Wir bezeichnen diese Losung, die die Grundlage fiir die Ermitt-
lung der verschiedenen Fille bildet, mit u*.

(9.19) u* =0, u%,..... 7 u¥_1,0).

Sie stellt die Losung dar, die sich unabhédngig von der Art des Ver-
laufes von « ergibt, wenn « an den Réndern ¢ und ¢ des Segmentes
gleich Null gesetzt wird. Wenn alle #§f > 0 sind, liegt Fall a vor.

10. Ausscheidung der verschiedenen Randbedingungsfille

Wir behandeln in diesem Abschnitt ein Verfahren, mit dem bei
einer zahlenmissig vorliegenden Losung u* festgestellt werden kann,
welchen Randbedingungsfall man vor sich hat; die Bedeutung von u*
ist aus Gleichung (9.19) ersichtlich. Wir erinnern daran, dass wir nur
solche Spaltformen voraussetzen, die auf keine anderen Druckver-
ldaufe fiihren als solche, die nach Abschnitt 5 zugelassen sind*).

Die Identifikation der Losungen kann nach dem auf Bild 10.1
dargestellten Schema erfolgen, das auf die Anwendung von digitalen
Rechenautomaten zugeschnitten ist. Wie aus Bild 10.1 hervorgeht,
werden fiir die Identifikation der Félle b, b, und b5 die Tangenten-
steigungen du*/dp an den Stellen ¢z und ¢4 bendtigt. Da uns #* in
der Form von Gleichung (9.19) gegeben ist, haben wir diese Tangenten-
neigungen durch die gegebenen Funktionswerte u} auszudriicken.
Wenn wir fiir die Neigungen an den Rdndern noch je die vier benach-
barten Funktionswerte heranziehen, so ergibt sich nach [13], wenn wir
noch #¥ = 0 und «¥ = 0 beriicksichtigen:

ou* 1 * * * *
ao.y - :12_41(48“‘ —36u} +16u3—3u,)
Y | E P
u* | :
(10.2) a’; ‘ _ IZIA(’)(3;(:_4—1611’,';_3%—36u’;_2—48u:—1>

Wie aus dem Schema in Bild 10.1 hervorgeht, ist die gesuchte
Funktion u bekannt, wenn die Losung «* auf die Félle a oder ¢ fiihrt.
Im Falle a ist u* bereits die gesuchte Losung, und im Fall ¢ lautet die
Losung (gemdss Bild 5.6) u, = 0, das heisst « ist an allen Stellen im
betreffenden Segment gleich Null zu setzen.

In den Fillen b,, b, und b, ist das Gleichungssystem (9.9) .. .
(9.13) entsprechend den Bildern 5.2...5.4 mit gednderten Randbe-
dingungen zu losen (Druckberggrenzen im Innern des Segmentes;
siehe Abschnitt 11).

11. Ermittlung der Losung u fiir die Félle mit tangentialen Grenzen des
Druckberges im Schmierspalt-Innern (Félle b,, b, und b5)

Zundchst soll der komplizierteste der drei Félle, der Fall b, be-
handelt werden. Wenn er geldst ist, lassen sich die Losungen fiir die
beiden iibrigen Félle durch Spezialisierung gewinnen.

4) Mathematisch kann diese Bedingung so formuliert werden, dass
die Losung u* ausser am Rand hochstens noch an zwei weiteren Stellen
verschwinden darf und im Fall von 2 inneren Nullstellen zwischen diesen
ein Maximum besitzt.

[ ttrze s
I (fir Weiterrechnung u=0)
nein
¥
A T e —
T * _ o -
nein (u™ =definitive Lésung)
Y
u* und v’ . )
7 I E< zugleich 7(;—7 A>0 4 o LS
T
nein
Y
du* :
IE —
o
nein

Bild 10.1. Identifikationsschema fiir die verschiedenen Lésungen
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11.1 Fall by

Wir setzen voraus, dass die Losung «#* unseres Problems die in
Bild 11.1 dargestellte Form hat. Verdndert man nach Bild 11.2 die
Randwerte u, und un, so ergeben sich zu jedem Wertepaar (i, un)
fiir die beiden Minima die Ordinaten #m, und u#m,. Wir konnen somit
schreiben

tmy = fi (o, Un)
Uma = fo (Uy, Un)

Die Funktionen f; und f, konnen als gekriimmte Flachen iiber der
Ebene (o, un) aufgefasst werden.

Wir suchen nun jenes Wertepaar (uq,, Uno), das gleichzeitig
tmy, = 0 und wum2 = 0 liefert, das heisst jene Losung, bei der die
Minima auf der Achse u = 0 liegen (Bild 11.3).

Da die Losung « (@) in einer Form entsprechend Gleichung (9.19)
erhalten wird, kénnen die vorerwdhnten Minima-Bedingungen als er-
fiillt betrachtet werden, wenn die Randwerte u, und ur, so liegen,
dass die tiefsten Ordinaten u, und ug im Bereich der beiden Minima

gleich Null sind (Bild 11.4). Bei geniigend feiner Einteilung des Inte-
grationsintervalls kann auf ein verfeinertes Verfahren (etwa mit
Approximation der Lésungsfunktion im Bereich des Minimums durch
eine Parabel) verzichtet werden.

Auf die praktische Durchfiihrung der iterativen Randwertan-
passung zur Erfiillung der Tangenten-Bedingungen sei hier nicht ein-
gegangen, da es sich hier um ein Problem der numerischen Rechen-
technik handelt.

11.2 Fille by und b,

Wie in der Einleitung zu diesem Abschnitt bemerkt, ergeben sich
diese Fille als Spezialfille von Fall b;. Die Spezialisierung besteht
darin, dass am einen oder anderen Rand des Segmentes (d. h. bei @&
oder ¢4) die feste Randbedingung « = 0 gegeben ist. Das andere Ende
des Druckberges mit der «horizontalen» Drucktangente wird ent-
sprechend dem Fall b; behandelt.

s

Abschliessend ist noch darauf hinzuweisen, dass Félle, die sich
aufgrund der Losung u* als Fall b; mit einem sehr schwachen
Unterdruckgebiet an einem der beiden Enden ergeben, nach durch-
gefiihrter Anpassung an die Randbedingung in den Fall 4, oder b,
iibergehen konnen; dies bedeutet jedoch fiir die praktische Durch-
fiihrung der Rechnung keine Komplikation.

12. Resultierende Olkriifte eines Segmentes (Druck- und Schubkrifte)
Nachdem der Verlauf von # und damit der Druckverlauf im
Spalt bekannt ist, konnen die auf die Welle wirkende resultierende
Olkraft und das Moment berechnet werden.
Am Flichenelement df wirken der Druck p und die Schubspan-
nung 7w. Daraus ergeben sich an der Welle eine resultierende Kraft
und ein Moment.

12.1 Resultierende Wellenkraft eines Segmentes (auf die Welle wir-
kende Ollkraft)
Auf das Flachenelement wirken die Komponenten

1Py l {sin(pl

‘ cos ¢ l
=P
dPH] ]cos rrl

(12.1) df + Twl

—sing I
Wir ersetzen df durch R dp dz und integrieren:

Pa +

=
Py l ] [sin «rl [ cos g
(12.2) = —p + Tw Rdzdy
Py l . J lcos «rl ]—— sing)
B
e~ 5
Aus den Komponenten folgt als Resultierende
(12.3) P = |[Py* + Pu?
und der Richtungswinkel o betrigt
Py
(12.4) o = arc tg - !
H
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7 17 1
UA‘
Up Un1 Un2 Un "
® I ® ) )
Pe @a Pe Pe Pe Pa Pa
Bild 11.1. Verlauf der Funktion u* Bild 11.2. Verlauf der Funktion u Bild 11.3. Verlauf der Funktion # mit erfiillten Tan-

im Fall bs
(Fall bs)

Fiir die an der Welle angreifende Schubspannung 7w, deren posi-
tive Richtung durch Bild 12.1 definiert ist, gilt unter Beriicksichtigung
der Gleichungen (3.4), (3.5), (3.6), (2.5) und (2.7) nach Newton

(12.5)

TW = — 7

éw | 1 op nw'
Ll SRR e
dy |y=nh 2 ap 2y

Setzt man Gleichung (12.5) in (12.2) ein. so folgt

; B
Pa + =
Py sin @
(12.6) = — P -
Pn . cos ¢
s B
PE ——

=]

(1 8 no cos
(2 m){ )
2 oy ) \ —sing J

Als Grenzen des Integrationsbereichs sind die Grenzen des
Druckberges @’ und ¢4’ angeschrieben, weil Gleichung (12.6) nur
dann gilt, wenn der Schmierspalt mit Ol gefiillt ist. Dort, wo sich die
Druckzone bis an den Rand erstreckt, ist als Grenze ¢ bzw. g ein-
zusetzen.

Wir greifen auf den Ansatz (4.1) fiir p (z) zuriick, setzen ihn in
Gleichung (12.6) ein und integrieren diese Gleichung tiber die Lager-

R dz dy

breite, das heisst von z = — g bisz = + % Das Ergebnis lautet
pa
Pv ~ | sin ¢
(12.7) 1—[ JLBp] }+
Pu l J |mtl ' cos ¢

7E

o Dl cos
n (L oom B op. 2w + B 7,,(7;) [ q }

R dqy
2 (m-+1) op w 1—sin P

Nun definieren wir

Py 2

(12.8) ===
2 RB 7w

(12.9) fa ¥ _ g
2 RB nw

und analog auch fiir die Resultierende

P P2

(12.10) —_—
2 RB nw

So

Die neu eingefiihrten Grossen V, H, und So sind die Sommerfeld-
zahlen der Krifte Py, Py und P. Gleichung (12.7) schreibt sich mit

U
Uno
. : ~f - @
Pe P =Pe Pe=Pa Pa
Bild 11.4. Verlauf der Funktion u als Losung des Differenzen-

gleichungs-Systems (Fall by)
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mit angehobenen Randwerten

genten-Bedingungen (Fall b3)

~
diesen neuen Grossen, wenn wir ausserdem fiir p nach Gleichung (3.8)

den dimensionslosen Druck ﬁ einfiihren:
P4’

14 } [

H -

7 ~ [ sin ¢
—_  If +
2(1+m) cos @
PE

m afl 1 €os @
+w — dyp
4(1+m) op 2y —sing)

Bei gliedweiser Integration tritt das Integral

(12.11)

P4’
7 cos ¢
1212 J— f o f csel,,
ap l—sinrpj
9E

auf. Durch partielle Integration erhédlt man

P4 pa
o~ cos ¢ ‘l ~ | 8y cos ¢ ]
12.13 J=1IIy ‘ — 7 R 1
( : xl—sintfj f a”'"{—sinrp’
v QE

sin @
— % dp
cos ¢

Der erste Summand ist Null, weil /7 an den Rdndern verschwindet.
Das verbleibende Integral setzen wir in Gleichung (12.11) ein und ge-
langen zu

pa’
: I === I (1 =% ﬂ) il g dp —
H 2 (1+m) 2 o8 @
PE
PA
e ~ 3 cos ¢
, (,,‘,,__L A o
J \2e  4a+m o) | —sing
PE

Bild 12.1. Vom Ol her auf die Welle wirkende Krafte
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Im ersten Integral ist in allen interessierenden Fillen yp < 1, so
dass sich

P4’
14 ~ [ sin ¢
(12.14) \___ = [p { | dp —
H ] 2 (1+m) cos ¢ l
[
Pa’
~ cos ¢

— 1 e L k] dp

2y 4 (1+m) op —sing

PE’

ergibt. Im allgemeinen sind das erste und das zweite Integral von
gleicher Grossenordnung, so dass man das mit y multiplizierte zweite
Integral gegeniiber dem ersten vernachldssigen kann, Dann erhilt man

P4’
|4 A~ [ sin ¢
(12.15) O Y J dp
H 2 (14m) l cos ¢
75’

Dieses Resultat ergibt sich auch direkt, wenn man in Gleichung
(12.2) nur die Druckkrifte auf die Welle beriicksichtigt. Es gibt auch
Fille, in denen die beiden Summanden in Gleichung (12.14) klein und
etwa gleich gross sind, so dass Gleichung (12.15) einen grossen rela-
tiven Fehler ergibt.

An Stelle von ﬁ kann nach Gleichung (7.2) « eingefiihrt werden.
Das Resultat (12.14) schreibt sich dann

pa’
V 3 ( sing
(12.16) =—_" w7 dp —
H | 2 (1+4m) cos ¢
ve’
P4’
COS ¢
— 1‘[) 71_ J p l‘ d _—
2y l—sinrpl
?E’
P4’
3 m » —%ﬂ cos @ e
4 (1+m) T o9 | —sing
or

wobei auch hier wieder die mit y» multiplizierte eckige Klammer in
vielen Féllen vernachldssigt werden kann.

Es ist hier noch darauf hinzuweisen, dass in Gleichung (12.16)
im ersten und dritten Integral in allen Fillen ¢z und ¢4 als Grenzen
eingesetzt werden diirfen, da die Funktion « dann, wenn sich der
Druckberg nicht iiber die ganze Segmentlidnge erstreckt, zwischen ¢z
und ¢z’ einerseits und zwischen ¢4 und ¢4’ anderseits Null gesetzt
wird (vgl. Bilder 5.5 und 11.4). Beim mittleren Integral ist jedoch nur
iiber das Gebiet ¢’ < ¢ < ¢4’ zu integrieren, da ausserhalb dieses
Bereiches der Spalt beim Druck p = 0 nur teilweise gefiillt ist und
sich dort die Schubspannung im allgemeinen instationdren Fall nicht
angeben ldsst. (Fiir den stationdren Fall besteht ein Ansatz; siche
Abschnitt 12.2).

Da in unserem Berechnungsverfahren sich die Funktion « in der
Form von gleichmissig verteilten Funktionswerten ergibt, sind in
Gleichung (12.16) zum mindesten das erste und das dritte Integral mit
einer numerischen Methode zu berechnen.

Y
/
Xg =R¢E / 1/2 0/?
Bild 13.1. Olfluss an den Segmentrdndern
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M. it Gleichung (12.16) sind die dimensionslosen Komponenten
der resultierenden Kraft gefunden. Grésse und Richtung der Resul-
tierenden sind daraus nach den Gleichungen

(12.17) So = |/H? + V2

(12.18) o = arc tg

|4
H
zu berechnen.

12.2 Resultierende Umfangskraft eines Segmentes
Die am Wellenelement df wirkende Umfangskraft dPr, die das
an der Welle angreifende Reibungsmoment bewirkt, betrégt

(12.23) dPrp = tw df

wobei die Kraft Pr positiv ist, wenn sie in positiver w-Richtung lauft
(Bild 12.1). Fiir 7w setzen wir den Wert aus Gleichung (12.5) ein und
erhalten

B

P4
(12.24) Pr = ~f
e’ -

Die Integrationsgrenzen sind auch hier (wie bei der Berechnung
der resultierenden Kraft) fiir den allgemeinsten Fall angeschrieben, in
welchem sich der Druckberg nur iiber den Bereich ¢’ < ¢ < @4’
erstreckt. Die Fille, in denen die Druckentwicklung am Rand be-
ginnt, konnen als Spezialfille aufgefasst werden.

Das Glied 4Pr ist die Umfangskraft in den nur teilweise mit O1
gefiillten Schmierspaltteilen ¢z < ¢ < ¢z’ und ¢4’ < ¢ < @a. Fir
den instationdren Fall ldsst sich iiber den Fiillungszustand dieser
Spaltteile im allgemeinen kaum etwas aussagen. Es liegt jedoch nahe,
den Reibungsanteil 4Pr der teilweise gefiillten Spaltbereiche in An-
lehnung an den Ansatz von W. Frdssel [12], der fiir den stationdren
Fall gilt, ndherungsweise zu berechnen, was hier nicht ndher ausgefiihrt
wird.

Sowohl Pr wie 4Pr konnen entsprechend Gleichung (12.8) . ..
(12.10) dimensionslos dargestellt werden. Die entsprechenden dimen-
sionslosen Grossen lauten

+ B
2
1 ép nw
(— — xp + -———) Rdzdp + APp.
2 op w

B

2

2
(12.25) fime T8
2 RBnow
APp y?
(1226) AF— APry
2 RB nw,

Entsprechend der Vorzeichenfestlegung fiir zw und Pr in Bild 12.1
wird F im allgemeinen negativ sein.

13. Oldurchsatz eines Segmentes

Wir betrachten das in Bild 13.1 abgewickelt dargestellte Segment.
Die angeschriebenen Olstrome Qr, Qr und Q. sind pro Zeiteinheit
fliessende Volumina.

Zundchst sei angenommen, dass im ganzen Segment innerer
Uberdruck herrsche, das heisst wir betrachten Fall a (vgl. Bild 5.1).
Das an beiden seitlichen Ridndern austretende Ol betriigt gemiss dem
bekannten Gesetz fiir die laminare Stromung in einem Parallelspalt
von der Weite 4 %)

@A

h3 op
R = — 2 — | — R d
Ls lev; (8;:)2:,3‘ #

2
PE

(13.1)

Der Druckgradient am Rand ergibt sich aus Gleichung (4.1) zu

[ &p 2 mp
(13.2) (8z)z: g
so dass
Q4
(13.3) Op— —2 f;/ﬁ R dyp
3InB
PE

) durch Integration der sinngemiss angepassten GI. (3.2) leicht
herzuleiten.
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folgt. Eine elementare Umrechnung fiihrt auf die dimensionslose Dar-
stellung
(o

w

= — | II y*d

o[
PE

wobei # die durch Gleichung (3.11) definierte relative Lagerbreite be-
deutet.

Or

13.4 =
(13.4) % o

Wenn wir allgemein

Q

13.5 =
( ) R3 wy

=K

definieren und ausserdem Gleichung (7.2) beriicksichtigen, so lautet
Gleichung (13.4)

'z 3

Koo ™

2
u d
6 b4 P

(13.6)
PE

Fiir das eintretende Ol Qg ergibt sich durch Integration von
Gleichung (3.2) iiber die Spalthéhe hg

e &p )

13.7 S
( ) 127 R o¢

1
dQr = (7 Rwhg —

Die Integration iiber die Lagerbreite fiihrt auf

B
2
1 e 'ap)
= | |= Ro¥ _7(77 d
Qs f[Z @ 127 R \ op E] :
B
-7

Unter Beriicksichtigung der axialen Druckverteilung nach Glei-
chung (4.1) erhilt man

3w [op
lRwhEB—L i) <—p> B
E

(13.8) — =
2 (m-+1) 12nR \ op

und in dimensionsloser Darstellung

)
6(m + 1) ‘E(a(p s

3

Fiir /7 kann wiederum nach Gleichung (7.2) y ~ 2 u eingesetzt
3 ( 3
a 772y

In vollig analoger Weise berechnet man den Oldurchsatz am Aus-
tritt des Segmentes:

(13.9) Ke =By |1 —

~

. . all
werden. Auf die Berechnung der Ableitung =
P

treten wir spéter ein.

m

oIl
13.10 ) 2
(13.16) s+ 1) "‘<am>AJ

KA:ﬁXA l’lﬁ

~ 3,
Da unser Rechnungsgang die Druckverteilung 77 = ¥ ~ 2 u iiber

die diskret verteilten u-Werte liefert, ist eine Rechenvorschrift fiir die
.  oll oIl

Ableitungen ( > und (— ——) zu geben.

a{p E \ a‘l’ A

Wir beniitzen dieselben Formeln wie in den Gleichungen (10.1) und
(10.2) und erhalten

oll L ~ ~ ~
(13.11) ( ) - (48 M= 3685 3 1685 — 3 114)
09 | E 12 d¢
(13.12) oy 1 3 17, 16 ITy-y + 36 17,
. a{P )A = 12 A(p n—4 n—-3 - n-=2

— 48 ﬁu_.)

wobei Ap nach Gleichung (9.1) zu berechnen ist.
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Die vorstehende Betrachtung bezieht sich auf ein Segment, wel-
ches der Druckberg vollig ausfiillt. Wenn dies nicht zutrifft, das heisst
wenn einer der Fille by, b, oder b; vorliegt, riicken die Integrations-
grenzen in der Gleichung (13.6) an die Stellen ¢z’ und/oder @.4’. In
den Gleichungen (13.9) und (13.10) ist sodann bei nicht bis an den
Rand reichendem Druckberg der Druckgradient Null. Fiir den Fall b,
lauten somit die Olmengen-Gleichungen:

pa’ P4
m [~ m 3
13.13 Kp=— | Oyddeo=—[1wy 72 d
( ) R Gﬁf 2> dy 6/3_[ x 2 dp
PE’ 7E’
(13.14) Keg’'=§ xE'
(13.15) K4 =ﬁxA’

Im Fall b, gelten die Gleichungen (13.9) und (13.15), im Fall b, die
Gleichungen (13.14) und (13.10).

Im Fall ¢, in welchem fiir das ganze Segment /7 = 0 gesetzt wird,
ist der seitliche Ausfluss Null, dass heisst

(13.16)

Im Einstromquerschnitt kann ein Einstromen ohne Druckgefélle an-
genommen werden; folglich gilt

(13.17)  Ke=fz,

Kr=0

Uber den Olstrom am Segmentaustritt (Stelle ¢.1) ldsst sich nichts
Sicheres aussagen, da der Olfilm im Innern des Schmierspaltes als
strahnig zerteilt anzunehmen ist und dieser somit nicht mit Sicher-
heit als ausgefiillt betrachtet werden kann.

In den Fillen, in welchen der Segment-Schmierspalt oder be-
stimmte Teile davon mit Ol ausgefiillt sind, I4sst sich eine Volumen-
bilanz aufstellen. Dazu ben6tigt man ausser den Durchsatzzahlen Kz,
Kg und K4 die dimensionslose Anderung des Schmierspaltvolumens
pro Zeiteinheit.

Die Anderung Qs des Spaltvolumens betrigt — wir betrachten
zundchst wieder Fall a —

®A

re)
0s :fB R R dy
ar

PE

(13.18)

Rein formal kann diese Grosse in gleicher Weise wie ein volumetri-
scher Oldurchsatz dimensionslos gemacht werden. Wir fiihren

(13.19) Ky = 2
Riowy
ein und erhalten
P4
oy
13.20 Ks=2p| = dp
( ) 5 /f 2 q
PE

wobei die dimensionslose Zeit # durch Gleichung (3.10) definiert und
2
;;— nach Gleichung (6.6) zu berechnen ist.

In den Fillen b,, b, und by ergibt sich ein zu Gleichung (13.20)
analoger Ausdruck, nur sind fiir die Integrationsgrenzen die Grenzen
des positiven Druckbereiches einzusetzen.

Die Volumenbilanz lautet fiir den Schmierspaltteil, der den Druck-
berg enthiilt,

(13.21) Kg = Kr + Ka + Ks

Alle Glieder dieser Gleichung wurden einzeln direkt berechnet. Da
jedoch die Druckdifferentialgleichung nicht streng gelost ist, wird die
Gleichung (13.21) nicht exakt stimmen.

Unter den Grossen Kz, Kr und K4 interessiert im Hinblick auf
die Berechnung ganzer zusammengesetzter Lager vor allem die Grosse
Kgr. Wir konnen nun die Volumenbilanz dazu beniitzen, um Kz auf
einem zweiten, indirekten Weg tiber Kz, K4 und Ks zu bestimmen
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(13.22) K'rn= Kg—-Kia—Ks

und den Mittelwert Kr aus dem nach Gleichung (13.13) direkt und
dem nach Gleichung (13.22) indirekt berechneten Wert zu bilden, wo-
durch ein verbessertes Ergebnis zu erwarten ist:

I .
(13.23) K= (Kn+ Ke-Ka- KS)

Alle in diesem Abschnitt berechneten Oldurchsitze sind — sofern
man nicht einen stationdren Spezialfall vor sich hat — Momentan-
werte. In der Praxis interessiert meist der zeitliche Mittelwert iiber be-
stimmte Zeitintervalle; bei periodisch variierendem Betriebszustand

ergibt sich der Durchschnittsdurchsatz durch Mittelbildung iiber das
Periodenintervall.

14. Resultierende Kraft, Reibung und Oldurchsatz des mehrsegmentigen

Lagers

Wir betrachten ein mehrsegmentiges Radiallager geméss Bild 14.1.
Alle Grossen der einzelnen Segmente sind mit den Indizes I, 1L, I1I . . .
gekennzeichnet.

Fiir jedes Segment sind nach Gleichung (12.14) oder gegebenen-
falls (12.15) die Komponenten der resultierenden (dimensionslosen)
Kraft zu berechnen und zu summieren

VVi

) TR

(14.1) Vies =

I

(14.2) Hyes = Hi

(S

I >

Die Resultierende ist gleich der resultierenden, momentanen Sommer-
feldzahl des Lagers

(]4.3) SOres - V Vln's + Hzrt'.\'

Die Richtung or¢s der resultierenden Kraft ist gegeben durch

Viyes

(14.4) Gres = arctg

res

Die Sommerfeldzahl ist durch Gleichung (12.10) definiert; die
Bedeutung des Winkels ¢ ist aus Bild 12.2 ersichtlich.

Mit vorstehenden Gleichungen ist das in der Einleitung (Ab-
schnitt 1) als «erste Hauptaufgabe» bezeichnete Problem gel0st.

Die gesamte Reibungskraft ist die Summe der Reibungskrifte
der einzelnen Segmente. Folglich gilt auch
(14.5)

Fres = EF;

=T

wobei die Bedeutung von F aus Cleichung (12.25) hervorgeht.
Die Reibungszahl des gesamten Lagers betrédgt

B Prres Fres
Mres = ——— —

Pres Sores

(14.6)

und die auf » bezogene Reibungszahl berechnet sich zu

z ()
(14.7) Bres _ _i=L... \|¥[/1
Y Sores

Pem

Bild 14.1. Mehrsegmentiges Lager
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Der gesamte volumetrische Gldurc/z‘s'.qrz ist die Summe des am
Seitenrand aller Segmente austretenden Ols. Fiir die Gesamtdurch-
satz-Zahl gilt folglich

Kiot = 2 Kri

i=T,...

(14.8)

wobei die Kz der einzelnen Segmente nach Gleichung (13.23) zu rech-
nen sind und die Bedeutung von K aus Gleichung (13.5) hervorgeht®).
Aus Reibungsarbeit und Oldurchsatz ldsst sich bei bekannter
spezifischer Wirme des Ols dessen Temperaturerhdhung im Lager
berechnen, wobei das Lager als adiabat vorausgesetzt werden kann.
Alle vorstehend berechneten Werte sind Momentanwerte und es gilt
auch hier die am Schluss von Abschnitt 13 gemachte Bemerkung.

15. Anwendungsbeispiele und Vergleich mit Berechnungsverfahren
anderer Autoren

Vor allem stellt sich hier die Frage, wie die Ergebnisse des vor-
liegenden Berechnungsverfahrens zu den Ergebnissen anderer Autoren
liegen. Insbesondere ist ein Vergleich mit dem Rechnungsgang von
G. Schaffrath [15] wichtig, da dort wesentlich andere Randbedingungen
verwendet werden. Diese Gegeniiberstellung und einige Berechnungs-
beispicle werden demnéchst hier verdffentlicht [17].

16. Bahn des Wellenzentrums bei vorgegebenem Verlauf der resultieren-
den Kraft

Es handelt sich hier um das in der Einleitung als zweite Haupt-
aufgabe bezeichnete Problem, bei dem aus einer gegebenen zeitlich
verinderlichen Kraft die Bewegung des Wellenmittelpunktes zu er-
mitteln ist.

Die Aufgabe kann entweder so gestellt sein, dass bei irgend einer
Anfangs-Wellenlage eine in ihrem zeitlichen Verlauf gegebene Kraft
einsetzt und die zugehdrige Wellen-Bahn zu ermitteln ist (Anfangs-
wertproblem), oder dass ein zeitlich periodischer Kraftverlauf gegeben
ist und die zugehorige periodische Bewegung der Welle gesucht wird
(periodisches Problem). Da eine direkte Losung des periodischen Pro-
blems nicht moglich erscheint, fithrt man es auf das Anfangswertpro-
blem zuriick. Man rechnet mit einer zweckmadssigen Anfangslage der
Welle die ganze Kraft-Periode durch und vergleicht die Endlage mit
der Anfangslage; wenn die beiden iibereinstimmen, ist die gesuchte
periodische Wellenbewegung gefunden. Im allgemeinen wird man die
Anfangslage mehrfach korrigieren und den Zyklus durchrechnen
miissen, bis sich die gesuchte periodische Losung einstellt. Man kann
auch den Kraftzyklus (ohne die erwihnte Anfangslagen-Korrektur)
so lange wiederholend durchrechnen, bis die Bewegungsbahn perio-
disch wird. Diese Methode ist jedoch weniger rasch, als wenn die An-
fangslage immer wieder korrigiert wird. Eine auf der vorliegenden
Abhandlung beruhende Berechnung der Wellenbewegung aus einer
gegebenen Kraft ist bereits durchgefiihrt und soll demnéchst ver-
offentlicht werden.

Anhang

17. Segmente mit Staurindern

Nachstehend wird die ndherungsweise Ausdehnung der vor-
liegenden Theorie auf Lager mit Randleisten behandelt. Es werden
heute zahlreiche Gleitlager verwendet, deren Lauffliche am Einlauf
der Segmente Taschen aufweisen (Bild 2.2). Der Schmierspalt ist des-
halb in Richtung der Wellenachse nicht konstant, wie dies in der vor-
liegenden Arbeit vorausgesetzt ist. Die zu beiden Seiten der einge-
arbeiteten Taschen vorstehenden Randleisten behindern den seitlichen
Abfluss und fithren zu einem «volleren» Druckberg; die axiale Druck-
verteilung nihert sich also derjenigen des «unendlich breiten», das
heisst seitlich abgesperrten Lagers. Damit erreicht man bei gegebener
Lagerbreite eine hohere Tragfihigkeit. Die axiale Breite der Rand-
leisten betrigt normalerweise nur wenige Prozent der Lagerbreite. Es
wird nachstehend ein Niherungsverfahren angegeben, nach welchem
ein Randleisten-Segment auf ein gleichwertiges Segment mit axial
konstantem Spalt umgerechnet werden kann.

Wie erwihnt, fithren Randleisten zu volleren axialen Druckpro-
filen. Dies kann in unserer Theorie durch Einfithren eines hoheren

%) Dies gilt unter der Voraussetzung, dass der Austritt des Schmier-
spaltes in eine Olzufuhrnute miindet. Wenn das nicht zutriflt (freier Ab-
lauf), betrigt Kot = Y, Kpi.

| (s
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Parabelexponenten m beriicksichtigt werden. Nach Abschnitt 4 ist m
vom Verhiltnis 2 abhingig (Gl.4.6). Es muss somit bei Randleisten-
Segmenten fiir die Berechnung von m eine fiktive Lagerbreite bentitzt
werden, die grosser ist als die tatsdchliche.

Wir betrachten das seitliche Ausstromen unter der Randleiste
eindimensional, das heisst wir vernachlissigen alle Anderungen in
Umfangsrichtung.

Ersetzt man nach Bild 17.1 die Randleistenbreite Br durch einen
fiktiven Spaltabschnitt von der Breite (Br + 4B) und der Spalthdhe /
so, dass bei gegebener Druckdifferenz 4p axial der gleiche Durchfluss

g- auftritt, so erhélt man als Bedingung
> 4 yi|
(17.1) o=tk 5 b AP
129 Bgr 129 Br + 4B

wobei ¢: der volumetrische Durchsatz pro Umfangs-Langeneinheit
des Spaltes bedeutet.
Daraus folgt fiir die fiktive Segmentverbreiterung 4B

h

1B = [(/ )3— 1J Br

Fiir ein Taschensegment geméss Bild 17.2 folgt als mittlere fiktive
Lagerverbreiterung 4B

(17.2)
r

PR
S A \ 3 fi
(17.3) A5 — B& (_” ) — 1| dp
D hr
PE

Das zur Berechnung von m nach Gleichung (4.5) massgebende Brei-
tenverhaltnis 2z betrdgt folglich

Brint
RD

B-+24B
RO

(17.4) Afike = -

und das Breitenverhéiltnis S hat den Wert

(17.5)

Brire =

Die Grossen 4B und damit auch m sind nur von der Geometrie
des Schmierspaltes abhiingig; jede Anderung der Wellenlage fiihrt zu

einer Verdnderung von 4B.

Die Berechnung von Randleisten-Segmenten hat beim vorliegen-
den Néherungsverfahren in nachstehender Weise zu geschehen:

Fiir die dimensionslose Druckverteilung und die Berechnung der
dimensionslosen resultierenden Wellenkraft (Sommerfeldzahl) werden
mund g gemdss Gleichung (17.4) und (17.5) gerechnet und das Lager
im iibrigen behandelt, wie wenn es von der Breite B und rand-
leistenlos wire, das heisst man rechnet bis an den Rand mit der Spalt-
form in der Mitte.

fiir die grossere Reibung unter den Seitenrdndern anbringt. Da die
Rinder schmal sind, kann man den axialen Druckverlauf iiber den
Rand nédherungsweise durch die Randtangente der Druckparabel er-
setzen (Bild 17.3).

Die Randneigung der Parabel p(z) betrigt nach Gleichung (13.2)

==

und der mittlere Druck iiber der Randleiste

2 mp
B

ap

\ 0z

(17.5) (

~

Pr = mp

Br

B

Wir setzen im folgenden voraus, dass die Druckentwicklung amx
Anfang des Segmentes, das heisst bei ¢g einsetzt. An der Gleichung
(12.24) ist somit fiir beide Rdander zusammen die additive Reibungs-
kraft-Korrektur

(17.6)

(/ZR
1 &
(17.7) OPp — 7_[[(* APR ‘n nw )
2 op IRV /
VE
1 ép .
- ( L )12)] 2 Br Rdyp
2 op /.

anzubringen. Diese Korrekturgrosse kann entsprechend Gleichung
(12.25) dimensionslos dargestellt werden, und man erhélt

PR
; 1 1)
(17.8) 6F = — v Ba (7 = f) dop
J N\ %
([',.“

V/H
3
m fr -5 @
— —— |y % — (z,. — x) dp
2 op :
PE

ﬁ definiert ist.
B

wobei als relative Randbreite fr

Schliesslich ist noch anzugeben, wie der Oldurchsatz von Rand-
leisten-Segmenten zu rechnen ist. Hier konnen die Beziehungen fiir
Krund K4 aus Abschnitt 13 unverdndert iibernommen werden, wobei
die Seitenausflusszahl Kz mit der wirklichen Spalthohe am Rand zu
rechnen ist. Bei der Einstromzahl Kz bzw. K'g ist eine Anpassung vor-
zunehmen, da der Einstromquerschnitt durch die Randleisten ver-
mindert wird. Wir berechnen die Durchflussinderung wie bei der
Reibung durch ein additives Korrekturglied 0Kz, das mit den gleichen
vereinfachenden Voraussetzungen berechnet wird wie die Reibungs-
korrektur.

Die Durchflusskorrektur betrdgt (vgl. Gleichung (13.7) fiir beide

Réander
Fiir die Reibungsberechnung hingegen ist mit der effektiven Spalt- o3 apr
hohenverteilung zu rechnen. Man kann von Gleichung (12.24) aus- (17.11) 00 = lRmhmc — ﬁ ( %0 ) Br
gehen und die auftretenden Integrale gemadss der tatsichlichen Spalt- " & E-S )
form ausrechnen. Das Problem wird etwas einfacher, wenn man von R i = /’Lj (?ER ) Br
der Reibung fiir axial konstanten Spalt ausgeht und eine Korrektur ’ 6nR \ 99 JE l
B
h L Br 46 N\
v N ‘ a8
. ANNNANARANRAN z iB Tangente
ﬁ s 1
—
e §
A Er Pr
P Xe =R, Xg =R Xa=R
\\ —(3———J e-—E-—-ﬂ/—R‘——-‘PR—(/ A—wnbx 2
N | Ersatzspall Bp
4p \\ % B/2 @
N 7 7
> L=Rlps-pe)=R @ ) L
== - - —
Rand/eiste
Bild 17.1. Geometrie und Druckverteilung eines Bild 17.2.  Zur Definition der fiktiven Seg- Bild 17.3. Naherungsberechnung der

Segmentes mit Staurand
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Wir setzen pr aus Gleichung (17.6) ein und gehen auf dimensionslose
Grossen iiber:

0Kz = Br B [;i Br (15 T pp ) (%{;})F_

-2 (_'xE o zm>]

Die Neigung der Drucktangente ist nach Gleichung (13.11) zu be-
rechnen.

Die Korrekturgrosse 0Kz ist zu Kz aus Gleichung (13.9) zu ad-
dieren. Die Gleichung (17.12) ist sinngeméss anzupassen, wenn die
Druckzone im Segmentinnern mit verschwindender Druckneigung
beginnt. In vielen Fillen sind die Korrekturen 6Kr und vor allem
deren erstes Glied vernachlédssigbar klein.

(17.12)

Adresse des Verfassers: Prof. Dr. H. H. Ott, Institut fir Grundlagen
der Maschinenkonstruktion der ETH, Leonhardstrasse 33, 8006 Ziirich.
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Gleitlagerberechnungen. VDI-

kniipfungselemente (UND- und ODER-Tore, und Inverter) und
Kippstufen (binire Speicherelemente und Impulsformer). Die Bau-
elemente sind Halbleiterdioden und Transistoren, deren wesent-
liche Eigenschaften kurz angefiihrt werden. Darauf folgt eine
iibersichtliche und vergleichende Beschreibung der wichtigen
Techniken, mittels welcher die Dioden und Transistoren zu Schalt-
elementen verkniipft werden: DTL (Dioden-Transistor-Logik),
DCTL (Direkt gekoppelte Transistor-Logik), TTL (Transistor-
Transistor-Logik) und andere mehr. Auch magnetische Elemente
werden angefiihrt als Bausteine fiir logische Netzwerke, doch liegt
berechtigterweise die Betonung in ihrer Anwendung als Speicher-
elemente. Ringkerne, Diinnschichtelemente und Biax-Speicher-
kerne werden behandelt. Die verschiedenen Anordnungstechniken
von Magnetkernen (Zwei- und Mehrdrahttechnik) in Gross-
speichern werden erldutert und verglichen.

Ein eigenes, gemessen an ihrer heutigen Bedeutung in der
Technik etwas umfangreich ausgefallenes Kapitel ist den pneu-
matischen Schaltelementen gewidmet. Es wird dabei klar unter-
schieden zwischen «statischen» Elementen, welche mechanisch
bewegliche Teile enthalten wie Schieber, Kugeln oder Membranen,
und «dynamischen» Elementen, welche auf physikalischen Eigen-
schaften und Effekten von Fluidstrahlen beruhen.

Das Taschenbuch bildet eine willkommene und notwendige
Erginzung zu «Digitaltechnik I». Die beiden Binde eignen sich
bestens als Grundlage eines einfithrenden Kurses in die (elektro-
nische) Digitaltechnik. Prof. N. Wirth, ETH Ziirich

Die Montagebauarten des Wohnungsbaues in Beton. Von
K. Berndt. 284 S. mit rund 600 Photos. Grundrissen und Detail-
zeichnungen. Wiesbaden 1969, Bauverlag G.m.b.H. Preis 62 DM.

Der Verfasser legt eine umfangreiche und nahezu vollstindige
Dokumentation der auf dem mitteleuropdaischen Markt fiir den
Wohnungsbau angebotenen Montagebauarten in Beton vor. Die
einzelnen Verfahren werden durch Knotendetails, Grundrisse ge-
bauter Beispiele, Isometrien und teilweise auch durch den Nach-
weis der Einbindung der sanitiren Installation vorgestellt. Eine
Beschreibung der Bauarten erginzt die Dokumentation.

Die vom Verfasser gewihlte alphabetische Katalogisierung
der Bauarten nach dem Namen der Hersteller bzw. Lizenzgeber
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