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numerischen Iterationsverfahren, das sich fiir die Berechnung
mittels elektronischer Rechenmaschine gut eignet. Die dazu
bendtigten Algorithmen wurden angegeben. Fir die Berech-
nung der geometrischen Gréssen wurde ein mathematisches
Modell entwickelt, das auch komplizierte geometrische
Konfigurationen des Gerinnes zu erfassen und die bendtigten
Grossen an jedem Punkt zu bestimmen gestattet. Aufgrund
dieser Angaben wurde in der VAWE ein Computer-Pro-
gramm in Algol geschrieben und getestet. Die Resultate sind
auch bei extremen geometrischen Verhéltnissen befriedigend
und sollen in einer weiteren Mitteilung der VAWE be-
kanntgegeben werden.

Die Berechnung der Anfangscharakteristiken lduft auf die
Berechnung einer stationdren, ungleichférmigen Stromung
hinaus (Stau- oder Senkungskurve). Die Differentialgleichung
dieser Stromung liess sich aus den Gleichungen der instatio-
niren Stromung ableiten. Die numerische Integration dieser
Gleichung erfolgte nach einem einfachen Tterationsverfahren,
dhnlich demjenigen, das bei der Berechnung der Charakteristi-
ken angewandt wurde. Die Konvergenz dieses Verfahrens ist
befriedigend.

Abschliessend soll Prof. G. Schnitter fiir die Unterstiitzung,
die er diesen Untersuchungen gewihrte, an dieser Stelle ge-
dankt werden. Der grosste Teil der Programmierungsarbeit
wurde von L. Papp geleistet, dessen Konnen und Geduld
wesentlich zum erfolgreichen Abschluss beigetragen hat. Den
Mitarbeitern an der VAWE, A. Chervet und P. Dalléves,
dipl. Ing. ETH, danke ich fiir ihre wertvollen Anregungen und
fiir die kritische Durchsicht des Manuskripts.
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Calcul de I'onde de submersion consécutive a la rupture d’un barrage

Premiére partie: la méthode de calcul

DK 532.593:627.511

Par A. Chervet et P. Dalléves, Ingénieurs aux Laboratoires de Recherches Hydrauliques (VAWE), Zurich

1. Introduction

La méthode développée a la VAWE pour le calcul des
ondes de submersion consécutives a la rupture d’un ouvrage
de retenue est basée sur la méthode générale de calcul des
écoulements instationnaires décrite dans I"article de Th. Dracos
[1]. Voir références bibliographiques p. 432.

b) Rupture sur tirant d’eau initial

a) Rupture sur fond aval sec

Fig. 1. Rupture d'un écran de retenue
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Le phénoméne des ondes de submersion présentait un
double intérét: — intérét théorique, car il représente un cas
extréme d’écoulement instationnaire, le débit et la hauteur y
passant en un temps trés court de z€ro a une valeur élevée. 11
sagissait donc de contrdler si la théorie des écoulements gra-
duellements variés y était encore valable (voir [2], p. 22). La
topographie trés accidentée de la plupart des vallées de type
alpestre fournissait en outre la possibilité de tester la qualité du
modéle mathématique choisi, dans lequel I'écoulement est
réduit a un écoulement & une dimension; — intérét pratique
aussi, car méme si de telles catastrophes paraissent exclues
chez nous en temps de paix, les exemples de Vaiont et de Mal-
passet prouvent la nécessité d'une étude relative aux ondes de
déferlement.

7. Mai 1970
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Fig. 2.

Mascaret sur le Tsieng-Tang. Photo tirée de H. Thorade [7]

Des études similaires ont été entreprises dans plusieurs
pays; en Suisse, ol le probléme est étudi¢ depuis de nom-
breuses années par I'Office Fédéral de 1'Economie Hydrau-
lique en collaboration avec la VAWE, on se contentait jusqu’a
une époque récente d’une méthode simplifiée qui présente
malheureusement de sérieuses lacunes [3]. Il s’est donc avéré
nécessaire de développer une nouvelle méthode de calcul plus
précise et adaptée aux possibilités actuelles des ordinateurs, ce
qui a été rendu possible grice a I'appui constant de I’Office
Fédéral de ’Economie Hydraulique.

Cette méthode est basée sur les équations différentielles
de Saint-Venant intégrées par la méthode des caractéristiques.
Des solutions originales ont été développées pour traiter cer-
tains problémes spécifiques aux ondes de submersion consécu-
tives au lacher brusque d’une retenue, tels que la propagation
du front de I'onde sur fond sec, I'initialisation de la vague a
I’instant de la rupture, et la formation ou la disparition de
discontinuités dans le corps de 1'onde. Par contre, les pro-
blémes relatifs a I’érosion et au charriage provoqués par de
telles ondes n’ont pas été abordés.

2. Description physique du phénoméne

Au moment de I’effacement total ou partiel d’un écran de
retenue, I’eau accumulée se met en mouvement et s’écoule a
travers la bréche ainsi formée. Des essais de Dressler [4], Vol-
koff [5] et Cavaillé [6] ont montré qu’il se produit a I'instant
de la rupture une rotation de la paroi d’eau au droit du bar-
rage, avec formation:

— al’amont, d’une onde négative qui se propage dans la retenue
avec une célérité dépendant de la topographie et assure la

N Retenue

Paroi verticale

Origine

Fig. 3. Réseau des caractéristiques dans le plan x, ¢
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Fig. 4. Mascaret ] - 2

vidange d’un volume d’eau égal a celui écoulé vers I'aval (fig.
1); lextrémité amont de ’onde négative représente la limite
de la zone perturbée dans la retenue;

— a l'aval, d’une onde positive qui se propage, soit sur fond
sec, avec un front a forte courbure (fig. 1a), soit sur un tirant
d’eau initial (fig. 1b) en formant un mascaret de pointe iden-
tique & celui qui peut se former dans un estuaire sous I’action
de la marée montante (fig. 2).

En général, I’écoulement dans la retenue est de type flu-
vial; la section d’écoulement critique se trouve a I'instant ini-
tial & ’emplacement du barrage, et & I’aval, le régime, initiale-
ment torrentiel, dépend ensuite des conditions topographiques;
les changements de sections créent, outre des pertes de charge
singuliéres, des variations de hauteur brusques pouvant con-
duire a la formation d’ondes de choc ou mascarets.

Dans le cas d’une vallée quelconque, I’écoulement sera
donc tridimensionnel, mais avec une prédominance trés mar-
quée de la composante de vitesse dans la direction de I’axe de
la vallée.

3. Le réseau des caractéristiques

L’allure générale d’un réseau de caractéristiques dans le
plan (x, ¢) pour le cas de la vidange brusque d’une retenue est

Déclarations

Définition des constantes,
lecture des données nécessaires au calcul,
topographie, hauteur d eau initiale, etc.

l

Initialisation : rupture sur

fond aval i firont d'equ
sec i initial @ l'oval
N N I‘l
! ' ;
Appel d'une des procédures calculant les

conditions initiales ou aux limites:
onde de dépression réflexion contre autres conditions
dans la retenue i une paroi verficale h(), Q(f) imposé

4 Injection
d o point Appel d'un
supp e
sous - programme
ou Appel des sous - programmes calculant prog

calculant les

les points intérieurs le long d'une =D disconfinuités

suppression =

v B g .
d'un point caracteristique y du type onde de
superflu choc.
4 dans le réseau
calculé

Calcul des conditions @ la limite aval
front sur fond front sur tirant
sec d'eau initial

Calcul de grandeurs hydrauliques par
interpolation entre les points du reseau
Détermination de la zone inondee

Pour chaque T

caractéristique y * J{

Impression des données et de
tous les résultats.

Fin du programme

Fig. 5. Organigramme du programme principal de calcul des ondes
de submersion
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Profil en long en t=t,

d Mascaret

i1 2

Amont Domaine Zone d'écoulement Aval
non penurbé de l'onde centrée quasi- permanent non perturbe

Fig. 6. Solution de Stoker

donnée par la figure 3. Les points intérieurs du réseau ont a
satisfaire au systeme d’équations des caractéristiques:

d.
1) Tj =u+ec
@B
Q) du +gledh = |g(i—iy) F = 2 | ar
: B ox

Ces équations ainsi que 1’algorithme utilisé pour leur réso-
lution ont été amplement traités dans [1].

La famille des caractéristiques y *, définies par leur célérité
dx|dt = u + ¢, transmet les informations vers ’avant de I’écou-
lement, la famille des y-, avec dx/dt = u — ¢, apporte vers
P’arriére les informations de I’aval.

L’origine de I’expansion de ’onde est donnée par I'instant
de la rupture (7 = 0) et 'emplacement du barrage (x = 0).
Par la suite, 'onde négative s’étend dans la retenue, 1’onde
positive vers 1'aval, délimitant une zone perturbée qui s’étend,
prenant la forme d’un éventail; c’est pourquoi on parle, dans
ce cas, d’onde centrée. Le point d’ou partent, a I’instant initial,
toutes les y~ représente également la y* initiale dégénérée en
ce point.

La figure 3 montre également de fagon schématique la
réflexion de I'onde négative contre une paroi verticale a partir
du moment ou la limite amont de I'onde atteint cette paroi.

On voit aussi se former un choc, ou discontinuité de
I’écoulement, a I’intersection de deux caractéristiques d’une
méme famille (ici, par exemple, ), et dont la trajectoire dans
le plan (x, 7) forme une discontinuité du réseau. En écoulement
permanent, il s’agirait d’un ressaut hydraulique stationnaire
dont la trajectoire dans le plan (x, 7) serait verticale.

Le mascaret doit obéir aux équations classiques de la
quantité de mouvement et de la continuité en mouvement re-
latif:

(3) Continuité: F, (uy, —w) = F, (uy— w)

422

Fig.7. Réseau des caractéris-
tiques dans la zone frontale

Zone de maillage resserré =

“~—Trongon calculé specialement
a l'cide des équations (8) et(9)

Quantité de
mouvement:

4) Fy(uy—w)? —F, (u, — w)* = g (S, —S))

Dans ces formules, S représente la résultante horizontale
des forces de pression sur la surface F, et w la vitesse absolue
du mascaret (fig. 4). Le traitement des conditions initiales et
aux limites sera développé au chapitre suivant.

Enfin, la fig. 3 montre des caractéristiques qui sont inter-
rompues, d’autres qui débutent a Iintérieur du réseau: il
s’agit du réglage automatique de la densité du réseau, dont il
sera question dans un chapitre ultérieur. L’organigramme
simplifié, fig. 5, montre de quelle facon est ordonné le calcul

général des ondes de submersion.

4. Conditions initiales et aux limites
a) Initialisation du probléme de la rupture sur fond sec

Comme il a été mentionné au chapitre 3, ’origine du plan
(x, 1) est un point singulier représentant I'instant de la rupture
et n’est rien d’autre qu'une caractéristique y+ dégénérée en ce
point. Ce faisant, on admet comme hypothése simplificatrice
que la rupture est instantanée; cependant, I’étude théorique et
expérimentale de J. Estrade [8] a montré que I’'erreur commise
en négligeant une certaine durée de rupture est faible. Pour le
point de rupture, I’équation de la y*+ peut s’écrire, avec dt = 0:

du -+ £ dh = 0,
(.

d’ou I'on tire par intégration:
S) uh) =

L’intégration pour des valeurs choisies de / est effectuée
numériquement d’aprés Romberg; les couples de valeurs ¢ (/)
et u (h) donnent la direction de départ de toutes les caractéris-
tiques y~ issues de I'origine. La solution qui vient d’étre es-
quissée constitue, pour une bréche quelconque, une générali-
sation de la «solution de Ritter» décrite par de G. de Marchi [9]
pour le profil rectangulaire.

En abordant ainsi le probleme de la rupture, on néglige la
mise en vitesse de I’eau ainsi que la composante verticale de la
vitesse. Des calculs plus précis, mais beaucoup plus complexes,
effectués par F. V. Pohle [10] et au Laboratoire Scientifique de
Los Alamos [11], tenant compte de ces facteurs, ont fournis
des résultats plus conformes a la réalité pour des temps petits,
mais qui font apparaitre néanmoins la solution de Ritter comme
une base valable pour initialiser le probléme.

b) Initialisation du probléme de la rupture sur tirant d’eau initial
Dans le cas ou la rupture se produit sur un tirant d’eau
initial, par exemple la rupture d’un ouvrage au fil de ’eau, il
se forme, a la limite aval de I'onde, un mascaret (voir fig. 6).
Des équations (3) et (4) ont peut tirer «, en fonction de A

et des grandeurs initiales et connues de I'aval:
Schweizerische Bauzeitung -
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/ & [S,— S: (W] [F, — F, (]
F, - F; (W)

(6) u, (h) = u, + ]/

La solution du probléme d’aprés J. J. Stoker [12] consiste
a adopter la solution de I’écoulement sur fond sec jusqu’a la
hauteur pour laquelle la formule (6) donne une valeur identique
3 celle de la formule (5). Cette hauteur est alors la hauteur du
mascaret qui se propage vers I’aval a la vitesse:

g (S, i S,)
F, (u, — u,)

@) w=u +

Les essais de Y. Cavaillé [6] ainsi que ceux réalisés par la
VAWE ont bien confirmé cette théorie.

¢) Calcul de la propagation du front sur fond sec

La trajectoire du front de I’onde positive se propageant
sur fond sec représente la limite aval du domaine de calcul a
1’aide des caractéristiques. Cette limite, définie par # = 0 au
front, ne peut étre déterminée a 'aide d’intersections de carac-
téristiques y* et y~ car, & proximité du front, les deux familles
de caractéristiques ont la méme pente (dx/df)* = (dx/dt)~ = up
et sont tangentielles a la trajectoire du front. Cette derniére
n’est pas une caractéristique, mais une enveloppe du réseau
des caractéristiques dans le plan (x, 7).

Les y+ rejoignent le front tangentiellement, donnant nais-
sance a des ¥~ qui s’en écartent ensuite. Le front ne peut donc
étre rejoint que long d’une y+. Des solutions théoriques ont été
fournies par G. B. Whitham [13] et par R. F. Dressler [14] pour
la propagation du front sur fond sec dans un cas trés simplifi€.
E. R. Tinney et D. Basset [15] et C. Montuori [16], considérant
le probléme de I'introduction d’un débit constant dans un ca-
nal vide, ont constaté expérimentalement la faible variation de
la vitesse dans la région frontale, propriété qu’ils ont utilisée
ensuite dans leurs calculs.

La méthode adoptée ici se rapproche de celle de J. Faure
et N. Nahas [17], o le front est rejoint uniquement le long des
y*. Les valeurs xr et 7 peuvent se calculer comme intersection
de la trajectoire du front et de la ¢+, ’équation (2) permettant
alors de calculer la variation de u.

A cause de la trés forte variation de la hauteur a proximité
du front, avec une valeur infinie de i en ce point, on a di ré-
soudre le systéme d’équations de la facon suivante:
gardant d’abord la vitesse constante, on intégre par petits pas
les équations (8) et (9) tirées de (1) et (2):

o

(uy + ©) ‘”’,

. . Uy C 4B\
cli—ir— —=
YT gB ex

© tr = . -

8 xr=

On controle ensuite si le point du front remplit I'équation de la
trajectoire du front

(10) (dx ) ur
dt ) g

Si ce n’est pas le cas, on répartit la différence des vitesses le
long de la ¢+ de 'on recommence I'intégration de (8) et (9)
jusqu’a obtention de la précision requise.

7. Mai 1970
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Calcul du mascaret

Fig. 8.

Fig. 9.
courant

Choc: calcul du point

Comme le montre la fig. (7), le passage de la région fron-
tale de la caractéristique y+, calculée spécialement, a la zone
de maillage calculé normalement s’effectue a I’aide d’un réseau
resserré a cause des fortes variations de la hauteur. Le point de
départ des y- se situe un peu en arriére du front, car le calcul
avec des valeurs initiales & partir du front est impossible, du
fait que le terme de frottement y est infini.

d) Propagation du mascaret de pointe sur un tirant d’eau connu

Aprés une rupture sur tirant d’eau aval connu, la limite
aval de ’onde positive se propage en tant que mascaret. Con-
trairement au front sur fond sec, le mascaret est un phénomene
bien connu; parmi les différentes méthodes développées pour
calculer le mascaret, citons entre autres:

— A. Preissmann [18], qui utilise un terme de pertes de charge,
la «pseudo-viscosité», notion introduite en dynamique des gaz
par R. von Neumann et R. D. Richtmyer [19].

— 0. F. Vasiliev [20], qui a recours a une méthode implicite cal-
culant I’écoulement sans isoler spécialement le mascaret.

— Enfin A. Craya [21], qui isole le mascaret et le traite comme
singularité mobile de I’écoulement dont les lois sont données
avec exactitude par les équations (3) et (4).

Cette derniére méthode est la plus satisfaisante du point
de vue théorique, et c’est celle qui a été adoptée ici.

La fig. 8 montre de quelle maniére est calculé le point du
mascaret: pour calculer les 5 grandeurs inconnues au point P
(x, 1, u, h, w), on dispose également de 5 équations, a savoir des
deux équations (1) et (2) de la y*, des deux équations du masca-
ret (3) et (4), et de I'’équation définissant la trajectoire du mas-
caret

(11)

Le mascaret, tel qu’il est décrit ici, est une schématisation
du phénomeéne réel: celui-ci en effet ne saurait se propager
comme une paroi verticale d’eau et en outre il est accompagné,
dans la plupart des cas, d’ondulations secondaires, dues aux
vitesses verticales. H. Favre [2] a montré cependant que ces
derniéres sont peu importantes pour de forts mascarets.

Fig. 10. Le réseau des carac-
téristiques dans la région d'une
section critique
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e) Formation et propagation de chocs

11 peut arriver au cours du calcul que deux caractéristiques
d’une méme famille se croisent : ceci signifie qu’a I’emplacement
du croisement, il y a deux vitesses et deux hauteurs différentes.
1l s’agit de la formation d’un choc ou mascaret qui se traduit
dans le réseau des caractéristiques par une discontinuité.

On assiste ensuite au développement du ressaut et a son
cheminement. La trajectoire du mascaret est identique aux
trajectoires des caractéristiques des deux domaines qu’il sépare,
lorsqu’il est faible, et s’en écarte ensuite d’autant plus lorsque
il est fort et que les caractéristiques coupent sa trajectoire sous
un grand angle.

Contrairement a I’écoulement permanent, ou le ressaut
sépare une région d’écoulement torrentiel d’une région tran-
quille, le mascaret en écoulement instationnaire peut aussi sé-
parer deux domaines de méme régime d’écoulement.

La fig. (9) montre quelle est la technique choisie pour le
calcul des grandeurs juste a 'amont et juste a I’aval du choc,
c’est-a-dire, des points inconnus 3 et 4 partir des points connus
0,1, 2, Set 6. La position des points 3 et 4 se détermine comme
intersection de la caractéristique 1-3 avec la trajectoire du mas-
caret. Pour obtenir des valeurs plus exactes en 3 et 4, on intro-
duit les caractéristiques auxiliaires 3-20 et 4-56 qui vont cher-
cher par interpolation des valeurs sur la y* précédente. Le point
20 est obtenu comme intersection de 3-20 et 0-2, les valeurs
iy et h,, par interpolation entre les points 0 et 2; les équations
(2) pour les caractéristiques 1-3 et 20-3 permettent ensuite de
déterminer /; et u,; le point 56 se calcule de la méme fagon que
le point 20; enfin, les deux équations du choc (3) et (4) ainsi
que I’équation (2) pour la caractéristique 56-4 permettent de
calculer les inconnues 4,, u, et w,,. Des techniques similaires
sont appliquées pour calculer le point de réflexion d’un choc
contre une paroi verticale, le recouvrement et le croisement de
deux chocs.

Les résultats du calcul exposé ici sont, aux ondulations
secondaires prés, bien confirmés par les essais. L’instant de
formation du mascaret, par contre, dépend de la densité du
réseau et sera en général décelé un peu trop tard; mais ceci a
peu d’importance pratique, le mascaret étant petit & ses débuts.

5. Problémes numériques

Tous les calculs exposés dans ce qui précéde consistant en
I'intégration numérique d’équations différentielles, il faut pren-
dre soin de faire des pas assez petits pour garantir une précision
suffisante, tout en tichant de réduire au maximum le temps de
calcul. Les questions de convergence jouent ici un role de pre-
mier plan.

a) Contréle de la densité du réseau

On sait que I'avantage principal de I’intégration le long
des courbes caractéristiques par rapport au calcul sur la base
d’un maillage fixe est la stabilité inconditionnelle du systéme.
Le défaut, parfois cité, d’une densité irréguliére et non con-
trolable du réseau a été évité de la fagon suivante: un critére
adimensionnel de la forme

(12)  (Ax Au) < const. H l/ﬁl

ou H représente une hauteur de référence et Ax resp. Auw re-
présentent les variations de la distance et de la vitesse entre
deux points voisins du réseau calculé, permet a ’ordinateur de
décider s’il y a lieu de remettre ou de supprimer des courbes
caractéristiques. Au cas ou des caractéristiques supplémen-
taires doivent étre introduites, I’abscisse x du point de départ
de la caractéristique interpolée étant fixée, la grandeur u est
interpolée quadratiquement et les deux autres grandeurs in-
connues / et ¢t doivent alors satisfaire aux deux équations dé-
terminant les caractéristiques d’une famille.
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Cette possibilité de remettre et de supprimer des caracté-
ristiques selon les besoins permet de surmonter des difficultés
produites par la géométrie du canal lorsque les variations sont
assez brusques. Par exemple, le calcul de 1’écoulement a travers
une section critique (fig. 10) s’effectue sans I'imprécision due
a l'agrandissement exagéré des mailles du réseau en cet endroit;
par contre, pour économiser le temps de calcul, la machine
supprime d’elle-méme des caractéristiques dans les domaines
de faibles variations.

b) Accélération de la convergence du calcul numérique

L’intégration numérique des équations différentielles des
caractéristiques s’effectue point par point, chaque nouveau
point étant déterminé a partir des précédents a 1’aide des va-
leurs initiales; lorsqu’une premiére valeur approchée du point
cherché est ainsi obtenue, on peut alors former des valeurs
moyennes qui permettent d’obtenir une valeur plus précise du
point cherché, et ainsi de suite, jusqu’a ’obtention de la pré-
cision désirée.

Il est évident que, pour I'ordinateur, le temps de calcul
d’un point est directement proportionnel au nombre d’itéra-
tions effectuées. Le nombre d’itérations dépend de la précision
recherchée, et des coefficients des équations, qui sont eux-
mémes fonctions des variables du calcul. La précision obtenue
est contrélée apreés chaque itération a I’aide des critéres:

(13)  hi—hiqg < 10-5-H etu—uy < 10-%-|/[gH
ou A, uj et hi_y, ui_; représentent les valeurs de la derniére resp.
de l’avant-derniére itération et H représente une hauteur de
référence. Si ces critéres sont remplis, on interrompt le calcul,
sinon on passe a I’itération suivante.

L’influence des coefficients variables des équations sur la
convergence numérique est difficile a évaluer; on a pu cepen-
dant constater que certaines situations topographiques ou
hydrauliques, telles que des élargissements brusques de section
ou des écoulements quasi-uniformes (/ = i), avaient pour effet
de ralentir énormément la convergence des équations, et né-
cessitaient alors jusqu’a 100 itérations ou plus.

Le procédé suivant a permis de réduire de fagon impor-
tante le nombre d’itérations (jusqu’a 4 en moyenne): on admet
que les valeurs des itérations successives se comportent comme
les termes d’une suite géométrique convergente, dont la limite
représente la solution cherchée. A I'aide des trois premieres
itérations on peut déja déterminer cette valeur limite. Partant
de cette derniére valeur on continue la calcul par itération
jusqu’a ce que les critéres (12) soient remplis entre les valeurs
de deux itérations successives. De plus aprés chaque cycle de
trois itérations on calculera a nouveau la limite de la suite géo-
métrique ainsi formée. Dans la plupart des cas, la précision
recherchée est obtenue aprés un seul cycle de trois itérations.

6. Conclusion

Le programme de calcul d’ondes de submersion par la
méthode des caractéristiques a été testé¢ dans de nombreux cas
aussi bien en nature, tel que Malpasset, qu’en canal d’essai, ou
I’on avait la possibilité de réaliser des cas extrémes. Quelques
comparaisons entre mesures et calcul feront I'objet d’'un pro-
chain article.

Tel qu’il est, le programme de calcul se laisse aisément
adapter au traitement d’autres problémes concernant des
¢écoulements instationnaires, tels que la propagation de crues,
I'influence des marées dans les estuaires, les ondes de trans-
lation provoquées dans les canaux d’usines par des maneuvres
de vannes, etc.... Il suffirait pour cela introduire les conditions
initiales et aux limites correspondantes.
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