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Wie jeder wahre Lehrer wirkt auch Professor Gerold Schnitter im Werk seiner Scmler weiter. Da der

allgemein beliebte Dozent, über dessen Rücktritt vom Lehramt wir in H. 13, S. 306 dieses Jahrgangs

berichtet haben, den Lesern unserer Bauzeitung mit so grosser Treue gedient hat, wollen ihm seine

ehemaligen Mitarbeiter auch auf diesem Gebiete nicht nachstehen. Sie haben sich vorgenommen, dem

scheidenden Direktor der VAWE im Laufe dieses Sommers eine Anzahl von Arbeiten zu widmen,

von denen die ersten heute erscheinen. Möge Professor Schnitter diese Studien aufnehmen wie sie

gemeint sind: als Zeichen der Dankbarkeit und der Verpflichtung, auf dem von ihm eingeschlagenen

Weg weiter zu schreiten. Die Redaktion

Die Berechnung
Geometrie
Von Prof. Dr. Th. Dracos, Zürich

nstationärer Abflüsse in offenen Gerinnen beliebiger
DK 532.593:627.511

Vorwort
Seit ihrer Gründung hat sich die Versuchsanstalt für

Wasserbau und Erdbau (VAWE) immer wieder mit den Problemen
der instationären Strömungen befasst: es sei hier nur an das

grundlegende Werk von Prof. H. Favre erinnert: «Ondes de

translation dans les canaux decouverts». Von besonderer
praktischer Bedeutung für die Schweiz ist in der Nachkriegszeit,
mit dem Bau zahlreicher Staumauern in unseren Alpen, das

Flutwellenproblem als Folge eines hypothetischen Talsperrenbruches

aufgetreten.
In einer Folge von zwei Aufsätzen sollen hier die Ergebnisse

einer mehrjährigen Forschungstätigkeit der VAWE auf
dem Gebiete der instationären Abflüsse im wesentlichen
dargelegt werden. Dabei sei allen Bundesstellen, die uns grosszügig

bei dieser Arbeit unterstützt haben, bestens gedankt.
Der erste Aufsatz behandelt die Theorie der instationären

Abflüsse und entwickelt die für eine numerische Behandlung
geeigneten Algorithmen. Er gibt ferner an, auf welche Art eine

beliebige natürliche Topographie in der Berechnung berücksichtigt

wird. Der zweite Aufsatz besteht aus zwei Teilen. Davon

bringt der erste eine Anwendung dieser Theorie auf den
besonderen Fall des Flutwellenproblems, wie auch die speziell
dazu entwickelten Lösungen. Im zweiten Teil zeigen Ergebnisse
der Rechnung, verglichen mit Messungen, den Anwendungsbereich

und die Genauigkeit der Methode. Sogar bei der
Nachrechnung der Flutwelle von Malpasset stimmen die Ergebnisse
genügend gut überein.

Das beschriebene Rechenverfahren findet aber nicht nur
Anwendung im Flutwellenproblem, sondern auch bei anderen
nichtstationären Abflüssen, wie zum Beispiel Hochwasserwellen,

Wehrreguüerungetyusw. Diese Berechnungen, die alle
erst durch die Entwicklung schneller Rechenautomaten möglich

wurden, beweisen die eminente praktische Bedeutung der
modernen Rechenmittel in der Hydraulik, wie übrigens für
alle Gebiete des Bauwesens. Prof. G. Schnitter

1. Einleitung
Der Abfluss in einem offenen Gerinne bleibt selten über

längere Perioden unverändert. Natürliche Ereignisse, menschliche

Eingriffe oder aussergewöhnliche Vorgänge, wie man sie

in der letzten Zeit bei den Katastrophen von Malpasset und
Vajont erlebte, führen zu mehr oder weniger starken zeitlichen
Abflussänderungen. Die grosse Bedeutung der instationären
Abflüsse wurde schon früh erkannt. Die mathematische
Formulierung der Fortpflanzung langer Wellen in offenen
Gerinnen erfolgte Ende des vergangenen Jahrhunderts durch
B. de Saint-Venant [1] und kurz danach gab /. Massau [2]
eine graphische Lösung dieses Problems nach der Methode der
Charakteristiken. Eine Anwendung dieser Theorien zur Lösung
komplizierter instationärer Vorgänge in Gerinnen mit beliebigen

Querschnitten wurde aber erst durch die Entwicklung
schneller digitaler Rechenmaschinen möglich. Man hat dabei
verschiedene numerische Methoden angewandt. Eine kritische
Bewertung dieser Methoden findet man in den Veröffentlichungen

von /. Nougaro u. a. [3], /. A. Liggett u. a. [4] und
A. Daubert u. a. [5]. Im vorliegenden Aufsatz wird die Methode
beschrieben, die in der Versuchsanstalt für Wasserbau und
Erdbau an der ETH Zürich (VAWE) zur Behandlung in-
stationärer Abflüsse angewandt wurde. Bei der Wahl dieser

Methode war ihre Eignung für die Berechnung der
Fortpflanzung von Flutwellen sowie von Diskontinuitäten, das

heisst Schockwellen, ausschlaggebend.

2. Grundgleichungen

Wie schon einleitend erwähnt, hat de Saint-Venant die

unter seinem Namen bekannten Gleichungen aufgestellt. Ihre
Ableitung beruht auf der Annahme, dass der Abfluss eindi¬

mensional mit parallelen Stromfäden erfolge. Diese Annahme
wird erfüllt, wenn die Krümmung der freien Oberfläche klein
gegenüber der Abflusstiefe und das Gerinne gestreckt ist. Die
Druckverteilung über Querschnitte senkrecht zur Strömungsrichtung

ist wegen der angenommenen Parallelität der Stromfäden

hydrostatisch. Die unter diesen Bedingungen
aufgestellten Gleichungen lauten:

(1)
8u 8hdu

u \-g-
8t 8x 8x

g(Je /,) +—(« — •ucosß) 0
F

8F 8F 8u
(2) -—+U-—+F- <?=0

8t 8x 8x

1

8?' P

Z X

3X

(b)a

(c)

Bild I. Definition der massgebenden Grössen der Gerinnegeometrie und
der Strömungsparameter, a) Längsschnitt, b) Querprofil, c) Aufsicht..
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Die erste dieser Gleichungen, die Bewegungsgleichung,
wird aus dem Impulssatz und die zweite, die Kontinuitätsgleichung,

aus dem Satz von der Erhaltung der Masse unter
Berücksichtigung der Inkompressibüität des Wassers abgeleitet

[6], [7]. Entsprechend den in den Bildern 1 (a), (b) und (c)

eingeführten Bezeichnungen bedeuten darin u die mittlere
Geschwindigkeit zur Zeit t im Querschnitt an der Stelle x des

Gerinnes mit der Definition u — Q/F, wobei Q der momentane
Durchfluss und F die benetzte Fläche des betrachteten
Querschnittes sind, h die Wassertiefe, Je das Energieliniengefälle,
Js das Sohlengefälle im Talweg des Gerinnes, q einen zeitlich
konstant bleibenden, seitlichen Zufluss pro Längeneinheit,

v die Geschwindigkeit des zufliessenden Wassers und ß den

Winkel, den die Richtung des zufliessenden Wassers mit der

Fliessrichtung im Gerinne bildet. Es ist dabei zu beachten,
dass F eine Funktion von h und x ist, wobei h von x und t
abhängt, mathematisch ausgedrückt:

(3) F(h(x,t),x)

In den zwei Gleichungen (1) und (2) kommen die drei

abhängigen Variablen u, h und F vor. Eine der zwei Grössen,

h oder F, muss deswegen eliminiert werden. Da man im
vorliegenden Fall eine eindimensionale Strömimg mit der mittleren
Geschwindigkeit u betrachtet, darf man

(4) F hB

setzen, wobei seinerseits

(5) B B (h (x, t), x)

die mittlere Breite des benetzten Querschnittes ist.

Nach Einführen der Beziehimg (4) in den Gleichungen (1)

und (2) und einigen Umrechnungen bekommt man [8]:

(6)
du

8t

8u

~8x~

8h

~8~X
g(Je — Js) +

+ Bh
(u — v cos ß) 0

(7) h
B 8u

B~~8x~

8h

~8t

8h uh 8B
u- 1

8x B \ Sx
h konst

B

B ist die Profilbreite am Spiegel. Zu bemerken ist, dass die

Ableitung 8B/8x für h — konst durchzuführen ist. Diese

Ableitung stellt eine rein geometrische Grösse analog dem Sohlengefälle

dar, die die Profiländerung des Gerinnes berücksichtigt.
In einem prismatischen Gerinne wird 8B\8x 0. Das Vorzeichen

von q bzw. von v ist positiv im Fall eines Zuflusses und

negativ im Falle eines Ausflusses aus dem Gerinne. Das Glied

v cos ß verschwindet, wenn ß 90° wird.

Für die Berechnung des Energieliniengefälles Je wird eine

der üblichen Geschwindigkeitsformeln benutzt, z. B. diejenige

von Strickler

(8)
k2R*'3

oder diejenige von Chezy

(9) Je
C2R

wobei R FjP der hydraulische Radius und P der benetzte

Umfang sind. Beide Formeln geltenstrengnur für gleichförmige
stationäre Strömungen.

3. Transformation der Gleichungen von de Saint-Venant; die

Gleichungen der Charakteristiken

Die Gleichungen (6) und (7) bilden ein System quasi

linearer, partieller Differentialgleichungen von der Form

«i

(10)

au 8U
h bt

8t dx

8V 8V
+ c, 1- dx

m8t 8x

8U 8U
\-b2

8t 8x

8V 8V
+ c2 \-d2

8t 8x

e, =0

e, 0

Die Koeffizienten alt blt..., a^ b2,... können Funktionen der

unabhängigen Variablen x, t bzw. der gesuchten Grössen

U(x, f), V(x, r)sein.
Es soll nun eine Koordinatentransformation durchgeführt

werden, von der verlangt wird, dass die Ableitungen der

gesuchten Funktionen nur in Richtung der neuen Koordinaten
definiert sein sollen. Man nennt diese speziellen
Kurvenscharen, die als neue Kordinaten eingeführt werden, die

Charakteristiken. Die Bestimmung der Gleichungen der

Charakteristikenund der Form, die die Gleichungen (10) entlang
den Charakteristiken annehmen, kann auf verschiedene Arten
durchgeführt werden. Hier wird, ohne in die Einzelheiten

einzugehen, die Methode nach R. Courant und K. O. Friedrichs

[9], [10] angegeben. Manbildet die Koeffizientendeterminanten:

OD
A
E

[ac], 2B
[bc], F

[ad] + [bc], C

[a e], G =[be]
[b d], D [a b],

Das Symbol [p q] ist die Abkürzung für die Determinante

¦Pi92—PzVi
\Pi Pi
I 9i 92

Es kann gezeigt «erden, dass die Tangentenrichtung m
dx/dt der Charakteristiken durch die quadratische Gleichung

(12) Am2 — 2Bm + C 0

gegeben wird, deren Lösung

* b±]/b2—ac
(13) m± '-

A

lautet. Wie daraus ersichtlich ist, existieren zwei verschiedene

Scharen von Charakteristiken, wenn die Diskriminante
B2 —¦ A C > 0 ist. Das Gleichungssystem (10) wird in diesem

Fall hyperraflisch genannt. Ist dagegen B2 — A C 0, so nennt

man das Gleichungssystem parabolisch und es existiert eine

einzige Charakteristikenschar. Wenn schliesslich B2 — A C < 0

und somit keine reelle Lösung existiert, wird das System

elliptisch genannt. Im folgenden werden nur hyperbolische
Gleichungssysteme betrachtet.

Entlang den Charakteristiken, deren Gleichungen

(14) ; dx — m+ dt 0 y~ : dx — m~ dt 0

nun bekannt sind, gelten die Beziehungen

T+ : D dU + (A m+ — E) dV + (Fm4
(15)

G)dt 0

T- : DdU + (Am- — E)dV + (Fm- — G)dt 0,

die sich aus der Umformung der Gleichungen (10) ergeben.

Man nennt sie die Verträglichkeitsbedingungen entlang den

Charakteristiken. Sie stellen -zwei Kurvenscharen in der

U, K-Ebene, der Hodographenebene, dar.
Die Gleichungen (14)und (15)sind gewöhnliche

Differentialgleichungen und bilden ein System, das äquivalent zum
System der Gleichungen (10) ist.

Die Anwendung der beschriebenen Methode auf die

Gleichungen von de Saint-Venant, in welchen U u und
V h zu setzen ist und demnach folgende Koeffizientenbesitzt:
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ai bi et

1 u 0 g g(Je — Js)+ -|- (U-F - V COS ß)

0
B

u
uh 8B q
~B~l>x B

ergibt

B B
A \, 25 2«, C u2 — gh-~, D=h —

B D

E u, F

und daraus

(16) 772* « ±

Beachtet man, dass

(17) c

uh 8B

B 8x

B

q u2h dB
—, G=
B B 8x

-gh~(Je — Je) (2 « — v cos ß)

gh
B

'gh
B

B

die Schnelligkeit der Fortpflanzung einer kleinen Störung ist,
so lassen sich nach einigen Umformungen die Gleichungen der
Charakteristiken wie folgt schreiben:

(18)
y+ : dx — (« + c) dt 0

V : dx — (u — c) dt 0

r+ : du + — dh + [g (Je -
c

uc 8B
-Js) + ||B 8x

+ (u — v cos ß — c)] dt =0
(19)

:</«- <*+[«¦(/. — /.)¦

q

uc 8B

B dx
+

+ — (« — v cos ß + c)] dt 0
W

Dieses Gtetehungssystem muss nun unter Berücksichtigung

der jeweils geltenden Anfangs- und Randbedingungen
gelöst werden. Aus den ersten zwei Gleichungen bekommt man
die zwei Scharen der Charakteristiken y+ und y~ in der
physikalischen Ebene x, t. Physikalisch geben diese sich schneidenden
Kurvenscharen die Fortpflanzung einer Elementarstörung an.-

Die reziproke Tangentenneigung der Charakteristiken ist gleich
der absoluten Fortpflanzungsgeschwindigkeit « ± c einer
solchen Störung.

Aus der schematischen Darstellung in Bild 2 geht hervor,
dass der Zustand an einer bestimmten Stelle x des Gerinnes im
Zeitpunkt t nur von dem Abschnitt des Anfangszustandes
abhängig ist, der durch die zwei Charakteristiken, die durch
den Punkt x, t gehen, abgeschnitten wird. Man nennt diesen
Abschnitt den Abhängigkeitsbereich von P.

Der Zustand an einer Stelle x des Gerinnes zur Zeajplg
beeinflusst dagegen die nachfolgenden Zustände, die innerhalb
des Winkelraumes liegen, den die zwei Charakteristiken durch
den Punkt P (x, t) bilden (Bild 2). Dieser Winkelraum ist der
Einflussbereich des Zustandes in P (x, t).

4. Anfangs- und Randbedingungen

Die Anfangsbedingung ist durch den ungestörten Zustand
im Gerinne zur Zeit r 0 gegeben. In einem prismatischen
Gerinne kann dieser Zustand ein Normalabfluss sein, im all-

y'Charakteristik

Einflussbereich von P

¦y+Charakteristik

Anfangszustand

Abhangigkeitsbereich von P

Bild 2. Abhängigkeit^- und Einflussbereich eines Punktes
des Charakteristikennetzes

gemeinen wird aber im Gerinne zur Zeit t 0 ein stationärer,
ungleichförmiger Abfluss herrschen. Die Differentialgleichung
dieses Abflusses kann aus den Gleichungen (6) und (7) nach
Streichen der Glieder, in welchen Ableitungen nach der Zeit
vorkommen, und Elimination von 8u/8x gewonnen werden
und lautet,

(20)
dh

~dx~

1

1 — u2/c2
Je—Je

u2 h 8B
~c2 B dx

q
1 B (2 u — «cos p)J

Ihre Lösung liefert h0 (x) und u0 (x) an jeder Stelle des

Gerinnes. Der Index 0 bedeutet, dass es sich um bekannte
Anfangswerte handelt. Tritt nun an einer Stelle des Gerinnes

zur Zeit t 0 eine kleine Störung auf, so wird sie sich mit
der Geschwindigkeit «0 ± ca fortpflanzen. Durch Wahl des

Nullpunktes der x-Achse an der Stelle, an der die Störung
erfolgt, lässt sich in der x, /-Ebene die Fortpflanzung dieser

Störung mittels der zwei Charakteristiken durch den Ursprung
des Koordinatensystems darstellen (Bild 3). Bis zum Zeitpunkt,
zu dem diese Störung die Stelle x des Gerinnes erreicht, bleibt
der Zustand an der Stelle ungestört und wird demnach durch
die Anfangsbedingung gegeben. Unter diesen Umständen kann
die Integration der Gleichung (18) wie folgt durchgeführt
werden. Aus dem bekannten h0 (x) wird zunächst c0 (x)
berechnet und anschliessend

(21) t
dx

u0 (x) ± c0 (x)

bestimmt. Mit Hilfe der Anfangswerte, die entlang der x-
Achse gegeben sind, können die ersten Charakteristiken des

gestörten Abflusses berechnet werden. Diese Charakteristiken
werden deswegen Anfangscharakteristiken genannt. Sie

begrenzen gleichzeitig den Einflussbereich der entlang der x-
Achse angegebenen Anfangswerte. In diesem Bereich ist die
Strömung ungestört, und er wird deswegen als «Ruhebereich»
bezeichnet. Eine Erweiterung des Charakteristikennetzes über
die Anfangscharakteristiken hinaus kann erst durchgeführt
werden, wenn entlang einer Kurve, die keine Charakteristik ist,
entweder u oder h, bzw. c gegeben wird (Bild 3). Im vorliegenden

Fall bedeutet das, dass man ausser derAnfangsbedingung
noch eine Randbedingung geben muss. Meistens handelt es
sich dabei um eine Angabe über die zeitliche Entwicklung
der Störung an der Stelle x 0 in der Form h (x 0) f(t)
oder u (x 0) f(t). In selteneren Fällen wird h oder u

entlang einer Kurve x /(/) angegeben [10]. Die Störung
kann auch momentan erfolgen, wie es zum Beispiel bei einem
plötzlichen Dammbruch der Fall ist. Die Kurve x =/(r),
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r

i

CO

!§lif~ ^^Erweilerungsbereich durch ~y
<^^^^^^\Reflexionsbedingung^^><^

Reflexion

N
^^9^^^ ^\ ^^PÜ^ä ^^^^

Randwerte

K^Erweiterungsbereich durch "><f ^Uli\^ Randbedingung ^^-^"^ ^^\2V^^

N. J^£*<Ant0 Ruhe-Bereich

'V O000^"^

Schritt

Anfangsbedingungen, gegeben entlang der x-Achse X

Bild 3. Schematische Darstellung der Bestimmung des Charakteristikennetzes

und der dazu benötigten Anfangs- und Randwertangaben

bzw. x 0 entartet dann zu einem Punkt, der meistens als

Ursprung des Koordinatensystems genommen wird, und in
dem h alle Werte zwischen zwei gegebenen Grenzwerten
annimmt.

Falls das Gerinne durch eine Wand, einen See oder sonst
einen Kontrollquerschnitt begrenzt wird, tritt eine «Reflexion»
der Welle auf. Entsprechend der Art der Begrenzung wird an
der «Reflea&pnsstelle» h oder « vorgeschrieben sein. Bei einer
undurchlässigen Wand muss zum Beispiel u 0 sein, an einem
See dagegen, dessen Oberfläche gross ist, wird h konst
bleiben. Die «Reflexionsstellen» sind Randbedingungen und
gestatten, wie aus der schematischen Darstellung in Bild 3

hervorgeht, eine weitere Fortsetzung des Definitionsbereiches
der Charakteristiken. Eine spezielle Randbedingung entsteht
an Stellen, an welchen ein Fliesswechsel auftritt. An einer
solchen Stelle slna h Axr, u c und die -^-Charakteristik
vertikal.

5. Berechnung der Charakteristiken

Im SÄema Bild 3 ist die schrittweise Bestimmung durch
die Nummerierung der Schnittpunkte angedeutet. Ein Punkt
im Inneren des Bestimmungsbereiches der Charakteristiken
ergibt sich als Schnittpunkt einer y+ und einer y- Charakteristik
durch zwei benachbarte Punkte, die bekannt sind und nicht
auf der selben Charakteristik liegen. Es genügt somit, den

Berechnungsvorgang für einen Punkt 3, ausgehend von zwei
bekannten Punkten 1 und 2, entsprechend der Darstellung in
Bild 4, anzugeben. An den Punkten 1 und 2 sind neben x und /
auch die Wette von u und h bekannt und somit auch alle andern
Grössen, die in den Gleichungen (18) und (19) vorkommen.

Es wird nun vorausgesetzt, dass der Abstand zwischen den
Punkten 1, 2 und 3 klein ist, so dass die Änderung der Werte
von u und c auch klein sein wird. In erster Näherung können in
diesem Fall die Charakteristiken y+ durch 1 und y~ durch 2
durch ihre Tangenten an den Punkten 1 bzw. 2 ersetzt werden.
Die Gleichungen (18) können dann mit den Bezeichnungen
von Bild 4 wie folgt geschrieben werden:

(22) gp-^ + cj^ —o o

x2 — (u2 — c2)(t3 —12) 0

Aufgelöst nach den zwei Unbekannten t3 und x3
darin vorkommen, sind

die

u,*c, U2-C2

j(u,*u3 *c,+c3)
Uu2*u3 -c2 -c3)

X3-X2

Bild 4. Schema der Berechnung eines allgemeinen Punktes 3 des
Charakteristikennetzes ausgehend von den bekannten Punkten 1 und 2

x2 — (v2 Jllllll— xi + (vi + ci) fi
(v2 — c2)

(23) f

und

(24) x3 xx + j(| + c,) (f3 — r,)

Mit dem nun bekannten t3 lassen sich die Gleichungen (19)
wie folgt schreiben

«3-«. + — (h3-hl) +

g(Je1 — Js1)+^1-(DB)1+-^(ul—VCOSp — Ct)
ax tx

(25)
(f3-r,) 0

«2
: - (h3
c,

h2) +

g(Je2 — JS2)- ^-(DB\ + -^r(u2—ucosß + c,)
B2 f2

(r3 — O 0

wobei, um die Schreibwgse zu erleichtern, (8B/8x)t durch
(DB)t abgekürz6?wurde. Die Auflösung dieser Gleichungen
ergibt

ü + hi
c, c.

h3 «1 "2 T g

(26)

SM (DB\ + -|- («, - v cos ß - cd

g (/«, — Jst)

(h—td

g (Je2 — Je2) — WM (DB)2 + -f- («2 — V COS ß
a2 ft

+ c2) ('3-'2) /
1

+ ^T
und

u3 «! - - (h3 — A])

(27)
g(.Je1—J.1) + ^L(DB)x

m
+ -=- («i — « cos ß—c,)

F,

('3-0
Auf diese Art wird eine erste angenäherte Lage des Punktes 3

bestimmt, undes werden gleichzeitig die dazugehörenden Werte
von «3, h3 ermittelt.

In einem zweiten Schritt strebt man eine iterative
Annäherung der wahren Lage des Punktes 3 an. Die
Charakteristiken werden dabei durch Geraden ersetzt, deren Neigung
das Mittel der Tangentenneigungen in 1 und 3 bzw. 2 und 3 ist.
Als Tangentenneigung in 3 wird die im vorangegangenen
Iterationsschritt berechnete in der Berechnung eingeführt.
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Damit ergibt sich folgender Berechnungsvorgang: Aus den
Gleichungen (18) erhält man

(28)

x3 — X1 — — (v1 +v3 + Cl + CaHfj —0 0

x3 — x2— — (v2 + v3 — c2 — c3)(t3—t2) 0

und daraus

(29) t3

2 (x2 — xj + fa + v3 + ct + cj rt — fa + "3 — c2 — c^ f2

(«i + v3 + c, + cj — (v2 + v3 — c2 — c3)

und

(30) x3 xx + — (ü, +vs + c1+ c3) (t3 — O

Die Gleichungen (19) werden ihrerseits

lg 1

"3— «i -) ; (h3 — hi) + -TT g (J'i + Je.
c, + c3 2

- JSl -J>3) + ^- (DB), + -^ (DB)3 +
i>i o3

q q
+ — («i — u cos ß — ct) + -~r(u3 — v cos ß — c3)

Fx F3

(31) (f3 —O=0«3 —«2
2^ (h3-h2) +

g (Je2 + Je3 — Je2 — J,3) — ££& (ÄB)2

-^- (Dfi)3 + fjk (u2 — vcosß + Cl) +
o3 r2

+ — (u3 — v cos ß + c3)
F,

(t3 -0=0
und daraus

(32) A3 |«1 — u2 + 2g
Ci + c3 c2 + c3

g (Jei + Je3 — Jn — /*) + f3SS (DB),
ül

+ ^p- (DB)3 + 4- («, — «cos ß —c,) +
^»3 i'i

+ — (u3 — V cos ß — c3)

+

(h—0 +

g (Je2 + Je, — J,2 — J,3) =^" (DB)2

TT (DB\ + -f- («2-«cos ß + O +
ßj F-,

+ -=- ("3 — " cos ß + c3) (f3-0

12g [ + —
Ci + c3 c2 + c3) und (s. GL 33 rechts oben)

(33) u3 u. 11IBH £ (/«, + Je,

ul cl
B,

(DB),
B,

(DB)3

q q+ ^r(«i —'"cosß—^ + —- («3 —ucosß —cj
Si -^3

C3 — O

Die Iterationen werden durchgeführt, bis die Werte von
«3 und h3 von zwei aufeinander folgenden Berechnungen auf
die erwünschte Genauigkeit übereinstimmen.

6. Berechnung der Anfangs- und Randwerte

Entlang der Anfangscharakteristik sind u0 (x) und ha (x),
bzw. c0 (x) bekannt. Wählt man eine feste Schrittgrösse A x,
so können x und t aus der Gleichung (21) wie folgt schrittweise
berechnet werden

(34) x,+ i xi + A x

U + 2Ax
(v0i + v0i + 1) ± (Coi + Cot + 1)

wobei entweder das Plus- oder das Minuszeichen zu wählen
ist, wenn die Jlafangscharakteristik der Y+-Schar, bzw. der
Y~-Schar angehört.

Die Berechnung von u0 (x) und h0 (x) entlang der
Anfangscharakteristik kann nach einer der bekannten Methoden
durchgeführt werden. Hier wird eine numerische Integration
der Gleichung (20) nach dem Iterationsverfahren angegeben,
das auch bei der Bestimmung der Charakteristiken angewandt
wurde. Istfefer Zustand an der Stelle xt und der Durchfluss ß0
bekannt und an der Stelle x-, + x x-, + Ax gesucht, so kann
im ersten Approximationsschritt durch Einsetzen der
bekannten Grössen in der rechten Seite der Gleichung (20) und
Berücksichtigung der Beziehung Qoi/Fi «,-

(35) Ap. h, +

Jei — Jei + ^T-^- (DB)i hr (2"< — V COS ß)
.+. et2 Bt a2 B(

1 — Ui2 Ci2

berechnet werden.

Mit dem nun bekannten A; + wird Fi + berechnet und,
da es sich um einen stationären Abfluss einer bekannten Wassermenge

Q0 handelt, auch

(36) ui + 1 j§M —, ßo i + 1 Qi+q&xPi + l
bestimmt. Danach folgt die Iterationsrechnung nach der Formel

37, siehe unten.

Das Abbruchkriterium für die Iteration ist dasselbe wie
bei der Berechnung der Charakteristiken.

Dieses Berechnungsverfahren versagt, wenn sich A« der
kritischen Tiefe nähert, weil dann in der ersten Näherung die
Tangente dh/dx vertikal und somit /;, + unendlich wird. In
diesem Fall muss die Tangentenneigung im Punkt In speziell
berechnet [11] und in der Rechnung eingesetzt werden.

(37) hi., j -h,+

Jt 1 -| | -Jei + i

+ -

Ajc

~2~

Ui2 ht —, q
Jet —Jet -\ -—- (DB)t ^-(2«< —VCOSß)

et2 Bt Ft

1 — Ut2/Ct2
+

Ul + ia A; +
c; + 12 Bt +

(DB), +1 F, + i
(2 ui + 1 — v cos ß)

\-u,Mlcl + i2
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Bild 5. Erfassen der Geometrie
eines Gerinnes. Zu beachten ist,
dass die interpolierten Profile
(vgl. Profil bei Xj.) mehr Seiten
haben können als die gegebenen
Profile und dass das berechnete
Sohlengefälle zwischen den
interpolierten Profilen (schattierte
Fläche zwischen den Profilen bei
x-l und xg) nicht demjenigen der
gegebenen Geometrie entspricht

Wie schon früher erwähnt, ist die Fortsetzung des

Bestimmungsbereiches der Charakteristiken über die
Anfangscharakteristik hinaus nur durch die Angabe von Randwerten
möglich. Diese Werte, dass heisst entweder A oder «, werden

gegeben entlang einer Kurve x f(t), z. B. x 0 oder

x xe, wenn es sich um die r-Achse oder einer im Abstand

xb zur ihr parallelen Geraden handelt. Mit Hilfe dieser
Angaben und den Gleichungen y+, F+ bzw. y~, T~ einer der
Charakteriwikenscharen muss die fehlende Grösse in jedem
Punkt der angegebenen Kurve bestimmt werden. Man hat
also das Gleichungssystem

(38) dx—m±c)dt 0

du zt — dh
c

'(Je — Je)±
UC 8B

+ — (u — V cos ß ± c)
F

B 8x

dt 0

« f(x, t) oder A f(x, i) \ bekannt

In den ersten zwei Gleichungen sind die Vorzeichen
entsprechend der in Betracht kommenden Charakteristikenrichtung

zu wählen.
Der Schnittpunkt der Charakteristik mit der Kurve

x f(t), das heisst die Auflösung der asten und dritten der

Gleichungen (38) nach x und t, ergibt die Lage des Randpunktes

in der x, r-Ebene. A|p der vierten Gleichung wird dann
entweder u oder A bestimmt und in der zweiten eingesetzt, die
ihrerseits die noch fehlende Grösse ergibt. Auch hier wird in
einem ersten Schritt mit den Anfangswerten für u, h, c usw.

gerechnet und dann das schon angegebene iteratife Verfahren
sinngemäss angewandt. Die Gleichungen (38) gelten selbstverständlich

auch für die «Reflexionsbedingungen».

7. Berücksichtigung der Gerinnegeometrie

In den verschiedenen Gleichungen, die gelöst werden
müssen, kommen neben den Variablen x, t, u, h noch weitere,
meist geometrische Grössen vor. Diese müssen jeweils an der
Stelle x des Gerinnes berechnet werden, die einem Schnittpunkt

im Charakteristiknetz entspricht. In der hier gewählten
Berechnungsart der Charakteristiken liegen dieseSchnittpunkte
jedesmal an einem andern Ort. Deswegen muss die geometrische

Form des Gerinnes so angegeben werden, dass daraus
sein Querschnffljan jeder beliebigen Stelle mit genügender
Genauigkeit berechnet werden kann. In der Tat werden in
einem natürlichen Gerinne an bestimmten Stellen Xt:
i 1, 2, 3...,N Querprofile aufgenommen. Die geometrische
Angabe dieser Profile erfolgt meistens in der Form von
Polygonzügen mit den Stützstellen Yt,u Zt,u wobei i die Lage Xt
des Profils und j der laufende Indexj 0,1,2..., N der
Stützstellen des Proffls angeben (Bild 5). x, y und z bilden ein
Achsenkreuz mit vertikaler z-Achse. Die Höhenlage Z der
Punkte bezieht sich demnach auf eine horizontale Ebene x, y.

In einer Bild 5 entsprechenden Darstellung der Querprofile
kann jede Stützstelle eines Querprofils an der Stelle Xt mit einer
oder mehreren Stützstellen des nächstfolgenden Querprofils in
Xi + i durch Geraden verbunden werden. Es entstehen somit
räumliche Flächen mit drei oder vier Seiten. Die Wahl der
Verbindungen ist so zu treffen, dass der entstehende Körper
der Geometrie des Gerinnes zwischen den zwei Querprofilen
möglichst gut entspricht. Ein beliebiges Profil an der Stelle x
zwischen den zwei gegebenen Profilen in Xt und X-t + kann
als Scjpiittpolygon des durch die Verbindungslinien gebildeten
Körpers mit der vertikalen Ebene an der Stelle x bestimmt
werden. Dies erfolgt durch lineare Interpolation der Stütz-
werte yu z, der Ecken des neu zu bestimmenden Profils
zwischen den bekannten Stützwerten Yt,], Zt,} und Yi + IlK
Zi + i,K der gegebenen Profile entlang einer Verbindungslinie.
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Wenn die Abflusstiefe A an der Stelle x bekannt ist,
können nun im interpolierten Profil alle geometrischen Grössen,

z. B. F, B, B, R usw., auf einfache Art berechnet werden.
Etwas komplizierter ist dagegen die Berechnung der Änderung
dieser Grössen mit x, z. B. die Grösse (DB) 8Bj8x oder
Je dzsjdx oder in Differenzform geschrieben DB AB/Ax
bzw. Je AzejAx. Das für die Berechnung der Charakteristiken

angewandte Iterationsverfahren setzt voraus, dass

zwischen den Profilen, zwischen welchen iteriert wird, keine
Unstetigkeitsstellen vorkommen, das heisst keine plötzliche
Änddphgen des Gefälles Je und der Variation der mittleren
Breite DB. Dies bedeutet, dass man für die Berechnung der
Änderung geometrischer Grössen das Inkrement entlang der
x-Achse gleich der Differenz der x-Werte der in der Berechnung

beteiligten Profile wählen muss. Entsprechend dem
Schema Bild 4 muss demnach für die Berechnung von Je

bzw. DB im Punkt 3 das einemal Ax,^ x3 — xt und das
andere Mal Ax3„ x3 — x2 gewählt werden. Die entsprechenden

Differenzen AB bzw. Az« werden mit Hilfe der Profile in
Xi, x, und x, für A A, berechnet. Man bekommt somit

(39) DB V3

DBR3

(40) JSV3

B3(h3)--B2(h3)

x3 — - x2

B3 (h3) - Bi(h3)
x3 — - *i

Zt3 Zs2
JeR3

Xi

wobei Zet draftlöhenlage des tiefsten Profilpunktes angibt.
DB V und DB R bzw. Je V und Je R müssen nicht gleich

gross sein. Man stellt also fest, dass die Änderung geometrischer

Grössen in Funktion der Lage für ein und dasselbe Profil
richtungsabhängig sind. Die geometrische Bedeutung dieser
Berechnungsart geht aus Bild 5 hervor. Sie führt zu einem
allfälligen Abschneiden der Unstetigkeitsstellen der
gegebenen Geometrie. Dies ist zulässig, solange die Schritte Ax
gegenüber dem Abstand der gegebenen Profile an den Stellen
Xt klein sind.

Eine weitere bedeutende Grösse ist der Reibungskoeffizient
k. Um die Berechnung möglichst allgemein zu gestalten, wird
angenommen, dass der &-Wert über einzelne Abschnitte des

benetzten Umfanges in einem Profil verschiedene Werte hat.
Der mittlere &-Wert des Profils wird nach der Formel von
H. A. Einstein

(42) k m
E P,lk, |

berechnet. Auf diese Art ist es möglich, nicht nur Variationen
der Oberflächenbeschaffenheit der Gerinnewände, sondern
bis zu einem gewissen Masse auch spezielle Formverluste durch
örtliche Verminderung des Ar-Wertes zu berücksichtigen.

Die Beziehung (42) verlangt, dass jedem Abschnitt P, des

benetzten Umfanges eines an der Stelle x interpolierten Profils
ein A>Wert zugeordnet wird. Um dies zu ermöglichen, muss
man zu den Seiten der an den Stellen Xt angegebenen Profilen
die geeigneten k-Werte angeben. Di&-WerteWien interpolierten

Profilen werden durch 1 ineare Interpolation ermittelt.

8. Bedeutung und Auswertung eines Charakteristikennetzes

Die reziproke Neigung der Charakteristiken in der x, t-
Ebene ist gleich « ± c. Man erkennt daraus sofort, dass, falls
/«/ > c, das Vorzeichen der Neigung beider Charakteristikenscharen

y+ und y~ dasselbe ist (Bild 6a). Abflüsse, bei welchen

a) bei schiessendem Abfluss b) bei strömendem Abfluss

Bild 6. Schematische Angabe des Verlaufes der 7+- und y-Charak-
teristiken

diese Bedingung erfüllt wird, sind schiessend. Wie zu
erwarten, pflanzen sich in einem schiessenden Abfluss kleine
Störungen nur in Fliessrichtung fort.

In strömenden Abflüssen dagegen ist /«/ < c, und das
Vorzeichen der Neigungen der y+ und y~ ist nicht mehr
dasselbe. Die Charakteristiken der zwei Scharen steigen in
entgegengesetzten Richtungen an. Das bedeutet, dass sich kleine
Störungen in beiden Richtungen fortpflanzen, Bild 6b. Wenn
/«/ c ist, so ist die Y_-Charakteristik vertikal.

Die Hodographenebene /«/, c wird durch die Linie
/«/ c in zwei Halbebenen unterteilt. Alle Punkte unterhalb
dieser Linie entsprechen schiessenden und alle Punkte oberhalb

dieser Linie strömenden Abflüssen. Ein Normalabfluss
wird in der Hodographenebene durch einen Punkt dargestellt;
ein ungleichförmiger, stationärer Abfluss dagegen durch eine
Kurve c =/(«).

Die Berechnung der Charakteristiken kann durchgeführt

werden, solange sich Charakteristiken, die derselben
Schar angehören, nicht schneiden. Das Schneiden von
Charakteristiken, die derselben Schar angehören, bedeutet, dass die
an einem Ort später entstandenen Störungen vorangegangene
Störungen einholen. Die.geometrische Bedingung, die damit
verknüpft ist, entspricht einer immer steiler werdenden Wellenfront,

die schliesslich am Schnittpunkt der Charakteristiken
vertikal wird. Da eine vertikale Wasserfront nicht bestehen
kann, wird von da an die Wellenfront brechen. Es entsteht
somit einmit besonderen Energieverlusten verbundener «Schock»,
dass heisst ein sich im Gerinne fortpflanzender Wassersprung.
In die Berechnung der Bewegung einer Schockwelle wird hier
nicht eingegangen. Kriterien für das Auftreten von Schockwellen

wurden in einer früheren Arbeit angegeben [8].
Aus einem Charakteristikennetz können alle erwünschten

Auskünfte über eine nichtstationäre Strömung in einem
Gerinne gewonnen werden. An den Schnittpunkten der
Charakteristiken sind neben x und t noch u und A und damit auch
alle anderen Grössen, wie z. B. c, F.und Q, bekannt. Schneidet
man das Charakteristikennetz mit einer Geraden parallel zur
/-Achse im Abstand x vom Ursprung des Koordinatensystems,
so darf man an den Schnittpunkten dieser Geraden mit den
Charakteristiken die entsprechenden Grössen linear interpolieren.

Auf diese Art erhält man die zeitliche Änderung der ge-
suchten Grössen im Querschnitt an der Stelle x des Gerinnes.

Analog gewinnt man durch einen Schnitt des
Charakteristikennetzes mit einer Geraden parallel zur x-Achse im
Abstand t vom Ursprung des Koordinatensystems den Zustand
im Gerinne zur Zeit t. Insbesondere kann dadurch der
Wasserspiegelverlauf zu jedem Zeitpunkt bestimmt werden.

9. Zusammenfassung

Die Berechnung instationärer Strömungen in offenen
Gerinnen beruht auf die Gleichungen von de Saint-Venant.
Um eine Berechnung auch bei beliebiger Geometrie zu ermöglichen,

wurde eine Umformung dieser Gleichungen
vorgenommen. Ihre Lösung wurde auf dem Wege der Methode der
Charakteristiken gesucht. Diese führt zu einem einfachen,
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numerischen Iterationsverfahren, das sich für die Berechnung

mittels elektronischer Rechenmaschine gut eignet. Die dazu

benötigten Algorithmen werden angegeben. Für die Berechnung

der geometrischen Grössen wurde ein mathematisches

Modell entwickelt, das auch komplizierte geometrische

Konfigurationen des Gerinnes zu erfassen und die benötigten
Grössen an jedem Punkt zu bestimmen gestattet. Aufgrund
dieser Angaben wurde in der VAWE ein Computer-Programm

in Algol geschrieben und getestet. Die Resultate sind

auch »oei extremen geometrischen Verhältnissen befriedigend

und sollen in einer weiteren Mitteilung der VAWE
bekanntgegeben werden.

Die Berechnung der Anfangscharakteristiken läuft auf die

Berechnung einer stationären, ungleichförmigen Strömung

hinaus (Stau- oder Senkungskurve). Die Differentialgleichung
dieser Strömung Hess sich aus den Gleichungen der instationären

Strömung ableiten. Die numerische Integration dieser

Gleichung erfolgte nach einem einfachen Iterationsverfahren,

ähnlich demjenigen, das bei der Berechnung der Charakteristiken

angewandt wurde. Die Konvergenz dieses Verfahrens ist

befriedigend.
Abschliessend soll Prof. G. Schnitter für die Unterstützung,

die er diesen Untersuchungen gewährte, an dieser Stelle

gedankt werden. Der grösste Teil der Programmierungsarbeit

wurde von L. Papp geleistet, dessen Können und Geduld

wesentlich zum erfolgreichen Abschluss beigetragen hat. Den

Mitarbeitern an der VAWE, A. Chervet und P. Dalleves,

dipl. Ing. ETH, danke ich für ihre wertvollen Anregungen und

für die kritische Durchsicht des Manuskripts.
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Bezeichnungen

1 } Koeffizienten
a2,b2,...,e2\
A, B,...,G Determinanten, gebildet durch obige Koeffizienten

B Breite des Gerinneprofils am Spiegel

B mittlere Breite des Gerinnprofils

c Schnelligkeit einer kleinen Störung

c0 Anfangswert der Schnelligkeit

C Reibungsbeiwert in der Formel von Chezy

D~E 8~B~l8x Änderung der mittleren Breite

F benetzte Fläche

g Erdbeschleunigung

h Abflusstiefe

Je Energieliniengefälle

Js Sohlengefälle

k Reibungsbeiwert nach Strickler

m± reziproke Neigung der Charakteristiken absolute
Fortpflanzungsgeschwindigkeit einer Störung

P benetzter Umfang

Pj Bezeichnung eines Punktes an der Stelle xt

q seitlicher Zufluss

Pt, qt Glieder einer zweireihigen Determinante

R hydraulischer Radius

t Zeit

u mittlere Strömungsgeschwindigkeit

u0 Anfangswert der mittleren Strömungsgeschwindigkeit

v Geschwindigkeit des seitlichen Zuflusses

U, V Abhängige Variablen

x, y, z kartesische Lagekoordinaten

ß Winkel zwischen seitlicher Zuströmung und Fliessrich-

tung

Y* Bezeichnung der Charakteristiken in der physikalischen

r±
Ebene

Bezeichnung der Charakteristiken in der Hodographen-
Ebene

Calcul de l'onde de submersion consecutive ä la rupture d'un barrage

Premiere partie: la methode de calcul °k 532.593:627.511

Par A. Chervet et P. Dalleves, Ingenieurs aux Laboratoires de Recherches Hydrauliques (VAWE), Zürich

1. Introduction

La methode developpee ä la VAWE pour le calcul des

ondes de submersion consecutives ä la rupture d'un ouvrage

de retenue est basee sur la methode generale de calcul des

ecoulements instationnaires decrite dans l'article de Th. Dracos

[1]. Voir refdrences bibliographiques p. 432.

a) Rupture sur fond aval sec b) Rupture sur tirant d'eau initial

Fig. 1. Rupture d'un ecran de retenue

Le ph6nomene des ondes de submersion presentait un
double int6r6t: - interSt theorique, car il represente un cas

extreme d'ecoulement instationnaire, le debil et la hauteur y
passant en un temps tres court de zero ä une valeur elevee. U

s'agissait donc de coniröler si la theorie des ecoulements gra-
duellemenls varies y 6tait encore valable (voir [2], p. 22). La
topographie tres accidentee de la plupart des vallees de type
alpestre fournissait en outre la possibiIite de tester la qualite du
modele mathematique choisi, dans lequel l'ecoulement est

reduit ä un ecoulement ä une dimension; - interfet pratique
aussi, car meine si de telles catastrophes paraissent exclues

chez nous en temps de paix, les exemples de Vaiont et de

Malpasset prouvent la necessite d'une etude relative aux ondes de

deferlement.
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