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Wie jeder wahre Lehrer wirkt auch Professor Gerold Schnitter im Werk seiner Schiiler weiter. Da der
allgemein beliebte Dozent, iiber dessen Riicktritt vom Lehramt wir in H. 13, S. 306 dieses Jahrgangs
berichtet haben, den Lesern unserer Bauzeitung mit so grosser Treue gedient hat, wollen ihm seine
ehemaligen Mitarbeiter auch auf diesem Gebiete nicht nachstehen. Sie haben sich vorgenommen, dem
scheidenden Direktor der VAWE im Laufe dieses Sommers eine Anzahl von Arbeiten zu widmen,
von denen die ersten heute erscheinen. Moge Professor Schnitter diese Studien aufnehmen wie sie
gemeint sind: als Zeichen der Dankbarkeit und der Verpflichtung, auf dem von ihm eingeschlagenen

Weg weiter zu schreiten.

Die Redaktion

Die Berechnung instationarer Abfliisse in offenen Gerinnen beliebiger

Geometrie
Von Prof. Dr. Th. Dracos, Zlrich

Vorwort

Seit ihrer Griindung hat sich die Versuchsanstalt fiir Was-
serbau und Erdbau (VAWE) immer wieder mit den Problemen
der instationidren Stromungen befasst: es sei hier nur an das
grundlegende Werk von Prof. H. Favre erinnert: «Ondes de
translation dans les canaux découverts». Von besonderer prak-
tischer Bedeutung fiir die Schweiz ist in der Nachkriegszeit,
mit dem Bau zahlreicher Staumauern in unseren Alpen, das
Flutwellenproblem als Folge eines hypothetischen Talsperren-
bruches aufgetreten.

In einer Folge von zwei Aufsitzen sollen hier die Ergeb-
nisse einer mehrjihrigen Forschungstdtigkeit der VAWE auf
dem Gebiete der instationdren Abfliisse im wesentlichen dar-
gelegt werden. Dabei sei allen Bundesstellen, die uns gross-
ziigig bei dieser Arbeit unterstiitzt haben, bestens gedankt.

Der erste Aufsatz behandelt die Theorie der instationdren
Abfliisse und entwickelt die fiir eine numerische Behandlung
geeigneten Algorithmen. Er gibt ferner an, auf welche Art eine

1. Einleitung

Der Abfluss in einem offenen Gerinne bleibt selten iiber
laingere Perioden unverdndert. Natiirliche Ereignisse, mensch-
liche Eingriffe oder aussergewohnliche Vorginge, wie man sie
in der letzten Zeit bei den Katastrophen von Malpasset und
Vajont erlebte, fithren zu mehr oder weniger starken zeitlichen
Abflussinderungen. Die grosse Bedeutung der instationédren
Abfliisse wurde schon friih erkannt. Die mathematische For-
mulierung der Fortpflanzung langer Wellen in offenen Ge-
rinnen erfolgte Ende des vergangenen Jahrhunderts durch
B. de Saint-Venant [1] und kurz danach gab J. Massau [2]
eine graphische Losung dieses Problems nach der Methode der
Charakteristiken. Eine Anwendung dieser Theorien zur Losung
komplizierter instationédrer Vorgénge in Gerinnen mit beliebi-
gen Querschnitten wurde aber erst durch die Entwicklung
schneller digitaler Rechenmaschinen moglich. Man hat dabei
verschiedene numerische Methoden angewandt. Eine kritische
Bewertung dieser Methoden findet man in den Veroffent-
lichungen von J. Nougaro u. a. [3], J. A. Liggett u. a. [4] und
A. Daubert u. a. [5]. Im vorliegenden Aufsatz wird die Methode
beschrieben, die in der Versuchsanstalt fiir Wasserbau und
Erdbau an der ETH Ziirich (VAWE) zur Behandlung in-
stationdrer Abfliisse angewandt wurde. Bei der Wahl dieser
Methode war ihre Eignung fiir die Berechnung der Fort-
pflanzung von Flutwellen sowie von Diskontinuitéiten, das
heisst Schockwellen, ausschlaggebend.

2. Grundgleichungen

Wie schon einleitend erwihnt, hat de Saint-Venant die
unter seinem Namen bekannten Gleichungen aufgestellt. Thre
Ableitung beruht auf der Annahme, dass der Abfluss eindi-
7. Mai 1970
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beliebige natiirliche Topographie in der Berechnung beriick-
sichtigt wird. Der zweite Aufsatz besteht aus zwei Teilen. Da-
von bringt der erste eine Anwendung dieser Theorie auf den
besonderen Fall des Flutwellenproblems, wie auch die speziell
dazu entwickelten Losungen. Im zweiten Teil zeigen Ergebnisse
der Rechnung, verglichen mit Messungen, den Anwendungs-
bereich und die Genauigkeit der Methode. Sogar bei der Nach-
rechnung der Flutwelle von Malpasset stimmen die Ergebnisse
geniigend gut tiberein.

Das beschriebene Rechenverfahren findet aber nicht nur
Anwendung im Flutwellenproblem, sondern auch bei anderen
nichtstationiren Abfliissen, wie zum Beispiel Hochwasser-
wellen, Wehrregulierungen usw. Diese Berechnungen, die alle
erst durch die Entwicklung schneller Rechenautomaten mog-
lich wurden, beweisen die eminente praktische Bedeutung der
modernen Rechenmittel in der Hydraulik, wie iibrigens fiir
alle Gebiete des Bauwesens. Prof. G. Schnitter

mensional mit parallelen Stromfdden erfolge. Diese Annahme
wird erfiillt, wenn die Kriimmung der freien Oberfliche klein
gegeniiber der Abflusstiefe und das Gerinne gestreckt ist. Die
Druckverteilung iiber Querschnitte senkrecht zur Stromungs-
richtung ist wegen der angenommenen Parallelitdt der Strom-
faden hydrostatisch. Die unter diesen Bedingungen aufge-
stellten Gleichungen lauten:

/

au
0

. ou oh q
MN—Fu—+g—+g(Je—Js) +—=@—wvcosB) =0
t ox ox F

Bild I. Definition der massgebenden Grossen der Gerinnegeometrie und
der Stromungsparameter. a) Lingsschnitt, b) Querprofil, ¢) Aufsicht
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Die erste dieser Gleichungen, die Bewegungsgleichung,
wird aus dem Impulssatz und die zweite, die Kontinuitéts-
gleichung, aus dem Satz von der Erhaltung der Masse unter
Beriicksichtigung der Inkompressibilitit des Wassers abge-
leitet [6], [7]. Entsprechend den in den Bildern 1 (a), (b) und (c)
eingefiihrten Bezeichnungen bedeuten darin u die mittlere
Geschwindigkeit zur Zeit # im Querschnitt an der Stelle x des
Gerinnes mit der Definition # = Q/F, wobei Q der momentane
Durchfluss und F die benetzte Fliche des betrachteten Quer-
schnittes sind, # die Wassertiefe, J. das Energieliniengefélle,
Js das Sohlengefille im Talweg des Gerinnes, ¢ einen zeitlich
konstant bleibenden, seitlichen Zufluss pro Léngeneinheit,
v die Geschwindigkeit des zufliessenden Wassers und $ den
Winkel, den die Richtung des zufliessenden Wassers mit der
Fliessrichtung im Gerinne bildet. Es ist dabei zu beachten,
dass F eine Funktion von 4 und x ist, wobei # von x und ¢
abhingt, mathematisch ausgedriickt:

(B) F=F0(ix,1),x)

In den zwei Gleichungen (1) und (2) kommen die drei
abhingigen Variablen «, # und F vor. Eine der zwei Grossen,
h oder F, muss deswegen eliminiert werden. Da man im vor-
liegenden Fall eine eindimensionale Stromung mit der mittleren
Geschwindigkeit « betrachtet, darf man

4 F=hB
setzen, wobei seinerseits
(5) B=B(Mh(x,1),x)

die mittlere Breite des benetzten Querschnittes ist.

Nach Einfiihren der Beziehung (4) in den Gleichungen (1)
und (2) und einigen Umrechnungen bekommt man [8]:

au au oh
(6) Tt +H’g +g 75,\‘7 +g(Je—J.>) +

+ 7;]7 (u—wvcosPB) =0
B éu oh oh uh [éB
D h—=—F—tu—+ — |3 —
B ox ar ox B ox h = konst
L
B

B ist die Profilbreite am Spiegel. Zu bemerken ist, dass die
Ableitung @B/éx fiir h = konst durchzufiihren ist. Diese Ab-
leitung stellt eine rein geometrische Grosse analog dem Sohlen-
gefille dar, die die Profilinderung des Gerinnes beriicksichtigt.
In einem prismatischen Gerinne wird #B/éx = 0. Das Vorzei-
chen von g bzw. von v ist positiv im Fall eines Zuflusses und
negativ im Falle eines Ausflusses aus dem Gerinne. Das Glied
v cos P verschwindet, wenn § = 90° wird.

Fiir die Berechnung des Energieliniengefilles J. wird eine
der iiblichen Geschwindigkeitsformeln benutzt, z. B. diejenige
von Strickler

v ‘r
L \Ui
k2 R*?

oder diejenige von Chezy

Vv ‘

G2 R

9 Je=

wobei R = F/P der hydraulische Radius und P der benetzte
Umfang sind. Beide Formeln geltenstrengnur fiir gleichformige
stationdre Stromungen.
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3. Transformation der Gleichungen von de Saint-Venant; die
Gleichungen der Charakteristiken

Die Gleichungen (6) und (7) bilden ein System quasi
linearer, partieller Differentialgleichungen von der Form

U U oV oV
4 b, oy —— Fdy——t ey =10
ot ox at ox
do oU ou oV W
ath 2 ox +E ot 7 ex 1=

Die Koeffizienten a,, by, ..., a5, b,,... konnen Funktionen der
unabhiingigen Variablen x, ¢ bzw. der gesuchten Grossen
U (x, 1), V(x, ) sein.

Es soll nun eine Koordinatentransformation durchgefiihrt
werden, von der verlangt wird, dass die Ableitungen der ge-
suchten Funktionen nur in Richtung der neuen Koordinaten
definiert sein sollen. Man nennt diese speziellen Kurven-
scharen, die als neue Kordinaten eingefiihrt werden, die
Charakteristiken. Die Bestimmung der Gleichungen der
Charakteristiken und der Form, die die Gleichungen (10) entlang
den Charakteristiken annehmen, kann auf verschiedene Arten
durchgefiihrt werden. Hier wird, ohne in die Einzelheiten
einzugehen, die Methode nach R. Courant und K. O. Friedrichs
[91, [10]angegeben. Man bildet die Koeff izientendeterminanten:

A=1lacl, 2B=1[adl+[bcl, C=1[bd], D=]Iab],

) f_ b, Felae, G=1Ibe

Das Symbol [p g] ist die Abkiirzung fiir die Determinante

Py D2
=DP192—DP2q
q: 492
Es kann gezeigt werden, dass die Tangentenrichtung m =
dx/dt der Charakteristiken durch die quadratische Gleichung

(12) Am*—2Bm+C=0
gegeben wird, deren Losung

B+|B*—AC

(13) m*= = 1

lautet. Wie daraus ersichtlich ist, existieren zwei verschiedene
Scharen von Charakteristiken, wenn die Diskriminante
B>— A C > 0 ist. Das Gleichungssystem (10) wird in diesem
Fall hyperbolisch genannt. Ist dagegen B> — 4 C = 0, so nennt
man das Gleichungssystem parabolisch und es existiert eine
einzige Charakteristikenschar. Wenn schliesslich B>— 4 C< 0
und somit keine reelle Ldsung existiert, wird das System
elliptisch genannt. Im folgenden werden nur hyperbolische
Gleichungssysteme betrachtet.
Entlang den Charakteristiken, deren Gleichungen

(14) y*:dx—mtdt =0 y-idx—m-dt=0

nun bekannt sind, gelten die Beziehungen
't : DdU + (Am+ —E)dV + (Fm*—G)dt =0

(15)
I'-:DdU + A m —E)dV + (Fm —G)dt =0,

die sich aus der Umformung der Gleichungen (10) ergeben.
Man nennt sie die Vertriglichkeitsbedingungen entlang den
Charakteristiken. Sie stellen zwei Kurvenscharen in der
U, V-Ebene, der Hodographenebene, dar.

Die Gleichungen (14) und (15) sind gewohnliche Differen-
tialgleichungen und bilden ein System, das dquivalent zum
System der Gleichungen (10) ist.

Die Anwendung der beschriebenen Methode auf die
Gleichungen von de Saint-Venant, in welchen U = u und
V = hzu setzen ist und demnach folgende Koeffizienten besitzt :
7. Mai 1970
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Ci d; (4

g (Je—Js) + % (4 — v cos B)

q
1 A P A
0 hB u B ox B
ergibt
A=1, 2B=2 C Z hl_g D*/E
= 9 =< U, = U= E: 773,
uh @B q u*h 9B
— = == (G= it S
E=u F B éx B’ B ox
B
—ghE(Jg—Js)—%(2u—vcos{3)
und daraus

(16) m*=u + ]/g h

Beachtet man, dass

a7 = IE
c*‘l ng

die Schnelligkeit der Fortpflanzung einer kleinen Storung ist,
so lassen sich nach einigen Umformungen die Gleichungen der
Charakteristiken wie folgt schreiben:

/| Wl

ytidx— W+ c)dt =0

(18)
y idx— (u—c)dt =0
g uc éB
T+ :du + — dh +[g(Je—Js)‘|L_————+
e B ox
q
-I-F(ll—vcosﬁ—c)]dt:O
(5} oB
T du— £ dh +[g Je—J5) — 25
¢ B ox

+ %(u—vcos@ +o)]dt =0

Dieses Gleichungssystem muss nun unter Beriicksichti-
gung der jeweils geltenden Anfangs- und Randbedingungen
gelost werden. Aus den ersten zwei Gleichungen bekommt man
die zwei Scharen der Charakteristiken v+ und v~ in der physi-
kalischen Ebene x, z. Physikalisch geben diese sich schneidenden
Kurvenscharen die Fortpflanzung einer Elementarstorung an.
Die reziproke Tangentenneigung der Charakteristiken ist gleich
der absoluten Fortpflanzungsgeschwindigkeit « 4 ¢ einer
solchen Storung.

Aus der schematischen Darstellung in Bild 2 geht hervor,
dass der Zustand an einer bestimmten Stelle x des Gerinnes im
Zeitpunkt ¢ nur von dem Abschnitt des Anfangszustandes
abhéngig ist, der durch die zwei Charakteristiken, die durch
den Punkt x, 7 gehen, abgeschnitten wird. Man nennt diesen
Abschnitt den Abhédngigkeitsbereich von P.

Der Zustand an einer Stelle x des Gerinnes zur Zeit ¢
beeinflusst dagegen die nachfolgenden Zustinde, die innerhalb
des Winkelraumes liegen, den die zwei Charakteristiken durch
den Punkt P (x, 7) bilden (Bild 2). Dieser Winkelraum ist der
Einflussbereich des Zustandes in P (x, 7).

4. Anfangs- und Randbedingungen

Die Anfangsbedingung ist durch den ungestorten Zustand
im Gerinne zur Zeit ¢ = 0 gegeben. In einem prismatischen
Gerinne kann dieser Zustand ein Normalabfluss sein, im all-
Schweizerische Bauzeitung -
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Einflussbereich von P
—

Y Charakteristik b *Charakteristik

Anfangszustand

Abhdngigkeitsbereich von P

Bild 2. Abhingigkeits- und Einflussbereich eines Punktes
des Charakteristikennetzes

gemeinen wird aber im Gerinne zur Zeit 1 = 0 ein stationérer,
ungleichformiger Abfluss herrschen. Die Differentialgleichung
dieses Abflusses kann aus den Gleichungen (6) und (7) nach
Streichen der Glieder, in welchen Ableitungen nach der Zeit
vorkommen, und Elimination von @&u/éx gewonnen werden
und lautet,

dh 1
200 — = ——
(20) dx 1 —u?/c?

e

Thre Losung liefert 4, (x) und u, (x) an jeder Stelle des
Gerinnes. Der Index O bedeutet, dass es sich um bekannte
Anfangswerte handelt. Tritt nun an einer Stelle des Gerinnes
zur Zeit ¢ = 0 eine kleine Stdrung auf, so wird sie sich mit
der Geschwindigkeit «, 4= ¢, fortpflanzen. Durch Wahl des
Nullpunktes der x-Achse an der Stelle, an der die Storung
erfolgt, ldsst sich in der x, -Ebene die Fortpflanzung dieser Sto-
rung mittels der zwei Charakteristiken durch den Ursprung
des Koordinatensystems darstellen (Bild 3). Bis zum Zeitpunkt,
zu dem diese Storung die Stelle x des Gerinnes erreicht, bleibt
der Zustand an der Stelle ungestort und wird demnach durch
die Anfangsbedingung gegeben. Unter diesen Umstédnden kann
die Integration der Gleichung (18) wie folgt durchgefiihrt
werden. Aus dem bekannten /4, (x) wird zunédchst ¢, (x) be-
rechnet und anschliessend

dx
Y ’me e

bestimmt. Mit Hilfe der Anfangswerte, die entlang der x-
Achse gegeben sind, konnen die ersten Charakteristiken des
gestorten Abflusses berechnet werden. Diese Charakteristiken
werden deswegen Anfangscharakteristiken genannt. Sie be-
grenzen gleichzeitig den Einflussbereich der entlang der x-
Achse angegebenen Anfangswerte. In diesem Bereich ist die
Stromung ungestort, und er wird deswegen als «Ruhebereich»
bezeichnet. Eine Erweiterung des Charakteristikennetzes tiber
die Anfangscharakteristiken hinaus kann erst durchgefiihrt
werden, wenn entlang einer Kurve, die keine Charakteristik ist,
entweder « oder /1, bzw. ¢ gegeben wird (Bild 3). Im vorliegen-
den Fall bedeutet das, dass man ausser derAnfangsbedingung
noch eine Randbedingung geben muss. Meistens handelt es
sich dabei um eine Angabe tber die zeitliche Entwicklung
der Storung an der Stelle x = 0 in der Form /4 (x = 0) = f(¢)
oder u (x = 0) = f(¢). In selteneren Féillen wird A4 oder u«
entlang einer Kurve x = f(f) angegeben [10]. Die Storung
kann auch momentan erfolgen, wie es zum Beispiel bei einem
plotzlichen Dammbruch der Fall ist. Die Kurve x = f(7),

B
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A
¢}
Erweiterungsbereich durch
Reflexionsbedingung =
2 3
= <
= 2
" =
<l ES
@
N
QO |74
=
g =
2 < ” =
) ¢ Erweiterungsbereich durch ~|
Randbedingung 21
5 11 15
4/)/0 4 s 0 ter\SU
s o L, 5 SC\-\c\\'
(7
"foe . 2 ~<pnfC Ruhe-Bereich
)
’J'f/*_ 5
Anfangsbedingungen, gegeben entlang der x-Achse X

Bild 3. Schematische Darstellung der Bestimmung des Charakteristi-
kennetzes und der dazu benétigten Anfangs- und Randwertangaben

bzw. x = 0 entartet dann zu einem Punkt, der meistens als
Ursprung des Koordinatensystems genommen wird, und in
dem /4 alle Werte zwischen zwei gegebenen Grenzwerten
annimmt.

Falls das Gerinne durch eine Wand, einen See oder sonst
einen Kontrollquerschnitt begrenzt wird, tritt eine «Reflexion»
der Welle auf. Entsprechend der Art der Begrenzung wird an
der «Reflexionsstelle» /1 oder u vorgeschrieben sein. Bei einer
undurchlidssigen Wand muss zum Beispiel # = 0 sein, an einem
See dagegen, dessen Oberfliche gross ist, wird /4 = konst
bleiben. Die «Reflexionsstellen» sind Randbedingungen und
gestatten, wie aus der schematischen Darstellung in Bild 3
hervorgeht, eine weitere Fortsetzung des Definitionsbereiches
der Charakteristiken. Eine spezielle Randbedingung entsteht
an Stellen, an welchen ein Fliesswechsel auftritt. An einer
solchen Stelle sind 4 = hxr, u = ¢ und die y—-Charakteristik
vertikal.

5. Berechnung der Charakteristiken

Im Schema Bild 3 ist die schrittweise Bestimmung durch
die Nummerierung der Schnittpunkte angedeutet. Ein Punkt
im Inneren des Bestimmungsbereiches der Charakteristiken
ergibt sich als Schnittpunkt einer y* und einer y~ Charakteristik
durch zwei benachbarte Punkte, die bekannt sind und nicht
auf der selben Charakteristik liegen. Es geniigt somit, den
Berechnungsvorgang fiir einen Punkt 3, ausgehend von zwei
bekannten Punkten 1 und 2, entsprechend der Darstellung in
Bild 4, anzugeben. An den Punkten 1 und 2 sind neben x und #
auch die Werte von « und /4 bekannt und somit auch alle andern
Grossen, die in den Gleichungen (18) und (19) vorkommen.

Es wird nun vorausgesetzt, dass der Abstand zwischen den
Punkten 1, 2 und 3 klein ist, so dass die Anderung der Werte
von u und ¢ auch klein sein wird. In erster Ndherung kénnen in
diesem Fall die Charakteristiken y* durch 1 und v~ durch 2
durch ihre Tangenten an den Punkten 1 bzw. 2 ersetzt werden.
Die Gleichungen (18) konnen dann mit den Bezeichnungen
von Bild 4 wie folgt geschrieben werden:

22) X;—x;,— (U, +¢c)(t;—1) =0
1) =10

Xg— 25 — (uy — €3) (ts —

Aufgelost nach den zwei Unbekannten 7; und x,, die
darin vorkommen, sind

416

18" Schritt

U+ uz-¢c2
1
3(vaU3 *01*03}.\

7
T(Uz‘ua -cz-C3)

Bild 4. Schema der Berechnung eines allgemeinen Punktes 3 des Cha-
rakteristikennetzes ausgehend von den bekannten Punkten 1 und 2

Xz_(vz—cz) t,— %+ v Fe) b

23 t; =
o ’ v, 4+ e —@w,—¢y)

und
(24 X3 =X + @ +c)(t—1)

Mit dem nun bekannten #, lassen sich die Gleichungen (19)
wie folgt schreiben

Uy —u, + - (hy—h) +
¢y

), uy ¢

-g('lf’l_JS[) 4

(DB), + ﬁ(ul—vcosﬁac,)}

'

(25) (73_11) =0

Uy -— Uy — £ (hy— hy) +
€y

Uy €y = q
Je,— Js;) — —=— (D B), +
& Jey ) 7, (D B), 5

2

+

(t,—wvcos P + cz)}

(fs - fz) =0
wobei, um die Schreibweise zu erleichtern, (¢B/éx): durch
(DB): abgekiirzt wurde. Die Auflosung dieser Gleichungen
ergibt

I h
hy = lu,Au2 v%g(f]' + —12)—

& ey — Js)) +

l ¢ s
i, c — q
+ ‘El'— (DB), F (u, — v cos p — c,)] (t,—1) +
(26) .
u _
= lg(-ll’z_-]sz) — =2 (DB); + - g (u—wvcosB +
2 F,
1 I
+ ¢;) (fsffz)l [ &\ 1 )
| c, &l
und

Uy = i, — 5§ (hy—h,)) —
¢

27

1,'17(,'7]

g ey —Js)

-~ (DB), + 5 (u, —vcosp— cJ}
! F,
(’3 - rl)
Auf diese Art wird eine erste angendherte Lage des Punktes 3
bestimmt, und es werden gleichzeitig die dazugehorenden Werte
von u,, hy ermittelt.

In einem zweiten Schritt strebt man eine iterative An-
niaherung der wahren Lage des Punktes 3 an. Die Charak-
teristiken werden dabei durch Geraden ersetzt, deren Neigung
das Mittel der Tangentenneigungen in 1 und 3 bzw. 2 und 3 ist.
Als Tangentenneigung in 3 wird die im vorangegangenen
[terationsschritt berechnete in der Berechnung eingefiihrt.
7. Mai 1970
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Damit ergibt sich folgender Berechnungsvorgang: Aus

den

Gleichungen (18) erhdlt man

X3 — X, —
(28)
1
Xy —— Xy ==+
und daraus
29) 1=

1
2 (W, +v3+ e +c) (ts—1t) =0

i(vz +v;—ec—¢) (55— 1) =0

2(x,—x)+(w, +vs+¢ et — @, +v;—e,—ci) b,

(w, +v; +e¢; +cy)

und

30) x;=x,

(va +v3—c;—cy)

1
=+ ?(Ul +U3+C1 +C:s)(f:s_tx)

Die Gleichungen (19) werden ihrerseits

Us— Uy
Cl

2g 1 .
*? (hy — hy) + & [g (Jey + Jes —

U c -
—Ju— B+~ (DB), + —= (DB); +
B, B,
+ £y (u, —vcosPp—c) + oA (uy —wvcos B — c;)
F, F;

2¢g
Bl (t—t)=0u;—u,— ———— (h3 h,) +
¢, t+c
1 u, ¢
+Engq+J@—Lf—hQ— 22 (DR), ~—
2
Us s
— (DB); + — (u—vcos B + ¢)) +
3 2
q
+ o (uy —wvcosf +c¢3)| (t;—t) =0
3
und daraus
h, h,
32) hy = — -2 - + —
(32) hy {”1 Uy T 28 (Cx + e, c, + C:,)
1 i ¢,
e g(Jc +J(' — Js —Ja) S —— (DB)
2 [ 4 § 3 1 3 Bl 1
+"”3wm3 (4, — vcos B—e,) 1
1
g o
t 5 (3 —vcos p— (s)‘ (t3—1t) +
3
h; ¢ —
-+ g(Jrz - J('J— 52 _‘JAJ)_ (DB)Z—‘
2
. (DB), + (t—vcos B+ ¢;) +
BS 2
4
+ 1~{ (uy—wvcos f ('J)‘ (t;— 12)}
3
| 1
it o)
¢y 1 C3 ¢t ¢ ) und (s. Gl 33 rechts oben)
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(B3) uy=u — — (hy—h) — — | g (Jey + Jes
11 C3 2
U, c 4]
- Jsl *JS_;) L (DB)I T 2 3 (DB)3

g (u;—wvcosB—c,) + 3 (43 — v cos B — c3)
1 Fs

J (f_.,— ’1)

Die Iterationen werden durchgefiihrt, bis die Werte von
iy und Ay von zwei aufeinander folgenden Berechnungen auf
die erwiinschte Genauigkeit iibereinstimmen.

6. Berechnung der Anfangs- und Randwerte

Entlang der Anfangscharakteristik sind u, (x) und #, (x),
bzw. ¢, (x) bekannt. Wahlt man eine feste Schrittgrosse A x,
so konnen x und ¢ aus der Gleichung (21) wie folgt schrittweise
berechnet werden

B4 xit.=x+Ax

; .t 2A x

s (o + voi + 1) % (coi + coi 4 1)

wobei entweder das Plus- oder das Minuszeichen zu wihlen
ist, wenn die Anfangscharakteristik der y*-Schar, bzw. der
y~-Schar angehort.

Die Berechnung von u, (x) und 4, (x) entlang der An-
fangscharakteristik kann nach einer der bekannten Methoden
durchgefiihrt werden. Hier wird eine numerische Integration
der Gleichung (20) nach dem Iterationsverfahren angegeben,
das auch bei der Bestimmung der Charakteristiken angewandt
wurde. Ist der Zustand an der Stelle x; und der Durchfluss Q,
bekannt und an der Stelle x; . , = x; + Ax gesucht, so kann
im ersten Approximationsschritt durch Einsetzen der be-
kannten Grossen in der rechten Seite der Gleichung (20) und
Beriicksichtigung der Beziehung Qo;/F; = u;

(35) hi . =h +

~

Ui
oy == ik Y s Qui—vcosp)
-+ Ci Ci B
Ax —= -

1 — ui? ¢i*

berechnet werden.

Mit dem nun bekannten 4; . , wird F; . ; berechnet und,
da es sich umeinen stationdren Abfluss einer bekannten Wasser-
menge Q, handelt, auch

_Q_oi#—x

= 0; +qAx
Fi B l

(36)

Ui + = =~y D44
bestimmt. Danach folgt die Iterationsrechnung nach der For-
mel 37, siche unten.

Das Abbruchkriterium fiir die Iteration ist dasselbe wie
bei der Berechnung der Charakteristiken.

Dieses Berechnungsverfahren versagt, wenn sich /; der
kritischen Tiefe ndhert, weil dann in der ersten Niherung die
Tangente dh/dx vertikal und somit /4; ; , unendlich wird. In
diesem Fall muss die Tangentenneigung im Punkt /; speziell
berechnet [11] und in der Rechnung eingesetzt werden.

ui*  hi - q
Jsi— Jei - - (DB)i — ui—wvcosp)

Ax ci* Bi Fi
(37) /l,' F o /I,' }

2 1 — ui?/ci?

Ui 44> hi, = q
Jsiv1—Jeisq - DB); + , — — (2 #j 4  — v cos
! i 1 i+1 Ci 12 Bi¢| ( ):!l Fiil ( 5=l {3)
L — i a*cig i
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Bild 5. Erfassen der Geometrie
eines Gerinnes. Zu beachten ist,
dass die interpolierten Profile
(vgl. Profil bei xq) mehr Seiten
haben konnen als die gegebenen

X2

Xiv1

gegeteny Erosie Profile und dass das berechnete

Sohlengefille zwischen den inter-
polierten  Profilen (schattierte
Flidche zwischen den Profilen bei
x; und x3) nicht demjenigen der
gegebenen Geometrie entspricht

interpolierte
Profile

Wie schon frither erwihnt, ist die Fortsetzung des Be-
stimmungsbereiches der Charakteristiken tiber die Anfangs-
charakteristik hinaus nur durch die Angabe von Randwerten
moglich. Diese Werte, dass heisst entweder /i oder u«, werden
gegeben entlang einer Kurve x = f(7), z. B. x =0 oder
x = xz, wenn es sich um die -Achse oder einer im Abstand
xz zur ihr parallelen Geraden handelt. Mit Hilfe dieser An-
gaben und den Gleichungen y*, I'* bzw. y~, I'~ einer der
Charakteristikenscharen muss die fehlende Grosse in jedem
Punkt der angegebenen Kurve bestimmt werden. Man hat

also das Gleichungssystem

(38) dx —(u-+c)ydt=0
: oy
du + L dh +|g(Je—Js) + i +
¢ B ox
q
+ — (u—vcosPxc)|dt=0
F
x = f(t) ]

u = f(x,t)oderh = f(x,t) l bekannt

In den ersten zwei Gleichungen sind die Vorzeichen
entsprechend der in Betracht kommenden Charakteristiken-
richtung zu wéhlen.

Der Schnittpunkt der Charakteristik mit der Kurve
x = f(t), das heisst die Auflsung der ersten und dritten der
Gleichungen (38) nach x und ¢, ergibt die Lage des Randpunk-
tes in der x, r-Ebene. Aus der vierten Gleichung wird dann
entweder « oder A bestimmt und in der zweiten eingesetzt, die
ihrerseits die noch fehlende Grosse ergibt. Auch hier wird in
einem ersten Schritt mit den Anfangswerten fir w, A, ¢ usw.
gerechnet und dann das schon angegebene iteratife Verfahren
sinngemiss angewandt. Die Gleichungen (38) gelten selbstver-
standlich auch fiir die «Reflexionsbedingungen».
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7. Beriicksichtigung der Gerinnegeometrie

In den verschiedenen Gleichungen, die gelost werden
miissen, kommen neben den Variablen x, 7, u, 7 noch weitere,
meist geometrische Grossen vor. Diese miissen jeweils an der
Stelle x des Gerinnes berechnet werden, die einem Schnitt-
punkt im Charakteristiknetz entspricht. In der hier gewéhlten
Berechnungsart der Charakteristiken liegen diese Schnittpunkte
jedesmal an einem andern Ort. Deswegen muss die geometri-
sche Form des Gerinnes so angegeben werden, dass daraus
sein Querschnitt an jeder beliebigen Stelle mit geniigender
Genauigkeit berechnet werden kann. ln der Tat werden in
einem natiirlichen Gerinne an bestimmten Stellen X :
i =1, 2, 3..., N Querprofile aufgenommen. Die geometrische
Angabe dieser Profile erfolgt meistens in der Form von Poly-
gonziigen mit den Stiitzstellen Yi,;, Zi,;, wobei 7 die Lage X
des Profils und j der laufende Indexj = 0, 1, 2..., N der Stiitz-
stellen des Profils angeben (Bild 5). x, y und z bilden ein
Achsenkreuz mit vertikaler z-Achse. Die Hohenlage Z der
Punkte bezieht sich demnach auf eine horizontale Ebene x, y.

In einer Bild 5 entsprechenden Darstellung der Querprofile
kann jede Stiitzstelle eines Querprofils an der Stelle X; mit einer
oder mehreren Stiitzstellen des nichstfolgenden Querprofils in
X; + , durch Geraden verbunden werden. Es entstehen somit
rdaumliche Flichen mit drei oder vier Seiten. Die Wahl der
Verbindungen ist so zu treffen, dass der entstehende Korper
der Geometrie des Gerinnes zwischen den zwei Querprofilen
moglichst gut entspricht. Ein beliebiges Profil an der Stelle x
zwischen den zwei gegebenen Profilen in X; und X; . , kann
als Schnittpolygon des durch die Verbindungslinien gebildeten
Korpers mit der vertikalen Ebene an der Stelle x bestimmt
werden. Dies erfolgt durch lineare Interpolation der Stiitz-
werte y,, z, der Ecken des neu zu bestimmenden Profils
zwischen den bekannten Stiitzwerten Yi,;, Zi; und Yi | .
Z; i 1, der gegebenen Profile entlang einer Verbindungslinie.
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Wenn die Abflusstiefe # an der Stelle x bekannt ist,
konnen nun im interpolierten Profil alle geometrischen Gros-
sen, z. B. F, B, B, R usw., auf einfache Art berechnet werden.
Etwas komplizierter ist dagegen die Berechnung der Anderung
dieser Grossen mit x, z. B. die Grosse (DB) = &BJ/éx oder
Js = dzs/dx oder in Differenzform geschriecben DB = AB/Ax
bzw. Js = Azs/Ax. Das fiir die Berechnung der Charakteri-
stiken angewandte Iterationsverfahren setzt voraus, dass
zwischen den Profilen, zwischen welchen iteriert wird, keine
Unstetigkeitsstellen vorkommen, das heisst keine plotzliche
Anderungen des Gefilles Js und der Variation der mittleren
Breite DB. Dies bedeutet, dass man fiir die Berechnung der
Anderung geometrischer Grossen das Inkrement entlang der
x-Achse gleich der Differenz der x-Werte der in der Berech-
nung beteiligten Profile wéhlen muss. Entsprechend dem
Schema Bild 4 muss demnach fiir die Berechnung von Js
bzw. DB im Punkt 3 das einemal Ax,,, = x; — x, und das
andere Mal Ax,,, = x; — x, gewédhlt werden. Die entsprechen-
den Differenzen AB bzw. Azs; werden mit Hilfe der Profile in
x,, X, und x; fir &4 = h; berechnet. Man bekommt somit

Es (h;) — Bz (I}i

(39) DBV, =
X3 — X,
DBR. = 71_33_(/13),j B, (hi)
- X3 — X
Zs3 Zsy Zs3 — Zs;
40) J, V5= Js Ry =
3— Xz X3 — X

wobei zs; die Hohenlage des tiefsten Profilpunktes angibt.

DB V und DB R bzw. J; V und Js R miissen nicht gleich
gross sein. Man stellt also fest, dass die Anderung geometri-
scher Grossen in Funktion der Lage fiir ein und dasselbe Profil
richtungsabhidngig sind. Die geometrische Bedeutung dieser
Berechnungsart geht aus Bild 5 hervor. Sie fiihrt zu einem
allfdlligen Abschneiden der Unstetigkeitsstellen der ge-
gebenen Geometrie. Dies ist zuldssig, solange die Schritte Ax
gegeniiber dem Abstand der gegebenen Profile an den Stellen
X: klein sind.

Eine weitere bedeutende Grosse ist der ReibungskoefTizient
k. Um die Berechnung moglichst allgemein zu gestalten, wird
angenommen, dass der k-Wert liber einzelne Abschnitte des
benetzten Umfanges in einem Profil verschiedene Werte hat.
Der mittlere k-Wert des Profils wird nach der Formel von
H. A. Einstein

42) k =

; Pf/k/ 3/2

berechnet. Auf diese Art ist es moglich, nicht nur Variationen
der Oberflichenbeschaffenheit der Gerinnewédnde, sondern
bis zu einem gewissen Masse auch spezielle Formverluste durch
ortliche Verminderung des k-Wertes zu beriicksichtigen.

Die Beziehung (42) verlangt, dass jedem Abschnitt P; des
benetzten Umfanges eines an der Stelle x interpolierten Profils
ein k-Wert zugeordnet wird. Um dies zu ermdglichen, muss
man zu den Seiten der an den Stellen X; angegebenen Profilen
die geeigneten k-Werte angeben. Die k-Werte in den interpolier-
ten Profilen werden durch lineare Interpolation ermittelt.

8. Bedeutung und Auswertung eines Charakteristikennetzes

Die reziproke Neigung der Charakteristiken in der x, 7-
Ebene ist gleich # 4 ¢. Man erkennt daraus sofort, dass, falls
Jul > ¢, das Vorzeichen der Neigung beider Charakteristiken-
scharen v * und vy~ dasselbe ist (Bild 6a). Abfliisse, bei welchen
7. Mai 1970
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a) bei schiessendem Abfluss b) bei stromendem Abfluss

Bild 6. Schematische Angabe des Verlaufes der y+- und y--Charak-
teristiken

diese Bedingung erfiillt wird, sind schiessend. Wie zu er-
warten, pflanzen sich in einem schiessenden Abfluss kleine
Stérungen nur in Fliessrichtung fort.

In stromenden Abfliissen dagegen ist /u/ < ¢, und das
Vorzeichen der Neigungen der y+ und vy~ ist nicht mehr das-
selbe. Die Charakteristiken der zwei Scharen steigen in ent-
gegengesetzten Richtungen an. Das bedeutet, dass sich kleine
Storungen in beiden Richtungen fortpflanzen, Bild 6b. Wenn
Ju/ = c ist, so ist die y~-Charakteristik vertikal.

Die Hodographenebene /u/,c¢ wird durch die Linie
Ju/ = ¢ in zwei Halbebenen unterteilt. Alle Punkte unterhalb
dieser Linie entsprechen schiessenden und alle Punkte ober-
halb dieser Linie stromenden Abfliissen. Ein Normalabfluss
wird in der Hodographenebene durch einen Punkt dargestellt;
ein ungleichférmiger, stationdrer Abfluss dagegen durch eine
Kurve ¢ = f(u).

Die Berechnung der Charakteristiken kann durchge-
fiihrt werden, solange sich Charakteristiken, die derselben
Schar angehoren, nicht schneiden. Das Schneiden von Charak-
teristiken, die derselben Schar angehoren, bedeutet, dass die
an einem Ort spéter entstandenen Storungen vorangegangene
Storungen einholen. Die geometrische Bedingung, die damit
verkniipft ist, entspricht einer immer steiler werdenden Wellen-
front, die schliesslich am Schnittpunkt der Charakteristiken
vertikal wird. Da eine vertikale Wasserfront nicht bestehen
kann, wird von da an die Wellenfront brechen. Es entsteht so-
mit ein mit besonderen Energieverlusten verbundener «Schock»,
dass heisst ein sich im Gerinne fortpflanzender Wassersprung.
In die Berechnung der Bewegung einer Schockwelle wird hier
nicht eingegangen. Kriterien fiir das Auftreten von Schock-
wellen wurden in einer fritheren Arbeit angcgeben [8].

Aus einem Charakteristikennetz konnen alle erwiinschten
Auskiinfte iiber eine nichtstationdre Stromung in einem Ge-
rinne gewonnen werden. An den Schnittpunkten der Charak-
teristiken sind neben x und 7 noch # und # und damit auch
alle anderen Grossen, wie z. B. ¢, F und Q, bekannt. Schneidet
man das Charakteristikennetz mit einer Geraden parallel zur
t-Achse im Abstand x vom Ursprung des Koordinatensystems,
so darf man an den Schnittpunkten dieser Geraden mit den
Charakteristiken die entsprechenden Grossen linear interpolie-
ren. Auf diese Art erhilt man die zeitliche Anderung der ge-
suchten Grossen im Querschnitt an der Stelle x des Gerinnes.

Analog gewinnt man durch einen Schnitt des Charakteri-
stikennetzes mit einer Geraden parallel zur x-Achse im Ab-
stand r vom Ursprung des Koordinatensystems den Zustand
im Gerinne zur Zeit ¢. Insbesondere kann dadurch der Wasser-
spiegelverlauf zu jedem Zeitpunkt bestimmt werden.

9. Zusammenfassung

Die Berechnung instationdrer Stromungen in offenen
Gerinnen beruht auf die Gleichungen von de Saint-Venant.
Um eine Berechnung auch bei beliebiger Geometrie zu ermog-
lichen, wurde eine Umformung dieser Gleichungen vorge-
nommen. lhre Losung wurde auf dem Wege der Methode der
Charakteristiken gesucht. Diese fiihrt zu einem einfachen,
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numerischen Iterationsverfahren, das sich fiir die Berechnung
mittels elektronischer Rechenmaschine gut eignet. Die dazu
bendtigten Algorithmen wurden angegeben. Fir die Berech-
nung der geometrischen Gréssen wurde ein mathematisches
Modell entwickelt, das auch komplizierte geometrische
Konfigurationen des Gerinnes zu erfassen und die bendtigten
Grossen an jedem Punkt zu bestimmen gestattet. Aufgrund
dieser Angaben wurde in der VAWE ein Computer-Pro-
gramm in Algol geschrieben und getestet. Die Resultate sind
auch bei extremen geometrischen Verhéltnissen befriedigend
und sollen in einer weiteren Mitteilung der VAWE be-
kanntgegeben werden.

Die Berechnung der Anfangscharakteristiken lduft auf die
Berechnung einer stationdren, ungleichférmigen Stromung
hinaus (Stau- oder Senkungskurve). Die Differentialgleichung
dieser Stromung liess sich aus den Gleichungen der instatio-
niren Stromung ableiten. Die numerische Integration dieser
Gleichung erfolgte nach einem einfachen Tterationsverfahren,
dhnlich demjenigen, das bei der Berechnung der Charakteristi-
ken angewandt wurde. Die Konvergenz dieses Verfahrens ist
befriedigend.

Abschliessend soll Prof. G. Schnitter fiir die Unterstiitzung,
die er diesen Untersuchungen gewihrte, an dieser Stelle ge-
dankt werden. Der grosste Teil der Programmierungsarbeit
wurde von L. Papp geleistet, dessen Konnen und Geduld
wesentlich zum erfolgreichen Abschluss beigetragen hat. Den
Mitarbeitern an der VAWE, A. Chervet und P. Dalléves,
dipl. Ing. ETH, danke ich fiir ihre wertvollen Anregungen und
fiir die kritische Durchsicht des Manuskripts.
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Bezeichnungen

e Z;:::: s } Koeffizienten

A, B, G Determinanten, gebildet durch obige Koeffizienten
B Breite des Gerinneprofils am Spiegel

B mittlere Breite des Gerinnprofils

e Schnelligkeit einer kleinen Stérung

Co Anfangswert der Schnelligkeit

Reibungsbeiwert in der Formel von Chezy

DB = ¢B/éx Anderung der mittleren Breite

F benetzte Flache

g Erdbeschleunigung

h Abflusstiefe

Je Energieliniengefille

Js Sohlengefille

k Reibungsbeiwert nach Strickler

mE reziproke Neigung der Charakteristiken = absolute
Fortpflanzungsgeschwindigkeit einer Stérung

P benetzter Umfang

P; Bezeichnung eines Punktes an der Stelle x;

q seitlicher Zufluss

Pis Gi Glieder einer zweireihigen Determinante

R hydraulischer Radius

f Zeit

u mittlere Stromungsgeschwindigkeit

Uy Anfangswert der mittleren Stromungsgeschwindigkeit

v Geschwindigkeit des seitlichen Zuflusses

u, v Abhingige Variablen

X, 0z kartesische Lagekoordinaten

B Winkel zwischen seitlicher Zustromung und Fliessrich-
tung

v Bezeichnung der Charakteristiken in der physikalischen
Ebene

I+ Bezeichnung der Charakteristiken in der Hodographen-
Ebene

Calcul de I'onde de submersion consécutive a la rupture d’un barrage

Premiére partie: la méthode de calcul

DK 532.593:627.511

Par A. Chervet et P. Dalléves, Ingénieurs aux Laboratoires de Recherches Hydrauliques (VAWE), Zurich

1. Introduction

La méthode développée a la VAWE pour le calcul des
ondes de submersion consécutives a la rupture d’un ouvrage
de retenue est basée sur la méthode générale de calcul des
écoulements instationnaires décrite dans I"article de Th. Dracos
[1]. Voir références bibliographiques p. 432.

b) Rupture sur tirant d’eau initial

a) Rupture sur fond aval sec

Fig. 1. Rupture d'un écran de retenue
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Le phénoméne des ondes de submersion présentait un
double intérét: — intérét théorique, car il représente un cas
extréme d’écoulement instationnaire, le débit et la hauteur y
passant en un temps trés court de z€ro a une valeur élevée. 11
sagissait donc de contrdler si la théorie des écoulements gra-
duellements variés y était encore valable (voir [2], p. 22). La
topographie trés accidentée de la plupart des vallées de type
alpestre fournissait en outre la possibilité de tester la qualité du
modéle mathématique choisi, dans lequel I'écoulement est
réduit a un écoulement & une dimension; — intérét pratique
aussi, car méme si de telles catastrophes paraissent exclues
chez nous en temps de paix, les exemples de Vaiont et de Mal-
passet prouvent la nécessité d'une étude relative aux ondes de
déferlement.
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