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88. Jahrgang Heft 9 SCHWEIZERISCHE BAUZEITUNG 26. Februar 1970

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH. POSTFACH 630

Sonderhefte «Stahlbau in der Schweiz»

Im Jahre 1943, mitten im Krieg, ergriff der Verband
Schweizerischer Brückenbau- und Stahlhochbau-Unternehmungen

(VSB) die Initiative zur Berichterstattung in der
Schweiz. Bauzeitung über die Tätigkeit der Verbandsmitglieder.

Sie erfolgte in Heft 5 von Band 122. Zehn Jahre
später wurde in H. 23 und 25 des 71. Jahrganges wiederum
in ähnlicher Weise Bericht erstattet, und schon 1956 brachten

die Hefte 20 und 24 des 74. Jahrganges eine ausführliche

Bestandesaufnahme unter dem Titel «50 Jahre VSB».
Bald darauf nahm die genannte Organisation den Namen
Schweizer Stahlbau-Verband an, der dann in Schweizer
Stahlbau-Vereinigung geändert wurde. Diese legte in Heft 18

des 84. Jahrganges in ähnlicher Weise Rechenschaft ab über
den Stand des Schweizer Stahlbaues im Jahre 1966.

Und heute soll diese bereits zur guten Tradition
gewordene Übung zum fünften Mal erfolgen. Unterdessen
sind die Aufgaben der aufgelösten Vereinigung von der
«SchÄiz. Zentralstelle für Stahlbau» übernommen worden.& danken dem Geschäftsführer Dr. Max Baeschlin für
seine Initiative und seine Bemühungen um die Beschaffung
der Beiträge, die von im Stahlbau praktisch tätigen
Ingenieuren; stammen und angesichts ihres Umfanges auf zwei
Hefte verteilt werden müssen.

Die Schweizerische Zentralstelle für Stahlbau gibt das
Periodikum «Bauen in Stahl» heraus. Dieses wendet sich an

einen sehr weitgespannten Interessentenkreis (Bauherren,
Architekten, Ingenieure, Studierende und staatliche Stellen)
und verfolgt das Ziel, über ansprechende und zweckmässig
gestaltete Bauwerke zu berichten. Die in unsern
Sondernummern enthaltenen Aufsätze hingegen beleuchten
spezielle Ingenieurprobleme.

Die in der Zentralstelle vereinigten Stahlbau-Unternehmungen

repräsentieren ungefähr 90 % der Stahlbau-
kapazität unseres Landes. Neben der Werbung, wie sie mit
der Zeitschrift «Bauen in Stahl» betrieben wird, liegt aber
eine der Hauptaufgaben der Zentralstelle in der Förderung
der technischen Entwicklung, wobei der Hauptakzent auf
die Zweckforschung ausgerichtet ist. Zudem werden
technische Hilfsmittel für die Projektierung und Ausführung
bereitgestellt, die auch der Rationalisierung in den technischen
Bureaux zugute kommen.

Die Technische Kommission der Zentralstelle, welche
mit der Förderung der technischen Entwicklung betraut ist,
setzt sich aus Ingenieuren der Mitgliedfirmen, aus frei
erwerbenden Ingenieuren und aus Vertretern staatlicher For-
schungsinstitute und der Technischen Hochschulen zusammen.

Unsern im Stahlbau tätigen Kollegen wünschen wir
herzlich ein erfolgreiches Weiterschreiten auf ihrem Weg
der Vervollkommnung der Stahlbautechnik!

Die Redaktion

Berechnung von Wabenträgern nach der Plastizitätstheorie
Von Ernst Amstutz, dipi. Ing., Brugg

DK 624.023.933.001.2

1. Allgemeines

WabeHträger werden bekanntlich so hergestellt, dass

I-Träger aus Stahl durch einen sägezahnförmigen Schnitt des

Steges längs getrennt, verschoben und mit vergrösserter
Trägerhöhe wieder zusammengeschweisst werden, wodurch
bienenwabenförmige Aussparungen im Steg entstehen. Eine
weitere Erhöhung des Trägerskanndurch zwipnengeschweisste
Stegbleche erfolgen (patentierte Ausführung). Mit verhältnismässig

geringem Arbeitsaufwand können somit Widerstandsund

Trägheitsmoment ohne Materialmebxverbrauch
beträchtlich erhöht werden.

Hinsichtlich der aufzunehmenden Querkräfte erfährt
jedoch der Träger eine erhebliche Schwächung, da die Einzel-
gurtung auf Biegung beansprucht wird und zudem einen hierfür

ungünstigen T-Querschnitt aufweist. Bei frei aufliegenden
Balken genügt im allgemeinen der unverstärkte Querschnitt
des Gurtes, da an der Stelle der maximalen Querkraft das

Moment null ist und umgekehrt. Bei kontinuierlichen Trägern
treten jedoch die grösste Querkraft und das grösste Moment
im selben Schnitt auf. Daher müssen in einem oder einigen
Wabenlöchern die Gurtungen durch eingeschweisste Gabelbleche

von einem T-Querschnitt in einen I-Querschnitt
verwandelt werden, was aber einen unwirtschaftlichen
Arbeitsaufwand erfordert.

Statisch stellt ein Wabenträger einen VierendeeMTräger
mit stark verbreiterten Pfosten dar. Die Berechnung erfolgte

bisher mit Hilfe der Elastizitätstheorie, wobei aber zur
Vereinfachung der Berechnung der Momentennullpunkt in der
Mitte der freien Gurtlänge angenommen und, wenigstens bei
gleichen Gurtquerschnitten, die Querkraft gleichmässig auf
beide Gurtungen verteilt wurde. Für den Querkraftanteil hat
man also bereits einen plastischen Momentenausgleich in den
Gurtungen zugrunde gelegt.

Hinsichtlich der Gesamtbeanspruchung bestehen aber
noch erhebliche plastische Tragreserven, was aus folgender
Überlegung hervorgeht: Bei der Berechnung nach der
Elastizitätstheorie ist der innere Rand der Gurtung massgebend.
Auf einer Seite des Wabenloches addieren sich die Spannungen
aus Gurtnormalkraft und Gurtbiegung, auf der anderen Seite
subtrahieren sie sich. Ausgenützt ist also immer nur ein Punkt
des Gurtes. Man hat aus Versuchsergebnissen schon bald
schliessen können, dass sich die Wabenträger günstiger
verhalten, als nach dem Superpositionsgesetz anzunehmen wäre,
und es wurde schon behauptet, dass eine Superposition des

Querkraft- und des Momenteneinflusses nicht zu erfolgen habe
oder dass für die Querkraft nur die Schubspannung, nicht aber
die Gurtbiegung zu berücksichtigen sei. Solche Behauptungen
halten einer wissenschaftlichen Überprüfung natürlich nicht
stand, sie geben jedoch etwa die Richtung der Resultate an,
die eine genauere Untersuchung ergeben wird, ohne dass aber
diese extrem günstigen Annahmen bestätigt werden.
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Bild 1. Gleichgewicht bei reiner Biegung Bild 2. Gleichgewicht bei reinem Schub

Im folgenden wird gezeigt, dass durch eine etwas mühsame

Untersuchung nach der Plastizitäw|ieorie Resultate
erzielt werden, die für die Praxis in einfache Form gebracht werden
können und damit SEden megpen Fällen erlauben, auf
Gurtversteifungen zu verzichten. Dadurch wird den Wabenträgern,
die bisher vorwiegend als frei aufliegende Balken angewendet
wurden, das weitere Feld der kontinuierlichen Balken zur
Anwendung eröffnet. Hierbei beschränken wir uns vorläufig
auf Träger mit gleichen Gurtquerschnitten und ohne
Normalkraft.

2. Grundfälle

Wir benötigen später bei der vereinfachten praktischen
Berechnung die beiden Grundfälle «reine Biegung» und «reiner
Schub». Wir behandeln diese Grundfälle voraus, da hierbei
noch einige Grundsatzfragen abzuklären sind.

a) Reine Biegung
Der Träger ist beansprucht durch das konstante Träger-

Biege-Moment Mr. Bezeichnen wir mit « die Sicherheit gegen
Fliessen, so ist bei «-fâcher Belastung n Mt über den ganzen
Gurtquerschnitt die Fliessgrenze aF erreicht. Mit den
Trägerabmessungen nach Bild 1 ergibt dann das Gleichgewicht
zwischen äusserem und innerem Biegemoment diesgrleichung:

(1) nMT ap[bt(a + t) + dh{a-h)]
Der Klammerausdruck hat die Bedeutung eines

Widerstandsmomentes, das wir sinngemäss miffijppr bezeichnen:

(2) Wr bt(a + t) + dh(a — h)

Gleichung (1) geht damit über in

Op
(3)

n

Mt
Wt

Spannungsmessungen an Wabenträgern haben gezeigt,
dass schon im elastischen Bereich eine angenähert konstante
Spannungsverteüung im Gurtquerschnitt herrscht, was wohl
eine Folge der Spannungsumlenkung in den Wabenecken ist.
Es erübrigt sich daher, die oben getroffenen Annahmen noch
besonders zu erhärten.

P

¦ IPEsoo

-~Wx
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5i'S//////////,
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r
Büd 3. Versuchsträger. Die Länge links betrug bei den vier
untersuchten Trägern
Pi : 1/2 1 56 mm; P2 :1/2 101 mm
P3 :1/2 201 mm; P4 :1/2 349 mm

b) Reiner Schub
Als reinen Schub wollen wir hier den Fall definieren, bei

dem in der Mitte der Wabe das äussere Moment einen
Nullpunkt aufweist. Das Moment wird dann allein durch
Gurtbiegung aufgenommen. Es treten in diesem Falle zwei Einflüsse
auf, die eine besondere Untersuchung erfordern.

Gemäss Büd 2 scheint vorerst der massgebende Punkt für
das äussere Moment in der Wabenecke zu liegen. Hier tritt
jedoch wegen der Umlenkung der Spannungen ein
zweiachsiger Spannungszustand mit verzögerter Fliessmöglichkeit
auf. Es wird sich daher in einem gewissen Abstand / von
dieser Ecke ein Fliessgelenk büden;/wird hierbei in bestimmtem

Verhältnis zur Gurthöhe («+0 stehen, also

(4) f=q>(ßl + t)

Damit wird die wirksame freie Gurtlänge /*

(5) l*=l— lf
und das massgebende Stabmoment Ms aus der Querkraft Q
der beiden Gurtungen zusammen

(6) Ms m2

Für das innere Moment ist zu berücksichtigen, dass die
Schubspannung t die Fliesspannung of auf den Wert ap*
vermindert. Nach der Hypothese von der konstanten
Gestaltänderungsarbeit wird

(7) ¦3 t2

Wir machen hier die vereinfachte Rechnungsannahme,
dass t über die Steghöhe konstant sei. In Wirklichkeit ist dies
nicht möglich, weü am Rand r 0 werden muss. Im Flansch
werden die Schubkräfte verhältnismässig gering sein, in der
Nähe des Steges jedoch den Wert r erreichen. Wir machen die
vereinfachte Rechnungsannahme, dass auf eine mittlere
Flanschbreite ö • t beidseits des Steges die gleiche Spannung r
wie im Steg herrscht, daneben aber r 0 sei. Der wirksame
Schubquerschnitt F* eines Gurtes ist daher

(8) F* d(h + r) + 2(512

und somit bei «-fâcher Belastung

n Q n Ms
(9) t —— ——

2 p* /* p*

mit der Abkürzung

n Ms

(10) Wx B /* F*

Gemäss Gleichung (7) würde nun die Fliesspannung im
Steg und in der mittleren Flanschpartie of* und in den
äusseren Flanschpartien ap betragen. Das ist offensichtlich wegen
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Bild 4. Belastungs-Verformungsdiagramme

der Verformungsbedingungen nicht möglich: wir mindern
daher die Fliesspannung über den ganzen Querschnitt auf
ap* ab.

Gemäss Bild 2 ergibt sich der Abstand u der neutralen Axe
von der Flanschinnenseite aus der Komponentengleichung in
horizontaler Richtung

(11) b't~u) — bu—-dh 0

zu
t dh

(12) u —
2 2b

Es setzt dies voraus, dass bt>dh (was bei den üblichen
Querschnitten immer erfüllt ist), da sonst u negativ würde,
womit Gleichung (11) nicht mehr gültig wäre. Die Momentengleichung

liefert nun im Fliesszustand, das heisst bei «-fâcher
Belastung,

(13)
nMs

2
b(l^u)2 m u2

11 +iT Im
Die Elimination von u mittels Gleichung (12) ergibt

dh'(14) nMs
bt2

dhlh + t —2b

Der Klammerausdruck hat die Bedeutung eines
Widerstandmomentes, das wir sinngemäss mit Ws bezeichnen

(15) Ws
bt2

+ dh [h—S
Gleichung (14) geht damit über in

(16)
Opti Ms

Ws

Wir eliminieren op mittels Gleichung (7) und (9) und
erhalten

(17)
ap Ms

Ws y^m
Mit der Abkürzung

(18) Ws
Ws

y^m

lautet Gleichung (17):

Ms
(19)

ap

n Ws

In den bisherigen Ableitungen für reinen Schub sind
die Koeffizienten q> aus Gleichung (4) und 6 aus Gleichung (8)
noch unbekannt. Zu deren Ermittlung sind an der EMPA
Biegeversuche mit Einzelguriungen gemäss Bild 3
durchgeführt worden. Die Querschnittswerte wurden nach den
tatsächlich vermessenen Trägerabmessungen und die Querkraft
unter Berücksichtigung der leichten Unsymmetrie der Träger
ermittelt.

Für jeden Träger wurde ein Belastungs-Durchbiegungs-
diagramm aufgenommen und aus zwei Stegproben die
Fliessgrenze im Zugversuch zu 29,9 bzw. 29,6, im Mittel also zu
29,75 kp/mm2, ermittelt. Die Biegediagramme Büd 4 zeigen
keinen ausgesprochenen Fliessbereich, sondern eine stetige
Verflachung bis zum Anriss. Fliess- und Verfestigungsbereich
vermischen sich offensichtlich Ober die Querschnittshöhe.
Bei Ausnützung des Verfestigungsbereiches mussten un tolerierbar

grosse Verformungen auftreten, weshalb wir uns auf den
Fliessbereich beschränken wollen.

Als Fliesslast ist diejenige Last im Diagramm definiert
worden, welche bezogen auf die elastische Verformung
prozentual dieselbe Gesamtverformung ergibt wie im Zugversuch.
Im Zugversuch stellt sich an der Fliessgrenze eine elastische
Dehnung von opfE 2,975/2100 l,42°/oo ein, während die
plastische Dehnung definitionsgemäss 2,00°/oo beträgt. Das
Verhältnis von Gesamtdehnung zu elastischer Dehnung
beträgt daher 3,42/1,42 2,40. In den Biegediagrammen
Bild 4 wurde die Last mit demselben Verhältnis als nominelle
Fliesslast Pf ermittelt.

Mit verschiedenen Kombinationen der Parameter q> und Ô

wurde nun einerseits das äussere Fliessmoment gemäss
Gleichung (6) und anderseits das innere Fliessmoment gemäss
Gleichung (19) unter Berücksichtigung von « 1 und dem
Umstand ermittelt, dass im Versuch nur ein Gurt vorhanden
ist. Gewählt wurde diejenige Kombination der Parameter
<P und Ô, welche das kleinste prozentuale Fehlerquadrat aus den
vier durchgeführten Versuchen ergab. Diese umfangreichen
Zahlenrechnungen können hier nicht wiedergegeben werden ; sie
führten zu den anschaulich sehr plausibeln Werten

(20) (21) 1/3 und ô

Somit ist gemäss Gleichungen (5) und (4)

(22)
V h + t

3
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Mem Mp
Annahme 6 0 und a> 0

Tabelle 1. Auswertung der Versuche mit Einzelgurtungen.

Äusseres Moment
I

30

inneres Moment

\

Inneres Moment

¥

(^
il—pht-f r\vÄusseres Moment

—

Annahme ö -1 und <p-j
O 56 101 201

Bild 5. Vergleich inneres und äusseres Moment am Einzelgurt

das heisst, der massgebende Schnitt ist um ein Drittel der

Gurthöhe von der Wabenecke abgerückt, und die Schub-

Querschnittsfläche beträgt gemäss Gleichung (8)

(23) F* =d{h + i) + 2t2

Formel (23) gut für Profile mit ausgerundeten Ecken, das heisst,

die Mehrfläche der Ausrundung darf nicht zusätzlich berücksichtigt

werden. Bei scharfkantiger Ausbildung dürfte der

Flanschanteü schätzungsweise nur etwa halb so gross gewählt
werden.

Tabelle 1 gibt einen Vergleich des inneren und äusseren

Momentes für die Annahmen gemäss Gleichungen (20) und

(21). Der mittlere quadratische Fehler beträgt nur 2,5%. In
Bild 5 sind unten die Resultate graphisch aufgetragen, während

oben die Momente für 6 0 und q> 0, das heisst für den Fall
dargestellt sind, dass die Querkraft durch den Steg allein

aufgenommen und das äussere Moment in der Wabenecke SasS

mittelt wird. Beide Kurven fallen stark auseinander. Die Kurve
für das äussere Moment zeigt deutlich den Einfluss des

verschobenen Bezugspunktes (Krümmung der Kurve nach

oben) und den Einfluss der Schubspannung (Krümmung der

Kurve nach unten).

3. Kombinierte Beanspruchung

Der Spannungszustand bei Vollplastizität ist in Büd 6

dargestellt. Er ist dann erreicht, wenn unter w-facher äusserer

Belastung in allen vier Eckpartien, also in den Schnitten u und

v, obere und untere Randspannungen der Gurtungen die

reduzierte Fliessgrenze ap* erreichen. Massgebend sind dabei

die Schnitte u und v im Abstand /* gemäss Gl. (22). An diesen

Punkten wirken die äusseren Biegemomente Mu bzw. Mv.

Ïäusseres Moment Inneres Moment
Nr. Pp Qf h+t 1*12 Afs/2 F* Wt/2 rVsl2 Ws*ß Msß

Mp Mp cm cm cm Mp cm2 cm3 cm3 cm3 cm Mp

Pi 10,9 5,48 5,90 3,63 19,9 4,59 16,7 9,67 6.82 20,3

P2 6,55 3,26 5,86 .8,15 26,6 4,50 36,7 9,43 8,61 25,6

Pj 2,95 1,48 5,82 18,16 26,9 4,58 83,2 9,47 9,28 27,6

P4 1,65 0,825 5,69 33,0 27,2 4.51 149 9,01 8,95 26,6

Die SpannungsverfSlung ist für den Fall positiven
Momentes und positiver Querkraft unter Zugrundelegung
der üblichen Vorzeichenregeln dargestellt. Im Schnitt u liegt
unter dieserVoraussetzungund derweiteren Bedingungb t>dh
die neutrale Axe des Gurtquerschnittes im Flansch im Abstand

u vom Steg. Im Schnitt v sind zwei Fälle möglich. Bei starker

Gurtbiegung liegt die neutrale Axe im Abstand v vom Steg

ebenfalls im Flansch (Fall I). Bei geringer Gurtbiegung liegt
hingegen die neutrale Axe im Abstand v vom Flansch, also

im Steg (Fall II). Beide Fälle müssen getrennt behandelt
werden.

Die Momentengleichung im Schnitt u lautet mit den

Bezeichnungen nach Büd 6:

(24) n Mu [b u (a + u) +
dh(a — h) — b(t — u)(a + 2u + t — u)]oF

zusammengefasst ergibt sich

n Mu
(25) —j— 2bu2 + 2bau — bt(a + t) + dh(a — h)

oF

Im Fall I lautet die Momentengleichung im Schnitt v:

(26) nMv [—bv(a + v) dh(a — h) + bft — v)

(a + 2ti + t — v)]oî

(27)

Zusammengefasst ergibt sich:

nMv —2bv2 — 2bav + bt(a + t) — dh(a~h)

Ferner ist die Bedingung zu erfüllen, dass die Normalkraft
in einem Gurt im Schnitt u und im Schnitt v gleich gross
sein muss:

(28) b(t— u)

somit

¦bu — dh (jt—v)b + vb + dh

(29) v — u + t —
dh

lIsSÉtzen wir diesen Wert in Gleichung (27) ein, so erhalten
wir nach einiger Zwischenrechnung:

(30) gii =—26 k2 2u{ab + 2bt—2dh)—bt(a + t)

dh
dh (• + h +4t — 2

*P

-ei

+6!

u_ I i

A
Schnitt u-u

n-MuW&n-Mv

V
¥-E=

t-ep

er't~± *ef

Schnitt v-v

Fall I
Schnitt v-v

Fall M

Bild 6. Gleichgewicht bei kombinierter

Beanspruchung
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Wir eliminieren nun aus den Gleichungen (25) und (30)
die uns nicht weiter interessierende Grösse u. Durch Addition
beider Gleichungen fällt vorerst u2 heraus :

(31) JK^L+M.) 2u(ab + bt-dh)-bt(a + t) +
2 ap

+ dh [a + 2r-
dh

Den Mittelwert zwischen M« und Mv bezeichnen wir als

«Trägermoment» Mt ;

Die Bedingung gleicher Gurtkraft im Schnitt u und v
liefert :

(45) b(t — u) — bu — dh=—bt — dv + d(h — v)

woraus

(46) v h +--[u — t

Setzen wir diesen Wert in Gleichung (44) ein, so erhalten
wir nach einiger Zwischenrechnung:

(32) Mt
Mu +MV (47) ±*L

a i?
— 2 — u2 + 2bu\a—2h+2 — t\ —

d S d

Mit den weiteren Abkürzungen

(33) A 2(ab +bt — d h)

(34) B =bt(a + t) — dh(a + 2t

bt la — 4h
2b

t\ +dh(a — h)

dh
~b

(35) C =— bt(a + t) + dh(a — h)

geht Gleichung (31) über in

l nMr
(36) ir- Au — B

Op

woraus

| 1 / nMT
(37) U-a{~oT + B

Diesen Wert setzen wir nun in (25) ein und erhalten:

Um vorerst u2 zu eliminieren, erweitern wir diese
Gleichung mit d/b und addieren sie zu Gleichung (25), woraus
sich ergibt

n 1 d \ I b
(48) —i-JM« + —M„ =2ulda — 2dh + 2— t +bq

— dtla — 4h — t + 2-:-t\—bt(a + t)-}

+ dh(a—h)[l +

(38)
n Mi n

Of
MT(2B + aA) — Mu

2b

A2C

+

B2 + aBA + 1 - =0
26

Die halbe Differenz der Gurtmomente bezeichnen wir als
«Stabmoment» Ms

(39) Ms
Mv — Mu

Zusammen mit Gleichung (32) ergibt sich dann

(40) Mu Mt — Ms

Wir ersetzen ferner a F mit Hilfe von Gleichung (7) durch o>

Mit den Abkürzungen

d
(49) Mu, Mu + —Mv

b

(50) D =2d(a — 2h) + 2b(a + 2t)

(51) E =dt(a — 4h — t) + bt(a + 3t) —

— dh(a—h)l\ +

drückt sich Gleichung (48) in der Form

WÊÈ
(52) i =£>«-£¦

Op

aus und ergibt

1 I nM,
(53) u

(41)
Op lgo

I nMs V
\opWr)

D
I nM«, \

k Diesen Wert setzen wir in Gleichung (25) ein und erhalten
unter Beachtung des Hilfswertes (35):

Damit geht Gleichung (38) über in die Hauptbeziehung:

(42)
n Mt

Op

hMt k
aF

nMs A2

op 2 b

A1
^aA-—-2b

*$$.

B2 + aBA +
A2C
2b

(54) nM«,y Mu,(2E + aD) — Mu
D2
2~b

0

D2C
+ E2 + aED + ——— 0

26

Eine analoge Beziehung wird nun hergeleitet für den Fall
II. Die Momentengleichung im Schnitt v lautet:

(43) nMv [bt'a + t) + dv(a — v) — d'h — v)

(a — 2v — h +v)] op

Wir ersetzen Mu durch Af» und M,. Aus den Beziehungen
(39) und (49) folgt:

(55) Mu

Zusammengefasst ergibt sich

d
Mm — 2 -Ms

b

1 +

(44)
nMv

¦ 2 dv2 + 2 d a v + b t <a + t) — d h (a — h) Unter weiterer Beachtung von Gleichung (41) gelangen
wir zur Formel
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WPE200
WHEB 200.500 WWHEB 500/900
WWHEB ZOO/480. WWHEB 200/1000

WPESOO. WWPE 500/900
WWPE 200/480
WHBSOO. WWHEB 500/900

resp
Gzul

Formel (63)

0.9

OS

Formel (62)

0.7

06
¦ Versuche noch Redwood/Culcheon
o Versuche nach Holieux

0.5

0.4 WPE 200
WPE500 WWPE
WHEB 200. WWHEBf0°M°00.3

WHEB 500, WWHEB 5OO/9O0

WWPE 200/48002

OJ 0£ 0,3 0,4 0,5 0,6 0,7 0,8 0$ 1,0 n. 6S Ss
Bfï? resP- -*-aF e2uU

Bild 7. Vergleich theoretischer Werte mit Näherungsformeln und
Versuchswerten (W einfache, WW «aufgestelzte« Wabenträger)

(56)
n Ma

Op

nMs
Of

nMu.
2E + aD

D2

dD-
k

6(6 + d)
aED

2(b + d)

D2C
26

Aus den Gleichungen (32), (39) und (49) gewinnen wir
schliesslich

Mw + Ms 11

(57) Mt
1+-

Die Auflösung der Gleichungen (42) bzw. (56) und (57)
ist im einzelnen Fall ein mühsames Unterfangen. Wir versuchen
daher, die Resultate in Diagrammform oder in einer
Näherungsformel darzustellen. Die Berechnungen wurden für
verschiedene Profile I PE und HEA mit und ohne Zwischenbleche

auf dem Computer der HTL Windisch durchgeführt.
Als Parameter wurden verschiedene Werte n Ms/of angenommen

und dann aus Gleichung (41) die k-Werte und aus
Gleichung (42) bzw. (56) und (57) die zugehörigen Werte n Mt/op
ermittelt. Um die Resultate dimensionslos und vergleichbar
darzustellen, werden im Diagramm Bild 7 als Abszisse die
Verhältniswerte n Mslop Ws* und als Ordinate die Verhältniswerte

n Mt/op Wt aufgetragen, und zwar nur jeweüs gültiger
Fall I oder II [ Ws* und Wt nach Formel (18) und (2)].

Mit den Abkürzungen

(58) (59) os

welche nominelle Spannungsanteile aus Stabbiegung und
Trägerbiegung bezeichnen, ergeben die Abszissen die Verhältnisse

n os/op und die Ordinaten die Verhältnisse n ot/op.
Aus dem Diagramm Büd 7 ergeben sich folgende Schlüsse:

a) Träger mit oder ohne Zwischenbleche geben praktisch
identische Kurven.

b) Die Kurven für grosse und kleine I PE liegen sehr nahe
beisammen.

M«, Mt
und Ot

Ws* Wt

c) Die Kurven für grosse und kleine Breitflanschträger HE
weichen stärker voneinander ab, was offenbar eine Folge der
konstanten Flanschbreite bei den Profilen über 300 mm Höhe
ist.

d) Die Kurven für PE- und grosse HE- Profile weichen nur
geringfügig voneinander ab.

4. Vergleich mit Versuchen

Wir wollen nun die vorstehend entwickelte Theorie mit
zwei bereits durchglifihrten und publizierten Versuchsreihen
vergleichen. R. G. Redwood und J. O. McCutcheon1) haben
Versuche mit I-Trägern durchgeführt, deren Stege durch
runde, ovale oder rechteckige Öffnungen geschwächt waren.
Zum Vergleich mit Wabenträgern können die letztgenannten
gebraucht werden, es sind die Versuchsträger Nr. UH, 2F,
21H, 4F und 4H. Die Träger 21G und 4G sind hingegen nicht
verwendbar, weil der Steg zwischen zwei Öffnungen zu schmal
ist.

Die Fliessgrenzen sind für jeden Träger sowohl im Steg
wie auch im Flansch ermittelt worden; sie hegen etwas über
30 kp/mm2. Demgemäss habe ich aus den Belastungs-Durch-
biegungsdiagrammen die Fliessgrenze analog ermittelt wie
bei den eigenen Versuchen unter Kap. 2.

Die QuerschMMwerte wurden aus den effektiven
Abmessungen ermittelt. Da die Ecken des Ausschnittes
ausgerundet waren, ist als freie Länge 1 das Mittel aus dem geraden
Teü der Ausschnittkante und aus der Gesamtlänge der Öffnung
angenommen worden. Für die Trägerbiegung wurde die
Fliessgrenze des Flansches und für die Gurtbiegung diejenige des

Steges verwendet.
Die so ermittelten Punkte sind im Diagramm Büd 7

eingetragen; sie liegen um wenige Prozente ausserhalb der
theoretischen Kurven, die Theorie bleibt also auf der sicheren
Seite.

Von P. Mmlleux2) hegen Versuchsergebnisse mit Wa-
benträgernM PE 300 vor. Zum Vergleich mit der Theorie
verwenden wir die 'w'suche Nr. 1/1, I/1B, 1/3, II/l, H/3 und
II/3B. Bei den 'Jägern Typ 5 sind die Gurtstege so hoch, dass
das Fliessen nicht mehr im Querkraftfeld, sondern im Mittelfeld
erfolgte, wo das Moment etwas grösser war; diese Versuche
können daher nicht zum Vergleich herangezogen werden. Die
effektiven Trägerabmessungen sind in der Veröffentlichung
nicht angegeben, weshalb die theoretischen verwendet werden
mussten. Ebenso wurde die Fliessgrenze der Träger nicht
ermittelt, sondern es wurde der theoretische Minimalwert von
24 kp/mm2 angenommen. Da dieser Wert viel zu tief hegen
dürfte, nehmen wir denselben Wert an wie bei den Versuchsträgern

nach Kap. 2, nämlich 30 kp/mm2. Die Fliesslast ist
ebenfalls wie vorgängig beschrieben aus den Belastungs-
Durchbiegungsdiagrammen ermittelt worden.

Die so berechneten Versuchspunkte liegen im Diagramm
Büd 7 fast alle ebenfalls ausserhalb der theoretischen Kurven
und bestätigen damit, dass die vorliegende Theorie um weniges
auf der sichern Seite hegt.

5. Praktische Anwendung

Die Anwendung der vorstehenden Theorie gestaltet sich
nun äusserst einfach. Aus dem äusseren Trägermoment Mt
und dem Widerstandsmoment Wt nach Gleichung (2)
ermitteln wir die Trägerspannung ot nach Gleichung (59),
ebenso die Stabspannung as aus den Gleichungen (58), (18)

') Richard G. Redwood und John O. McCutcheon: Beam tests with
unreinforced web openings, Journal of the Structural Division, Proceedings

of the American Society of Civil Engineers. Vol. 94, No. St 1,
January 1968.

2) Pierre Halifax : Grenzanalyse bei Wabenträgern. «Acier Stahl
Steel» 32 (1967), H. 3, S. 129-flßsljj
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und (15). Führen wir hier statt des Stabmomentes Ms direkt
die Querkraft nach Gleichung (6) ein, so ergibt sich

/* Q

Fs
(60) os Q

(61) mitFs

2WS

2WS*

l*
Für normierte Trägerreihen können die Querschnittswerte

Wr und Fs tabelliert werden3).
Das Diagramm Bild 7 wird nun wie folgt verwendet:

a) Zur Ermittlung der Sicherheit n gegen Vollplastifizierung
wird der Punkt mit den Koordinaten os/op und otJof im
Diagramm eingetragen und mit dem Koordinatenursprung
verbunden. Die Sicherheit n ist dann das Verhältnis des
Vektors bis zur entsprechenden Kurve zum Vektor des

eingetragenen Punktes.

b) Unter Verwendung von azui of/h wird der Punkt mit
den Koordinaten os/olui und ot/ozUi im Diagramm
eingetragen. Liegt dieser Punkt innerhalb der entsprechenden Kurve,
so ist a<aZui.

Anstelle des Diagrammes können auch Näherungsformeln
verwendet werden. Da der Streubereich der Kurven in radialer
Richtung nur wenige Prozente beträgt, so kann eine einheitliche
Kurve gewählt werden, die aus Sicherheitsgründen innerhalb
aller ermittelten Kurven liegen soll. Diese Kurve entspricht
der Näherungsformel :

(62) n2
1 ors

n —
3 op

1

die Abweichungen betragen bis + 5 %.
Einfacher in der Anwendung ist als Näherungskurve der

Kreis

(63) n2 +

die Abweichungen betragen bis ± 4 %. Die Auflösung nach n
ergibt die Sicherheit gegen Vollplastifizierung.

Mit aZui — ap/n kann Gleichung (62) auch als Ungleichung
in folgender Form geschrieben werden:

(64)
Ot

Ozul

2
+ y

/ Os

\ Ozul

Os
S 1

3 Ozul

Aus Gleichung (63) ergibt sich die ideelle Ersatzspannung

3) Die Tabellen für die Litzka-Träger sind bei der Firma Wartmann
& Cie. AG in Brugg erhältlich.

(65) Olä. wm

Es muss dann otd è op/n azui erfüllt sein.
Da der Kreis nach Gleichung (63) bzw. (65) innerhalb der

Versuchspunkte nach Redwood/McCutcheon bzw. Halleux
verläuft und sich diesen Versuchspunkten noch besser
anschmiegt als Gleichung (62) bzw. (64), so bestehen keine
Bedenken, diese in der Anwendung viel einfacheren Formeln zu
verwenden, obwohl sie teilweise gegenüber der dargestellten
Theorie bis etwa 4 % auf der unsicheren Seite hegen. Es kann
leicht nachgewiesen werden, dass für einen Rechteckquerschnitt

des Gurtes, also für 6 d und h t, unter
Vernachlässigung der dann kleinen Schubspannungen die Beziehungen
(63) und (65) genau gelten. Es kann daher auch für den I-
Querschnitt des Gurtes bei verstärkten Waben mit diesen
Gleichungen gerechnet werden, wobei natürlich die
Querschnittswerte entsprechend bestimmt werden müssen, was
hier aber zu weit führen würde.

Auf die übrigen Sicherheitsnachweise kann hier nicht
eingegangen werden. Bei den «aufgestelzten» Wabenträgern
(Schweizer Patent Nr. 376 257) wird die Beanspruchung der
Zwischenbleche durch die Plasözitätstheorie kaum beeinflusst,
weshalb der Spannungs- und der Stabilitätsnachweis nach der
Elastizitätstheorie geführt werden können.

Die Belastungs-Durchbiegungskurven nach Büd 4 zeigen,
dass bis zu einer Belastung von 2/3 der Füesslast der Träger sich
elastisch verhält, so dass unter Annahme einer Sicherheit
gegen Fliessen von 1,5 im Bereich der Betriebsbelastungen die
Durchbiegungen nach der Elastizitätstheorie ermittelt werden
können.

Vorstehende Berechnungsart nach der Plastizitätstheorie
bringt gegenüber der Elastizitätstheorie folgende
Vergünstigungen:

a) Die Widerstandsmomente für Träger- und insbesondere
|Eü§|biegung sind grösser.
b) Der Hebelarm für die Gurtbiegung kann verkleinert werden.
c) Die Stegfläche zur Aufnahme der Schubkräfte kann ver-
grössert werden.
d) Der Momentennullpunkt im Gurtstab steht sich günstigst
ein, wodurch die gegenseitige Beeinflussung von Biegung und
Querkraft geringer wird als nach dem Superpositionsgesetz.
Praktisch wfrk||Sch dies so aus, dass der für das maximale
Moment bemessene Wabenträger i. a. auch die Querkräfte
aufnehmen kann und bei kontinuierlichen Trägern
Verstärkungen höchstens bei dem direkt am Zwischenauflager
anschliessenden Wabenloch nötig werden.

AdresllWdes Verfassers: Ernst Amstutz, dipi. Ing., Direktor in der
Firma Wartmann & Cie. AG, 5200 Brugg

Brandschutz von Stahlkonstruktionen
Von J. P. Décoppet, dipi. Ing., Vevey

Die Technische Kommission der Schweizerischen
Zentralstelle für Stahlbau hat eine Veröffentlichung über
die Probleme des Feuerschutzes von Stahlbauten
herausgegeben. Eine französische Übersetzung dieses Textes wird
im Frühjahr 1970 erscheinen. Bis vor kurzem gab es
in der Schweiz noch keine öffentlichen Richtlinien, welche
als Grundlage für eine wissenschaftliche Berechnung des
Brandwiderstandes von Stahlkonstruktionen dienen könnten.
Im März 1969 hat der Kanton Zürich Richtlinien für den
Brandschutz von Stahlbauten genehmigt. Es war somit
zweckmässig, die in der Schweiz wenig bekannten
Berechnungsmethoden des Feuerschutzes zu veröffentlichen und
sie in allen interessierten Kreisen zu verbreiten.

DK 624.014.2:614.848

Die vorgeschlagene Berechnungsmethode, die sich auf
die Ergebnisse von zahlreichen schweizerischen und
ausländischen Versuchen stützt, beruht auf sechs grundsätzlichen
Begriffen:

1. Die Brandbelastung. Sie ist die Wärmemenge aller brennbaren

Stoffe, bezogen auf die Brandabschnittfläche.
2. Der Brandverlauf. Damit wird die Temperatur in

Abhängigkeit von der Zeit während des Brandes bezeichnet;
sie wird entsprechend der EMPA-Normbrandkurve
angenommen.

3. Der Erwärmungsvorgang (Temperatur-Zeit-Funktion des
Stahlelementes). Er hängt von Form und Grösse des

Schweizerische Bauzeitung Jahrgang Heft 9 • 26. Februar 1970 173


	Berechnung von Wabenträgern nach der Plastizitätstheorie

