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H E R A U S 6 E 6 E B EN VON DER V E R L A G S - A K T I E N 6 E S E L L S C H A F T PER AKADEM ISCHEN TECHNISCHEN VEREINE, ZÜRICH

Studientagung über aktuelle Ingenieurprobleme vom 18. und 19. Oktober 1968
in Zürich
Schweizerischer Ingenieur- und Architekten-Verein. Fachgruppe der Ingenieure für Brückenbau und Hochbau (FGBH)
Heute und in den nächsten Heften veröffentlichen wir die an der Studientagung gehaltenen Vorträge. Alle Aufsätze werden in einem
Sonderheft zusammengefasst.

Der Computer formt die statischen Methoden
Von John P. Wolf, dipi. Ing. ETH, Zürich

Als anfangs der fünfziger Jahre die ersten statischen Berechnungen

mit Hilfe elektronischer Rechenanlagen bewältigt wurden,
kamen die von der Handrechnung her bekannten Verfahren zur
Anwendung, wie zum Beispiel die Methode Cross, die Festpunktmethode

und, falls die (kleine) Anzahl von überzähligen Grössen
einfach erfasst werden konnte, auch die Kraftmethode. Gewisse
dieser Verfahren vermischen sehr stark das Aufstellen der
grundlegenden Gleichungen, die das physikalische Verhalten beschreiben,
mit deren meistens iterativen Lösung, um das Lösen eines grösseren

Gleichungssystems von Hand zu vermeiden. Der Computer ist
aber sehr gut in der Lage, grosse Gleichungssysteme direkt zu
lösen. Andere Handmethoden stellen direkt «anschauliche»
Zwischenresultate auf (zum Beispiel die Schnittkraftverteilungen infolge
der überzähligen Grössen 1); diese in einem allgemeinen
Computerprogramm direkt zu erfassen, kann aufwendig sein. Es ist
günstiger, die verschiedenen Zwischenresultate im Computer,
ausgehend von den gleichen grundlegenden Beziehungen selbst zu
berechnen (zum Beispiel ergeben sich die oben erwähnten
Schnittkraftverteilungen als Resultat einfacher Matrizenoperationen mit
der sogenannten Gleichgewichtsmatrize).

Mit der Zeit kam es deshalb zur Entwicklung von den
Möglichkeiten der elektronischen Maschine besser angepassten Methoden,

das heisst einer eigentlichen computerorientierten Stabstatik.
Die physikalischen Beziehungen werden — unabhängig davon, wie
diese im Lösungsprozess verwendet werden — allgemein formuliert:

erstens die Gleichgewichtsbedingungen in Kräften und zweitens

die Kraft-Deformationsgleichungen (wobei diese durch
Elimination der Verzerrungen aus den Kraft-Verzerrungs- und den
Verzerrungs-Deformationsbeziehungen hervorgegangen sind), völlig
analog zur allgemeinen Elastizitätstheorie.

Die eigentliche Lösung erfolgt nach mathematischen Gesichtspunkten,

ausgehend von den grundlegenden Beziehungen, wobei
die Matrizenrechnung mit Vorteil herangezogen wird. Drückt man
in der ersten Gruppe «möglichst viele» Kräfte durch die restlichen

überzähligen Grössen) aus und führt die dadurch möglich
werdende Substitution in der zweiten Gruppe durch, wo zusätzlich
noch alle Deformationen eliminiert werden, wird man zu einem
Gleichungssystem in den überzähligen Grössen geführt (Kraftmethode).

Um zur Deformationsmethode zu gelangen, werden in der
zweiten Gruppe die Kräfte durch die Deformationen ausgedrückt
und in der ersten eingeführt, die dann nur noch Deformationen als
Unbekannte aufweisen. In beiden Methoden können rein
mathematische Verfahren zur Lösung der Gleichungen verwendet werden.

Entsprechende Substitutionen in Zwischenresultaten führen
dann zu den andern Unbekannten. Es ist interessant festzustellen,
dass die am Schluss anfallenden Gleichungssysteme und damit
auch ihre Lösungen identisch sind mit denen, die mit Handmethoden

erhalten werden.
Trotzdem ist diese computerorientierte Stabstatik von grosser

Bedeutung: Neben der Tatsache, dass diese Methode für eine
elektronische Berechnung geeignet ist, erlaubt sie ein klares Trennen
der (sauber formulierten) physikalischen Beziehungen vom eigentlichen

mathematischen Lösungsprozess; sie lässt sich auch zum
Beispiel auf nichtlineare Probleme der Stabstatik und auf Hächen-
tragwerke ausdehnen.

Damit waren die Grundlagen zur Entwicklung neuer Methoden

geschaffen, die das Lösen von Aufgaben ermöglichen, die bis-

DK 624.04:681.142

her überhaupt nicht oder nur sehr approximativ rechnerisch erfasst
werden konnten. Der Aufbau und jeder Teil dieser Verfahren sind
von den Möglichkeiten des Computers, und damit auch der
numerischen Mathematik, sehr stark beeinffusst. Sie sind verschieden
von Rechenprozessen, die sich auf klassische mathematische
Methoden (Fourierreihen, zum Teil auch Differenzmethoden) stützen
und in denen somit der Computer nur zur Erledigung des schon
längst feststehenden, früher anders, vielleicht nur approximativ
bewältigten Rechenaufwandes herangezogen wird.

Im folgenden sollen zwei dieser neuen Methoden, die im
soeben fertiggestellten Statikprogrammsystem STRIP (siehe
Literaturhinweis) verwendet werden, an Beispielen beleuchtet werden:
Die sogenannte Finite Element Methode in der Analysis von Flä-
chentragwerken und die Optimierung der Grösse der Kraft und des
Verlaufes der Kabel in einer vorgespannten Konstruktion als
Beispiel eines Bemessungsproblemes.

Finite Element Methode (Analyse von Flächentragwerken)
In der Analyse der in Bild 1 dargestellten Schale (Eurogas in

Genf, Projektverfasser Ingenieurbüro Heinz Hossdorf, Basel),
müsste nach herkömmlichen Methoden versucht werden, die
Differentialgleichungen aufzustellen, was infolge der variablen Stärke
und des komplizierten Verlaufes der Mittelfläche, auch mit Hilfe
des Computers, sehr schwierig ist. Diese wären dann numerisch
(zum Beispiel durch passend gewählte Reihen- oder Differenzen-
ausdrücke) zu lösen und, um Ausdrücke für die Schnittkräfte zu
erhalten, wären komplizierte Differentiationen approximativ
durchzuführen. Dieser Weg scheint nicht vielversprechend zu sein.

Mit der Finite Element Methode, die wir von zwei Seiten, der
mathematischen und der baustatischen, betrachten wollen, ist die
Analyse heute routinemässig möglich. Vom mathematischen Standpunkt

aus gesehen, stellt die Differentialgleichung bereits ein
Zwischenresultat dar; sie ist durch Anwendung der Variationsrechnung
auf ein Energieminimalprinzip der Statik hergeleitet worden. Die
in diesem Prinzip vorkommenden Ausdrücke sind einfacher als
diejenigen in den Differentialgleichungen. Es empfiehlt sich
deshalb, die numerischen Approximationen bereits auf der Stufe der
Energieausdrücke einzuführen1), und erst dann das Minimalprinzip
anzuwenden. Die numerische Approximation, bestehend je nach
dem Verfahren aus Deformations- und/oder Spannungsansätzen,
wird für jeden Bereich der Mittelfläche (zum Beispiel Dreiecke,
Bild 1) gewählt, wobei die Energien durch die ebenfalls eingetragenen

Deformationen und verallgemeinerten Knotenkräfte einfach
dargestellt werden können. Dies kann nun auch baustatisch
gedeutet werden. Die Schale wird in Elemente aufgeteilt, die
Verformungseigenschaften jedes Elementes werden durch die
Deformationen und verallgemeinerten Kräfte dargestellt (Steifigkeits-
matrize) und die so erfassten Elemente werden (wie in der
Stabstatik die einzelnen Balkenelemente) in den Knoten durch
Formulierung der Gleichgewichtsbedingungen zur gesamten
Konstruktion zusammengefügt. Die veränderliche Schalenstärke und

Zusätzlich ergibt sich, dass das endgültige Gleichungssystem
positiv définit ausfällt, also zum Beispiel auch symmetrisch ist und
die numerische Lösung, je nach Art der eingeführten Approximation
entweder «zu steif» oder «zu weich» ausfällt. Solche Aussagen können
in der oben beschriebenen herkömmlichen Methode nicht gemacht
werden.
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Bildl. Eurogas-Schale mit Element-Einteilung

die komplizierte Form der Mittelfläche lassen sich einfach
berücksichtigen.

Die Schale in Bild 1, belastet durch Eigengewicht und gleich-
grosse vertikale Punktlasten, die in den Ecken angreifen, ist mit
STRIP nach der Finite Element Methode berechnet worden. Dank
der Symmetrie muss nur ein Sektor erfasst werden; die verwendete
Elementeinteilung ist ebenfalls im Bild eingetragen. Als Beispiel
der Resultate ist in Bild 2 der Verlauf des Biegemomentes M2
(Momentenvektor gegen das Zentrum der Schale weisend) in jenem
Schnitt, der durch die Fallirne, beginnend in einer Ecke und gegen
das Innere der Schale verlaufend, bestimmtjjiwird, dargestellt.
Ebenfalls eingetragen sind die sich aus einem Modellversuch,
durchgeführt im Labor Hossdorf, ergebenden Werte. Die
Übereinstimmung ist gut; es ist dabei zu beachten, dass sehr grosse
Elemente (Bild 1) der Berechnung zugrunde gelegt worden sind (nur
eine Reihe von Knoten innerhalb der Schale), also eine grobe
Approximation eingeführt worden ist. Die Rechenzeit auf einem
UN/1108/Computer beträgt etwas unter einer Minute im endgültigen

Gleichungssystem treten 96 Unbekannte auf (mit STRIP
sind schon Finite Element Aufgaben, die auf ein Gleichungssystem
mit zweitausend Unbekannten führen, mit Erfolg gelöst worden).

Als weiteres Beispiel einer Finite Element Berechnung soll
die im Wasserturm Riyadh (Projektverfasser Vattenbyggnads-
byran, Stockholm) vorkommende Rotationsschale variabler Stärke,
die aus Zylinder-, Kegel- und parabolisch gekrümmten Stücken
zusammengesetzt ist, und in denen auch Versteifungsringe vor-

ModellversuchEie

N

STRIP

3,70i3,70

627.35

26.8026.80

__

0

0 2 4 6

aussen

Bild 2. Vergleich der Finite Element Berechnung STRIP mit dem Modell- Bild 3. Wasserturmschale Riyadh, Vertikalschnitt 1:650
versuch
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Bild 4. Elementeinteilung (Schnitt 1:150)

kommen, angeführt werden (Bild 3). Infolge Symmetrie der Lasten
muss keine Elementaufteilung in der Rotationsrichtung durchgeführt

werden; in Richtung der Erzeugenden ist sie in Bild 4
dargestellt. Büd 5 zeigt die Resultate der Berechnung für das
Biegemoment M2 (Momentenvektor parallel zum Meridian) infolge der
angegebenen Lastfälle. Ein Vergleich der Resultate im Bereiche
der parabolisch gekrümmten Schale (Knotennummern 214, 10,
12 usw. bis 24) für ein angreifendes Randmoment und eine
Randhorizontalkraft mit der theoretischen Lösung zeigt, dass bei der
gewählten Elementeinteilung die Abweichimg in allen Knoten ein
Prozent nicht überschreitet; wird die Anzahl der Elemente
halbiert, bleibt im gesamten Bereich der Fehler unter drei Prozent.
Die gesamte Rechenzeit (Kontrolle der Eingabedaten, Aufstellen
der Ausgangsmatrizen, Matrizenoperationen, Lösung des
Gleichungssystems, Kombinationen der Lastfälle zu Grenzwerten, die
in Bild 5 der Übersichtlichkeit wegen nicht eingetragen worden
sind)*lSäüft sich auf sechs Minuten, (UN 1108).

In STRIP s Flächentragwerksprogramm können neben Schalen

und Membranen auch Scheiben und Platten berechnet werden.
Für die in Bild 6 dargestellte Scheibe (Projektverfasser Ingenieurbüro

Aschwanden und Speck, vormals M. R. Rois, Zürich) sind
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trapez- und dreieckförmige Finite Elemente verwendet worden;
die Schnittkräfte längs der Symmetrieachse 1 infolge eines
Einheitsinnendrucks pi sind in Bild 7 enthalten. Für die schiefe,
punktförmig gelagerte Platte des Bildes 8 (zweigleisige
Eisenbahnbrücke, Projektverfasser Ingenieurbüro Altdorfer, Cogliatti
und Schellenberg, Zürich) sind im Stützenbereich kleinere (pa-
rallelogrammförmige) Elemente als im Feld gewählt worden;
durch einen exzentrischen Anschluss der Elemente ähnlich wie
in Bild 4 in der Zone des aufgelösten Versteifungsrings (Knoten
310 und 212) hätten auch die Abmessungen des Stützkörpers
berücksichtigt werden können. Für den Lastfall Eigengewicht sind
die Längsmomente Mx und die Durchbiegungen in zwei parallelen
Schnitten angegeben. Bemerkenswert ist, wie die im Randschnitt
recht verschiedenen Biegelinien der beiden Spannweiten im innern
Schnitt sich kaum noch unterscheiden; auch weisen wir auf die
damit zusammenhängende Lageänderung des maximalen
Stützenmomentes hin. Als letztes Beispiel soll eine Wildbachtalsperre
betrachtet werden (Bild 9, Eidgenössisches Amt für Strassen- und
Flussbau, Bern, bearbeitet durch das Ingenieurbüro W., R. und
Dr. W. Heierli, Zürich). Sie wurde als Platte mit einer Stärke
d 2,2 m und als (Zylinder) Schale mit d= 1,0 m berechnet.
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Vorspannung
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§ Eigengewicht
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Abmessungen

Schnittkräfte
Momente sind auf der Zugseite aufgetragen

Bild 5. Verlauf des Biegemomentes M 2

Für den Lastfall Wasserdruck sind die Durchbiegungen und die
Randspannungen im angegebenen Schnitt für die beiden statischen
Systeme in Bild 9 miteinander verglichen worden.

Vorspannkabeldimensionierung (Optimierung der Grösse der Kraft
und des Verlaufes der Kabel bei gegebenen Betonabmessungen)

Die folgende Dimensionierungsaufgabe soll gelöst werden
(Bild 10): Gegeben sind die Betonabmessungen einer symmetrischen
Dreifeldbrücke und damit auch die Querschnittswerte und die
Belastungen (ohne Vorspannung), aus denen die Grenzwertlinien
der Spannungen an der Ober- und Unterkante des Trägers berechnet

werden können. Gesucht ist die Grösse der Vorspannkraft und
die Lage des durchlaufenden Kabels, wobei die Vorspannkraft
möglichst klein (minimaler Stahlverbrauch) gehalten werden soll.
Dabei müssen die folgenden drei Gruppen von Bedingungen
eingehalten werden:

a) Die Spannung im Gebrauchszustand muss sowohl in Ober- und
Unterkante zwischen den gegebenen zulässigen Werten liegen. In
diesem Beispiel: o- m;„ (zul.) —¦ 800 t/m2, o- (zul.) max 0 t/m2.

b) Das Kabel muss innerhalb des im wesentlichen konstruktiv

bedingten Schlauches liegen, Bild 11 (Sicherung genügender
Betonüberdeckung, Möglichkeit, die Kabel zu verankern usw., aber
auch Berücksichtigung des Schub- und Bruchverhaltens).

c) Kein Unterschreiten des minimal zulässigen Krümmungsradius
(in diesem Beispiel Rmin 4 m).

Diese Aufgabe wird mit Hilfe eines linearen Programmes
gelöst: Als Unbekannte werden die Exzentrizitäten des Kabels (in
den Achtelspunkten der Felder) und die Vorspannkraft (genauer:
der reziproke Wert) eingeführt. Die Optimalfunktion drückt aus,
dass die Vorspannkraft minimal sein soll (der reziproke Wert
maximal). Die einzuhaltenden Bedingungen führen in jedem betrachteten

Schnitt (Achtelspunkte) zu folgenden Ungleichungen:

a) 4 Spannungsungleichungen. Beim flüchtigen Betrachten dieser

Ungleichungen könnte man darauf schliessen, dass diese quadratisch

sind, also mit einem linearen Programm nicht zu behandeln
wären (Moment Exzentrizität mal Vorspannkraft). Dividiert
man die Ungleichungen aber mit der Vorspannkraft, so werden sie

linear, falls der reziproke Wert der Vorspannkraft als Unbekannte
eingeführt wird. Die statisch unbestimmten Grössen aus Vorspannung

werden berücksichtigt.

96 Schweizerische Bauzeitung • 87. Jahrgang Heft 6 • 6. Februar 1969
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b) 2 konstruktive Ungleichungen (können durch eine neue Definition

der Variablen auf eine Ungleichung reduziert werden).
c) 2 minimale-Radius-Ungleichimgen.

Das Resultat der Berechnung ist in Bild 11 dargestellt. Der
minimalen Vorspannkraft Vmin 1103 t ist eine vernünftige
Kabellage zugeordnet. Zwei alternative Dimensionierungen sind in
Bild 11 ebenfalls eingetragen worden. Erstens ist die grösstmögliche
Vorspannkraft und deren Kabellage unter Einhaltung der gleichen
Bedingungen bestimmt worden (nur Änderung der Optimalfunktion).

Es ergibt sich dabei Vmax 1243 t. Das zugeordnete Kabel
liegt wie erwartet näher bei der Schwerachse. Zweitens ist
ausgehend von einer ganzen Zahl von Kabeln (5 x 237 t 1185 t) die
Kabellage so bestimmt worden, dass eine in jedem Schnitt vorhandene,

in allen Spannungsbedingungen auftretende Spannungsreserve

maximal wird, unter Einhaltung der gleichen andern
Bedingungen. Die gegebene Vorspannkraft wird in diesem Fall in den
Spannungsungleichungen und in der Optimalfunktion von der
Spannungsmarge als Unbekannte abgelöst. Als Resultat erhält man
eine Spannungsreserve von 16 t/m2.

STRIP bringt im Bereiche der Vorspanndimensionierung vor
allem noch folgende Ergänzungen:

— Berücksichtigung mehrerer Lastkombinationen mit voneinander
verschiedenen zulässigen Spannungen.

— Approximative Berücksichtigung der Reibung und des Krie¬
chens.

— Verarbeitung mehrerer Kabelgruppen, die verschiedene Ein¬

heitspreise aufweisen können.

— Bestimmt wird die preisgünstigste Zahl der einzelnen Kabel¬

gruppen und deren Verlauf, so dass die in jedem Schnitt und
in allen Spannungsbedingungen auftretende Spannungsreserve
maximal wird.

Solche mit linearer Programmierung durchgeführte
Dimensionierungen führen zu recht brauchbaren Lösungen. In der Regel
wird der projektierende Ingenieur kleine Änderungen vornehmen
und dann bei gegebener Spannkraft und Kabellage eine normale
Analyse unter exakter Berücksichtigung der Reibung und des

Kriechens und Schwindens vornehmen, was mit STRIP ebenfalls

möglich ist.
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Bild 10. Statisches System. Querschnittswerte und Grenzwerte der Span- Adresse des Verfassers: John P. Wolf, dipi. Ing. ETH, Digital AG,
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