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HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, ZORICH

Studientagung liber aktuelle Ingenieurprobleme vom 18. und 19. Oktober 1968
in Zirich
Schweizerischer Ingenieur- und Architekten-Verein. Fachgruppe der Ingenieure fiir Briickenbau und Hochbau (FGBH)

Heute und in den néchsten Heften verdffentlichen wir die an der Studientagung gehaltenen Vortrage. Alle Aufsitze werden in einem

Sonderheft zusammengefasst.

Der Computer formt die statischen Methoden

Von John P. Wolf, dipl. Ing. ETH, Zirich

Als anfangs der fiinfziger Jahre die ersten statischen Berech-
nungen mit Hilfe elektronischer Rechenanlagen bewiltigt wurden,
kamen die von der Handrechnung her bekannten Verfahren zur
Anwendung, wie zum Beispiel die Methode Cross, die Festpunkt-
methode und, falls die (kleine) Anzahl von iiberzihligen Grossen
einfach erfasst werden konnte, auch die Kraftmethode. Gewisse
dieser Verfahren vermischen sehr stark das Aufstellen der grund-
legenden Gleichungen, die das physikalische Verhalten beschreiben,
mit deren meistens iterativen Losung, um das Losen eines grosse-
ren Gleichungssystems von Hand zu vermeiden. Der Computer ist
aber sehr gut in der Lage, grosse Gleichungssysteme direkt zu 16-
sen. Andere Handmethoden stellen direkt «anschauliche» Zwi-
schenresultate auf (zum Beispiel die Schnittkraftverteilungen infolge
der iiberzghligen Grossen = 1); diese in einem allgemeinen Com-
puterprogramm direkt zu erfassen, kann aufwendig sein. Es ist
giinstiger, die verschiedenen Zwischenresultate im Computer, aus-
gehend von den gleichen grundlegenden Beziehungen selbst zu
berechnen (zum Beispiel ergeben sich die oben erwihnten Schnitt-
kraftverteilungen als Resultat einfacher Matrizenoperationen mit
der sogenannten Gleichgewichtsmatrize).

Mit der Zeit kam es deshalb zur Entwicklung von den Mdg-
lichkeiten der elektronischen Maschine besser angepassten Metho-
den, das heisst einer eigentlichen computerorientierten Stabstatik.
Die physikalischen Beziehungen werden — unabhingig davon, wie
diese im Losungsprozess verwendet werden — allgemein formu-
liert: erstens die Gleichgewichtsbedingungen in Kréften und zwei-
tens die Kraft-Deformationsgleichungen (wobei diese durch FEli-
mination der Verzerrungen aus den Kraft-Verzerrungs- und den
Verzerrungs-Deformationsbeziehungen hervorgegangen sind), vollig
analog zur allgemeinen Elastizititstheorie.

Die eigentliche Losung erfolgt nach mathematischen Gesichts-
punkten, ausgehend von den grundlegenden Beziehungen, wobei
die Matrizenrechnung mit Vorteil herangezogen wird. Driickt man
in der ersten Gruppe «moglichst viele» Krifte durch die restlichen
(= iiberzahligen Grossen) aus und fiihrt die dadurch moglich
werdende Substitution in der zweiten Gruppe durch, wo zusitzlich
noch alle Deformationen eliminiert werden, wird man zu einem
Gleichungssystem in den iiberzihligen Grossen gefiihrt (Kraftme-
thode). Um zur Deformationsmethode zu gelangen, werden in der
zweiten Gruppe die Kréfte durch die Deformationen ausgedriickt
und in der ersten eingefiihrt, die dann nur noch Deformationen als
Unbekannte aufweisen. In beiden Methoden kénnen rein mathe-
matische Verfahren zur Losung der Gleichungen verwendet wer-
den. Entsprechende Substitutionen in Zwischenresultaten fiihren
dann zu den andern Unbekannten. Es ist interessant festzustellen,
dass die am Schluss anfallenden Gleichungssysteme und damit
auch ihre Losungen identisch sind mit denen, die mit Handmetho-
den erhalten werden.

Trotzdem ist diese computerorientierte Stabstatik von grosser
Bedeutung: Neben der Tatsache, dass diese Methode fiir eine elek-
tronische Berechnung geeignet ist, erlaubt sie ein klares Trennen
der (sauber formulierten) physikalischen Beziehungen vom eigent-
lichen mathematischen Losungsprozess; sie lasst sich auch zum
Beispiel auf nichtlineare Probleme der Stabstatik und auf Fldchen-
tragwerke ausdehnen.

Damit waren die Grundlagen zur Entwicklung neuer Metho-
den geschaffen, die das Losen von Aufgaben ermoglichen, die bis-
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her iiberhaupt nicht oder nur sehr approximativ rechnerisch erfasst
werden konnten. Der Aufbau und jeder Teil dieser Verfahren sind
von den Mdglichkeiten des Computers, und damit auch der nume-
rischen Mathematik, sehr stark beeinflusst. Sie sind verschieden
von Rechenprozessen, die sich auf klassische mathematische Me-
thoden (Fourierreihen, zum Teil auch Differenzmethoden) stiitzen
und in denen somit der Computer nur zur Erledigung des schon
lingst feststehenden, frither anders, vielleicht nur approximativ
bewiltigten Rechenaufwandes herangezogen wird.

Im folgenden sollen zwei dieser neuen Methoden, die im
soeben fertiggestellten Statikprogrammsystem STRIP (siche Litera-
turhinweis) verwendet werden, an Beispielen beleuchtet werden:
Die sogenannte Finite Element Methode in der Analysis von Fli-
chentragwerken und die Optimierung der Grosse der Kraft und des
Verlaufes der Kabel in einer vorgespannten Konstruktion als Bei-
spiel eines Bemessungsproblemes.

Finite Element Methode (Analyse von Flichentragwerken)

In der Analyse der in Bild 1 dargestellten Schale (Eurogas in
Genf, Projektverfasser Ingenieurbiiro Heinz Hossdorf, Basel),
miisste nach herkémmlichen Methoden versucht werden, die Dif-
ferentialgleichungen aufzustellen, was infolge der variablen Stdrke
und des komplizierten Verlaufes der Mittelfliche, auch mit Hilfe
des Computers, sehr schwierig ist. Diese wiren dann numerisch
(zum Beispiel durch passend gewihlte Reihen- oder Differenzen-
ausdriicke) zu 10sen und, um Ausdriicke fiir die Schnittkrifte zu
erhalten, wiren komplizierte Differentiationen approximativ durch-
zufiihren. Dieser Weg scheint nicht vielversprechend zu sein.

Mit der Finite Element Methode, die wir von zwei Seiten, der
mathematischen und der baustatischen, betrachten wollen, ist die
Analyse heute routinemassig moglich. Vom mathematischen Stand-
punkt aus gesehen, stellt die Differentialgleichung bereits ein Zwi-
schenresultat dar; sie ist durch Anwendung der Variationsrechnung
auf ein Energieminimalprinzip der Statik hergeleitet worden. Die
in diesem Prinzip vorkommenden Ausdriicke sind einfacher  als
diejenigen in den Differentialgleichungen. Es empfiehlt sich des-
halb, die numerischen Approximationen bereits auf der Stufe der
Energieausdriicke einzufiihren?), und erst dann das Minimalprinzip
anzuwenden. Die numerische Approximation, bestehend je nach
dem Verfahren aus Deformations- und/oder Spannungsansétzen,
wird fur jeden Bereich der Mittelflache (zum Beispiel Dreiecke,
Bild 1) gewahlt, wobei die Energien durch die ebenfalls eingetrage-
nen Deformationen und verallgemeinerten Knotenkrifte einfach
dargestellt werden konnen. Dies kann nun auch baustatisch ge-
deutet werden. Die Schale wird in Elemente aufgeteilt, die Ver-
formungseigenschaften jedes Elementes werden durch die Defor-
mationen und verallgemeinerten Krafte dargestellt (Steifigkeits-
matrize) und die so erfassten Elemente werden (wie in der Stab-
statik die einzelnen Balkenelemente) in den Knoten durch For-
mulierung der Gleichgewichtsbedingungen zur gesamten Kon-
struktion zusammengefiigt. Die veranderliche Schalenstdarke und

1) Zusitzlich ergibt sich, dass das endgiiltige Gleichungssystem
positiv definit ausfillt, also zum Beispiel auch symmetrisch ist und
die numerische Losung, je nach Art der eingefilhrten Approximation
entweder «zu steif> oder «zu weich» ausféllt. Solche Aussagen konnen
in der oben beschriebenen herkommlichen Methode nicht gemacht
werden.
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Bild 1. Eurogas-Schale mit Element-Einteilung

die komplizierte Form der Mittelfliche lassen sich einfach beriick-
sichtigen.

Die Schale in Bild 1, belastet durch Eigengewicht und gleich-
grosse vertikale Punktlasten, die in den Ecken angreifen, ist mit
STRIP nach der Finite Element Methode berechnet worden. Dank
der Symmetrie muss nur ein Sektor erfasst werden; die verwendete
Elementeinteilung ist ebenfalls im Bild eingetragen. Als Beispiel
der Resultate ist in Bild 2 der Verlauf des Biegemomentes M2
(Momentenvektor gegen das Zentrum der Schale weisend) in jenem
Schnitt, der durch die Fallinie, beginnend in einer Ecke und gegen
das Innere der Schale verlaufend, bestimmt wird, dargestellt.
Ebenfalls eingetragen sind die sich aus einem Modellversuch,
durchgefiihrt im Labor Hossdorf, ergebenden Werte. Die Uber-
einstimmung ist gut; es ist dabei zu beachten, dass sehr grosse Ele-
mente (Bild 1) der Berechnung zugrunde gelegt worden sind (nur
eine Reihe von Knoten innerhalb der Schale), also eine grobe
Approximation eingefiihrt worden ist. Die Rechenzeit auf einem
UN/1108/Computer betragt etwas unter einer Minute im endgiil-
tigen Gleichungssystem treten 96 Unbekannte auf (mit STRIP
sind schon Finite Element Aufgaben, die auf ein Gleichungssystem
mit zweitausend Unbekannten fiithren, mit Erfolg gelost worden).

Als weiteres Beispiel einer Finite Element Berechnung soll
die im Wasserturm Riyadh (Projektverfasser Vattenbyggnads-
byran, Stockholm) vorkommende Rotationsschale variabler Starke,
die aus Zylinder-, Kegel- und parabolisch gekriimmten Stiicken
zusammengesetzt ist, und in denen auch Versteifungsringe vor-
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Bild 2. Vergleich der Finite Element Berechnung STRIP mit dem Modell-
versuch
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Bild 4. Elementeinteilung (Schnitt 1:150)

kommen, angefiihrt werden (Bild 3). Infolge Symmetrie der Lasten
muss keine Elementaufteilung in der Rotationsrichtung durchge-
fiilhrt werden; in Richtung der Erzeugenden ist sie in Bild 4 dar-
gestellt. Bild 5 zeigt die Resultate der Berechnung fiir das Biege-
moment M2 (Momentenvektor parallel zum Meridian) infolge der
angegebenen Lastfille. Ein Vergleich der Resultate im Bereiche
der parabolisch gekriimmten Schale (Knotennummern 214, 10,
12 usw. bis 24) fiir ein angreifendes Randmoment und eine Rand-
horizontalkraft mit der theoretischen Losung zeigt, dass bei der
gewdhlten Elementeinteilung die Abweichung in allen Knoten ein
Prozent nicht iiberschreitet; wird die Anzahl der Elemente hal-
biert, bleibt im gesamten Bereich der Fehler unter drei Prozent.
Die gesamte Rechenzeit (Kontrolle der Eingabedaten, Aufstellen
der Ausgangsmatrizen, Matrizenoperationen, Ldsung des Glei-
chungssystems, Kombinationen der Lastfdlle zu Grenzwerten, die
in Bild 5 der Ubersichtlichkeit wegen nicht eingetragen worden
sind) belduft sich auf sechs Minuten (UN 1108).

In STRIP s Fldchentragwerksprogramm konnen neben Scha-
len und Membranen auch Scheiben und Platten berechnet werden.
Fiir die in Bild 6 dargestellte Scheibe (Projektverfasser Ingenieur-
biiro Aschwanden und Speck, vormals M. R. RoS§, Ziirich) sind
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trapez- und dreieckformige Finite Elemente verwendet worden;
die Schnittkrafte langs der Symmetrieachse 1 infolge eines Ein-
heitsinnendrucks p: sind in Bild 7 enthalten. Fiir die schiefe,
punktformig gelagerte Platte des Bildes 8 (zweigleisige FEisen-
bahnbriicke, Projektverfasser Ingenieurbiiro Altdorfer, Cogliatti
und Schellenberg, Ziirich) sind im Stiitzenbereich kleinere (pa-
rallelogrammformige) Elemente als im Feld gewidhlt worden;
durch einen exzentrischen Anschluss der Elemente #hnlich wie
in Bild 4 in der Zone des aufgelosten Versteifungsrings (Knoten
310 und 212) hitten auch die Abmessungen des Stiitzkorpers be-
riicksichtigt werden konnen. Fiir den Lastfall Eigengewicht sind
die Liangsmomente M. und die Durchbiegungen in zwei parallelen
Schnitten angegeben. Bemerkenswert ist, wie die im Randschnitt
recht verschiedenen Biegelinien der beiden Spannweiten im innern
Schnitt sich kaum noch unterscheiden; auch weisen wir auf die
damit zusammenhingende Lagednderung des maximalen Stiitzen-
momentes hin. Als letztes Beispiel soll eine Wildbachtalsperre
betrachtet werden (Bild 9, Eidgenossisches Amt fiir Strassen- und
Flussbau, Bern, bearbeitet durch das Ingenieurbiiro W., R. und
Dr. W. Heierli, Ziirich). Sie wurde als Platte mit einer Stdrke
d=22m und als (Zylinder) Schale mit d = 1,0 m berechnet.
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Bild 5. Verlauf des Biegemomentes M 2

Fiir den Lastfall Wasserdruck sind die Durchbiegungen und die
Randspannungen im angegebenen Schnitt fiir die beiden statischen
Systeme in Bild 9 miteinander verglichen worden.

Vorspannkabeldimensionierung (Optimierung der Grosse der Kraft
und des Verlaufes der Kabel bei gegebenen Betonabmessungen)

Die folgende Dimensionierungsaufgabe soll gelost werden
(Bild 10): Gegeben sind die Betonabmessungen einer symmetrischen
Dreifeldbriicke und damit auch die Querschnittswerte und die
Belastungen (ohne Vorspannung), aus denen die Grenzwertlinien
der Spannungen an der Ober- und Unterkante des Tragers berech-
net werden konnen. Gesucht ist die Grosse der Vorspannkraft und
die Lage des durchlaufenden Kabels, wobei die Vorspannkraft
moglichst klein (minimaler Stahlverbrauch) gehalten werden soll.
Dabei miissen die folgenden drei Gruppen von Bedingungen ein-
gehalten werden:

a) Die Spannung im Gebrauchszustand muss sowohl in Ober- und
Unterkante zwischen den gegebenen zulédssigen Werten liegen. In
diesem Beispiel: o min (zul.) = — 800 t/m?, o (zul.) max = 0 t/m2.

b) Das Kabel muss innerhalb des im wesentlichen konstruktiv

96

Momente sind auf der Zugseite aufgetragen

bedingten Schlauches liegen, Bild 11 (Sicherung geniigender Beton-
iberdeckung, Moglichkeit, die Kabel zu verankern usw., aber
auch Beriicksichtigung des Schub- und Bruchverhaltens).

¢) Kein Unterschreiten des minimal zuldssigen Kriimmungsradius
(in diesem Beispiel Rpnin = 4 m).

Diese Aufgabe wird mit Hilfe eines linearen Programmes
gelost: Als Unbekannte werden die Exzentrizitdten des Kabels (in
den Achtelspunkten der Felder) und die Vorspannkraft (genauer:
der reziproke Wert) eingefiithrt. Die Optimalfunktion driickt aus,
dass die Vorspannkraft minimal sein soll (der reziproke Wert ma-
ximal). Die einzuhaltenden Bedingungen fiihren in jedem betrach-
teten Schnitt (Achtelspunkte) zu folgenden Ungleichungen:

a) 4 Spannungsungleichungen. Beim fliichtigen Betrachten dieser
Ungleichungen konnte man darauf schliessen, dass diese quadra-
tisch sind, also mit einem linearen Programm nicht zu behandeln
wiaren (Moment Exzentrizitait mal Vorspannkraft), Dividiert
man die Ungleichungen aber mit der Vorspannkraft, so werden sie
linear, falls der reziproke Wert der Vorspannkraft als Unbekannte
eingefiihrt wird. Die statisch unbestimmten Grossen aus Vorspan-
nung werden beriicksichtigt.
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Fur die elektronische Berechnung

betrachteter Kreisringsektor

Bild 6. Statisches System und Elementeinteilung der Reaktorscheibe
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Bild 7. Schnittkraftverlauf infolge Innendruck p1 = 1 t/m
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Bild 8. Schiefe punktférmig gelagerte Platte

a) Grundriss mit Elementeinteilung
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SCHNITT A-A
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max. Vorspannkraft V=1243t

O min. Vorspannkraft V= 11031/ o5
V= 1185t ’
o o )

g min,y = — 800 t/mz2
g maxz = O

R min = 4m

Bild 11. Vorspannkabeldimensionierung bei einer symmetrischen Dreifeld-
briicke. Konstruktiv zuldssiger Schlauch. Resultat der drei Vorspanndimen-
sionierungen
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b) 2 konstruktive Ungleichungen (konnen durch eine neue Defini-
tion der Variablen auf eine Ungleichung reduziert werden).
¢) 2 minimale-Radius-Ungleichungen.

Das Resultat der Berechnung ist in Bild 11 dargestellt. Der
minimalen Vorspannkraft Vmi, = 1103 t ist eine verniinftige Ka-
bellage zugeordnet. Zwei alternative Dimensionierungen sind in
Bild 11 ebenfalls eingetragen worden. Erstens ist die grosstmogliche
Vorspannkraft und deren Kabellage unter Einhaltung der gleichen
Bedingungen bestimmt worden (nur Anderung der Optimalfunk-
tion). Es ergibt sich dabei Vina: = 1243 t. Das zugeordnete Kabel
liegt wie erwartet ndher bei der Schwerachse. Zweitens ist aus-
gehend von einer ganzen Zahl von Kabeln (5 x 237 t = 1185 t) die
Kabellage so bestimmt worden, dass eine in jedem Schnitt vorhan-
dene, in allen Spannungsbedingungen auftretende Spannungsre-
serve maximal wird, unter Einhaltung der gleichen andern Bedin-
gungen. Die gegebene Vorspannkraft wird in diesem Fall in den
Spannungsungleichungen und in der Optimalfunktion von der
Spannungsmarge als Unbekannte abgelost. Als Resultat erhdlt man
eine Spannungsreserve von 16 t/m?2.

STRIP bringt im Bereiche der Vorspanndimensionierung vor
allem noch folgende Ergdnzungen:

— Beriicksichtigung mehrerer Lastkombinationen mit voneinander
verschiedenen zuldssigen Spannungen.

— Approximative Beriicksichtigung der Reibung und des Krie-
chens.

— Verarbeitung mehrerer Kabelgruppen, die verschiedene Ein-
heitspreise aufweisen koénnen. :

— Bestimmt wird die preisgiinstigste Zahl der einzelnen Kabel-
gruppen und deren Verlauf, so dass die in jedem Schnitt und
in allen Spannungsbedingungen auftretende Spannungsreserve
maximal wird.

Solche mit linearer Programmierung durchgefiihrte Dimen-
sionierungen fiihren zu recht brauchbaren Losungen. In der Regel
wird der projektierende Ingenieur kleine Anderungen vornehmen
und dann bei gegebener Spannkraft und Kabellage eine normale
Analyse unter exakter Beriicksichtigung der Reibung und des
Kriechens und Schwindens vornehmen, was mit STRIP ebenfalls
moglich ist.
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