Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 87 (1969)

Heft: 49

Artikel: Die sofortige Überprüfung von Staumauerdeformationen

Autor: Schnitter, N.

DOI: https://doi.org/10.5169/seals-70824

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

10. Schlussbetrachtungen

Es liegt im Interesse der Werke, die Entwicklung der Dinge aufmerksam zu verfolgen. Die Behörden sollen schon im Stadium der Projektierung auf allfällig entstehende Engpässe aufmerksam gemacht werden. Darüber hinaus lohnt es sich aber auch, schon bei der Wahl der Standorte neuer Werke und Unterwerke dem Transportweg (Durchfahrtshöhen, Durchfahrtsbreiten und maximal zulässige Belastungen) die volle Aufmerksamkeit zu schenken.

Wenn immer möglich sollten Schwertransporte nicht in Tauwetter-Perioden, aber auch nicht bei extrem hohen Temperaturen (Weichwerden der Teerbeläge) ausgeführt werden.

Wir Werkleute müssen auch die Argumente der Strassenbauer anhören und soweit als möglich darauf Rücksicht nehmen. Unsere Forderungen sind auf das unbedingt Nötige zu beschränken, wobei auch auf die zukünftige Entwicklung Rücksicht zu nehmen ist, weil an

dem einmal geschaffenen Strassennetz Änderungen nur mit unverhältnismässig hohen Kosten möglich sind.

Verwendete Unterlagen

- Bericht der VSS-Arbeitsgruppe f
 ür Ausnahmetransporte vom 1. Oktober 1964
- 2. Zwischenbericht der technischen Beratungsstelle vom 23. Mai 1967
- Technischer Bericht der Arbeitsgruppe Versorgungsrouten an die kantonale Baudirektion Zürich vom 14. November 1967

Literaturverzeichnis

- [1] «SEV-Bulletin» 55 (1964), Heft 3, Seiten des VSE, S. 26
- [2] «SEV-Bulletin» 56 (1965), Heft 18, Seiten des VSE, S. 26
- [3] «Motorlastwagen» 1968, Heft 18, S. 41-53

Adresse des Verfassers: *Hans Wüger*, dipl. Ing., 8802 Kilchberg, Baldernstrasse 15.

Die sofortige Überprüfung von Staumauerdeformationen

DK 627.825.001.4

Von N. Schnitter, dipl. Ing. ETH, Baden

1. Einleitung

Der ständigen und regelmässigen Überwachung des Verhaltens von Talsperren durch Beobachtungen und Messungen wird seit geraumer Zeit die ihr zukommende Bedeutung geschenkt. Eher vernachlässigt wurde hingegen die rasche Interpretation der Messwerte und die sofortige Nachprüfung des ordnungsgemässen Verhaltens der Sperre, zum Beispiel durch Vergleich der gemessenen mit theoretisch oder statistisch vorausgesagten Werten. Nachfolgend wird ein seit mehreren Jahren erprobtes Verfahren beschrieben, welches erlaubt, die Deformationen von Bogenstaumauern, welche mittels Gewichts- oder Schwimmloten jederzeit rasch und zuverlässig gemessen werden können, sofort nach den Methoden der Statik nachzurechnen. Neben der angestrebten laufenden Überwachung des Verhaltens des Bauwerkes vermitteln solche Nachrechnungen auch eine ständige Kontrolle der Messinstrumente und -ablesungen selbst, da diese bei Auftreten von Diskrepanzen als erste nachzuprüfen sein werden.

2. Erfassen der Einflusswerte

Das zu beschreibende Verfahren beruht auf der Verwendung von Einflusswerten für die beiden an den Deformationen einer Bogenstaumauer hauptsächlich beteiligten Wirkungen, das heisst für die Stauspiegelschwankungen und die Betontemperaturen. Von letzteren müssen bei dicken Mauern im allgemeinen nur die gleichmässigen Temperaturänderungen berücksichtigt werden, während bei dünnen Sperren auch den Temperaturgefällen zwischen Wasser- und Luftseite eine nicht zu vernachlässigende Bedeutung zukommt.

A. Einflusswerte für Stauspiegelschwankungen

Diese lassen sich sehr leicht ermitteln, indem, am besten anlässlich der endgültigen statischen Berechnung für das Ausführungsprojekt¹), die gewünschten Deformationen für verschiedene Stauziele berechnet und die entsprechenden Biegelinien aufgezeichnet werden (Bild 1, b). Aus letzteren gewinnt man unmittelbar die Einflusslinien für die Deformation der Messpunkte in Funktion der Stauspiegellage (Bild 2).

B. Einflusswerte für Temperaturwirkungen

Analog wie für verschiedene Stauziele lassen sich die gewünschten Deformationen auch für Einheitstemperaturänderungen bzw. -gefälle auf verschiedenen Mauerhöhen ermitteln, wobei es unerlässlich ist, dem dreidimensionalen Charakter des Bauwerkes Rechnung zu tragen²). Die entsprechenden Biegelinien (Bild 1, c und d) erlauben nun die Bestimmung der Deformationen der Messpunkte infolge der Temperaturwirkungen auf gewissen, meist aus der statischen Berechnung übernommenen Mauerhöhen, die jedoch im allgemeinen nicht

- ¹) Was zum Beispiel bei Verwendung einer Trägerrostmethode lediglich zusätzliche Belastungsglieder im Gleichungssystem für den Lastausgleich erfordert.
- ²) Was zum Beispiel bei Verwendung einer Trägerrostmethode einen Lastausgleich auch für die Temperaturwirkungen bedingt, wobei die gleichmässigen Temperaturänderungen primär nur die Bogen beeinflussen, während die Temperaturgefälle gleichzeitig auch auf die Konsolen wirken.

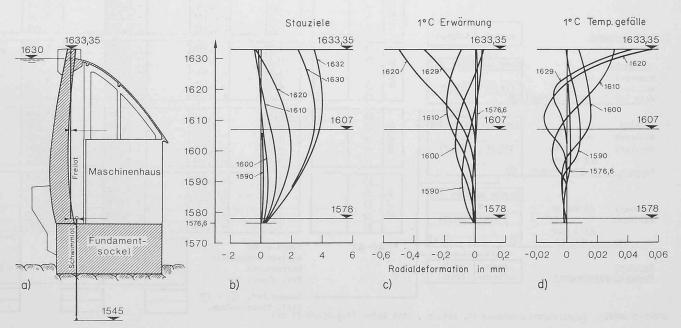
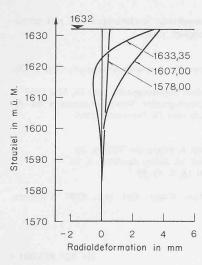
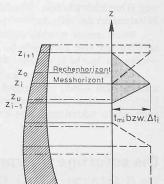
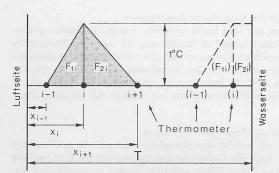



Bild 1. Horizontale Radialformationen im Hauptschnitt der Bogenstaumauer Ova Spin (a) für verschiedene Stauziele (b) bzw. Einheitstemperaturänderungen und -gefälle auf verschiedenen Mauerhöhen (c und d) auf Grund eines sechsschnittigen radialen Lastausgleichs

Links:

Bild 2. Aus den Biegelinien von Bild 1b abgeleitete Einflusslinien für die horizontalen Radialdeformationen der drei Lotmesspunkte im Hauptschnitt der Bogenstaumauer Ova Spin


Rechts:


Bild 3. Verfahren zur Bestimmung der Wirkung von Einheitstemperaturänderungen t_m bzw. -gefällen $\triangle \, t$ auf einem Temperaturmesshorizont aus den für benachbarte Mauerhöhen errechneten

Deformation im Messpunkt P infolge Temperaturwirkungen auf dem Messhorizont z_i :

$$\begin{split} \delta_{ti}^{P} &= \frac{z_{i+1} - z_{0}}{z_{i+1} - z_{i}} \left(t_{mi} \, \delta_{tz_{0}}^{P} + \varDelta \, t_{i} \, \delta_{\Delta \, tz_{0}}^{P} \right) \, + \\ &+ \frac{z_{u} - z_{i-1}}{z_{i} - z_{i-1}} \left(t_{mi} \, \delta_{tz_{u}}^{P} + \varDelta \, t_{i} \, \delta_{\Delta \, tz_{u}}^{P} \right) \text{usw.} \end{split}$$

worin: $\delta \frac{P}{tz}$ Deformationen in P infolge t_m bzw. $\Delta t = 1^{\circ}$ C auf Rechenhorizont z

1. Mittlere Temperatur über den Messhorizont:

$$t_{mi} = \frac{1}{T} \left(F_{1i} + F_{2i} \right)$$

2. Temperaturgefälle, positiv von Wasser- zu Luftseite:

$$\Delta t_i = \frac{12}{T^2} \left(S_{1i} + S_{2i} \right) - 6 t_{mi}$$

ers. Thermom.	
$1/2 (x_i - x_{i-1})$	
$3x_i + 1/3x_{i-1}$	
$F_{2i}\left(x_{i}+T\right)$	
1	

Bild 4. Verfahren zur Ermittlung der Einflüsse der einzelnen Thermometer auf einem Temperaturmesshorizont

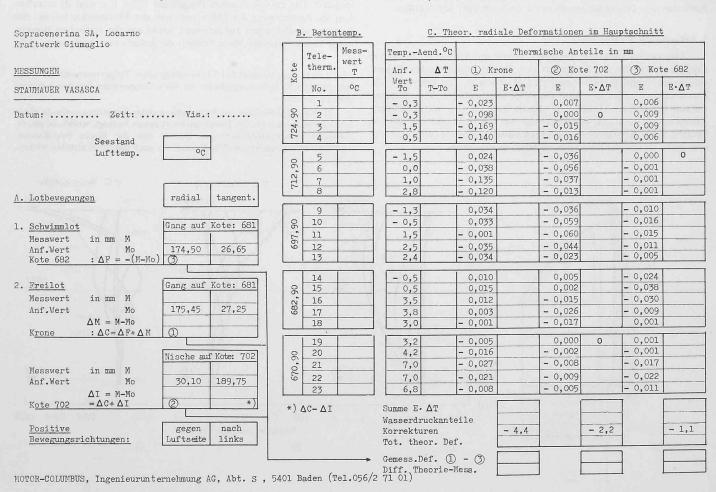


Bild 5. Kombiniertes Mess- und Auswertungsformular für die horizontalen Deformationen der drei Lotmesspunkte im Hauptschnitt der Bogenstaumauer Vasasca; der rechte Teil des Formulars dient der Nachrechnung der Radialdeformationen

Tabelle 1.

Materialeigenschaft	Bestimmung	Bogenstaumauer		
		Zervreila	Sufers	Vasasca
Beton-Elastizitäts- modul in kg/cm ²	Betonprismen Mauer-	220 000	330 000	220 000
	deformationen	190 000	320 000	206 000
Fels-Elastizitäts-	Geoseismik	340 000	300 000	190 000
modul in kg/cm ²	Bohrkerne Mauer-	n. b.	275 000	104000
	deformationen	190 000	320 000	206 000
Wärmeausdehnungs- koeffizient in 10 ⁻⁵ /°C	Mauer- deformationen	1.46	0.62	0.64

mit den Horizonten der Temperaturmessung übereinstimmen werden. Ein Verfahren zur Umrechnung auf letztere zeigt Bild 3.

Eine weitere Verfeinerung ist nun möglich, indem die Einheitstemperaturwirkung auf einem bestimmten Temperaturmesshorizont in die Einzeleinflüsse der verschiedenen Thermometer zerlegt wird. Dies nach dem Prinzip, wonach die Fläche und das statische Moment der durch eine gleichmässige Temperaturänderung und ein Temperaturgefälle bestimmten theoretischen Temperaturverteilung gleich denjenigen der tatsächlichen sein sollen (Bild 4). Da es sich dabei nur um geometrische Beziehungen handelt, können diese ein für alle Mal berechnet werden. Ferner lassen sich deshalb auch die Wirkungen der Einheitstemperaturänderung t_m und des -gefälles Δt zusammenfassen, so dass für die Auswertung nur noch ein Einflusskoeffizient pro Thermometer übrig bleibt, Bild 5.

3. Anpassen der Einflusswerte

Die vorbeschriebene Erarbeitung der Einflusswerte wird, wie gesagt, am besten zusammen mit den übrigen statischen Berechnungen, im allgemeinen mit vorweg angenommenen elastischen und thermischen Kennziffern erfolgen. Deshalb werden die berechneten Deformationen kaum auf Anhieb mit den gemessenen übereinstimmen, sondern noch gewisser Korrekturen bedürfen, welche wie folgt formuliert werden können:

 $k_w \cdot \delta_w + k_t \cdot \delta_t = \delta_m$

dabei bedeuten

 $\delta_w =$ Theoretische Deformation infolge Wasserdruck

 δ_t = Theoretische Deformation infolge Temperaturwirkungen

 $\delta_m =$ Gemessene Gesamtdeformation

 $k_w = \text{Korrekturfaktor für } \delta_w$

 $k_t = \text{Korrekturfaktor für } \delta_t$

Die Korrekturfaktoren k_w und k_t können sodann aus einer genügenden Anzahl von Wertegruppen δ_w , δ_t und δ_m für eine der anfänglichen Anpassungsphase folgende Messperiode durch multiple lineare Korrelation³) ermittelt werden. Glücklicherweise hängen die Deformationen infolge Wasserdruck hauptsächlich vom Elastizitätsmodul des Betons ab, das heisst der Faktor k_w bzw. sein Reziprokwert $1/k_w$ stellt im wesentlichen eine Korrektur desselben dar. Analog bedeutet der Faktor k_t zur Hauptsache eine Korrektur des Wärmeausdehnungskoeffizienten des Betons, der je nach der petrographischen Beschaffenheit der Zuschlagstoffe zwischen etwa 0,5 und 1,5 · 10^{-5} /°C variieren kann.

Das theoretisch sowohl die Deformationen infolge Wasserdruck als auch diejenigen aus Temperatur beeinflussende Verhältnis der Elastizitätsmoduli des Betons und des Felsuntergrundes ist für letzteren von nur sehr geringer Bedeutung. Bei den Deformationen infolge Wasserdruck macht es sich mit Ausnahme der fundamentnahen Mauerteile nur beschränkt bemerkbar, nimmt doch zum Beispiel die radiale Kronenscheiteldurchbiegung von schlanken Bogenstaumauern bei seiner Erhöhung von 1 auf 10 bzw. 20 nur etwa um 100 bzw. 200 % zu. Innerhalb der Genauigkeitsgrenzen, mit denen das genannte Verhältnis gewöhnlich durch geoseismische oder geomechanische Untersuchungen bestimmt werden kann, hat eine Abweichung von seinem angenommenen Wert somit nur einen geringen Einfluss auf die Deformationen im grössten Teil der Staumauer.

4. Schlussfolgerungen

Das beschriebene Verfahren zur sofortigen Nachrechnung der Deformationen von Bogenstaumauern nach den Methoden der Statik konnte bisher anhand mehrjähriger Messungen an den Staumauern Zervreila, Sufers (Bild 6) und Vasasca auf seine Brauchbarkeit geprüft werden.

Zum Schluss mögen noch die aus der Anpassung der Einflusswerte an die Messergebnisse gewonnenen Werte der Materialeigenschaften und deren Vergleich mit den versuchstechnisch vorausbestimmten Werten interessieren. Diese sind in Tabelle 1 zusammengestellt.

 3) Für welche die meisten EDV-Systeme über Standardprogramme verfügen.

Adresse des Verfassers: *Niklaus Schnitter*, dipl. Ing. ETH, Motor Columbus Ingenieurunternehmung AG, 5401 Baden.

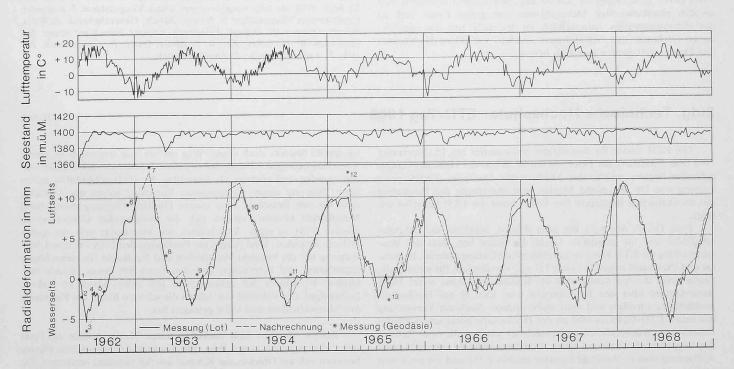


Bild 6. Gemessene und nachgerechnete horizontale Radialdeformationen des Kronenscheitels der Bogenstaumauer Sufers mit Ganglinie der Lufttemperatur und des Seestandes