Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 87 (1969)

Heft: 5

Artikel: Stand- und Entgleisungssicherheit bei Zahnradbahnen

Autor: Borgeaud, G.

DOI: https://doi.org/10.5169/seals-70589

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

HERAUS GEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, ZÜRICH

Stand- und Entgleisungssicherheit bei Zahnradbahnen

Von Dr. G. Borgeaud, dipl. Ing., Winterthur

DK 625.33:625.032.84 Schluss von Seite 66

5. Die Raddrücke bei der Fahrt in der Kurve

Gegenüber der Fahrt in der Geraden treten zusätzlich die Trägheitskräfte \mathfrak{T} , die Querkomponenten K_q der Kupplungskräfte sowie die Reibungskräfte F zwischen Rad und Schiene und die Querkomponenten Z_q der Reibungskräfte zwischen Zahnstange und Zahnrad auf. Diese Reibungskräfte sind von besonderer Wichtigkeit und sollen daher zuerst näher betrachtet werden.

5.1 Die Reibungskraft $\mu_z Z$ am einzelnen Zahnrad und ihre Quer- und Senkrechtkomponenten

Im Abschnitt 1.5 wurde der durchschnittliche Auftrieb \overline{A} unter der stillschweigend gemachten Voraussetzung bestimmt, dass sich die Reibung μ_z allein in der senkrechten Längsebene auswirkt. Dies ist für die Fahrt in der Geraden auch richtig, weil dort keine Quergleitung an der Zahnstange auftritt. Bei Fahrt in der Kurve trifft dies nicht mehr zu. In jedem Zeitpunkt des Zahneingriffes teilt sich die Reibungskraft $\mu_z Z$ in eine Querkomponente $Z_q = (\mu_z Z)_q$ und in eine in der vertikalen Längsebene liegende Komponente $(\mu_z Z)_v$, die wir kurzerhand als Vertikalkomponente bezeichnen. Diese Komponenten stehen zueinander im gleichen Verhältnis wie die Komponenten w_q und w_v der Gleitgeschwindigkeit w und es gilt daher die Beziehung

(63)
$$\frac{(\mu_z Z)_q}{(\mu_z Z)_v} = \frac{w_q}{w_v}.$$

Wird mit der Einführung der beiden Reibungskoeffizienten μ_{zv} und μ_{zq} die Zerlegung an μ_z selbst vorgenommen, dann ergeben sich diese Koeffizienten zu

$$\mu_{\mathrm{z}v} = \mu_{\mathrm{z}} \, rac{w_v}{w} \qquad \qquad \mathrm{und} \qquad \qquad \mu_{\mathrm{z}q} = \mu_{\mathrm{z}} \, rac{w_q}{w} \; .$$

Für die beiden Komponenten Z_v und Z_q der Reibungskraft $\mu_z Z$ gelten dann die Beziehungen

(64)
$$Z_v = \mu_{zv}|Z| \qquad \text{und} \qquad Z_q = \mu_{zq}|Z|.$$

Da sich einerseits die Gleitgeschwindigkeit w_v in jedem Augenblick des Zahneingriffes ändert und anderseits w_q für jedes Triebzahnrad eine andere ist, würde es zu erheblichen Komplikatioen führen, wollten man die Verhältnisse genau berücksichtigen. Für unsere weiteren Untersuchungen machen wir daher zunächst die Ansätze

(65)
$$\mu_{zq} = \mu_z \sin \Phi$$
 und $\mu_{zv} = \mu_z \cos \Phi$

und werden später den Einfluss von Φ auf die Radentlastungen studieren und abklären, wie er mit Rücksicht auf eine nicht allzu komplizierte Berechnung vernünftig berücksichtigt werden kann. Da jetzt nicht mehr μ_z , sondern μ_{zv} den Zahnauftrieb A bedingt, gilt für den durchschnittlichen Auftrieb \overline{A} nicht mehr Gl. (22), sondern die Beziehung

(66)
$$\overline{A} = |Z| \left[\operatorname{tg} \beta + \mu_{zv} \left(\frac{\overline{A}_h}{A_h} - \frac{\overline{A}_b}{A_b} \right) \right].$$

Die Querkraft Z_q wirkt nach aussen oder nach innen auf das Zahnrad, je nachdem es nach innen oder nach aussen gleitet. Gemäss Definition ist Z_q somit im ersten Falle positiv und im zweiten Falle negativ. Mit der Beziehung

$$(67) Z_q = \varkappa_z \, \mu_{zq} |Z|$$

wird ihre Wirkungsrichtung durch den Faktor \varkappa_z festgelegt, auf dessen Wert +1 oder -1 später im Abschnitt 5.3.5 näher eingegangen wird.

5.2 Die Gleitung der Radsätze bei der Fahrt in der Kurve

Aus der Kinematik des Radsatzlaufes ergibt sich, dass jedes Rad des Fahrzeuges um ein Momentanzentrum M auf seiner Schiene gleitet, das sich bei Radreifen mit zylindrischen Laufflächen und gleichem Laufkreisdurchmesser auf dem sogenannten Hauptradius (Bild 20) befindet. Dieser ist parallel zur Radachse und wird daher durch das Lot vom Kurvenmittelpunkt auf die Fahrgestell-Längsachse festgelegt. Das Momentanzentrum M, auch Reibungsmittelpunkt oder Gleipol genannt, liegt auf dem Hauptradius in derjenigen vertikalen Längsebene, die den nur in der Querrichtung gleitenden Kreis des Radlaufzylinders enthält. Dieser besondere Laufkreis soll weiterhin Rollkreis genannt werden. Wie später gezeigt wird, ist er entweder kinematisch oder dynamisch festgelegt. Sind beide Räder des Radsatzes drehbar auf der Radsatzachse gelagert, dann erhält jedes ein eigenes Momentanzentrum Ma bzw. Mi mit der Ordinate η_a bzw. η_i gegenüber der betreffenden Laufebene. Sind sie dagegen fest mit der Radsatzachse verbunden, dann erhalten sie ein gemeinsames Momentanzentrum M mit der Ordinate η gegenüber der Fahrzeuglängsachse.

Die momentane Gleitdrehung des betrachteten Rades um sein Momentanzentrum geschieht mit der Winkelgeschwindigkeit

$$\omega_0 = \frac{V}{R}$$

der Schwenkung der Fahrzeuglängsachse um das Kurvenzentrum. Die Gleitgeschwindigkeit w des Rades in seinem Aufstandspunkt A ergibt sich somit zu

$$w = \omega_0 \ q = q \frac{V}{R}$$

wobei der Gleitarm q grundsätzlich durch die Beziehung

(68)
$$q = \sqrt{(x - a_r)^2 + \overline{\eta}^2}$$

gegeben ist. Diese Gleitgeschwindigkeit zerlegt sich in Längs- und Querrichtung in die Komponenten

(69)
$$w_{x} = -\frac{\overline{\eta}}{q} w = -\overline{\eta} \omega_{0}$$

$$w_{q} = -\frac{(x - a_{r})}{q} w = -(x - a_{r}) \omega_{0}.$$

Dabei gilt als positive Richtung, wenn w_x nach vorn und w_q nach aussen gerichtet sind.

5.3 Die Reibungskräfte F zwischen Rad und Schiene

Infolge der oben erwähnten Gleitung der Räder entsteht in jedem Aufstandspunkt A eine Reibungskraft

$$(70) F = \mu_{\rm s} R$$

die in entgegengesetzter Richtung wie die betreffende Gleitgeschwindigkeit w wirkt und sich daher gleich zerlegen lässt. Es gilt somit

(71)
$$U = -F \frac{w_x}{w} = F \left(\frac{\overline{\eta}}{q}\right)$$

$$S = -F \frac{w_q}{w} = F \frac{(x - a_r)}{q}.$$

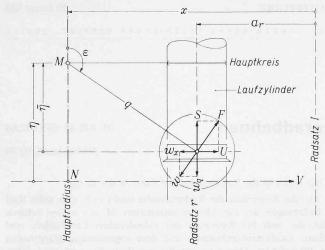


Bild 20. Gleitungs- und Reibungsverhältnisse am einzelnen Rad

Die Längskomponente übernimmt das Vorzeichen von $\overline{\eta}$ und ergibt sich somit als Zugkraft für $(\overline{\eta} > 0)$ und als Bremskraft für $(\overline{\eta} < 0)$. Desgleichen erhält die Querkomponente S das gleiche Vorzeichen wie $(x-a_r)$. Im Falle $(x>a_r)$ der vorradialen Radstellung wirkt sie auf das Rad somit nach aussen und im Falle $(x< a_r)$ der hinterradialen Stellung nach innen.

Um die Lage des Hauptradius sowie die Richtkräfte P zu bestimmen, wird es später notwendig sein, die Momente $\Sigma \mathfrak{M}_r$ und $\Sigma \mathfrak{F}_r$ zu bestimmen. Dabei sind \mathfrak{M}_r und \mathfrak{F}_r durch das Moment der beiden Reibungskräfte F_a und F_i gegeben, das sich bei \mathfrak{M}_r in bezug auf den Fusspunkt N des Hauptradius und bei \mathfrak{F}_r in bezug auf den Zentralpunkt O_I des vorlaufenden führenden Radsatzes I ergibt. Die Anteile des Aussenrades an den Momenten \mathfrak{M}_r und \mathfrak{F}_r ergeben sich zu

(72a)
$$\mathfrak{M}_{ar} = (x - a_r) S_{ar} - e Ua_r$$

und

(73a)
$$\mathfrak{Z}_{ar} = -\left[a_r \, S_{ar} + e \, U_{ar}\right]$$

und diejenigen des Innenrades zu

(72i)
$$\mathfrak{M}_{ir} = (x - a_r) S_{ir} + e U_{ir}$$

(73i)
$$\beta_{ir} = -[a_r S_{ir} - e U_{ir}].$$

Diese Anteile führen zu

(74)
$$\mathfrak{M}_r = (x - a_r) (S_a + S_i)_r + e (U_i - U_a)_r$$

(75)
$$\beta_r = -a_r (S_a + S_i)_r + e (U_i - U_a)_r.$$

Der Wert von $\overline{\eta}$ ist kinematisch bedingt, wenn zum Beispiel bei gekuppeltem Zahnrad die Gleitgeschwindigkeit w_x erzwungen wird. Ist dies nicht der Fall, dann ist $\overline{\eta}$ dynamisch dadurch bedingt, dass eine bestimmte Zugkraft oder Bremskraft U entstehen muss. Es sind daher grundsätzlich die in folgenden Abschnitten behandelten Fälle zu unterscheiden.

5.3.1 Die Laufräder sind drehbar auf der Radsatzachse gelagert

Jedes Rad weist in diesem Falle ein eigenes Momentanzentrum M_a bzw. M_i auf, dessen Ordinate $\overline{\eta}_a$ bzw. $\overline{\eta}_i$ durch die auszuübende Längskraft U_a bzw. U_i festgelegt ist. Als solche kann praktisch nur eine Bremskraft auftreten, nämlich wenn die Räder zum Beispiel durch Klötze gebremst werden. Da diese beiden Längskräfte primär festgelegt sind, können die beiden Kräfte S_a und S_i unmittelbar daraus nach den Beziehungen

(76)
$$S_{ar} = \sqrt{F_{ar}^2 - U_{ar}^2} \operatorname{sgn}(x - a_r)$$
 und
$$S_{ir} = \sqrt{F_{ir}^2 - U_{ir}^2} \operatorname{sgn}(x - a_r)$$

ermittelt werden, so dass sich die Ermittlung der $\overline{\eta}$ -Werte erübrigt.

Es kann angenommen werden, dass bei dem hier allein in Frage kommenden Bremsvorgang beiden Rädern die *gleiche Umfangskraft U* aufgezwungen wird. In diesem Falle vereinfachen sich beide Gleichungen (74) und (75) zu

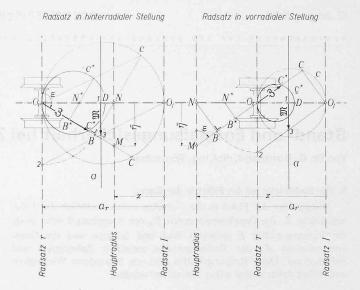


Bild 21. Geometrische Ermittlung der Momente \mathfrak{M}_r , \mathfrak{Z}_r im Falle drehbar auf der Achse gelagerter Räder

(77)
$$\mathfrak{M}_r = (x - a_r) (S_a + S_i)_r \text{ und } \mathfrak{Z}_r = -a_r (S_a + S_i)_r.$$

Werden ferner zur Vereinfachung der Untersuchung gleiche Raddrücke angenommen, dann weisen beide Räder die gleiche Kraft Sauf, womit sich die Gleichungen (77) auch in der Form

(78)
$$\mathfrak{M}_r = (x - a_r) \left(\frac{S_r}{F_r} \right) F_r \quad \text{und} \quad \mathfrak{Z}_r = -a_r \left(\frac{S_r}{F_r} \right) F_r$$

schreiben lassen. Diese beiden Beziehungen führen zu der in Bild 21 angegebenen graphischen Ermittlung von \mathfrak{M}_r und \mathfrak{J}_r . Es ist auf Grund der Gleichung (71) leicht zu erkennen, dass $a_r S_r/F_r$ durch die Strecke $\overline{O_rC}$ und $(x-a_r) S_r/F_r$ durch die Strecke $\overline{O_rB}$ gegeben ist. Somit wäre \mathfrak{J}_r unmittelbar durch die von der Gleitarmgeraden bestimmten Sekante $\overline{O_rC}$ des Kreises c und \mathfrak{M}_r durch die Strecke $\overline{O_rB}$ bestimmt, wenn der für die Momente gewählte Massstab derart wäre, dass die Strecke $\overline{O_rO_I}$ unmittelbar dem Moment $F_r \cdot \overline{O_rO_I}$ entspricht. Es ist aber angebracht, einen kleineren und für alle Radsätze gleichen Massstab zu wählen. Der Kreis c muss daher auf den Kreis c^* mit dem Durchmesser

$$\overline{O_r D} \sim \overline{O_r O_I} \cdot F_r$$

reduziert werden. \mathfrak{Z}_r ist in diesem Falle durch die Sekante $\overline{O_r C}^*$ gegeben. Wird im gleichen Verhältnis die Strecke $\overline{O_r N}$ zu $\overline{O_r N}^*$ reduziert und vom Punkt N^* aus die Senkrechte zum Gleitarm gezogen, dann ist \mathfrak{M}_r durch die Strecke $\overline{O_r B}^*$ gegeben. \mathfrak{M}_r kann aber einfacher wie folgt ermittelt werden:

Es wird auf der Achse Or OI der Punkt 1 mit dem Abstand

$$\overline{1 \text{ O}}_r = \overline{\overline{D} \text{ O}}_I$$

bestimmt und die senkrechte Hilfsgerade a durch diesen Punkt gezogen. Die Lage dieser Geraden hängt von derjenigen des Momentanzentrums nicht ab. Mit $\overline{O_r}$ B als Radius wird der Kreis um O_r gezeichnet, der die Radsatzachse im Punkt 2 schneidet. Die Gerade $2-O_I$ schneidet ihrerseits die Hilfsgerade a im Punkt 3. $\mathfrak M$ ist dann durch die Strecke $\overline{1-3}$ gegeben.

Soll die Untersuchung mit Hilfe eines Computers durchgeführt werden, dann sind hierfür grundsätzlich die Gleichungen (76), (74) und (75) massgebend.

5.3.2 Die Laufräder sind fest mit der Achse verbunden, das Zahnrad aber unverkuppelt darauf gelagert

Die Laufräder und ihre Achse setzen sich in diesem Falle zu einem einzigen Körper zusammen; beide Räder weisen ein gemeinsames Momentanzentrum M auf, dessen Ordinate η durch die allfällig auszuübende Zug- oder Bremskraft U_τ dadurch festgelegt ist, dass sie der Bedingung

$$(79) U_{ar}(\eta) + U_{ir}(\eta) = U_r$$

zu geniigen hat

Beim Aussenrad ist $\overline{\eta}$ durch $(\eta-e)$ und beim Innenrad durch $(\eta+e)$ gegeben. Damit wird Gl. (68) zu

(80)
$$q_{a} = \sqrt{(x - a_{r})^{2} + (\eta - e)^{2}}$$
 bzw.
$$q_{i} = \sqrt{(x - a_{r})^{2} + (\eta + e)^{2}}$$

Das Einsetzen von Gl. (80) in die erste der beiden Gleichungen (71) führt zu den Beziehungen

(81)
$$U_{a} = F_{a} \frac{(\eta - e)}{\sqrt{(x - a_{r})^{2} + (\eta - e)^{2}}}$$
 bzw.
$$U_{i} = F_{i} \frac{(\eta + e)}{\sqrt{(x - a_{r})^{2} + (\eta + e)^{2}}}$$

die sich nach Einführung der Hilfsgrössen

(82)
$$\varphi_{a} = \frac{(\eta - e)}{\sqrt{(x - a_{r})^{2} + (\eta - e)^{2}}} \quad \text{und}$$
$$\varphi_{i} = \frac{(\eta + e)}{\sqrt{(x - a_{r})^{2} + (\eta + e)^{2}}}.$$

zu

(83)
$$U_{\alpha} = \varphi_{\alpha} F_{\alpha}$$
 und $U_{i} = \varphi_{i} U_{i}$

vereinfachen. Zur Ermittlung desjenigen η -Wertes, der die Bedingung (79) erfüllt, ist es vorteilhafter, mit den Hilfsgrössen

(84)
$$\varphi_m = \frac{\varphi_a + \varphi_i}{2} \quad \text{und} \quad \Delta \varphi = \frac{\varphi_i - \varphi_a}{2}$$

statt unmittelbar mit φ_a und φ_i zu operieren. Die absoluten Werte $\left|\varphi_m\right|$ und $\left|\varDelta\varphi\right|$ dieser Hilfsgrössen sind für die bei Zahnradbahnen in Frage kommenden Bereiche 0 bis 6,8 für $\left|(x-a_r)/e\right|$ und 0 bis 22 für η/e in Zahlentafeln 1a bis 1c angegeben. Dabei sind nur diejenigen Werte aufgeführt, die für φ_a bzw. φ_i einen kleineren Wert als 0,95 ergeben. Ferner sind die $(x-a_r)/e$ - und η/e -Schritte genügend klein gewählt, um die Ermittlung von φ_m und $\varDelta\varphi$ mit genügender Genauigkeit auf Grund einer linearen Interpolation zu gestatten. Bezüglich des Vorzeichens bleibt $\varDelta\varphi$ stets positiv, während φ_m das Vorzeichen von η übernimmt. Es gilt somit

(85)
$$\Delta \varphi = + |\Delta \varphi|$$
 und $\varphi_m = |\varphi_m| \operatorname{sgn} \eta$.

Von diesen Werten aus ergeben sich φ_{α} und φ_i zu

(86)
$$\varphi_a = \varphi_m - \Delta \varphi$$
 und $\varphi_i = \varphi_m + \Delta \varphi$.

Diese Werte führen gemäss Gl. (83) zu denjenigen von U_a und U_i , aus welchen sich schliesslich die Querkräfte S_a und S_i entsprechend den Beziehungen (76) ermitteln lassen. Mit den Ansätzen (83) schreibt sich die Bedingung (79) auch

$$(\varphi_a F_a)_r + (\varphi_i F_i)_r = U_r.$$

Nach Division aller Glieder dieser Gleichung mit $F_r = (F_a + F_i)_r$ und nach Einführung von Gl. (84) wird sie zu

(87)
$$\varphi_m - \left(\frac{F_a - F_i}{F}\right) \Delta \varphi = \frac{U}{F}.$$

Muss nun für einen gegebenen Wert von $(x-a_r)/e$ die zu U_r führende Ordinate η bestimmt werden, so ist zunächst mittels der Tabelle 2 zu ermitteln, in welchem Bereich η liegen muss. Treten zum Beispiel beim Radsatz die Reibungskräfte $F_a=3000~{\rm kp}, F_i=1500~{\rm kp}$ auf und muss eine Bremskraft $U_r=-3000~{\rm kp}$ entwickelt werden, dann führt Gl. (87) zur Bedingung

$$\varphi_m - \frac{1500}{4500} \Delta \varphi = -\frac{3000}{4500}$$
 bzw. $\varphi_m - 0,3333 \Delta \varphi = -0,6667$

die für alle in Frage kommenden x-Werte gültig bleibt.

Für $(x - a_r)/e = 3$ zum Beispiel führt zunächst eine grobe Schätzung zu folgenden Ergebnissen:

$$\eta/e = -1$$
 -2 -3
 $\varphi_m \cong -0,280$ $-0,51$ $-0,68$
 $-1/3 \Delta \varphi = -0,09$ $-0,06$ $-0,04$
 $\varphi_m - 1/3 \Delta \varphi = -0,37$ $-0,57$ $-0,72$ (Sollwert $-0,6667$).

Daraus folgt, dass η/e zwischen —2 und —3 approximativ bei

$$\eta/e \simeq -\left[2 + (3-2)\frac{0,6667 - 0,57}{0,72 - 0,57}\right] = -2,67$$

liegen sollte. Der genauere Schritt der Untersuchung führt zu

$$\eta/e = -2.4$$
 -2.6 -2.8
 $\varphi_m = -0.5864$ -0.6194 -0.6496
 $-1/3 \, \Delta \varphi = -0.0545$ -0.0496 -0.0451
 $\varphi_m - 1 \, 3 \, \Delta \varphi = -0.6409$ -0.6690 -0.6947 .

Daraus ergibt sich der zwischen —2,4 und —2,6 liegende genaue Wert von η/e zu

$$\eta/e = -\left[2.4 + 0.2 \frac{0.6667 - 0.6409}{0.6690 - 0.6409}\right] =$$

$$= -\left[2.4 + 0.2 \cdot 0.918\right] = -2.5836.$$

Dementsprechend werden φ_m und $\Delta \varphi$ zu

$$\varphi_m = -[0,5864 + (0,6194 - 0,5864) 0,918] = -0,6167$$

$$\Delta \varphi = [0,1635 - (0,1653 - 0,1488) 0,918] = 0,1500.$$

Daraus folgt

$$\varphi_a = \varphi_m - \Delta \varphi = -0,7667$$
 und $\varphi_i = \varphi_m + \Delta \varphi = -0,4667$

was schliesslich gemäss Gl. (86) zu

$$U_a = -0.7667 \cdot 3000 = -2300 \text{ kp}$$

 $U_i = -0.4667 \cdot 1500 = -700 \text{ kp}$

führt.

und

Müssen die Verhältnisse für einen $(x-a_r)/e$ -Wert untersucht werden, der zwischen zwei Tabellenwerten liegt, dann ist es am einfachsten, die U_a - und U_i -Werte für jeden dieser beiden $(x-a_r)/e$ -Tabellenwerte nach obigen Ausführungen zu bestimmen und daraus die gesuchten U_a - und U_i -Werte durch lineare Interpolation zu ermitteln

Auf Grund der beiden U_a - und U_i -Werte können dann S_a und S_i nach Gl. (76) und schliesslich \mathfrak{M}_r und \mathfrak{Z}_r nach Gl. (74) und (75) berechnet werden.

Wird im Falle (U=0) die Untersuchung zur Vereinfachung auf Grund gleicher Raddrücke durchgeführt, dann wird durch diese Voraussetzung der Reibungsmittelpunkt auf die Längsachse des Radsatzes verlegt. Er fällt somit mit dem Punkt N zusammen. Dadurch ergibt sich die gleiche Gleitarmlänge für beide Räder, was zu $S_a=S_i$ und $U_a=-U_i$ führt. Beide Räder liefern somit den gleichen Anteil an \mathfrak{M}_r einerseits und an \mathfrak{J}_r anderseits. Zur graphischen Ermittlung dieser beiden Grössen genügt es daher, die Untersuchung bei einem Rad durchzuführen, wie dies in Bild 22 gezeigt ist. Wie früher ist \mathfrak{J}_r unmittelbar durch den Hilfskreis c* gegeben, dessen Durchmesser AD jetzt auf der Geraden AO $_I$ liegt und die Grösse

$$\overline{AD} \sim \overline{AO_I} \cdot F_r$$

aufweist. Das Moment \mathfrak{M}_r ergibt sich hier einfacher mit Hilfe der von der Lage des Momentanzentrums M unabhängigen Geraden g, indem es jeweils durch die Strecke $\overline{M-3}$ gegeben ist, die zwischen M und dem Schnittpunkt 3 der Geraden g mit der durch M gezogenen Senkrechten zum Gleitarm liegt. Die Gerade g selbst ist durch ihre beiden Punkte 1 und 2 festgelegt. Dabei befindet sich der Punkt 1 auf der durch O_I gehenden Senkrechten zur Geraden AO_I und liegt im Abstande

$$\overline{O_I - 1} = \overline{AD}$$

vom Punkt O_I. Der Punkt 2 liegt auf der Längsachse im Abstand

$$\overline{\mathrm{O}_r - 2} = \overline{\mathrm{O}_r \mathrm{A}} \frac{\overline{\mathrm{A} \, \mathrm{D}}}{\overline{\mathrm{A} \, \mathrm{O}_r}}$$

vom Punkt Or.

Obwohl die Tabellen 2a bis 2c eine wesentliche Hilfe für die Ermittlung von \mathfrak{M}_r und \mathfrak{Z}_r bedeuten, bleibt diese immer noch zeitraubend. Viel rascher und einfacher wäre natürlich, sie mittels Computer durchzuführen. In diesem Fall muss zunächst η auf Grund der sich aus G1. (82) und (83) ergebenden Beziehung

(88)
$$F_{ar} \frac{(\eta_r - e)}{\sqrt{(x - a_r)^2 + (\eta_r - e)^2}} + F_{ir} \frac{(\eta_r + e)}{\sqrt{(x - a_r)^2 + (\eta_r + e)^2}} = U_r$$

auf dem Iterationsweg ermittelt werden⁵). Dann erfolgt die Bestimmung von U_a , U_i , S_a , S_i , \mathfrak{M}_r und \mathfrak{Z}_r nach Gleichungen (81), (76) und (77).

Im speziellen Falle ($x = a_r$) wird η aus Gl. (88) ausgeschaltet und kann daher nicht von dieser Gleichung aus ermittelt werden. In diesem Falle ergeben sich die Verhältnisse nach Tabelle 2.

5.3.3 Die Laufräder sind fest mit der Achse verbunden und das Zahnrad mit der Achse verkuppelt

Die Zahnradübersetzungsverhältnisse werden normalerweise derart gewählt, dass die Räder im halbabgenützten Zustand der Bandagen die gleiche Umfangsgeschwindigkeit wie das Trieb- oder Bremszahnrad aufweisen. Die Räder laufen somit bei neuen Bandagen schneller und bei abgenützten Bandagen langsamer als das Zahnrad und müssen daher entsprechend in Längsrichtung gleiten. Die Ordinate η des beiden Rädern gemeinsamen Momentanzentrums M ist durch denjenigen Kreis des Laufzylinders gegeben, der die gleiche Umfangsgeschwindigkeit wie das verkuppelte Zahnrad hat (vgl. Bild 23). Sie wird somit durch die Beziehung

$$\frac{n_{\rm z} D_{\rm z}}{2 R} = \frac{n_{\rm r} D_{\rm r}}{2 (R + \eta)}$$

festgelegt und ergibt sich daher zu

(89)
$$\eta = R \frac{n_{\rm r} D_{\rm r} - n_{\rm z} D_{\rm z}}{n_{\rm z} D_{\rm z}}.$$

 $^{5})$ Für die Iteration kann der erste Schritt auf Grund des durch die Beziehung

$$\eta \cong + e \frac{F(F_a - F_i)}{F^2 - U^2} + \frac{U}{F^2 - U^2} \sqrt{(F_a - F_i)^2 e^2 + (F^2 - U^2)(x - a_r)^2}$$

gegebenen approximativen Wert von η vorgenommen werden.

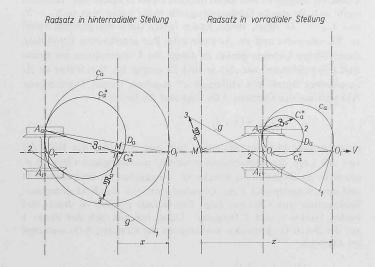


Bild 22. Geometrische Ermittlung der Momente \mathfrak{M}_r und \mathfrak{Z}_r im Falle fest mit der Achse verbundener Räder bei $\eta=0$

Tabelle 2. Verhältnisse bei $x = a_r$

	$U > (F_i - F_a)$	$U=(F_i-F$	$U < (F_i - F_a)$
η	+e	— <i>e</i> bis +	e — e
U_i	F_i	F_i	$U+F_a$
U_a	$U-F_i$	$-F_a$	$-F_a$
S_i	utility of 0 of 129 and	0	$(-1 \text{ bis} + 1) \sqrt{F_i^2 - U_i^2}$
S_a	$(-1 \text{ bis } + 1) \sqrt{F_a^2 - U}$	$\frac{2}{a}$ 0	0

Ist das Zahnrad fest auf der Radsatzachse befestigt, dann sind n_z und n_r gleich, so dass sich η in diesem Falle einfacher zu

(90)
$$\eta = R \frac{D_{\rm r} - D_{\rm z}}{D_{\rm z}}$$

ergibt. Da $D_{\rm r}$ praktisch zwischen ($D_{\rm z}\,n_{\rm z}/n_{\rm r}+12$ mm) und ($D_{\rm z}\,n_{\rm z}/n_{\rm r}-12$ mm) gehalten wird, nimmt η einen Wert ein, der zum Beispiel für $D_{\rm z}=600$ mm und R=80 m zwischen +1,6 und -1,6 m betragen kann.

Die Ermittlung von \mathfrak{M}_r , \mathfrak{J}_r und S_r geschieht in gleicher Weise wie im Abschnitt 5.3.2, jedoch mit dem Unterschied, dass η unmittelbar durch Gl. (89) festgelegt und nicht an Gl. (88) gebunden ist. Mit seinen Laufrädern liefert der Radsatz jedenfalls die dem festgelegten η entsprechende und sich aus den beiden Gleichungen (81) ergebende Längskräfte U.

5.3.4 Bemerkungen

Die später aufgestellte Gleichung (102) zeigt, dass die Richtkraft P_r der vorderen führenden Achse mit dem Moment \mathfrak{M}_r zunimmt. Aus den Bildern 21 und 22 kann anderseits erkannt werden, dass dort \mathfrak{M}_r für $(\eta = 0)$ maximal wird. Unter der für diese Bilder geltenden Voraussetzung gleicher Raddrücke führt dieser Wert von η zu $U_r = 0$. Bei gleichen Raddrücken führt somit der Zustand ($U_r = 0$) zur grössten Richtkraft P_I und daher zur grössten Entlastung des betreffenden Rades. Bei ungleichen Raddrücken dürfte dies auch ungefähr der Fall sein, obwohl es nicht ohne weiteres nachgewiesen werden kann. Da der Fall ($U_r = 0$) bei jedem Fahrzeug auftreten kann, ist es angezeigt, ihn bei den weiteren Untersuchungen vorauszusetzen, was auch zu einer gewissen Vereinfachung der Berechnung führt. Eine Ausnahme ergibt sich allerdings, wenn beim betrachteten Vorgang die Laufräder einen Anteil an der Zug- oder Bremskraft liefern. In diesem Fall ist es angezeigt, die zugehörige Kraft U_r zu berücksichtigen.

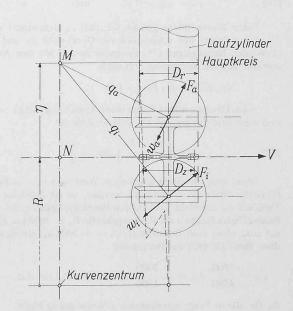


Bild 23. Lage des Momentanzentrums des Radsatzes bei verkuppeltem Zahnrad

Tabelle 3. Umnumerierung der Radsätze und Zahnräder

		A Commence of the Commence of
	Talfahrt $(\psi = -1)$	Bergfahrt $(\psi = +1)$
Numerierung in Bergrichtung	$1 \rightarrow 2$	$1 \rightarrow 2$
Numerierung in Fahrtrichtung	$I \rightarrow II$	$I \rightarrow II$

5.3.5 Die Richtung der Quergleitung der Zahnräder

Das Momentanzentrum des Zahnrades befindet sich stets im Fusspunkt N des Hauptradius auf der Fahrzeuglängsachse, weil in der Gleisebene die Gleitung des Zahnrades nur in Querrichtung stattfinden kann. Das Zahnrad gleitet somit bei vorradialer Stellung nach innen und bei hinterradialer Stellung nach aussen. Der im Abschnitt 5.1 eingeführte Faktor \varkappa_z weist somit den Wert +1 im ersten Falle und -1 im zweiten auf.

5.3.6 Umnumerierung der Radsätze und Zahnräder

Wie dies bei den Bezeichnungen dargelegt wurde, ist es notwendig, die vorlaufende Achse als erste zu bezeichnen, wobei, einer klaren Unterscheidung wegen, die Numerierung mit römischen Zahlen I, II usw. festgelegt wurde. Es ist somit eine Umnumerierung nach Tabelle 3 notwendig.

Jede bisher mit den Indizes 1, 2... bezeichnete Grösse muss jetzt entsprechend Tabelle 3 neue Indizes erhalten. In dem hier betrachteten Fall des zweiachsigen Fahrgestelles ergeben sich somit die für die Untersuchung der Fahrt in der Kurve massgebenden Grössen aus den bisherigen nach den Tabellen 4 und 5.

Nach den im Abschnitt «Bezeichnungen» gemachten Voraussetzungen befindet sich das Kurvenzentrum bei Bergwärtsbetrachtung rechts vom Fahrzeug. Die linke Fahrzeugseite befindet sich somit auf der Aussenseite und die rechte auf der Innenseite der Kurve, so dass die Indizierungen a und L bzw. i und R einander entsprechen.

5.4 Ermittlung der Lage des Hauptradius und der einzelnen Richtkräfte

Obwohl die Raddrücke \Re_L und \Re_R infolge des Spurkranzauftriebes V anders als R_L und R_R ausfallen, werden bei den weiteren Untersuchungen letztere zugrunde gelegt. Diese übliche Voraussetzung vermeidet erhebliche Komplikationen, die nicht zu sehr abweichenden Resultaten führen. Zur Bestimmung dieser Raddrücke R muss der Wert von H_r in Gl. (57) eingesetzt werden. Diese Lagerquerkraft setzt sich aus H_{Tr} (Gl. 44) und einem Anteil ΔH zusammen, der durch das Moment $e\sum (U_i-U_a)$ der Längskräfte bedingt ist und sich beim zweiachsigen Fahrgestell zu

(91)
$$\Delta H_{\rm II} = + \left\{ \frac{e}{a} \left[(U_i - U_a)_{\rm I} + (U_i - U_a)_{\rm II} \right] \right.$$

ergibt. Diese Längskräfte U hängen von η und x ab. Der Anteil ΔH kann daher nicht von Anfang an bestimmt werden, so dass es notwendig ist, im Iterationsverfahren vorzugehen. Im ersten Schritt ist H_r in Gl. (57) mit dem Wert von $H_{\mathrm{T}r}$ einzusetzen und im nächsten Schritt mit demjenigen, der sich nach Gl. (104) ergibt.

Die Lage des Hauptradius kann durch seinen Abstand x von der vorlaufenden Achse festgehalten werden. Sie ist dadurch bedingt, dass alle in der Horizontalebene auf das gesamthaft betrachtete Fahrge-

stell wirkenden Kräfte im Gleichgewicht sein müssen. Dabei hängen alle zwischen Rad und Schiene und zwischen Zahnrad und Zahnstange entstehenden Reibungskräfte in ihren Richtungen von x ab. Mit Ausnahme der Richtkräfte P sind alle übrigen Kräfte als gegeben zu betrachten. Alle diese Kräfte sind in Bild 24 zusammengestellt. Dies sind:

- die einzelnen Querkräfte T_g . Zu diesen gehören u. a. die einzelnen Gewichtskomponenten $G\sin\delta$, die Trägheitskräfte \mathfrak{T} , die bei den Zahnrädern z entstehenden Reibungsräfte Z_{qz} und die gegebenenfalls vom Kasten ausgeübte Querkraft C_q .
- die Richtkraft P_{II} der gegebenenfalls innen anlaufenden Achse II. Weil sie nach aussen wirkt, ist sie wie die Kräfte T als positiv zu betrachten.
- das im Falle eines Drehgestellfahrzeuges möglicherweise vom Kasten ausgeübte Moment \mathbf{M}' bzw \mathbf{M}''
- die bei den einzelnen Radsätzen r entstehenden Querkräfte S_r und Momente \mathfrak{M}_r .

Die Gleichgewichtsbedingungen (\sum Querkräfte = 0 und \sum Momente um N=0) schreiben sich

$$(92) \sum S_r + \sum T_g + P_{II} = P_I$$

(93)
$$\sum \mathfrak{M}_r + \sum (x-t) T_g + (x-a) P_{II} + \mathbf{M} = x P_I.$$

Das Einsetzen von Gl. (92) in Gl. (93) führt zu

$$\sum \mathfrak{M}_r + \sum (x-t) T_g + (x-a) P_{\text{II}} + \mathbf{M} = x \left[\sum S_r + \sum T_g + P_{\text{II}} \right]$$

woraus sich nach Umgruppierung die Beziehung

(94)
$$\sum \mathfrak{M}_r - x \sum S_r = \sum t T_g - \mathbf{M} + a P_{II}$$

ergibt, die sich mit den Ansätzen

$$(95) 3 = \sum \mathfrak{M}_r - x \sum S_r$$

$$(96) M = \sum t T_g - \mathbf{M}$$

zu

$$(97) 3 = M + a P_{\text{II}}$$

vereinfacht.

Das Moment $\mathfrak Z$ ist allein durch die Reibungskräfte zwischen Rad und Schiene gegeben und hängt daher von x, d. h. von der Lage des Hauptradius ab. Das Glied D des Ausdruckes für M ergibt sich hingegen aus den äusseren Einwirkungen und ist daher von x unabhängig. Im Glied $\sum t T_g$ ist der Anteil $t_z \, v_z \, Z_{qz}$ des einzelnen Zahnrades z betragsmässig ebenfalls von x unabhängig, wohl aber in seinem Vorzeichen. Dieses wird durch den Faktor \varkappa festgelegt, der im Abschnitt 5.5 näher betrachtet wird.

Die Richtkraft PII tritt nicht auf, wenn der aus der Beziehung

$$(98) 3(x) = M$$

ermittelte Wert von x kleiner als der Wert

$$(99) \bar{x} = \frac{a}{2} + \frac{sR}{a}$$

der Spiessgangstellung ausfällt

Tabelle 4. Änderung der Indices für die nach Fahrtrichtung bezeichneten Kräfte

	H_I	H_{II}	F_I	F_{II}	U_I	U_{II}	K_{qI}	K_{q11}	Z_{qI}	Z_{qII}
Talfahrt	H_1	H_2	F_1	F_2	U_1	U_2	K_{uq}	K_{oq}	Z_{q1}	Z_{q2}
Talfahrt Bergfahrt	H_2	H_1	F_2	F_1	U_2	U_1	K_{oq}	K_{uq}	Z_{q2}	Z_{q1}

Tabelle 5. Änderung der Indices für die nach Fahrtrichtung bezeichneten Längen und Faktoren

	$t_{ m W}$	$t_{\mathrm{K}I}$	$t_{ m KII}$	$t_{ m K}'$	$t_{ m K}''$	t_{zI}	t_{zII}	t _e	t _g	\varkappa_{I}	\varkappa_{1I}
Talfahrt	w_1	$-k_u$	$(k_o + a)$ $(k_u + a)$	-k'	a + k''	z_1	Z_2	c_1	g_1	\varkappa_1	\varkappa_2
Bergfahrt	w_2	$-k_o$	$(k_u + a)$	a + k'	-k''	$(a-z_2)$	$(a-z_1)$	c_2	g ₂	\varkappa_2	\varkappa_1

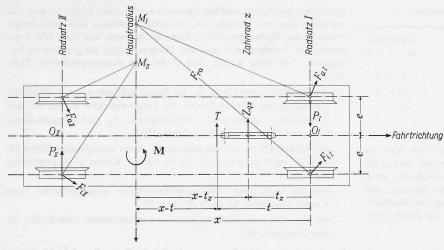


Bild 24. Zusammenstellung der parallel zur Gleisebene auf das Fahrgestell wirkenden Kräfte

Um den Wert von x zu finden, der sich bei freier Einstellung der hinteren Achse entsprechend Gl. (98) ergibt, wird einerseits \Im als Summe der einzelnen gemäss der in den Abschnitten 5.3.1 bis 5.3.5 gefundenen Grössen \Im_r ermittelt und die entsprechende Kurve \Im = f(x) gezogen (Bild 25). Weiter wird das Seilpolygon der äusseren Kräfte T_g konstruiert, dessen letzter Strahl m mit seinem bei x=0 liegenden Punkt A den Wert von M bestimmt. Die Lösung ist dann durch denjenigen Punkt B der \Im -Kurve gegeben, der sich auf gleicher Höhe wie der Punkt Abefindet und sich daher als Schnittpunkt der \Im -Kurve mit der Horizontalen durch A ergibt. Der entsprechende x-Wert ist massgebend, wenn er kleiner als \overline{x} ausfällt. Wenn sich nach Gl. (98) x grösser als \overline{x} ergibt, dann bleibt dieser massgebend, da x infolge der Spiessgangstellung nicht grösser sein kann. In diesem Fall ergibt sich P_{Π} aus Gl. (97) zu

(100)
$$P_{\rm II} = \frac{\Im(\overline{x}) - M}{a}.$$

Ist der Wert von x auf diese Weise bestimmt worden, dann lässt sich die entsprechende Einstellung des Fahrgestelles im Gleis ohne weiteres ermitteln, da seine Längsachse bei x tangential zum Gleisbogen liegen muss. Dies ist in Bild 25 oben nach dem Vogelverfahren gezeigt, wobei die Lage der Fahrgestell-Längsachse unmittelbar durch die Gerade EF gegeben ist, die den Punkt F mit dem bei x liegenden Punkt E auf der Ellipse mit der doppelten Ordinate verbindet⁶).

Fasst man $\sum \mathfrak{M}_r$ zu \mathfrak{M} zusammen, dann ergibt sich unmittelbar aus Gl. (95) und (97)

(101)
$$\sum S_r = \frac{\mathfrak{M} - (M + a P_{II})}{x}$$

womit Gl. (92) zu

(102)
$$P_{\rm I} = \frac{M - (M + a P_{\rm II})}{x} + (\sum T_g + P_{\rm II})$$

wird. Trägt man im Diagramm von Bild 25 ebenfalls die \mathfrak{M} -Kurve auf, dann zeigt Gl. (101), dass im Falle $(x < \overline{x})$ bzw. $(P_{II} = 0)$ die Summe $\sum S_r$ durch den Tangentenwinkel zwischen der horizontalen Geraden AB und der Geraden gegeben ist, die den Punkt A mit dem sich bei x ergebenden Punkt C der \mathfrak{M} -Kurve verbindet. Anderseits führt das in Gl. (102) eingeklammerte letzte Glied zum Tangentenwinkel zwischen der Horizontalen AB und dem letzten Strahl m des Seilpolygones der Kräfte T_g . Daraus folgt, dass bei $P_{II} = 0$ die Richtkraft P_I durch den Tangentenwinkel zwischen beiden Geraden AC und m gegeben ist.

In dem durch $P_{\text{II}} \neq 0$ gekennzeichneten Fall $(x = \overline{x})$ ist die Lage des Punktes A durch die Ordinate von $\Im(\overline{x})$ bestimmt. Der Ausdruck $(M + a P_{\text{II}})$ muss gemäss Gl. (97) zur gleichen Ordinate führen (siehe

C) Streng genommen gilt dieses Verfahren nur für die quadratische Parabel. Der uns interessierende Teil der Spurellipse deckt sich aber praktisch genügend genau mit einer solchen Parabel.

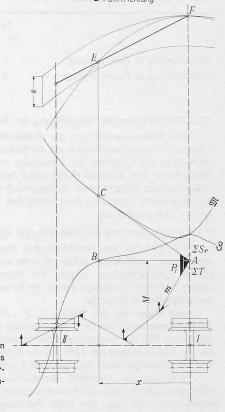


Bild 25. Das \$\mathbb{M}\mathbb{Z}\$-Verfahren zur Ermittlung der Lage des Hauptradius und der Spurkranzdrücke, bei freier Einstellung des Fahrgestelles

Bild 26). Somit ist $P_{\rm II}$ durch den Tangentenwinkel gegeben, der in D zwischen dem letzten Strahl m der äusseren Kräfte T_g und der Verbindungsgeraden DA liegt. Aus Gl. (101) folgt, dass $\sum S_r$ wiederum durch den Tangentenwinkel zwischen der Horizontalen und der Geraden AC gegeben ist. Da ferner der Tangentenwinkel zwischen beiden Geraden AB und AD dem eingeklammerten Glied von Gl. (102) entspricht, ergibt sich aus dieser Gleichung, dass $P_{\rm I}$ in diesem Fall dem Tangentenwinkel zwischen beiden Geraden AC und AD entspricht. Die oben für $P_{\rm I}$ gemachte Feststellung bleibt somit gültig, wenn als letzter Strahl des Seilpolygones nicht m, sondern die Gerade AD betrachtet wird.

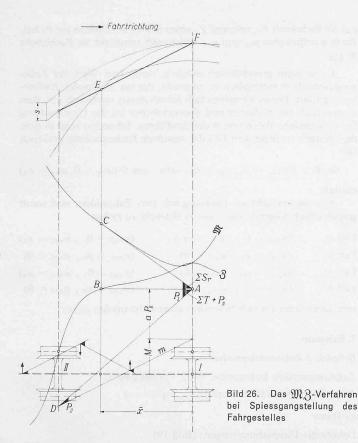
Aus der Gleichgewichtsbedingung ($\sum Y = 0$) am Radsatz ergibt sich die Richtkraft P_r zu

(103)
$$P_r = (\varrho_L - \varrho_R) [H_r + G_r \sin \gamma + \mathfrak{T}_r + \nu_z Z_{qz} + S_r].$$

Daraus folgt für die Lagerquerkraft H_r die Beziehung

(104)
$$H_r = (\varrho_L - \varrho_R) P_r - (G_r \sin \gamma + \mathfrak{T}_r + \nu_z Z_{qz} + S_r].$$

Diese Kraft wird allgemein verschieden sein von der in Gl. (57) zur Bestimmung der Raddrücke R eingesetzten Kraft $H_{\rm Tr}$. Ist der Unterschied zu gross, dann ist im Iterationsverfahren der durch Gl. (104) gegebene Wert von H_r neu in Gl. (57) einzusetzen und die Durchrechnung bis zu einer befriedigenden Übereinstimmung zu wiederholen.


5.5 Die Richtung der Quergleitung der Zahnräder: Wert von zz

Die Richtung der durch Gl. (67) gegebenen Querkomponenten Z_{qz} ist durch das Vorzeichen des Faktors \varkappa_z festgelegt. Dieser ist positiv bei vorradialer Stellung und negativ bei hinterradialer Stellung des Zahnrades.

Im Abschnitt 5.3.5 wurde festgestellt, dass sich das Momentanzentrum der Zahnräder im Pol N des Fahrgestelles befinden muss. Demnach ist das einzelne Zahnrad

in vorradialer Stellung bei $x>t_z$, und in hinterradialer Stellung bei $x< t_z$.

Sind bei jedem Fahrgestell (Rahmenfahrzeug oder Drehgestell) zwei Zahnräder vorhanden, dann befindet sich das vorlaufende (z=1) stets in vorradialer Stellung, gleitet nach innen und weist somit den Faktor $\varkappa_{\rm I}=+1$ auf. Das nachlaufende Zahnrad $(z={\rm II})$ kann sich je nach den Verhältnissen vorradial, radial oder hinterradial einstellen. Dabei spielt es unter anderem eine wichtige Rolle, ob \overline{x} kleiner

oder grösser als $t_{\rm II}$ ist sowie ob $\Im(\bar{x})$ und $\Im(t_{\rm II})$ kleiner oder grösser als $M(\varkappa_{\rm II}=-1)$, $M(\varkappa_{\rm II}=0)$ und $M(\varkappa_{\rm II}=+1)$ sind. Aus diesen verschiedenen Möglichkeiten ergeben sich die im Testdiagramm, Bild 27, festgehaltenen verschiedenen Fälle. Daraus ist unter anderem zu entnehmen, dass sich x in den Fällen c, d, e und i zu $t_{\rm II}$ ergibt und $\varkappa_{\rm II}$ dabei vom Gleichgewichtszustand aus einen Wert aufnehmen muss, der von Null verschieden ist.

Bei $x=t_{\rm II}$ läuft das Zahnrad radial und führt somit grundsätzlich keine Quergleitung aus. Da es aber im Eingriffsvorgang praktisch stets in der vertikalen Ebene gleitet, kann ein von Null verschiedener Wert von $\aleph_{\rm II}$ nur bei Quergleitung entstehen. Betrachtet man die Verhältnisse bei $x=t\pm\delta x$ näher, so führt die Annahme des μ_{zq} -Verlaufes nach der unstetigen Kurve a von Bild 28 dazu, dass die Querkraft Z_q bei $\delta x=0$ bzw. bei x=t jeden Wert zwischen ihrem positiven und negativen Maximalwert einnehmen kann. Dies ist jedoch nach obigem nicht möglich. Infolge der Materialelastizität

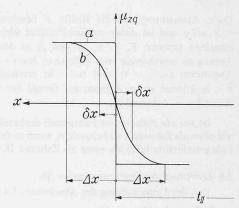


Bild 28. Verlauf des μ_{zq} -Wertes bei $x = t_{II}$

und der vom Eingriff herrührenden vertikalen Gleitung verläuft μ_{zq} in Wirklichkeit nach der Linie b, Bild 27, wobei die Bereichbreite $2 \, \Delta x$ nicht näher definierbar ist. Für unsere Betrachtung wird diese Bereichbreite praktisch auf Null geschrumpft, wobei die Kurve b sehr nahe an die Kurve a zu liegen kommt. Dementsprechend vernachlässigen wir bei $\varkappa=0$ den Wert von δx , der effektiv nicht null sein kann, und setzen voraus, dass $Z_{q{\rm II}}$ bzw. $\varkappa_{{\rm II}}$ bei $x=t_{{\rm II}}$ jeden Wert zwischen $-\mu_{zq}\,Z_{{\rm II}}$ und $+\mu_{zq}\,Z_{{\rm II}}$ bzw. zwischen -1 und +1 einnehmen kann.

In den sich für $x=\bar{x}=t_{\rm II}$ ergebenden Fällen c und d des Testdiagrammes ist das Moment M der äusseren Kräfte, das den Wert von $\Im(t_{\rm II})$ aufzuweisen hat, gleichzeitig durch $P_{\rm II}$ und $Z_{q\rm II}$ zu verwirklichen. Die Summe ihrer Anteile am Moment M ist dabei allein bestimmt, ihre Anteile selbst aber nicht. Der Faktor $\varkappa_{\rm II}$ kann aus diesem Grunde grundsätzlich jeden Wert zwischen den im Testdiagramm angegebenen Grenzwerten einnehmen, wobei der obere Grenzwert zum maximalen Wert von $P_{\rm II}$ und der untere zum maximalen Wert von $P_{\rm I}$ führt. Dieser Faktor ist somit je nachdem die Achse II oder die Achse I am meisten durch Entlastung gefährdet ist zu wählen.

Aus dem Testdiagramm, Bild 27, ist ferner zu entnehmen, dass x in den Fällen a, c, d, e, g und i unmittelbar festgelegt ist. In den Fällen b, f, h und j hingegen ist es auf Grund der Gleichung (98) zu ermitteln. Auf dem graphischen Weg lässt sich dies leicht durchführen. Bei der Rechnung mittelst Computer dagegen geht man am einfachsten auf dem Iterationsweg vor, indem man zunächst von $x=\overline{x}$ ausgeht und den Wert von x allmählich verkleinert, bis x (x) den im Testdiagramm angegebenen x-Wert erreicht.

Der Wert von \Im hängt grundsätzlich von \varkappa_{II} dadurch ab, dass sich $Z_{q\text{II}}$ gemäss Gl. (44), (51) und (57) auf die Grösse der einzelnen Raddrücke R und der entsprechenden Reibungskräfte F auswirkt.

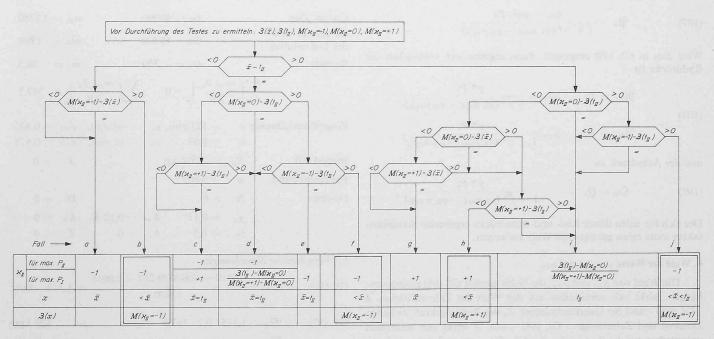


Bild 27. Testdiagramm zur Ermittlung des \varkappa_z -Wertes

Diese Auswirkung auf die Kräfte F beschränkt sich jedoch auf $\mu_s Z_q u/2_e$ und ist daher vernachlässigbar klein. Somit können die einzelnen Grössen F, V, S, \mathfrak{M} und \mathfrak{Z} in den Fällen $\overline{x} \geq t_{\Pi}$ von Anfang an unabhängig vom definitiven Wert von \varkappa_{Π} auf Grund der Annahmen ($\varkappa_{\Pi} = +1$) und ($\varkappa_{\Pi} = 0$) ermittelt werden. Im Falle $\overline{x} < t_{\Pi}$ können sie es dagegen auf Grund der wirklich auftretenden Werte ($\varkappa_{\Pi} = +1$) und ($\varkappa_{\Pi} = -1$).

Ist *nur ein Zahnrad* im Fahrgestell vorhanden, dann ist es gleich wie oben als Zahnrad I zu behandeln, wenn es sich in der vorlaufenden Fahrgestellhälfte befindet, sonst als Zahnrad II.

5.6 Ermittlung des Spurkranzdruckes \mathfrak{P}_r

Von der Untersuchung des Abschnittes 5.4 sind bekannt:

- die Lage des Hauptradius: x
- der Wert der Richtkraft: Pr
- die Querkomponenten S_a und S_i der Reibungskräfte F_a und F_i zwischen Rad und Schiene
- die sich für beide Annahmen ($\mu_{zq}=0$) und ($\mu_{zq}=\mu_z$) ergebenden Werte 0 bzw. $\mu_z Z$ der Querkraft

Für die Querkomponenten S der Reibungskräfte F kann der Ansatz

$$S = \mu_{sq} R$$

gemacht werden, wobei μ_{sq} das Vorzeichen von S zu übernehmen hat und somit positiv oder negativ ausfällt, je nachdem S nach aussen oder nach innen auf das betreffende Rad wirkt. Daraus ergibt sich unmittelbar die Beziehung

(105)
$$\mu_{\mathrm{s}q\mathrm{L}} = \frac{S_{\mathrm{L}}}{R_{\mathrm{L}}}$$
 bzw. $\mu_{\mathrm{s}q\mathrm{R}} = \frac{S_{\mathrm{R}}}{R_{\mathrm{R}}}$.

Die Gleichgewichtsbedingung ($\sum Y = 0$) am Radsatz führt zu

(106)
$$\mathfrak{P}_r = H_r + G_r \sin \gamma + \mathfrak{T}_r + Z_{qr} + \mu_{sqL} \mathfrak{R}_L + \mu_{sqR} \mathfrak{R}_R.$$

Da H_{Tr} den grössten Anteil an H_r liefert und sich der übrige Anteil bei der Spurkranzführung nicht viel gegenüber der Rollenführung ändert, kann in die Gleichung (109) der durch Gl. (104) gegebene Wert von H_r eingesetzt werden. Werden ferner die gleichen Koeffizienten $\mu_{\mathrm{S}q\mathrm{L}}$ und $\mu_{\mathrm{S}q\mathrm{R}}$ vorausgesetzt, dann wird Gleichung (109) unter Berücksichtigung von Gl. (59) zu

$$\mathfrak{P}_{r} = (\varrho_{\mathcal{L}} - \varrho_{\mathcal{R}})_{r} P_{r} - S_{r} +$$

$$+ [\mu_{sq\mathcal{L}} (R_{\mathcal{L}} - \varrho_{\mathcal{L}} \gamma^{*} \mathfrak{P})]_{r} + [\mu_{sq\mathcal{R}} (R_{\mathcal{R}} + \varrho_{\mathcal{R}} \gamma^{*} \mathfrak{P})]_{r}.$$

Daraus folgt für den Spurkranzdruck die Beziehung

(107)
$$\mathfrak{P}_r = \frac{(\varrho_{\rm L} - \varrho_{\rm R})_r P_r}{1 + \gamma^* (\varrho_{\rm L} \, \mu_{\rm SqL} - \varrho_{\rm R} \, \mu_{\rm sqR})}.$$

Wird dies in Gl. (59) eingesetzt, dann ergeben sich schliesslich die Raddrücke zu

(108)
$$\Re_{\mathrm{L}r} = R_{\mathrm{L}r} - \varrho_{\mathrm{L}r} \frac{\gamma^* P_r}{1 + \gamma^* (\varrho_{\mathrm{L}} \mu_{\mathrm{S}q\mathrm{L}} - \varrho_{\mathrm{R}} \mu_{\mathrm{S}q\mathrm{R}})}$$

$$\Re_{\mathrm{R}r} = R_{\mathrm{R}r} - \varrho_{\mathrm{R}r} \frac{\gamma^* P_r}{1 + \gamma^* (\varrho_{\mathrm{L}} \mu_{\mathrm{S}q\mathrm{L}} - \varrho_{\mathrm{R}} \mu_{\mathrm{S}q\mathrm{R}})}$$

und der Achsdruck zu

(109)
$$\mathfrak{Q}_r = Q_r - \frac{\gamma^* P_r}{1 + \gamma^* (\varrho_L \mu_{sqL} - \varrho_R \mu_{sqR})}.$$

Der sich für jeden dieser Rad- und Achsdrücke ergebende Stabilitätsfaktor muss einen genügenden Wert aufweisen.

6. Wahl der Werte von μ_{zv} und μ_{zq}

Die Wahl von μ_{zv} und μ_{zq} , die beide gemäss Gl. (65) zusammenhängen, wirkt sich unmittelbar auf den Wert des Zahnauftriebes \overline{A} – Gl. (66) – und der Querkomponente Z_q der Reibungskraft zwischen Zahnrad und Zahnstange – Gl. (64) – aus. \overline{A} wirkt sich seinerseits unmittelbar auf die Raddrücke R – Gl. (56) – aus und daher indirekt

auf die Richtkraft P_r , während Z_q einen indirekten Einfluss auf P_r hat. Beide Koeffizienten μ_{zv} und μ_{zq} wirken sich somit auf die Raddrücke \Re aus.

Es ist wohl grundsätzlich möglich, denjenigen Wert des Zerlegungswinkels Φ rechnerisch zu ermitteln, der zur maximalen Radentlastung führt. Dieses Verfahren fällt jedoch derart verwickelt aus, dass es praktisch viel einfacher und übersichtlicher ist, die Untersuchung für verschiedene Werte von Φ durchzuführen. Immerhin zeigt es sich, dass je nach vorliegendem Fall die maximale Radentlastung praktisch für

$$\sin \Phi = 1 \ (\mu_{zq} = \mu_z, \mu_{zv} = 0) \quad \text{oder} \quad \cos \Phi \ (\mu_{zq} = 0, \mu_{zv} = \mu_z)$$
 entsteht.

Für ein zweiachsiges Fahrzeug mit zwei Zahnrädern sind somit grundsätzlich folgende vier Fälle in Betracht zu ziehen

$$\begin{split} \text{Fall } \alpha \colon & \quad (\mu_{zq1} = 0 \ \ , \ \mu_{zv1} = \mu_z) \ , \qquad (\mu_{zq2} = 0 \ \ , \ \mu_{zv2} = \mu_z) \\ \text{Fall } \beta \colon & \quad (\mu_{zq1} = \mu_z \ , \ \mu_{zv1} = 0) \ \ , \qquad (\mu_{zq2} = \mu_z \ , \ \mu_{zv2} = 0) \\ \text{Fall } \gamma \colon & \quad (\mu_{zq1} = \mu_z \ , \ \mu_{zv1} = 0) \ \ , \qquad (\mu_{zq2} = 0 \ , \ \mu_{zv2} = \mu_z) \\ \text{Fall } \delta \colon & \quad (\mu_{zq1} = 0 \ , \ \mu_{zv1} = \mu_z) \ \ , \qquad (\mu_{zq2} = \mu_z \ , \ \mu_{zv2} = 0) \end{split}$$

von denen jeder für sich besonders untersucht werden muss.

7. Beispiele

Beispiel: 1 Rahmenlokomotive

Zugskomposition Lokomotive mit 2 Vorstellwagen:

Abbremsung bei Talfahrt auf 250 $^{\circ}/_{00}$: $\psi = -1$

a) Daten

Lokomotiv-Hauptabmessungen: (Bild 19)

$$a=3$$
 m, $g_1=g_2=1,5$ m, $h_0=0,75$ m, $D_z=0,7$ m, $D_r=0,75$ m, $t_{zI}=z_1=0,75$ m, $t_{zII}=z_2=2,25$ m $t_0=1,255$ m, $t_0=1,255$ m,

		Gewichte	in k	p .	Massen	in kg
Lokomotive		$G_{ m Lok} = 20$	0000	\overline{m}	Lok =	2040
Rotierende Teile der Lokomotive				$m_{ m rot}$	Lok =	9170
				$m_{ m g}$	Lok =	11210
2 Vorstellwagen		$G_{\mathrm{w}} = 20$	000		$\overline{m}_{\mathrm{w}} =$	2040
Ganzer Zug		$G_{\rm t}=40$	0000		$m_{ m gt} =$	13250
Gefederter Teil der Lokomotive		$G_0 = 18$	8 500		$\overline{m}_0 =$	1886
Radsatz		$G_{r} =$	750		$\overline{m}_{\mathrm{r}} =$	76,5
$\sum_{i=1}^{n}$	$\left(\frac{m}{2}\right)$	$\frac{\left(\frac{\partial x}{\partial x}\right)_p}{2\ddot{u}}\Big _p = 0$		$\sum \left(\frac{m_{\rm rot} \vartheta}{2\ddot{u}}\right)$	$\left(\frac{q}{p}\right)_p =$	347,5
Eingriffsverhältnisse	e	= 103 mm,	e _o	= 45 mm,	$e_o/_e =$	= 0,425
	ε	= 1,03	e_u	= 61 mm,	$e_u/e =$	0,575
Bremskraft	X_b	= 26910 kp			$X_A =$	= 0
Fahrwiderstand	w	= 0,005				
Diverses	N	= 0			W =	= 0
	χο	= 0,11	K_{ov}	$= 0.12 K_o$	$K_u =$	= 0
	τ_r	= 0,5	δ	= 0	T =	= 0

b) Verschiedene Berechnungen

Gl. (11):
$$b = \frac{26910 - 40000 (0,242 - 0,005)}{13250} = 1,315 \quad \text{m/s}^2$$

Gl. (37):
$$\mathfrak{M}_q = 1,315 \cdot 0,7 \cdot 347,5 = 320 \text{ kpm}$$

 $\mathfrak{M}_x = 0$

Tabelle 6. Durchführung der weiteren Berechnungen

				iante		
- 511.1	DATE AND MANY WAS TOUT OF THE PARTY OF THE P	α	β	γ	δ	
	$\mu_{{ m z}v_1} =$	0,15	0	0	0,15	
	$\mu_{\mathrm{z}v_2} =$	0,15	0			
	$\mu_{\mathbf{z}q_1} =$			0,15	0	
	$\mu_{zq_2} =$	0	0,15	0,15	0	N P
	r~2q2 —	0	0,15	0	0,15	
"	$\overline{A}_1 = (0.25 + 0.024) 7425$ bzw. $0.25 \cdot 7425$	2034	1856	1856	2034	kı
66	$\overline{A}_2 = (0.25 + 0.024) 7425$ bzw. $0.25 \cdot 7425$	2034	1856	2034	1856	k
	Manager and the state of the st	4	1030	2007		
48.1	$M_q = 0.75 \cdot 6958 + 0.11 \cdot 7423 + 320 + (0.375 - 0.033) 14850$		11-	434		kp
	$\mathcal{L}_1 = \frac{1}{6} 1.5 \cdot 17940 - (2.25 \overline{A}_1 + 0.75 \overline{A}_2) + 11434 - 1.255 \cdot 890$	5188	5276	5254	5209	k
19.1						
	$\mathcal{L}_2 = \frac{1}{6} 1,5 \cdot 17940 - (0,75 \overline{A}_1 + 2,25 \overline{A}_2) - 11434 + 4,255 \cdot 890$	2193	2282	2216	2260	k
56	$R_{lL_1} = R_{lR_1} = \mathscr{L}_1 + (0.97 \cdot 375)$	5552	5640	5618	5573	k
36	$R_{lL_2} = R_{lR_2} = \mathscr{L}_2 + (0.97 \cdot 375)$	2557	2646	2580	2624	k
Tark	Milder Artist State and Secretary of the Control of	1				-
1	$Q_{l_1} = R_{lL_1} + R_{lR_1} = 2 R_{l_1}$	11104	11280	11236	11146	k
lere-	$Q_{l_2} = R_{lL_2} + R_{lR_2} = 2 R_{l_2}$	5114	5292	5160	5248	k
	an demonstration such assumes a first was and last accounting			L STATE OF		
JEY.	$Z_{qI} = + \mu_{zq} \cdot 7425$	0	1 1114	1 1114	0	١.
ente.		0	+ 1114		0	k
6.5	$Z_{qII} = \varkappa_{II} \cdot \mu_{zq} \cdot 7425$	0		0		
	$\sum Z_q$	0	0	+ 1114	— 1114	k
41	$K_{oq} = 0.11 \cdot 7423$		+ 81	16,5	The market	k
41	$K_{uq} =$		h - 275 phu	0		k
1.1	$M_x = 0.11 \cdot 816.5 - (0.375 - 0.033) \Sigma Z_q$	+ 90	+ 90	— 291	+ 471	'kr
	$ au M_x/2 \ e =$	+ 42	+ 42	— 136	+ 220	k
	$H_{\mathrm{T}I} = \frac{1}{3} \left\{ -1,255 \cdot 816,5 + 2,25 Z_{qI} + 0,75 Z_{qII} \right\}$	— 342	+ 215	+ 494	— 620	k
4.1						
	$H_{\mathrm TII} = rac{1}{3} \left\{ 4,255 \cdot 816,5 + 0,75 \ Z_{qI} + 2,25 \ Z_{qII} ight\}$	+ 1158	+ 601	+ 1436,5	+ 322,5	k
	$H_{\mathrm{T}I} rac{D_{\mathrm{r}}}{4 e}$	— 120	+ 75	+ 173	— 217	k
						48
	$H_{\mathrm TII} rac{D_{\mathrm r}}{4 e}$	+ 406	+ 210	+ 503	+ 113	k
		5552	5640	5618	5573	k
90,0	$R_{l \perp I} = R_{l R I}$					
20,0 PC,0	$R_{l ext{L}I} = R_{l ext{R}I} \ R_{l ext{L}II} = R_{l ext{R}II}$	2557	2646	2580	2624	L
30,0	$R_{l ext{L}II} = R_{l ext{R}II}$	2557	1 10000	+ unityltina	HOUSE THE	
RF,U	$R_{ILII} = R_{IRII}$ R_{LI}	2557 5474	5757	5655	5576	k
10,0	$R_{l ext{L}II} = R_{l ext{R}II}$	2557	1 10000	+ unityltina	HOUSE THE	k
57 -	$R_{l m L}{}_{II} = R_{l m R}{}_{II}$ $R_{ m R}{}_{I}$	2557 5474 5630	5757 5523	5655 5581	5576 5570	k k k
7	$R_{ILII} = R_{IRII}$ R_{LI} R_{RI}	2557 5474 5630 3005	5757 5523 2898	5655 5581 2947	5576 5570 2957	k k
7 -	$R_{l m L}{}_{II} = R_{l m R}{}_{II}$ $R_{ m R}{}_{I}$	2557 5474 5630	5757 5523	5655 5581	5576 5570	k k
7	$R_{ILII} = R_{IRII}$ R_{LI} R_{RI} R_{RII}	2557 5474 5630 3005 2109	5757 5523 2898 2394	5655 5581 2947 2213	5576 5570 2957 2291	k k
7	$R_{ILII} = R_{IRII}$ R_{LI} R_{RI} R_{RII} R_{RII}	2557 5474 5630 3005 2109	5757 5523 2898 2394	5655 5581 2947 2213	5576 5570 2957 2291 1673	k k k
7 -	$R_{ILII} = R_{IRII}$ R_{LI} R_{RI} R_{RII}	2557 5474 5630 3005 2109	5757 5523 2898 2394	5655 5581 2947 2213	5576 5570 2957 2291	k k k
7	$R_{ILII} = R_{IRII}$ R_{LI} R_{RI} R_{RII} R_{RII}	2557 5474 5630 3005 2109	5757 5523 2898 2394	5655 5581 2947 2213	5576 5570 2957 2291 1673	k k

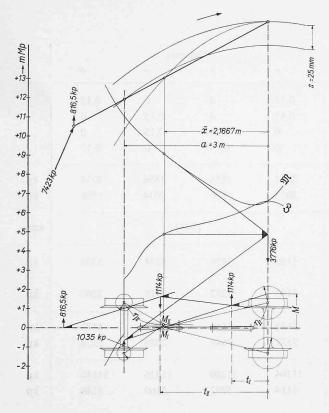


Bild 29. Ermittlung der Richtkräfte P des Rahmenfahrzeuges des Beispieles I (Variante β)

$$\mathfrak{b} \, \overline{m_o} + G_o \sin \alpha = 1,315 \cdot 1886 + \\ + 18500 \cdot 0,242 = 6958 \, \text{kp}$$

$$G_o \cos \alpha = 18500 \cdot 0,97 = 17940 \, \text{kp}$$

$$Gl. (16): \quad K_o = +0 - 1,315 \cdot 2040 + \\ + 20000 \, (0,005 - 0,242) = -7423 \, \text{kp}$$

$$K_{ov} = 0,12 \cdot 7423 = +890 \, \text{kp}$$

Gl. (12):
$$Z_1 + Z_2 = 26910 - 1,315 \cdot 9170 = 14850 \text{ kp}$$

 $Z_1 = Z_2 = 7425 \text{ kp}$

Aus Bild 6:

$$\overline{A}_h/A_h = 0.58$$
, $\overline{A}_b/A_b = 0.42$, $(\overline{A}_h/A_h - \overline{A}_b/A_b) = 0.16$

Die weiteren Berechnungen werden in Tabelle 6 durchgeführt.

c) Fahrt in der Geraden ohne Querkräfte

Bei der Fahrt in der Geraden ohne Querkräfte ergeben sich die einzelnen Achsdrücke zu Q_t . Die Entlastung der bergseitigen Achse 2 wird bei der Variante α am grössten. Die entsprechenden Stabilitätsfaktoren betragen

$$\mathfrak{S}_2 = \frac{10000}{10000 - 5114} = 2,046 \text{ und } \sigma_2 = \frac{5114}{10000} = 0,511.$$

d) Fahrt in der Kurve

Bei der Talfahrt wird Achse 1 zur Achse I und Achse 2 zur Achse II. Voraussetzungen:

Die Laufräder sind fest mit der Achse verbunden und entwickeln keine Längskraft U.

Kurvenradius R = 80 m, Spurspiel s = 0,025 m,
$$\mu_{\rm s} = 0,3$$
.
Gl. (99): $\bar{x} = 1,5 + \frac{0,025 \cdot 80}{3} = 2,1667$ m, $\bar{x} < t_{\rm zII}$: $\varkappa_{\rm II} = -1$.

Auf Grund dieser Reibungskräfte lässt sich für jede Variante die graphische Untersuchung gemäss Bild 26 durchführen, wie dies in Bild 29 für die Variante β gezeigt ist. Da \overline{x} kleiner als t_{II} ist, gilt für \varkappa_{II} der Wert -1. Die entsprechend aufgestellte Tabelle 8 zeigt, dass bei allen Varianten $M(\varkappa_{II}=-1)$ kleiner als $\Im(\overline{x})$ ausfällt. Im Testdiagramm, Bild 27, tritt somit der Fall a auf, so dass die Lokomotive bei

allen Varianten α bis δ im Spiessgang bzw. mit $x=\overline{x}$ läuft. Damit vereinfacht sich die Ermittlung der Richtkräfte $P_{\rm I}$ und $P_{\rm II}$ dadurch, dass die Verhältnisse lediglich für

$$x = \bar{x} = 2,1667 \text{ m}$$
 bzw. für $x/e = \frac{2,1667}{0,535} = 4,05$

untersucht zu werden brauchen. Zunächst müssen die zu $(U_r=0)$ führenden Ordinaten η_I und η_{II} der Reibungsmittelpunkte beider Radsätze ermittelt werden. Im folgenden wird für den Radsatz I gezeigt, wie dies auf Grund der Zahlentafel 1 geschehen kann. Da der Wert 4,05 zwischen den beiden Tabellenwerten 4,0 und 4,2 liegt, wird zunächst die Untersuchung für $(x-a_I)/e=x/e=4,0$ durchgeführt. Da ferner F_{aI} und F_{iI} nur sehr wenig voneinander abweichen, kann man für den gesuchten Wert von η_I ungefähr $(\varphi_m=0)$ setzen, was zu $\eta_I/e=0$ führt. Die Verhältnisse werden daher für die beiden Werte $\eta/e=0$ und $\eta/e=-0,1$ in Tabelle 7 untersucht.

Die gleiche Untersuchung für $(x - a_1)/e = x/e = 4,2$ führt zu den praktisch gleichen Werten von η_1^7), so dass diese auch für x/e= 4,05 gültig sind. Wie man aus obigen Ausführungen ersieht, bleibt die Ermittlung von η_I selbst mit Hilfe der Tabellen 2a bis 2c umständlich. Diese Art der Ermittlung kann allenfalls in Kauf genommen werden, wenn sich x zu \bar{x} ergibt und die Kräfteverhältnisse nur für diesen besondern x-Wert untersucht werden müssen. Normalerweise kann aber nicht von Anfang an erkannt werden, ob Spiessgangstellung vorliegt oder nicht. Es ist somit allgemein notwendig, die M- und 3-Kurven mindestens teilweise aufzuzeichnen, und hiefür die η -Werte für verschiedene x-Werte zu ermitteln. Es ist daher viel einfacher und schneller, die Rechnung mit Hilfe eines Computers durchzuführen, der nebst den η -Werten auch unmittelbar diejenigen von U_r , S_r , \mathfrak{M}_r , und \mathfrak{Z}_r liefern kann. Auf diese Weise wurden die für die verschiedenen Varianten massgebenden M- und 3-Kurven sowie die sich für $x = \overline{x}$ und für beide Radsätze ergebenden Werte von η_r , U_{ar} , U_{ir} , S_{ar} , S_{ir} , \mathfrak{M}_r und \mathfrak{Z}_r ermittelt. In Tabelle 8 sind die Ergebnisse zusammengestellt.

Die gefundenen H_r -Werte weichen um rd. 290 kp von den eingesetzten $H_{\mathrm{T}r}$ -Werten ab. Die aufgeführte Kontrolle zeigt, dass diese Abweichung dem Anteil ΔH gemäss Gl. (91) entspricht. Sie zieht einen Fehler von rund 100 kp bei den Raddrücken nach sich. Sollen genauere Resultaten erzielt werden, wäre es notwendig, die Raddrücke R_{L} und

7) Dies ist darauf zurückzuführen, dass η_r bei $(U_r=0)$ nur sehr wenig von $(x-a_r)$ abhängt, sobald es grösser als e wird.

Tabelle 7. Ermittlung des η -Wertes

					Varia	ant	е		
			α		β		γ		δ
		$(\overline{x} - a_I)/e$			4,	00			
		$\frac{F_{oI} - F_{iI}}{F_r}$	0,0144	+	0,0261	+	0,0065	+	0,0024
		φ_m	0,0000		0,0000		0,0000		0,0000
	0	Δφ	0,2425		0,2425		0,2425		0,2425
	$\eta_I/e =$		0,00349	+	0,00633	+	0,00158	+	0,00058
4,00		$(U/F)_I$	0,00349	_	0,00633	-	0,00158	_	0,0058
x/e =		φ_m	0,0228		0,0228		0,0228		0,0228
1 u .	0	100	0,2423		0,2423		0,2423		0,2423
Tabelle 1 und G1. 87 $x/e = 4,0$	e = -	$\left \Delta \varphi \left(\frac{F_a - F_i}{F} \right)_I \right $	- 0,00349	+	0,00633	+	0,00157	+	0,00058
H	lI4	$(U/F)_I$	0,0193	-	0,0391	-	0,0244	_	0,0232
		$(\eta/e)_I$	0,0153	+	0,0277	+	0,0069	+	0,0254
		η_I m	0,0082				0,0037	100	0,00136

Tabelle 8

Gl.				riante		
		α	β	γ	δ	
(00)	η_I	-0,0082	0,0148	0,0037	0,00136	m
(88)	ηπ	0,1295	0,0718	0,1058	0,0943	m
	U_{aI}	— 399	— 403	— 404	— 400	kp
	U_{iI}	+ 399	+ 403	+ 404	+ 400	kp
(81)	U_{aII}	— 395	— 423	— 405	- 415	kp
	U_{iII}	+ 395	+ 423	+ 405	+ 415	kp
	S_{aI}	1593	1678	1648	1624	kp
(76)	S_{il}	1642	1588	1625	1616	kp
	S_{aII}	— 811	 760	— 786	- 784	kp
93	S_{iII}	<u>— 495</u>	— 580	— 52 6	— 549	kp
	\mathfrak{M}_I	7436	7508	7526	7450	mk
(74)	\mathfrak{M}_{II}	1511	1570	1527	1555	mk
	M	8947	9078	9053	9005	mk
	3r 40.50	427	431	432	428	mk
(75)	3n	4340	4475	4370	4443	mk
34.7	3	4767	4906	4802	4871	mk
(96)	M	3473	1802	4308	967	mk
	3-M	1294	3104	494	3904	mk
(100)	P_{II}	431	1035	165	1301	kp
(102)	P_I	3178	3776	4058	2910	kp
(24)	$\gamma^* = \frac{0.57735 + 0.3}{1 - 0.3 \cdot 0.57735} \qquad (\gamma = 60^\circ)$	Austria III. pli Ja igalii Vapa	1	,061	ratemoral serg dalah caka serga	
(105)	$\mu_{ ext{SqLI}}$	0,291	0,2915	0,2915	0,2912	kp
	$1 + \mu_{\mathbf{SqLI}} \cdot \gamma^*$	1,309	1,309	1,309	1,309	
(107)	$\mathfrak{P}_{\mathrm{L}I}$	2427	2883	3100	2223	kŗ
	$R_{\mathrm{L}I}$	5475	5757	5665	5576	kp
	$\gamma * \mathfrak{P}_{\mathbf{L}I}$	2575	3057	3288	2358	kp
(108)	$\Re_{\mathrm{L}I}$	2899	2700	2377	3218	kp
(6)	$\mathfrak{S}_{\mathrm{L}I}$	2,38	2,173	1,906	2,657	
(105)	$\mu_{\mathrm{SqR}II}$	- 0,2345	- 0,2422	— 0,2375	— 0,2395	
	$1 - \mu_{SqRII} \cdot \gamma^*$	1,2488	1,257	1,252	1,254	1
(107)	$\mathfrak{P}_{\mathrm{R}II}$	345	823	132	1038	kp
7 W 1 C	$R_{\mathrm{R}II}$	2109	2394	2213	2291	kp
	$\gamma * \mathfrak{P}_{RII}$	366	873	140	1102	kp
(108)	$\Re_{\mathrm{R}II}$	1743	1521	2073	1189	kp
(6)	\mathfrak{S}_{RII}	1,535	1,437	1,708	1,312	
(104)	H_I	— 57	+ 510	+ 786	— 330	kp
(104)	H_{II}	+ 875	+ 305	+ 1147	+ 32	kp
(91)	ΔH_I	+ 283	+ 295	+ 289	+ 291	kp
	$\Delta~H_{II}$	<u>— 283</u>	— 295	— 289	— 291	kp
Kontrolle	$H_{ m TI}$	— 342	+ 215	+ 494	— 620	kp
ıtro.	$H_{ m TII}$	+ 1158	+ 601	+1436,5	+ 322,5	kp
Kor	$H_r = H_{ ext{T}r} + arDelta H_r \left\{ egin{array}{l} H_I \ H_{II} \end{array} ight.$	— 57	+ 510	+ 783	— 329	kp
- MITTER	$H_T = H_{\mathrm{T}^{T}} + eta H_T \Big) H_{II}$	+ 875	+ 306	+1147,5	+ 31,5	kp

Tabelle	e 9	\Diamond			\Diamond				
Gl.	i =	1	2	3	4	5	6	Tota	1
	G_i	54 000	12 000	13 000	54 000	18 000	19 000	170 000	kp
	\overline{m}_i	5 505	1 224	1 326	5 505	1 836	1 936	17 334	kp
	$m_{\mathrm{rot}i}$	1 500	0	0	1 500	0	0	3 000	kp
	$m_{\mathrm{g}i}$	7 005	1 224	1 326	7 005	1 836	1 936	20 334	kp
	X_{mi}	24 400	0	0	0	0	0	24 400	kp
	$G_i (\sin \alpha + w)$	6 172	1 372	1 486	6 172	2 057	2 172	19 431	kp
(9)	X_i	18 228	— 1 372	— 1 486	<u> </u>	— 2 057	— 2 172	4 969	kp
(10)	X_{t}	ther Time	24	400 — 170 000 ·	0,1143 = 24400	0 — 19 431 =		4 969	kp
(11)	b					969/20 334 =		0,2444	m/s ²
711	$\mathfrak{b} \; \overline{m}_i$	1 345	299	324	1 345	449	473	4 235	kp
	$\mathfrak{b} \; m_{\mathrm{rot}i}$	367	0	0	367	0	0	734	kp
	$\mathfrak{b} \; m_{\mathrm{g}i}$	1 712	299	324	1 712	449	473	4 969	kp
(12)	Z_i	24 033	0	0	— 367	0	0	- 4	kp
(13)	K_{ui}	0	16 516	14 865	13 035	5 151	2 645		kp
(14)	K_{oi}	— 16 516	— 14 865	— 13 055	— 5 151	— 2 645	0		kp
	The same of	THE PARTY OF THE P			- ×				

 $R_{\rm R}$ auf Grund der gefundenen $H_{\rm I}$ und $H_{\rm II}$ neu zu ermitteln und die Berechnung in einem zweiten Iterationsschritt zu wiederholen. Da es hier vor allem darum geht, die Berechnungsmethode zu zeigen, wird auf eine solche Wiederholung verzeichtet, die aber mit Hilfe eines Computers leicht durchzuführen ist.

Die gefundenen Sicherheitswerte $\mathfrak S$ zeigen, dass das innere Rad der bergseitigen, nachlaufenden Achse II am meisten gefährdet ist. Dies ist ganz besonders bei den Varianten β und δ der Fall, was auf die Querreibung des nachlaufenden Zahnrades zurückzuführen ist.

Beispiel II

Bei Bergfahrt auf $110^{9}/_{00}$ setzt der mittlere Triebwagen 4 der in Tabelle 9 angegebenen Zugskomposition aus, so dass allein der talseitige Triebwagen 1 eine Zugkraft liefert, die in diesem Falle ihren maximalen Wert erreicht. Die Gewichte der einzelnen Fahrzeuge sind in Tabelle 11 angegeben. Weiter gelten folgende Werte für die Bergfahrt:

$$\psi = +1$$
, tg $\alpha = 0.11$, $\sin \alpha = 0.1093$, $\cos \alpha = 0.994$, $w = 0.005$, $\sin \alpha + w = 0.11430$.

 $Untersuchung\ am\ unteren\ Triebfahrzeug\ 1$

Voraussetzungen: $\xi_d=1, \quad \xi_c=0, \quad \tau_r=0,5, \quad \mathfrak{T}=0, \quad \delta=0$ Hauptdaten (vergleiche Bild 17)

$$d = 11,46 \text{ m}, \qquad d' = d'' = 5,73 \text{ m}, \\ h_c = 0,825 \text{ m}, \qquad h_t = 0,24 \text{ m}, \\ h_x = 0,085 \text{ m}, \qquad h_k = 0,225 \text{ m} \\ h_c - h_x = 0,74 \text{ m}, \qquad h_k - h_x = 0,14 \text{ m}, \\ z_1 = 0, \qquad z_2 = 2,79 \text{ m}, \\ t_{zII} = 0, \qquad t_{zI} = 2,79 \text{ m} \\ g' = g'' = 5,73 \text{ m}, \qquad k_o = k_u = 0,6 \text{ m} \\ g_1 = g_2 = 1,395 \text{ m}, \qquad c_1 = c_2 = 1,395 \text{ m} \\ D_r = 0,78 \text{ m}, \qquad c_2 = 0,688 \text{ m} \\ u = 0,046 \text{ m}, \\ 2 e = 1,07 \text{ m}, \qquad 2 l = 1,475 \text{ m}, \\ Q_0 = 13500 \text{ kp}, \qquad G_c = 32700 \text{ kp}, \\ \overline{m}_c = 3334 \text{ kg}, \qquad \overline{m}_{d} = 1086 \text{ kg}, \\ m_{rot c} = 0, \qquad m_{rot d} = 750 \text{ kg}, \\ \overline{m}_{gd} = 1836 \text{ kg}, \\ \overline$$

$$G_{\rm f}=6300~{
m kp}, \qquad G_{\rm r}=2175~{
m kp}$$
 $\overline{m}_{
m f}=642~{
m kg}, \qquad \overline{m}_{
m r}=222~{
m kg}$

$$\sum_{p}\left(\frac{m_{
m rot}\vartheta_{x}}{\ddot{u}}\right)_{p}=0, \qquad \sum_{p}\left(\frac{m_{
m rot}\vartheta_{q}}{\ddot{u}}\right)_{p}=-110~{
m kg}$$

Eingriffsverhältnisse (doppelte Abtsche Zahnstange 120 mm Teilung)

$$e = 115 \text{ mm}$$
 $e_0 = 47 \text{ mm}$ $e_u = 68 \text{ mm}$ $e = 0.96$ $e_0/e = 0.41$ $e_u/e = 0.59$

Aus Bild (9) ergibt sich bei Wirkung Z in Bewegungsrichtung $\overline{A}_h/A_h=0.39$ $\overline{A}_b/A_b=0.61$ $(\overline{A}_h/A_h-\overline{A}_b/A_b)=-0.21$

$$ar{x} = rac{2,79}{2} + rac{0,025 \cdot 80}{2,79} = 2,112 \, ext{m} < t_{II},$$
 $Z_r = rac{1}{4} \, Z_1 = rac{24033}{4} = 6008 \, ext{kp}.$

Auf Grund dieser Daten können die einzelnen, für die weitere Untersuchung massgebenden Grössen in der folgenden Reihenfolge ermittelt werden:

$$G_{c} \cos \alpha = 0,994 \cdot 32700 = 32504 \text{ kp}$$

$$G_{c} \sin \alpha = 0,1093 \cdot 32700 = 3575 \text{ kp}$$

$$\emptyset \, \overline{m}_{c} = 0,2444 \cdot 3334 = 814 \text{ kp}$$

$$G_{c} \sin \alpha + \emptyset \, \overline{m}_{c} = 4389 \text{ kp}$$

$$G'_{v} = \frac{5,73 \cdot 32504 + 0,74 \cdot 4389}{11,46} = 16535 \text{ kp}$$

$$GI. (53'') \qquad C''_{v} = \frac{5,73 \cdot 32504 - 0,74 \cdot 4389}{11,46} = 15969 \text{ kp}$$

$$G_{d} \sin \alpha = 0,1093 \cdot 10650 = 1164 \text{ kp}$$

$$\emptyset \, \overline{m}_{d} = 0,2444 \cdot 1085 = 265 \text{ kp}$$

$$G_{d} \sin \alpha + \emptyset \, \overline{m}_{d} = 1164 + 265 = 1429 \text{ kp}$$

$$(G_{d} + G_{c} \, g''/d) \text{ w} = 27000 \cdot 0,005 = 135 \text{ kp}$$

$$GI. (54') \qquad C'_{x} = 12016 - 1429 - 135 = 10452 \text{ kp}$$

$$GI. (54'') \qquad C''_{x} = 12016 - 1429 - 135 - 16516 = -6064 \text{ kp}$$

$$GI. (55) \qquad G_{c} \sin \alpha + \emptyset \, \overline{m}_{c} = 4389 \text{ kp} \qquad C'_{x} + C''_{x} = 4388 \text{ kp}$$

Tabelle 10. Untersuchung am bergseitigen Triebgestell

Gl.		α	Variante β		δ	and and
		α	ρ	γ	0	150
	$\mu_{\mathrm{z}v_1} =$	0,15 0,15	0	0 0,15	0,15	
A. Jan	$\mu_{zv_2} =$	0,13	0	0,13	0	41 181
hulai Iyalo / Isal	$\mu_{\mathbf{z}q_1} =$	0	0,15	0,15	0	
	$\mu_{zq_2} =$	0	0,15	0	0,15	
(66)	$\overline{A}_1 = (0.25 - 0.15 \cdot 0.21) 6008$ bzw. $0.25 \cdot 6008$	1313	1502	1502	1313	kp
(00)	$\overline{A}_2 = (0.25 - 0.15 \cdot 0.21) 6008 \text{ bzw. } 0.25 \cdot 6008$	1313	1502	1313	1502	kp
(29)	$B_1 = B_2 = B = \frac{6008 \cdot 0,688}{2 \cdot 0,855} \ (v_1 = v_2 = 1)$		2416	5	-174.23	kp
r qui	$\mathfrak{M}_x =$		10.	0		
(37)	$\mathfrak{M}_q = -\frac{0,2444 \cdot 0,688}{2} \cdot 110$		a - 1124-11 <u>24</u>	9,25		mkp
100	$G_{\rm f}''\sin \alpha + \mathfrak{b}\; \overline{m}_{\rm f}'' = 0{,}1093\cdot 6300 + 0{,}2444\cdot 642$		845		31.41	kp
(48.2)	$M_{q}'' = -0,085 \cdot 6064 - 9,25 + 0,24 \cdot 845 + 0,225 \cdot 16516$		3395	5	e dig F	mkp
	$\mathcal{L}_{1}'' = \frac{(15969 + 0,994 \cdot 6300) 1,395 + 3395}{2 \cdot 2,79}$		6160	5		kp
(49.2)	$\mathcal{L}_{2}'' = \frac{(15969 + 0.994 \cdot 6300) \cdot 1.395 - 3395}{2 \cdot 2.79}$		494	0		kn
	$\mathcal{L}_2^{-} = {2 \cdot 2,79}$		474.			kp
(2.1)	$\Delta_{z}R_{1}=+rac{2416\cdot0,855}{2,79}$		+ 740)		kp
(34)	$\Delta_{\mathbf{z}} R_2 =$		— 740)		kp
	$R''_{lL1} = 6166 + \frac{0,994 \cdot 2175 \cdot 0,425}{1,07} + 740 - 0,5 \overline{A}_{1}$	7109	7014	7014	7109	kp
		7105	7014	-1		, rp
(7.0	$R''_{IR1} = 6166 + \frac{0.994 \cdot 2175 \cdot 0.645}{1.07} + 740 - 0.5 \overline{A}_{1}$	7553	7458	7458	7553	kp
(56)	$R''_{lL2} = 4949 + \frac{0.994 \cdot 2175 \cdot 0.645}{1.07} - 740 - 0.5 \overline{A}_2$	4852	4761	4852	4761	kp
	0.004 - 2175 - 0.425				1017	
inis".	$R''_{IR2} = 4949 + \frac{0.994 \cdot 2173 \cdot 0.425}{1.07} - 740 - 0.5 \overline{A}_2$	4412	4317	4412	4317	kp
(58)	$Q_{l1}''=$	14662	14472	14472	14662	kp
(36)	$Q_{l2}''=$	9264	9078	9264	9078	kp
	$Q_{01}''=Q_{02}''=$		1350	0		kp
(6)	$\mathfrak{S}_2''=$	3,19	3,05	3,19	3,05	kp
	Voraussetzung $\varkappa_2=+1, \varkappa_1=-1$ ($\varkappa_{\rm II}=-1$ weil $t_{ m zII}=a$)					
(45")	$C_q'=C_q''$			0		
(46)	$M_c =$			0		
(41)	$K_{oq} = 16516 \cdot 0,030 =$		49	25		kp
(47)	$K_{\mathrm{d}q}''=$		49	5		kp
((7)	$Z_{q1}''=6008\cdot \mu_{zq1}\cdot arkappa_{1}$	0	— 901	— 901	0	kp
(67)	$Z_q''^2 = 6008 \cdot \mu_{zq2} \cdot \varkappa_2$	0	+ 901	0	+ 901	kp
o esta esta esta or Vega	$Z_{qI}^{\prime\prime}=$	0	+ 901	0	+ 901	kp
	$Z_{qII}^{q} =$	0	— 901	— 901	0	kp
	$H_{\mathrm{T1}}'' = -\frac{495 \cdot 0.6}{2.79}$		— 10	06		kp
(44.2)		gerelegelani ri	Estapped to "	The Hall h		I-v-
	$H_{ ext{ iny T2}}'' = + rac{495 \cdot 3,39}{2,79}$		+ 60	1		kp

Gl.			Variant	te		
	181.00 D	α	β	γ	δ	
(51.1)	$M_x'' = +0,225 \cdot 495$		+ 1	11		mkp
	$v_r u Z_{q1}'' = 0,046 \cdot Z_{q1}''$	0	— 41	— 41	0	mkp
	$v_r u Z_{q2}^{"} = 0,046 \cdot Z_{q2}^{"}$	0	+ 41	0	+ 41	kp
	$\tau_r M_x'' = 0.5 M_x''$	1010 20.0	and sixe (ct.)	56		kp
rel.	$R_{ ext{L1}}'' = R_{ ext{LL1}}'' + rac{56 - 106 \cdot 0,39 + v_1 u Z_{q1}''}{1,07}$	7122	6989	6989	7122	kp
(57)	$R_{\mathrm{R1}}'' = R_{I\mathrm{R1}}'' - \frac{56 - 106 \cdot 0.39 + v_1 u Z_{q1}''}{1.07}$	7540	7483	7483	7540	kp
5,41	$R''_{\text{L2}} = R''_{l\text{L2}} + \frac{56 + 601 \cdot 0.39 + v_2 u Z''_{q2}}{1.07}$	5123	5070	5123	5070	kp
	$R_{\mathrm{R2}}'' = R_{l\mathrm{R2}}'' - \frac{56 + 601 \cdot 0.39 + \nu_2 u Z_{q2}''}{1.07}$	4140	4007	4140	4007	kp
112	$F_{ m L1}''=$	2137	2097	2097	2137	kp
(70)	$F_{ m R1}''=$	2262	2245	2245	2262	kp
(10)	$F_{\mathtt{L2}}^{\prime\prime}=$	1537	1521	1537	1521	kp
	$F_{ m R2}''=$	1242	1202	1242	1202	kp
4	$F''_{aI} = F''_{L2} =$	1537	1521	1537	1521	kp
Tabelle 4	$F''_{iI} = F''_{R2} =$	1242	1202	1242	1202	kp
abe	$F''_{aII} = F''_{L1} =$	2137	2097	2097	2137	kp
I	$F_{iII}'' = F_{ ext{R1}}'' =$	2262	2245	2245	2262	kp

Die den am Schluss der Tabelle 10 gefundenen Reibungskräften für $(U_r=0)$ entsprechenden \mathfrak{M}_r -und \mathfrak{Z}_r -Werte wurden mit Hilfe eines Computers für verschiedene Werte von x berechnet und die zugehörigen \mathfrak{M} - und \mathfrak{Z} -Kurven für jede Variante gezeichnet, wie

Bild 30. Ermittlung der Richtkräfte P des bergseitigen Triebgestelles des Beispieles II (Variante α)

dies in Bild 30 für die Variante β gezeigt ist. Die darauf aufgebaute graphische Untersuchung zeigt, dass das untersuchte bergseitige Triebgestell in allen vier Varianten im Spiessgang läuft. Damit ist x wiederum durch \overline{x} gegeben. Die entsprechenden, für die weitere Untersuchung massgebenden Grössen sind in Tabelle 11 zusammengestellt.

Wie im Beispiel der Lokomotive weichen die nach Gl. (104) gefundenen H_r -Werte um ΔH von den eingesetzten H_{Tr} -Werten ab. Um genauere Ergebnisse zu erhalten, ist es somit notwendig, mindestens einen zweiten Iterationsschritt vorzunehmen, auf den hier verzichtet wird, da er in Bezug auf die Berechnungsmethode nichts Neues bringt.

8. Einfluss des Schienenformzustandes

Aus den angeführten Beispielen ist zu erkennen, wie wichtig die Verhältnisse am Spurkranzdruckpunkt sind. Bei der zugehörigen Berechnung wurde für den Spurkranzwinkel γ der übliche Wert von 60° und für den Reibungskoeffizienten $\mu_{\rm b}$ der Wert 0,3 vorausgesetzt. Der Wert $\gamma=60^\circ$ kann als gültig betrachtet werden, solange einerseits die seitlich führende Schienenkopfabrundung nicht zu einer um weniger als 60° geneigten Fläche abgenützt und anderseits der Spurkranz nicht durch Abnützung scharf geworden ist. Der Wert $\mu_{\rm b}=0,3$ entspricht etwa dem nicht geschmierten Zustand der Führungskante der Schiene bzw. des Spurkranzes. Eine gute Schmierung verbessert selbstverständlich die Verhältnisse.

Die für die Variante β des Beispieles II aufgestellten Kurven von Bild 31 geben einen Überblick über den Einfluss von δ und $\mu_{\rm D}$. Daraus

Tabelle 11

Gl. (88)										
					α	β	γ	δ		
	$\eta_{ m I}$	ala	1427		0,0604	0,0666	0,0604	0,0666	m	
	$\eta_{ ext{II}}$				- 0,0246	— 0,0299	— 0,0299	— 0,0246	m	
	U_{aI}	180	Au .		— 337	— 329	— 337	— 329	kp	
	$U_{i_{ m I}}$				337	329	337	329	kp	
(81)	$U_{a ext{II}}$				— 1360	— 1342	— 1342	— 1360	kp	
73	$U_{i ext{II}}$				1360	1342	1342	1360	kp	
	S_{a1}				1500	1485	1500	1485	kp	
0.0	S_{i1}				1195	1156	1195	1156	kp	
(76)	$S_{a II}$				— 1648	— 1611	— 1611	— 1648	kp	
	$S_{i ext{II}}$				— 1807	— 1802	— 1802	— 1807	kp	
	$\mathfrak{M}_{\scriptscriptstyle \mathrm{I}}$				6052	5930	6052	5930	mkŗ	
(74)	$\mathfrak{M}_{\mathrm{II}}$				3798	3750	3750	3798	mkr	
	M				9850	9680	9802	9728	mkp	
	31		1.42		361	352	361	352	mkŗ	
(75)	311				11096	10959	10959	11096	mkp	
(, 0)	3				11457	11311	11320	11448	mkŗ	
(96)	M			li de l'alcente sur	— 297	— 2810	— 2810	— 297	mkŗ	
	3 — M				11754	14121	14130	11745	mkı	
(100)	P_{11}				4212	5063	5065	4210	kp	
(102)	P_{I}				3947	4786	3941	4792	kp	
(24)	$\gamma^* = \frac{0}{1}$	0,57735 + 0,3 $-0,3 \cdot 0,57735$		$(\gamma = 60^\circ)$		1,061				
(105)	$\mu_{ ext{s}q ext{LI}}$				0,2928	0,2929	0,2928	0,2929		
	$1 + \mu_{so}$	_{qL1} · γ *	ne sale e e e Parello sal	ropenski staletski Rojek (1888) staletski	1,3107	1,3108	1,3107	1,3108		
(107)	$\mathfrak{P}_{ ext{LI}}$	dapper redu		and the second second	3010	3652	3007	3657	kp	
and b	$R_{ m LI}$	<u>, osostaduos di</u> Rityral aikegita	de Arryke yezo de Arryke yezo	in the Colorest Artists of the	5123	5070	5123	5070	kp	
ekanda Dega	γ* PLI				3192	3875	3190	3880	kp	
(108)	$\Re_{ ext{LI}}$			Andrew States of August 19 and	1931	1195	1933	1190	kp	
(6)	S _{LI}	Ejo izarenia e	Control of the Control	Allegh Mingelskeid Allegh Mingelskeid Allegh Anballak es	1,401	1,215	1,401	1,214		
(105)	$\mu_{ ext{s}q ext{RII}}$				- 0,2396	0,2408	- 0,2408	0,2396		
	$1 - \mu_s$	qRII·γ*	recon Data	g fl'alpres serve metre	1,2543	1,2555	1,2555	1,2543		
(107)	P _{RII}	el talse filles Plafe urter live		red., Isanesi seentee ne. Kir espanesent	3357	4032	4033	3355	kp	
	D			and the late of the late	7540	7483	7483	7540	kp	
nd n	R_{RII} $\gamma * \mathfrak{P}_{\text{RII}}$				3562	4278	4279	3560	kp	
(108)	$\Re_{ ext{RII}}$	and the second	greamin sa February	aranga kana kana da arang Sasahiri Kahilo Kilika sang	3978	3205	3204	3980	kp	
(6)	© _{RII}	ende de la limita de la companya de	Stranger to a	de lan estado esta	2,434	1,904	1,903	2,436		

Gl.					Varian	te		
		LeX.	9-	α	β	γ	δ	
(104)	H_{I}			1252	1244	1246	1250	kp
(104)	H_{II}	4490 A		— 757	— 749	— 751	— 755	kp
(91)	$ riangle H_{ m I}$			650	641	644	647	kp
(21)	$\Delta H_{ m II}$			— 650	— 641	— 644	— 647	kp
P.2	$H_{ m TI}$			601	601	601	601	kp
Kontrolle	$H_{ m TII}$			— 106	— 106	— 106	— 106	kp
Kon	$H_r = H_{\mathrm Tr} +$	$H_{\rm I}$	7271	1251	1242	1245	1248	kp
	$II_T = II_{\mathrm{T}T} +$	H_{II}		— 756	— 747	— 750	— 752	kp
- 1							132	

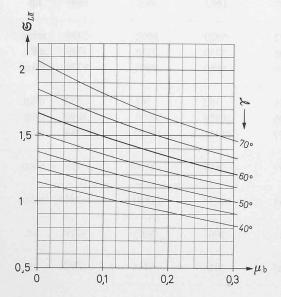


Bild 31. Einfluss von δ und μ_b auf \mathfrak{S}_{LII} im Falle der Variante des Beispieles II (Voraussetzung $\mu_s=$ 0,3)

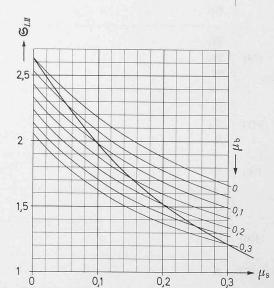


Bild 32. Einfluss von μ_b und $\mu_{\rm S}$ auf \mathfrak{S}_{LII} im Falle der Variante des Beispieles II (Voraussetzung $\gamma=60\,^\circ$)

erkennt man u. a., dass sich der Sicherheitsfaktor $\mathfrak{S}_{\rm LII}$ bei $\gamma=60^\circ$ von 1,215 auf 1,415 erhöht, wenn durch Schmierung $\mu_{\rm b}$ von 0,3 auf 0,15 verringert wird.

9. Einfluss des Schienenoberflächenzustandes

Bei der Berechnung wurde der Reibungskoeffizient $\mu_{\rm S}$ im Aufstandspunkt ebenfalls zu 0,3 angenommen. Bei Adhäsionsbahnen wird ein sauberer, trockener Zustand des Schienenkopfes angestrebt. Bei reinen Zahnradbahnen hingegen ist man nicht an diese Bedingung gebunden, da ja Zug- und Bremskräfte meistens allein durch die Zahnstange übertragen werden. Dieser Reibungskoeffizient hat einen direkten Einfluss auf die Richtkräfte P und daher auf die Spurkranzdrücke und die Radentlastungen. Der Stabilität wegen ist es somit vorteilhaft, die Schienenlauffläche ebenfalls zu schmieren. Die für die Variante β des Beispiels II unter der Voraussetzung $\gamma = 60^{\circ}$ und mit μ_b als Parameter aufgestellten Kurven von Bild 32 zeigen, wie der Sicherheitsfaktor S von µs abhängt. Bei Schmierung der Schiene kann angenommen werden, dass $\mu_{\rm b}$ den gleichen Wert wie $\mu_{\rm s}$ aufweist. In diesem Falle ergibt sich die dick ausgezogene Kurve. Daraus ersieht man, wie wichtig der Einfluss dieser μ -Werte ist. Beträgt z. B. bei $\mu_{\rm b}=\mu_{\rm s}=0.3$ der Sicherheitsfaktor \Im nur 1,215, so erhöht er sich auf 1,72, wenn dank Schmierung dieser Reibungswert auf 0,15 verringert wird. Da es aber fraglich ist, ob der entsprechende Schienenzustand wirklich stets vorliegt, ist es vorsichtiger, die Stabilität auf Grund der schlechteren Verhältnisse nachzuprüfen.

10. Einfluss des Zahnstangenzustandes

Bei den bisherigen Ausführungen wurde ein einwandfreier Zustand der Zahnstange und der Zahnräder vorausgesetzt. Hiezu ge-

hört u. a., dass die zum Eingriff kommende Zahnflanke der Zahnstange gerade verläuft und um den Eingriffswinkel β gegenüber der Vertikalen geneigt ist. In Wirklichkeit tritt stets eine Abnützung am oberen Teil der Zahnflanke auf, die zu einer gewissen Abrundung der Zahnkante führt und die bei zu lange im Betrieb gebliebenen Zahnstangen sogar eine Neigungsschwächung der Zahnflanke bewirken kann. Verläuft diese Neigungsschwächung über einen grösseren Teil der Zahnflanke, dann erfährt der Zahnauftrieb eine nicht unbedeutende Erhöhung, die eine entsprechende Verschlechterung der Stabilitätsverhältnisse zur Folge hat. Es ist daher wichtig, dass nur solche Zahnstangen im Betrieb gelassen werden, deren Kopfkantenabnützung nicht zu tief gelangt.

Korrektur: In den Gleichungen (59), (61) und (62), Heft 4, S. 66, ist an Stelle von δ^* zu setzen γ^* .

Schlussbemerkungen

Die angeführten Beispiele zeigen, dass jede konkrete Untersuchung einen ziemlich grossen Umfang annimmt. Dies ist besonders für die Triebfahrzeuge der Fall. Für die Wagen vereinfacht sich die Untersuchung dadurch, dass die durch Zugkraft oder Bremskraft gegebenen Entlastungen $A_z L$ und $A_z R$ wegfallen, wenn die Wagen selbst nicht an der Bremsung teilnehmen.

Bei Handrechnung braucht ein gut eingeführter Rechner etwa 15 bis 30 Stunden, um einen bestimmten Fall zu untersuchen. Dies kann im einzelnen Fall in Kauf genommen werden, jedoch nicht mehr, wenn für ein bestimmtes Fahrzeug alle möglichen Betriebsfälle nachgeprüft werden müssen, denn es kann 10 bis 15 solcher Fälle geben. Die Ableitungen wurden daher so aufgebaut, dass alle notwendigen Berechnungen mittels Computer durchgeführt werden können. Ein entsprechendes Berechnungsprogramm wird zur Zeit aufgestellt.

η/e (Absoluter Wert)

	0	0,1	0,2	0,3	0.7	0.5	0.6	0.7	0.0	0.0	1 1 0	2.2	1.0							
0	0,0000	0,0000	0,0000	0,0000	0,4	0,5	0,6	0,7	0,0000	0,9	0 + 1	1,1	1,2	1,0000	1,4	1,5	1,6	1,7	1,8	1,000
	11			1,0000 0,0036	1,0000			1,0000							0,0000	0,0000	0,0000	0,0000	0,0000	0,000
0,1	0,9950	0,9949	0,9944	0,9935	0,9919	0,9892	0,9841	0,9735	0,9464	0,8529	0,4994	0,1459	0,0523	0,0252	0,0145	0,0093	0,0064	0,0047	0,0035	0,00
0,2	0,9806	0,9800	0,9783	0,9749	0,9693	0,9599	0,9434	0,9126	0,8505	0,7209	0,4975	0,2741	0,1444	0,9141 0,0821	0,0511	0,0342	0,0242	0,0179	0,9838 0,0137	0,01
0,3	0,9578	0,9567	0,9532	0,0276 0,9468	0,9361			0,1388 0,8459						0,8494 0,1422		0,9252	0,9439	0,9565	0,9653	0,97
0,4	0,0000	0,0130 0,9268	0,0271 0,9216	0,0438 0,9120	0,0647 0,8968	0,0927 0,8736	0,1315 0,8386	0,1867 0,7867	0,2645 0,7117	0,3680 0,6105	0,4903	0,6124	0,7155 0,2683	0,7926 0,1926	0,8467	0,8842	0,9102 0,0782	0,9287	0,9422	0,95
0,5	0,0000	0,0181	0,0375	0,0598	0,0868	0,1208	0,1649	0,2224	0,2961	0,3855	0,4851	0,5845	0,6733	0,7458	0,8018	0,8438	0,8751	0,8985	0,9162	0,92
0,6	0,0000	0,0229	0,0472	0,0744	0,1060	0,1441	0,1908	0,2479	0,3162	0,3946	0,4789	0,5630	0,6405	0,7074	0,7624	0,8063	0,8407	0,8677	0,0682	0,90
0,7	0,0000	0,0272	0,0556	0,0867	0,1218	0,1625	0,2100	0,6951	0,3286	0,3985				0,2602		-			0,0889	
0,8				0,7938		_ = = =		0,6593						0,2814		Come About			0,1088	
				0,7551		0,7062	0,6708	0,6280	0,5782	0,5228	0,4642	0,4052	0,3486	0,2967	0,2507	0,2112	0,1779	0,1501	0,1272	0,10
0,9	0,7433	0,7405	0,7322	0,7181	0,6979	0,6716	0,6389	0,6000	0,5557	0,5071	0,4560	0,4044	0,3543	0,3075	0,2651	0,2276	0,1951	0,1674	0,1438	0,1
1,0	0,7071	0,7045	0,6965	0,1096 0,6830	0,6641	0,6396	0,6097	0,2873 0,5746	0,5351	0,4922	0,4472	0,5012	0,5532	0,6022	0,6472 0,2758				0,7832 0,1585	
1,1	0,0000	0,0369	0,0745	0,1133 0,6501	0,1537	0,1963	0,2411	0,2882 0,5513	0,3372	0,3874				0,5826					0,7595 0,1713	
1,2				0,1155		0,1981 0,5827	0,2419 0,5581	0,2872 0,5298	0,3338 0,4982	0,3812	0,4287	0,4756	0,5211	0,5646	0,6053				0,7369 0,1822	
1,3				0,1165		0,1984	0,2410	0,2847	0,3293	0,3743	0,4192	0,4635	0,5065	0,5477	0,5867	0,6231	0,6567	0,6875	0,7156 0,1915	0,74
1,4				0,1166 0,5638		0,1974	0,2389	0,2812 0,4907	0,3240	0,3669	0,4096	0,4516	0,4925	0,5319 0,3223	0,5692	0,6044	0,6372	0,6675	0,6953 0,1991	0,72
1,5	0,0000	0,0384	0,0771	0,1160	0,1555	0,1954	0,2359	0,2769	0,3180	0,3592	0,4000	0,4401	0,4792	0,5169	0,5528	-			0,6760	
1,6	0,0000	0,0381	0,0764	0,5389	0,1537	The second second		0,4730			- A			0,3207		0,2706	0,2474	0,2256	0,2054	0,18
	The second second			0,5157		0,4911	0,4748	0,4562	0,4357	0,4136	0,3904	0,3665	0,3424	0,3183	0,2948	0,2720	0,2503	0,2297		0,19
1,7	0,5070	0,5056	0,5012	0,4941	0,4843	0,4719	0,4572	0,4404	0,4219	0,4020	0,3810	0,3593	0,3372	0,3152	0,2935	0,2724	0,2521	0,2327	0,2145	0,19
1,8	0,4856	0,4843	0,4804	0,4740	0,4651	0,4539	0,4406	0,4255	0,4088	0,3907	0,3716	0,3519	0,3318	0,4760 0,3116	0,2915	0,2719	0,2530	0,2348	0,6237	0,20
1,9	0,0000	0,4646	0,0730	0,1095	0,1460			0,2554						0,4635					0,6078	
2,0	0,0000	0,0358 0,4461	0,0716	0,1073	0,1431 0,4304	0,1787 0,4213	0,3143	0,2497 0,3980	0,2847	0,3194	0,3536 0,3536	0,3870 0,3371	0,4197	0,4515	0,4822				0,5926	
2,2	0,0000	0,0343	0,0686	0,1028	0,1369			0,2382			0,3363	0,3679	0,3988	0,4289	0,4580	0,4862	0,5133	0,5392	0,5640	0,58
2,4				0,0981 0,3781		0,1630	0,1952	0,2270 0,3510	0,2585		0,3201	0,3501	0,3794	0,4080	0,4358	0,4627	0,4887	0,5137	0,5377 0,2215	0,56
2,6	0,0000	0,0313	0,0625	0,0936 0,3536	0,1246	0,1554	0,1860	0,2163	0,2463	0,2758	0,3049	0,3334	0,3613	0,3886	0,4152	0,4410	0,4660	0,4901	0,5134	0,53
2,8	0,0000	0,0298		0,0893	0,1188	0,1482	0,1774	0,2062 0,3128	0,2348		0,2906	0,3178	0,3445	0,2740 0,3706 0,2641	0,3961	0,4209	0,4450	0,4683	0,2194 0,4909 0,2162	0,51
3,0	0,0000	0,0285	0,0569	0,0852	0,1134	0,1414	0,1692	0,1968	0,2240	0,2509	0,2773	0,3034	0,3289	0,3540	0,3784	0,4023	0,4255	0,4481	0,4700	0,49
3,2	0,0000	0,0272	0,0543	0,3124	0,1083	0,1350	0,1616	0,2963	0,2139	C,2397	0,2650	0,2899	0,3145	0,2545	0,3620	0,3850	0,4074	0,4293	0,2123	0,47
3,4	0,0000	0,0260	0,0519	0,2950	0,1035			0,2812			19 -10 - 5			0,2451	The state of the s				0,2080	
				0,2794		0,2746	0,2713	0,2676	0,2633	0,2586	0,2535	0,2480	0,2423	0,2362	0,2299	0,2234	0,2168	0,2101	0,2033	0,19
3,6	0,2676	0,2674	0,2666	0,2653	0,2634	0,2611	0,2583	0,2550	0,2513	0,2473	0,2428	0,2381	0,2330	0,2277	0,2221	0,2164	0,2105	0,2046	0,1985	0,19
3,8				0,2524				0,2435						0,2983 0,2195					0,3996	
4,0				0,0684				0,1582 0,2330						0,2866 0,2118					0,3848 0,1887	
4,2				0,0656 0,2300				0,1520 0,2232			0,2150 0,2150	0,2355	0,2558 0,2082	0,2758 0,2045	0,2955	0,3148	0,3339	0,3526	0,3709 0,1838	0,38
4,4	0,0000	0,0211	0,0421	0,0631	0,0840	0,1049	0,1256	0,1462 0,2142	0,1666	0,1869	0,2069	0,2267	0,2463	0,2656 0,1976	0,2847	0,3035	0,3219	0,3401	0,3579	0,37
4,6	0,0000	0,0203	0,0405	0,0608	0,0809	0,1010	0,1209	0,1408	0,1605	0,1800	0,1994	0,2185	0,2374	0,2561	0,2746	0,2928	0,3107	0,3283	0,3456	0,36
4,8	0,0000	0,0195	0,0391	0,0586	0,0780	0,0973	0,1166	0,2059	0,1547	0,1736	0,1923	0,2108	0,2291	0,1911	0,2651	0,2828*	0,3002	0,3173	0,1743	0,35
	0,0000	0,0189	0,0377	0,2029	0,0752			0,1981						0,1849					0,1697	
5,0	0,1961	0,1960	0,1957	0,1951	0,1944	0,1934	0,1923	0,1909	0,1893		0,1857	0,1836	0,1814	0,1790	0,1765	0,1739	0,1711	0,1682	0,1653	0,16
5,2	0,1888	0,1887	0,1885	0,1880	0,1873	0,1864	0,1854	0,1842	0,1828	0,1812	0,1795	0,1776	0,1756	0,1735	0,1712	0,1688	0,1663	0,1637	0,1610	0,15
5,4	0,1821	0,1820	0,1817	0,1813	0,1807	0,1799	0,1790	0,1779	0,1766	0,1752	0,1737	0,1720	0,1701	0,1682	0,1661	0,1640	0,1617	0,1593	0,1569	0,15
5,6	0,1758	0,1757	0,1755	0,1751	0,1745	0,1738	0,1730	0,1185	0,1708	0,1696	0,1682	0,1666	0,1650	0,2167	0,1613	0,1594	0,1573	0,1551	0,2943	0,15
5,8				0,0494 0,1693				0,1148 0,1665						0,2101 0,1585					0,2857	
6,0				0,0479 0,1638		0,0797 0,1628	0,0956	0,1113 0,1613	0,1270 0,1603	0,1426 0,1593				0,2039 0,1540					0,2775 0,1454	
6,2				0,0465 0,1587				0,1081 0,1564						0,1981 0,1497					0,2698 0,1418	
6,4				0,0452 0,1539				0,1049 0,1518			0,1491	0,1637	0,1782	0,1925 0,1457	0,2067	0,2209	0,2349	0,2487	0,2624 0,1384	0,27
6,6	0,0000	0,0146	0,0293	0,0439	0,0585	0,0730	0,0876	0,1020 0,1474	0,1164	0,1307		0,1592	0,1733	0,1872 0,1418	0,2011	0,2149		0,2420	0,2554 0,1351	0,26
6,8	0,0000	0,0142	0,0285	0,0427	0,0569	0,0710	0,0852	0,0992	0,1132	0,1272	0,1411	0,1549	0,1686	0,1822	0,1958	0,2092	0,2225	0,2357	0,2488	0,26
	-,-400	-,-474	-,-400	∪,±#J±	, <u>2440</u>	~, ±4/4/4	J,1437	~,±4))	J,1460	3,1417	0,1411	J,1402	J,137K	0,1304	0,1570	0,1009	J,1340	√,±,,,,,	0,1320	0,1

Zahlentafel 1a zum Abschnitt 5.3.2: Werte vom $\begin{cases} \varphi_m \text{ (obere Zahl)} \\ \varDelta \varphi \text{ (untere Zahl)} \end{cases}$

η/e (Absoluter Wert)

	2,0	2,2	2,4	2,6	2,8	3,0	3,3	3,6	3,9	4,2	4,5	4,8	5,1	5,4	5,7	6,0	6,4	6,8	7,2	7,6
0,3		0,9829 0,0127		N T	ARY M		1							1		- 43	0,4	0,0	7,~	7,0
0,4	0,9599	0,9705																		
0,5	0,9404 0,0460	0,9555 0,0325	0,9655	0,9725 0,0180	0,9775														81.1	
0,6			0,9520			0,9734 0,0156														
0,7	0,8965 0,0773	0,9203 0,0566	0,9369	0,9489	0,9577 0,0257		0,9718 0,0152													
0,8	0,8736	0,9011 0,0690	0,9208 0,0526	0,9353	0,9462 0,0324		0,9638	0,9705 0,0147												
0,9	0,8506 0,1073	0,8813 0,0813	0,9039	0,9209	0,9338 0,0393		0,9550 0,0238													
1,0			0,8865 0,0728						0,9626 0,0172				10							i i
1,1			0,8689 0,0826			0,9202 0,0440	0,9355 0,0333	0,9468 0,0258	0,9554 0,0204	0,9620 0,0163	0,9673 0,0133									
1,2	0,7843 0,1441	0,8217 0,1146	0,8511 0,0919	0,8743 0,0743	0,8928 0,0608	0,9077 0,0502	0,9249 0,0383	0,9378 0,0298	0,9477 0,0236	0,9554 0,0190		0,9664								
1,3	0,1539	0,1241	0,8334 0,1006	0,0822	0,0677				0,9395 0,0270		0,9553 0,0179	0,9610 0,0148	0,9656 0,0124							
1,4	0,7437 0,1625	0,7835	0,8159 0,1088	0,8423	0,8638 0,0745	0,8815 0,0623	0,9025 0,0483	0,9186 0,0381	0,9310 0,0305	0,9409		0,9552 0,0169								
1,5	0,1699	0,1404	0,7986 0,1163	0,0968	0,0810		0,8909 0,0533		0,9222		0,9420 0,0228	0,9492 0,0190	0,9551	0,9601	0,9643 0,0116					
1,6	0,1762	0,1472	0,7817 0,1232	0,1034	0,0871	0,0738	0,0582	0,0464	0,9131 0,0375	0,0307		0,9428				0,9636 0,0112				
1,7	0,1815	0,1532	0,7651 0,1294	0,1094	0,0929	0,0792	0,0629	0,0505	0,9037 0,0410	0,0337		0,9362				0,9593 0,0125	0,9642 0,0104			
1,8	0,1859	0,1584	0,7489 0,1349	0,1150	0,0983	0,0843	0,0675	0,0545	0,8942	0,0367	0,0306	0,9294 0,0257	0,0217	0,0186	0,0159	0,9547 0,0138				
1,9		0,6969	0,7331	0,7643	0,7911				0,8844		0,9120	0,9224	0,9310	0,9384	0,9446		0,9559			
2,0	0,1924	0,1668	0,7177 0,1442	0,1247	0,1080				0,8745 0,0513			0,9151 0,0302				0,9450 0,0165	0,9516 0,0138	0,9570 0,0116	0,9616 0,0099	0,9655
2,2	0,1963	0,1726	0,6882	0,1326	0,1161	0,1018	0,0838	0,0694	0,8545 0,0578	0,0485		0,9002 0,0348					0,9423 0,0162			0,9587 0,0101
2,4	0,1981	0,1764	0,6604	0,1387	0,1227	0,1087	0,0906	0,0759	0,8342 0,0638	0,0540	0,8706 0,0459	0,8848	0,8968 0,0338	0,9071 0,0292	0,9160 0,0254	0,0222	0,9325 0,0187	0,0159	0,0136	0,0117
2,6	0,1984	0,1785	0,6342	0,1433	0,1280	0,1144	0,0966	0,0817	0,8140	0,0592	0,0507		0,0377	0,0328	0,0286	0,0251	0,9222	0,0181	0,0155	0,0134
2,8	0,1974	0,1793	0,6096 0,1624	0,1466	0,1321	0,1190	0,1016	0,0869	0,7938	0,0639		0,8528					0,9115			
3,0	0,1954	0,1791	0,5864	0,1488	0,1352	0,1226	0,1058	0,0913	0,7739	0,0683	0,0593	0,8365	0,0452	0,0396	0,0349	0,0308	0,9004	0,0226	0,0195	0,0169
3,2	0,1928	0,1780	0,5645	0,1501	0,1373	0,1254	0,1093	0,0952	0,7544	0,0723	0,0632	0,8202	0,0486	0,0428	0,0379	0,0336	0,8891	0,0248	0,0215	0,0187
3,4	0,1897	0,1763	0,5439 0,1632	0,1506	0,1387	0,1275	0,1121	0,0984	0,7353	0,0758	0,0667	0,8040	0,0519	0,0459	0,0408	0,0363	0,8775	0,0270	0,0235	0,0205
3,6	0,1863	0,1741	0,5245	0,1505	0,1394	0,1288	0,1142	0,1010	0,7166 0,0893	0,0789	0,0698	0,7878	0,0549	0,0488	0,0435	0,0389	0,8656	0,0292	0,0254	0,0223
3,8	0,1826	0,1715	0,5062	0,1498	0,5676	0,1296	0,1158	0,1031	0,6984	0,0816		0,7718 0,0647					0,8537			0,8907
4,0	0,1787	0,1687	0,4890	0,1488	0,1392	0,1299	0,1169	0,1048	0,6808	0,0840	0,0751	0,7560	0,0602	0,0540	0,0485	0,0437	0,8416 0,0381	0,0333	0,0292	0,0258
4,2	0,1748	0,1657	0,4727	0,1474	0,1385	0,1299	0,1175	0,1061	0,6637	0,0859	0,0773	0,7404 0,0695	0,0626	0,0563	0,0508	0,0459	0,8295	0,0353	0,0311	0,0275
4,4	0,1709	0,1625	0,4573	0,1457	0,1375	0,1294	0,1178	0,1070	0,6472	0,0876	0,0792	0,7252 0,0715	0,0647	0,0585	0,0529	0,0480	0,8174	0,0371	0,0328	0,0291
4,6	0,1669	0,1593	0,4428 0,1516 0,4290	0,1439	0,1362	0,1287	0,1178	0,1075	0,6312 0,0979	0,0890	0,0808	0,7102 0,0733	0,0665	0,0604	0,0549	0,0499	0,8053	0,0389	0,0345	0,0307
4,8	0,1630	0,1561	0,1490	0,1419	0,1348	0,1278	0,1176	0,1078	0,6157	0,0901	0,0821	0,6955	0,0682	0,0621	0,0566	0,0517	0,7932 0,0458	0,0406	0,0361	0,8410
5,0	0,1592	0,1528	0,4160 0,1463 0,4036	0,1398	0,1332	0,1267	0,1171	0,1079	0,6008	0,0909	0,0832	0,6812	0,0697	0,0637	0,0583	0,0533	0,7812 0,0474	0,0422	0,0377	0,0337
5,2	0,1554	0,1496	0,1436	0,1376	0,1315	0,1254	0,1164	0,1077	0,5864	0,0915	0,0841	0,6673	0,0709	0,0651	0,0597	0,0548	0,7693 0,0489 0,7574	0,0437	0,0392	0,0351
5,4	0,1518	0,1464	0,3919 0,1409 0,3808	0,1353	0,1296	0,1240	0,1155	0,1073	0,5726 0,0994 0,5592	0,0919	0,0848	0,6537 0,0782 0,6405	0,0720	0,0663	0,0610	0,0562	0,7574 0,0503 0,7458	0,0451	0,0405	0,0365
5,6	0,1482	0,1433	0,1382	0,1330	0,1277	0,1225	0,1146	0,1068	0,0993	0,0922	0,0854	0,6405	0,0730	0,0674	0,0622	0,0574	0,7458	0,0465	0,0418	0,0377
5,8	0,1448	0,1402	0,1355	0,1307	0,1258	0,1209	0,1135	0,1062	0,0991	0,0922	0,0857	0,0795	0,0737	0,0683	0,0632	0,0585	0,0528	0,0477	0,0431	0,0390
6,0	0,1414	0,1372	0,3601 0,1329	0,1284	0,1239	0,1192	0,1123	0,1054	0,5339	0,0922	0,0859	0,6150	0,0744	0,0691	0,0641	0,0595	0,7229	0,0488	0,0442	
6,2	0,1382	0,1343	0,3505	0,1261	0,1219	0,1176	0,1110	0,1046	0,5219 0,0982	0,0920	0,0860	0,6029	0,0749	0,0697	0,0649	0,0604		0,0498	0,0453	0,0412
6,4	0,1350	0,1315	0,3414 0,1277 0,3327	0,1239	0,1199	0,1159	0,1097	0,1036	0,5103	0,0917	0,0860	0,5910 0,0805	0,0753	0,0703	0,0656	0,0612	0,7006 0,0557 0,6898	0,0508	0,0463	0,7601 0,0422
6,6	0,1320	0,1287	0,3244	0,1216	0,1179	0,1141	0,1084	0,1026	0,4992 0,0969	0,0913	0,0858	0,5795	0,0755	0,0707	0,0662	0,0619	0,0565	0,0516	0,0472	0,0431
6,8	0,1291	0,1260	0,3244	0,1194	0,1160				0,4885			0,5684					0,6791			0,7404

Zahlentafel 1b zum Abschnitt 5.3.2: Werte vom $\begin{cases} \varphi_{\it{m}} \; (\text{obere Zahl}) \\ \varDelta \varphi \; (\text{untere Zahl}) \end{cases}$

 $(x-\alpha_r)/e$ (Absoluter Wert)

η/e (Absoluter Wert)

 $(x-a_T)/e$ (Absoluter Wert)

1863	8,0	8,4	8,8	9,2	9,6	10,0	10,5	11	11,5	12	12,5	13	13,5	14	15	16	17	18	20	22
2		0,9717				urigani I										Walter		का उद्धा हे भाना	de voi	No like
2,2		0,9661 0,0076				eff sail										and the state of				
2,4		0,9601				25 1 1 1 1 1														
2,6		0,9536														males I				
2,8		0,9468		0,9553 0,0090	0,9589 0,0080	0,9620 0,0071					tyr i kra					ale She was Kilw				
3,0	0,9339	0,9397	0,9448	0,9492	0,9532	0,9567		Mary Sala	a dieni			A self	20,70	Ten e	tt sä				111 - 151	
3,2				0,9429			0,9555									1				
3,4				0,9362 0,0125			0,9502									Justino				
3,6				0,9293		0,9394	0,9447	0,9494	0,9534	0,9571	0,9603					ings.				
3,8	0,9001	0,9083	0,9157	0,9222 0,0149	0,9280	0,9332	0,9390	0,9441	0,9485	0,9525	0,9560					iteor is				
4,0				0,9149 0,0161					0,9435			0,9551		Gr (-)	31 20	ery/rosa	mên le	HULL Y	e had	
4,2	0,8818	0,8913	0,8998	0,9074	0,9141	0,9202	0,9270	0,9329	0,9382	0,9429	0,9471	0,9508	0,9542	0,9573		STATE OF STREET				
4,4	0,8725	0,8826	0,8916	0,8997	0,9069	0,9134	0,9207	0,9271	0,9328	0,9378	0,9424	0,9464	0,9501							
4,6	0,8631	0,8738	0,8833	0,8919	0,8996	0,9065	0,9143	0,9211	0,9272	0,9327	0,9375	0,9419	0,9458	0,9494		1100				
4,8	0,8535	0,8648	0,8749	0,8839	0,8921	0,8994	0,9077	0,9150	0,9215	0,9273	0,9325	0,9372	0,9414	0,9453	0,9519	0,9574				
5,0				0,8759					0,9157			0,9324	0,9369	0,9410	0,9481	0,9540			da na	läkr.
5,2	0,8343	0,8466	0,8577	0,0221	0,8768	0,8850	0,8942	0,9024	0,0128	0,9163	0,9222	0,9275	0,9323	0,9367	0,9442	0,9506	0,9559			
5,4	0,8246	0,8374	0,8490	0,0232	0,8690	0,8776	0,8873	0,8959	0,0136	0,9106	0,9168	0,9225	0,0090	0,9322	0,9402	0,9470	0,0048			
5,6	0,8150	0,8283	0,8403	0,0243	0,8611	0,8701	0,8803	0,8893	0,0144	0,9048	0,9114	0,9173	0,0096	0,9276	0,9362	0,9433	0,0052	0,9545		
5,8	0,8053		0,8315	0,0254 0,8429 0,0264	0,8532	0,8626	0,8732	0,8827	0,0151 0,8912 0,0159	0,8989	0,9058	0,9121	0,0101 0,9178 0,0107	0,9230	0,9320	0,9396	0,0055 0,9460 0,0058	0,9514		
6,0	0,7957	0,8098	0,8227	0,8345	0,8452	0,8550	0,8660	0,8760	0,8849	0,8929	0,9002	0,9068	0,9128	0,9182	0,9277	0,9357	0,9425	0,9483		
6,2	0,7860		0,8140	0,0275 0,8261 0,0284	0,8372	0,8473	0,8588	0,8692	0,0166	0,8869	0,8945	0,9014	0,9077		0,9234	0,9318	0,0062 0,9390 0,0065	0,9451		
6,4	0,7765	0,7915	0,8052	0,0284	0,8291	0,8397		0,8623	0,8720	0,0157 0,8808 0,0164	0,8887	0,0130 0,8959 0,0136	0,9025	0,9085 0,0113	0,9190		0,9353		0,9521	
6,6	0,7670	0,7824	0,7964	0,8093	0,8211	0,8319	0,8443	0,8554	0,8655	0,8746	0,8828	0,8904	0,8972	0,9035	0,9145	0,9238	0,9317	0,9384	0,9493	
6,8	0,7576	0,7733	0,7877	0,0303	0,8131	0,8242	0,0230	0.8485	0,8589	0,0171	0,8769		0,8919		0,9099	0,9196	0,9279	0,9350	0,9464	0,9552
-,0	0,0403	0,0369	0,0339	0,0311	0,0286	0,0264	0,0238	0,0215	0,0195	0,0178	0,0162	0,0147	0,0135	0,0123	0,0104	0,0088	0,0076	0,0065	0,0049	0,

Zahlentafel 1c zum Abschnitt 5.3.2: Werte vom $\begin{cases} \varphi_m \text{ (obere Zahl)} \\ \Delta \varphi \text{ (untere Zahl)} \end{cases}$

Der Flughafen Zürich in Stichworten

OK 656.71

Im Laufe des soeben begonnenen Jahres wird dem Zürcher Volk die Verantwortung zufliessen, über die Durchführung des als dritte Bauetappe bekannten, weiteren Ausbaus der Flughafenanlagen in Kloten entscheiden zu müssen. Damit wird dem Stimmbürger praktisch das Schicksal des Flughafens anvertraut, denn wenn dieser seine internationale bzw. interkontinentale Bedeutung beibehalten und somit der Schweiz den direkten Zugang zu allen Teilen der Welt ermöglichen soll, ist eine Erweiterung unumgänglich.

Nach der starken Verzögerung in der Durchführung der zweiten Bauetappe infolge Ablehnung der Vorlage im Jahre 1957¹) und auf Grund der damals gemachten, umfangreichen Abstriche an den geplanten Anlagen ist es unvermeidbar, dass der zur Zeit in Ausführung befindliche Bauabschnitt kurz nach seiner Vollendung bereits die ersten Engpässe aufweisen wird.

Die Tragweite dieser Entscheidung ist wesentlich grösser als es bei einer oberflächlichen Betrachtung scheinen mag, denn ein internationaler Flughafen kann so wenig wie ein Überseehafen oder ein Hauptbahnhof als isoliertes Gebilde angesehen, sondern muss als volkswirtschaftlich entscheidender Faktor im Leben einer Region, ja eines ganzen Landes beurteilt werden.

Leider gibt es kaum ein Unterfangen, das so heftige und leidenschaftliche Diskussionen ausgelöst hat, und denen in so krassem Masse einseitige und teils falsche Informationen zugrunde liegen, wie die Erweiterung des Zürcher Flughafens. Zudem können die an-

¹) Siehe hierüber: Der Ausbau des Flughafens Zürich, SBZ 75 (1957), H. 23, S. 345–357 und SBZ 76 (1958), H. 7, S. 96–98.

scheinende Passivität und das Stillschweigen der am Bestehen dieses Flughafens interessierten Kreise als Zeichen dafür gewertet werden, dass die von den unermüdlich tätigen Gegnern gebrauchten Argumente sich nicht stichhaltig erwidern lassen. Tagungen, offene Briefe, Leitartikel, Kampfparolen usw., die oft den Komplex nur einseitig beleuchten können oder wollen, bleiben allzu häufig unbeantwortet, ausser in einem verschwindend kleinen Kreis von der unsachlichen Parteiergreifung und des Eigennutzes verdächtigten Fachzeitschriften.

Es stimmt, dass die gewerbliche Luftfahrt (auch die Militärfliegerei, obwohl man gegen diese selten eine Kritik hört) mit Lärm behaftet ist; mit aller Wahrscheinlichkeit stimmt es auch, dass starker Lärm Gesundheitsschäden verursacht. Man ist aber zum Beispiel der menschlichen Tuberkulose auch nicht durch Töten der davon befallenen Patienten Meister und Herr geworden, sondern durch sinnvolles und zielbewusstes Einsetzen menschlicher Kraft und Intelligenz. Zusammenarbeit mit gemeinsamem Ziel und konstruktiver Einsatz der im Menschen harrenden Kräfte werden viel eher zu einem der Allgemeinheit dienenden Ergebnis führen als blinde, unüberlegte, ja fanatische Parteiergreifung, gleichgültig in welcher Richtung.

Es ist ferner auch wahr, dass der Ausbau der Flughafenanlagen in Kloten viel Geld kosten wird; die dazu nötigen Summen sind aber sehr klein im Vergleich mit den Milliarden, die zum Beispiel im Strassenbau investiert werden. Dazu kommt aber noch eine Tatsache, die meistens verschwiegen wird, nämlich dass, im Gegensatz zum Strassenbau, die Investitionen im Flughafen nicht nur indirekt, sondern auch direkt gewinnbringend sind. Diese Gewinne fliessen aber