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HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCH AFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH, POSTFACH 8S0

Ein Beitrag zum Bemessungsproblem von Untertagbauten dk 624.19.001

Der sekundäre Spannungs- und Verformungszustand für ein inhomogenes elastisch-idealplastisches Material in der
Umgebung eines unterirdischen Hohlraumes mit Verkleidung
Von Dr. sc. techn. K. Koväri, Institut für fassen und Untertagbau der ETH Zürich

1. Einleitung
Die Beurteilung der StabiliïDt eines unterirdischen Hohlraumes

bzw. die sichere und wirtschaftliche Bemessung der Verkleidung von
Tunnel- und Stollenbauwerken erfordern eine möglichst gute
Abschätzung des sekundären Spannungs- und Verschiebungszustandes
im Gebirge. Nachdem man anfänglich bei den Berechnungen nur
ideal elastisches Material betrachtet hatte, wurde vor allem von Kastner
[1] nach praktischen Bemessungsmethoden gesucht, welche auch den
plastischen Eigenschaften des Gebirges Rechnung tragen. In der
nachfolgenden Arbeit wird versucht, - dem Ziel Kastners folgend - mit
Hilfe der Methode der endlichen Elemente [2] ein Rechnungsverfahren
zu entwickeln, welches im Sinne der Mechanik für die getroffenen
Annahmen exakte Resultate liefert und zur Lösung praktischer
Probleme der Tunnelstatik geeignet ist. Der anstehende Fels wird durch
das mathematisch erfassbare Modell des elastisch-idealplastischen
Kontinuums ersetzt. Die Zulassung von Inhomogenitäten,
Vernachlässigung einer allfälligen Zugfestigkeit des Materials und
Berücksichtigung des Zusammenwirkens der Verkleidung mit der Umgebung
helfen, dem wirklichen Kräftespiel in der Nähe des Hohlraumes
möglichst nahe zu kommen. Da aber die Zeit und Kennziffern für die
Charakterisierung der Kluftsysteme in die Rechnung nicht eingehen,
müssen die erhaltenen Resultate je nach dem konkret vorliegenden
Fall kritisch überprüft werden.

Vor der Durchörterung herrscht im Gebirge der primäre
Spannungs- und Verschiebungszustand, welcher sich aus dem Eigengewicht
der Massen der Überlagerung ergibt. Allfällige tektonische Restspannungen

seien vernachlässigt. Nach dem Erstellen eines Hohlraumes
stellt sich der sekundäre Spannungszustand ein, welcher je nach
Beschaffenheit des Materials eine Verkleidung erfordert. Man nimmt an,
dass der primäre Zustand nur elastische, der sekundäre Zustand auch
plastische Deformationen aufweisen könne.

Um die Berechnungen zu erleichtern, wenn nicht überhaupt zu
ermöglichen, beschränken wir uns auf den Fall des ebenen Verfor¬

mungszustandes, welcher in den meisten Fällen der Wirklichkeit
entspricht. Damit lässt sich das Problem auf die Behandlung der
gelochten, inhomogenen elastisch-plastischen Scheibe zurückführen.
Nach dem Prinzip von St. Venant klingen die Störungen infolge
Lochwirkung mit zunehmendem Abstand von der Tunnelachse
rasch ab, so dass die unendlich ausgedehnte Scheibe mit Recht für die
nachfolgenden Untersuchungen durch eine Scheibe mit endlichen
Abmessungen (etwa sechsfacher mittlerer Lochradius) ersetzt werden
kann.

2. Die Lösung des Scheibenproblems für elastisches Material mit Hilfe
der Methode der endlichen Elemente

Obwohl es in der Fachliteratur über die Methode der endlichen
Elemente an guten Darstellungen [2] nicht fehlt, wollen wir zum
besseren Verständnis der elastisch-plastischen Rechnungen einen kurzen

Überblick über die Grundlagen bringen. In Bild 1 (linke Hälfte)
ist eine gelochte Scheibe mit gegebener Belastung und Lagerung
dargestellt. Wir denken uns diese Scheibe in dreieckige Elemente endlicher
Abmessungen zerlegt (rechte Hälfte), wobei die einzelnen Elemente
nur in ihren Eckpunkten - in gelenkigen Knoten - miteinander
verbunden werden. Durch diese Zerlegung wird das Kontinuum in ein
wohldefiniertes Diskontinuum mit bekannter Belastung und
vorgegebener Lagerung der Knotenpunkte übergeführt. Man nimmt an,
dass der Verschiebungszustand für jedes Element durch ein lineares
Gesetz

[ u (x, y) ut + Cix + Ciy,
(2.1) - - - -\ v (x, y) vt + Csx + C*y

ge'gebenTBei (Bild 2).
Wir denken uns jeden Knoten mit Nummern versehen und- für

jedes Dreieck im Knoten i ein lokales Koordinatensystem (x, y) parallel

zu einem globalen System (x, y) angebracht. Die Konstanten Ci,
Ci,... lassen sich durch Einsetzen der lokalen Eckpunktkoordinaten
{aj, bj,...) in (2.1) durch die Verschiebungen (w«, vt,...) ausdrücken.
Für Ci erhält man zum Beispiel

(2.2)
1

ajbk - aicbj
[m (bj - bk) + ujbic - Ukbj] •

Die Verzerrungen (ex, bv, yxy) der Elemente ergeben sich aus den
bekannten Beziehungen

du

~Bx'
8v

dy

bei Verwendung von (2.1) als

(2.3) £z Cl, I C4

du 8v

yxv=ly~+ ~Sx~

Ci + C3.

y,y

/N

y \ \
i bj

Bild 1. Die gelochte Scheibe als Kontinuum und Diskontinuum

x,u

Bild 2. Das lokale Koordinatensystem
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Fasst man ex, ey und yxy als Komponenten eines Vektors {e} und
(ut, vt, Uj, vj, Uk, Vk) als Komponenten eines Vektors {r} auf, so kann
man den Zusammenhang zwischen den Verzerrungen und den
Knotenverschiebungen vereinfacht wie folgt schreiben:

(2.4) W MW.
Die Matrix [A] erhält man aus (2.3) mit (2.2) und den entsprechenden
anderen Beziehungen für &, d und Ct als

M
l

üjbk - ükbj

bj-bk 0 bk 0 -bj 0

0 ak-aj 0 -ak 0 aj

ük-aj bj-bk -ak bk aj -bj

Das Hooksche Gesetz für den ebenen Verschiebungszustand

(2.5) {<r} [C]{£}

verknüpft die Spannungen (ax, ay, rxy) durch die quadratische Matrix

(2.6) [C]
(1 + v)(l- 2v)

l-v v 0

v 1 — v 0

1-2«-
0 0

(E Elastizitätsmodul, v Poissonsche Zahl)

mit den Verzerrungen {e}. Durch Einsetzen von (2.4) in (2.5) ist es
somit möglich, den Spannungszustand {<r} direkt durch die
Knotenverschiebungen {;'}

(2.7) {o} [C][A]{r}
anzugeben.

Das angenommene Verschiebungsgesetz (2.1) gewährleistet die
Kontinuität zwischen den Elementen. Somit sind die Verträglichkeitsbedingungen

entlang der Seiten nicht verletzt. Da die Matrixen [C]
und [4] in (2.7) nur konstante Glieder aufweisen, sehen wir weiter,
dass auch Spannungskonzentrationen um die Eckpunkte nicht
auftreten können. Vielmehr herrscht innerhalb jedes Elementes nach
(2.7) ein homogener Spannungszustand. Das hier geschilderte
Verfahren ist in dem Sinne eine Näherungslösung, als nur die
Verträglichkeitsbedingungen, nicht aber die Stetigkeit der Spannungen gewährleistet

wird. Je feiner aber die Masche der Elemente gewählt wird,
umso genauer werden.,® Resultate.

Bild 3 zeigt den Spannungszustand eines Elementes mit positiv
angenommenen Spannungskomponenten und das Dreieckelement als
Bestandteil eines gedachten Rechtecks. Die Knotenkräfte {S}
bestimmen wir aus der Forderung, dass sie den Spannungen (2.7) statisch
äquivalent seien. Aus Bild 4 lassen sich die Glieder der Matrix [B],
welche die Knotenkräfte mit den Spannungen verknüpft, ablesen.

ex -

III

MIHI

-6X

-r'O

(»i-Wt-^&o

WS.

s-sai-Ok 2 "/

bi-bk
g a*

Bild 3. Spannungen Bild 4. «Äquivalente» Knoten¬

kräfte

bj - bk 0 Ok-Oj

0 ük-Oj bj-bk

[B]
1

~2~

bk

0

0

-ak

-ak

bk

| 0 aj

0 a, -bj

Die Beziehung

(2.8) {S} mw,
liefert mit (2.7) unmittelbar den gewünschten Zusammenhang
zwischen den Knotenkräften {S} und den Knotenverschiebungen {r}:
(2.9) {S} [B][C][A]{r}.
Die Durchführung der Matrix-Multiplikationen in (2.9) ergibt eine
quadratische und symmetrische Matrix

(2.10) [k] [B][C][A],

welche als Steifigkeitsmatrix bezeichnet werden kann. Diese Matrix
hätte auch aus rein energetischen Überlegungen ohne die Einführung
der Matrix [B] erhalten werden können. Als Beispiel seien die ersten
Glieder ihrer ersten Zeile angegeben

(1 - v) (bj - bk)2 + ||g (ak - aif

v (ak - aj) (bj - bk) +
1-2j-

(ak - aj) (bj - bk)

mit der Abkürzung x
ajbi

l E
-akbj (1 +v)(l- 2v)

Ähnlich wie bei der analytischen Behandlung eines ebenen
Fachwerkes können auch hier je zwei Komponentenbedingungen des

Gleichgewichtes für jeden Knotenpunkt / wie folgt formuliert werden :

(2.11)

¦ £Six + Rix — 0,

- -"Oil 0.

Die Kräfte {R} sind entweder ggg^ene Lasten oder zunächst
unbekannte Reaktionen an Auflagern. Die Summierung der Knotenkräfte
erfolgt über sämtliche, dem Knoten i anstossenden Elemente q. Da
man aber die Knotenkräfte Si mit (2.9) und (2.10) über die
Steifigkeitsmatrix [k] durch die Rnotenverschiebungen {r} ausdrücken kann,
erhält man in Form der GleJÈgewichtsbedingungen (2.11) ein System
von linearen Gleichungen. Die Anzahl der Gleichungen ist gleich der
doppelten Anzahl der Knoten. As Unbekannte können sowohl
Komponenten des Verschiebungsvektors {r} als auch jene der Kräfte
{R} auftreten.

Ein Knoten kann sein

a) frei verschiebbar,

b) in einer bestimmten Richtung verschiebbar oder

c) festgehalten.

Im Falle a) treten die beiden Verschiebungskomponenten ut und vt,
im Falle b) eine Verschiebungs- und eine Kraftkomponente und im
Falle c) zwei Kraftkomponenten als Unbekannte auf. Das lineare
Gleichungssystem kann mit

(2.12) [Kl{

symbolisch dargestellt sein. Die Matrix [K] wird in der Literatur als

System-Steifigkeitsmatrix bezeichnet und aus den Element-Steifigkeits-
matrixen [k] aufgebaut.

Die Zurückführung des Scheibenproblems auf die Lösung eines

linearen Gleichungssystems stellt im wesentlichen eine Anwendung
der Matrix-Theorie der Statik [3] dar, welche für die Benützung
leistungsfähiger elektronischer Rechenanlagen sehr geeignet ist. Es kann
somit ein Computerprogramm für sämtliche Rechenoperationen und
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für die übersichtliche Darstellung der Resultate aufgestellt werden.
Sind einmal alle Verschiebungen nach (2.12) bekannt, so können die
Spannungen nach (2.7) bestimmt und daraus die Hauptspannungen
erhalten werden.

3. Die Grundlagen der Berechnung für elastisch-idealplastisches Material
3.1 Fliessbedingung

Das elastisch-idealplastische Material weist im einachsigen
Spannungszustand das in Bild 5 dargestellte Spannungs-Dehnungs-
diagramm auf. Die Fliessspannung cto kann für Materialien mit Kohä-
sion aus einem Bruchversuch erhalten werden. Dem Begriff der
Fliessspannung entspricht im mehrachsigen Spannungszustand jener der
Fliessbedingung. Für die Felsmechanik eignet sich am besten die
Mohrsche Fliesshypothese (Bild 6). Die einfachste Form der Hüllkurve
ist die Coulombsche Gerade mit der Kohäsion c und dem Winkel der
inneren Reibung <p. Die Einführung der Parabel nach Leon [4] als
Hüllkurve schien für die Zwecke der folgenden Rechnungen nicht
gerechtfertigt, da sich die Bruchhypothese nicht auf das Handstück,
sondern auf das Gebirge bezieht. Eine genaue experimentelle Erfassung

der Gesteinsfestigkeiten aber stösst auf erhebliche Schwierigkeiten

und kann nur an einzelnen Stellen, meist an einer Ausbruchswand

durchgeführt werden. In Bild 6 bedeuten oi und 02 die
Hauptspannungen in der Scheibenebene und 0-3 die Spannung, welche sich
aus der verhinderten Verformung (in Richtung der Tunnelachse) er-

Für das Eintreten des Fliessens kann auch 0-3 massgebend sein,
da es nicht immer die mittlere Hauptspannung zu sein braucht. In
diesem Falle kann man aber nicht mehr von Gleitlinien sprechen, wie
es in der Bodenmechanik (ohne Berücksichtigung von 0-3) allgemein
üblich ist, weil das Gleiten auf Flächen schief zur Scheibenebene
erfolgen kann. Eine numerische Lösung unter Berücksichtigung von 0-3

in der Fliessbedingung mit Hilfe der Methode der endlichen Elemente
hat Reys [5] angegeben. Er verwendet die von Drucker und Prager [6]
erweiterte von Misessche Fliessbedingung

(3.1) f=oJi + V Ji

wobei Ji und Ji die Grundinvarianten des Spannuhgffcensors bzw.
Spannungsdeviators und a und k Fliessparameter bedeuten. Da eine

Lösung, ausgehend von (3.1), für Zwecke der Bemessungspraxis einen
zu grossen Aufwand an Berechnungen bzw. an Computerzeit
beansprucht, haben wir untersucht, unter welchen Bedingungen das
Weglassen von CT3 (in der Fliessbedingung) die Resultate der Rechnung
nicht beeinflusst.

Aus dem ebenen Verformungszustand ergibt sich für das elastische
Material

1

~E~ 03-v (<ri -f- 0-2) 0

oder

(3.2) (T3 »> (cti + ai).

Nimmt man

(3.3) CT2 < CTI

an, so gilt mit (3.2)

03 < cri

da v < 1/2 ist. Solange 0-3 die mittlere Hauptspannung, das heisst

(3.4) CT3 > 0-2

ist, beeinflusst sie die Fliessbedingung nicht. Setzt man (3.2) in (3.4) ein,
erhält man eine obere Schranke für diéUgòissonsche Zahl

1 - sinq>
(3.7) m

1 + sin<p
b =«= -2c —

+ siwp

Aus (3.6) folgt

(3.8)
CTI

CT2 m \ ai J

und nach (3.7) mit b < 0 die Ungleichung

(3.9)
cri

CT2

1

<
m

Setzen wir dies in (3.5) ein,

1

so finden wir

1 +-

oder mit (3.7)

(3.10) v> —- (\-sinq>)

das Kriterium für die Gültigkeit eines Berechnungsverfahrens, welches
die Hauptspannung 0-3 in der Fliessbedingung nicht enthält. Tabelle 1

zeigt die Zuordnung von <p zu vmin nach (3.10).
Die Zahlen für <p und vmill sind nur Richtwerte und liegen auf der
sicheren Seite, da in (3.9) der Term b/moi vernachlässigt worden ist.
Wenn also die Bedingung gemäss (3.10) verletzt wird, bedeutet das

^ffiglich, dass je nach c und ai für gewisse Bereiche der Scheibe die
Fliessbedingung (3.6) unrichtig formuliert wird. Für den starrplastischen

Körper hat Ziegler1) gezeigt, dass CT3 immer die mittlere
Hauptspannung ist.

Um nun das Materialverhalten im plastischen Bereich weiter zu
diskutieren, betrachten wir die Darstellung von (3.6) in der
Hauptspannungsebene. Beim Ausschluss der Zugspannungen, das heisst

(3.11) <T2 > 0

ist (Bild 7), gilt nur das aus>S|gene Stück der Geraden gi. Die
Fliessbedingung wird durch OA auf der cn-Achse ergänzt. Spannungspunkte,
welche nicht im schraffierten Gebiet oder auf gi und OA liegen, sind
nicht möglich. Für ein inkompressibles Material (v 1/2) mit q> 0,
c > 0 erhält man als Sonderfall von (3.6) die bekannte Trescasene

Fliessbedingung [7] für den ebenen Verformungszustand (Bild 8).

Tabelle 1.

<P° 0 10 15 20 25 30 35 40 45

vmin 0,5 0,41 0,37 0,32 0,28 0,25 0,21 0,18 0,14

l) Eine Arbeit darüber wird in «ZAMP» 5, 1969 veröffentlicht.

4 6

fit"

w/av/kw;

Bild 5. Das Stoffgesetz für ein elastisch-idealplastisches Material

(3.5) v >
1 +¦

Die Berührung der Coulombschen Geraden durch den grossen
Spannungskreis in Bild 6 führt auf die Beziehung zwischen den

Hauptspannungen

(3.6) CT2 mai + b

mit

m

&

m

Bild 6. Die Fliessbedingung in der (er, r)-Ebene
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Nach dem Hookschen Gesetz (2.6) lassen sich die Hauptspannungen
in den Hauptverzerrungen «i und S2 mit den Abkürzungen

(3.12)
l-v

(1 + v) (1 - 2v)(1 +v)(l-2v)'
so ausdrücken

(3.13) cti Aiei + ^282,

CT2 X2SI + XlS2.

Durch Einsetzen von (3.13) in (3.6) erhält man nach einiger Zwischenrechnung

(3.14) £2 mi + d

mit den Konstanten

m-^jxi 1 b
(3.15) n

l-m*2Ui Xi 1-m^/Ai

Man kann zeigen, dass für diese Grössen unter Beachtung von (3.10)
und den Ungleichungen

0 < m < 1, b <0
die Beschränkungen n < 0, d < 0 gelten. In Bild 9 für (3.14) gilt wie-

kö

WJasstBere/cn

6^0,

Bild 7. Die Fliessbedingung in der Ebene der Mauptspannungen

fesfi

ST.

Bild 8. Die Trescasche Fliessbedingung (9 0)

/
BS ©

+ £,

y ®

\®\ ©I 1
Bild 9. Die Fliessbedingung in der Ebene der Hauptdehnungen
(Zugspannung ausgeschlossen)

derum nur das ausgezogene Stück von der Geraden gi. Die Ergänzung
(gi) erhält man, wenn (3.13) in (3.11) eingesetzt wird, sie führt auf

(3.16) 62 n ei

mit

(3.17)
X2

~X~T

Da bei Druckspannungen das positive Vorzeichen gilt, zählen die
Verzerrungen ei, «2 bei Stauchung positiv.

3.2 Fliessgesetz

Wenn für eine bestimmte Belastung einzelne Elemente des Systems
die Fliessgrenze erreicht haben, heisst es noch nicht, dass sofort
unbeschränkte Verformungen einsetzen können. Die inneren Bindungen
des Materials, welche durch das Stoffgesetz zum Ausdruck kommen,
verhindern solche grosse Deformationen. Es wird im folgenden
angenommen, dass sich die betrachtete Scheibe im oben erwähnten
Zustand des «beschränkten Fliessens» befindet, und die plastischen
Deformationen von der selben Grössenordnung wie die elastischen sind.
Das totale Verzerrungsinkrement m setzt sich aus einem elastischen
und einem plastischen Anteil

kj H](e> + kj(v>

zusammen. Der elastische Anteil ergibt sich aus dem Hookschen
Gesetz, der plastische nach dem Fliessgesetz

(3.18) eg (P) X M
datj

wobei X im allgemeinen eine skalare Funktion der Spannungen und
Spannungsinkremente ist. Dieses Gesetz besagt anschaulich, dass der
Vektor der Verzerrungsinkremente senkrecht zur Fliessfläche (im
Spannungsraum) stehen muss. Wie weit die HypotheseJ^18) dem
tatsächlichen Verhalten der Gesteine im Fliesszustand entspricht, ist
zur Zeit noch nicht ganz klar gestellt. Formuliert man alle
Beziehungen im Hauptachsensystem, wie wir es bis jetzt durchwegs getan
haben, so lassen sich sgM und sjjW für ein bestimmtes êy besonders
leicht bestimmen. Man kann (3.6) als

(3.19) f=mai-02 + b

und (3.11) als

(3.20) f CT2

schreiben und nach (3.18) si(p) bzw. éiW erhalten. Die Ableitungen
von/ /(CTj) liefern für (3.19)

siM= Xm, 'siM =-A
oder

(3.21)
'eiIp)

-m — konst.
ei<p)

und für (3.20)

eiM 0, öW= X

oder

(3.22)
S2<P)

eiM

Je nachdem der Spannungspunkt in Bild 7 auf der Geraden gi
oder auf ~Ö~Ä liegt, gelten diefBeziehungen (3.21) oder (3.22). Da aber
diese Verschiedenartigkeit des Materialverhaltens nur durch eine
unsichere Hypothese begS»|S|st und die Rechnungen wesentlich
erschwert, nehmen wir an, dass im Fliesszustand das Gesetz (3.21)
gültig ist.

3.3 Die Bestimmung der Spannungen für gegebene Dehnungen im plastischen

Bereich

Die allgemeine Gültigkeit von (3.21) für Fliessen erlaubt den

Übergang von Verzerrungsinkrementen auf endliche Verzerrungen.
Bei einem bekannten Verzerrungsvektor e können in der Ebene der

Hauptverzerrungen die zugehörigen elastischen - und plastischen
Anteile wegen der Erweiterung von (3.21) auf

(3.23)
%(v)

7(iJ
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angegeben werden. Da die Richtung des Vektors s(v) nach (3.23)
festgelegt ist, kann dieser Vektor aus dem Schnittpunkt (Q) zweier
Geraden (Bild 9) bestimmt werden. Der Punkt Q liegt entweder auf
£i oder g2, im Grenzfall fällt er mit dem Ursprung O zusammen. Die
Verbindungsgerade OQ ergibt den elastischen Anteil e<«) von e. In
Bild 9 sind vier Bereiche zu unterscheiden. Im Bereich © ist das
Material rein elastisch, im Bereich © fliesst es infolge Zugsspannungen,
im Bereich ® ebenfalls, weil eine der Hauptspannungen verschwindet
(Grenzfall der Zugbeanspruchung). Im Bereich © tritt das Fliessen
unter der Wirkung von Druckspannungen ein. Wenn während des

Belastungsprozesses der Scheibe der Punkt E in Bild 9 das Gebiet ©
nicht betritt (gerissene Zonen), sind die Rechnungen mit endlichen
Verzerrungen e statt Verzerrungsinkrementen s nach unseren
Annahmen richtig. Da bei den praktischen Aufgaben des Tunnelbaues
die Zugzonen sich auf kleine Gebiete beschränken, dürften allfällige
Fehler wegen dem Gebiet © vernachlässigt werden.

In Tabelle 2 sind die Grenzen der einzelnen Gebiete und die
elastischen Anteilüwaes Verzerrungsvektors s (si, ei) zusammengestellt.

Der p'la^sche Anteil ergibt sich aus

eM «W.

Am Schlüsse dieses Abschnittes sei noch angemerkt, dass mit dem
Fliessgesetz (3.23) eine Volumenvergrösserung verbunden ist. Beim
ebenen Verschiebungszustand beträgt die Raumdehnung

S0M s/ri + S2<v)

Für inkompressibles Material gilt also

E2M
(3.24) ElM

-1

und für ein Material nach (3.23)

S2(V>

-m > -1.eiM

Man hat aber beobachtet [8], dass beim Scherversuch, je nach der
Struktur des Materials sowohl Volumenverminderung als auch
Volumendehnung möglich ist. Lockere Sande zum Beispiel verlieren
an Volumen, während sehr dicht gelagerte Sande ihr Volumen
erhöhen. Es schien uns zweckmässig, beim Fehlen von besonderen
Materialkenntnissen in der Mitte zu bleiben und für den plastischen
Fluss ein inkompressibles Material (3.24) in die Berechnungen
einzuführen.

4. Die Lösung des Scheibenproblems für elastisch-idealplastisches
Material mit Hilfe der Methode der endlichen Elemente

Der Grundgedanke der Methode stützt sich auf die Überlegungen
von Ilyushin [9] für die elastisch-plastische Analyse von Fachwerken
und auf das «initial stress» - Verfahren von Zienkiewicz [10]. An
einem übersichtlichen statischen Modell sei nun das Vorgehen
erläutert. In Bild 10 ist ein einfach statisch unbestimmtes Stabwerk mit
den Federkonstanten ci und C2 dargestellt. Um die Stabkräfte zu
ermitteln, formulieren wir die Gleichgewichtsbedingung

(4.1) 52 + 251^-^ 0.

das Hooksche Gesetz

(4.2) 5i ci Ah C2AI2

auMKdie Verträglichkeitsbedingungen für die Stabverlängerungen

(4.3) Ah I H Ah.

Mit den Abkürzungen

1 Cl C2
(4.4) a -= und b

[/ 2 ci + C2 ci + C2

erhält man folgende Resultate:

1

(4.5) Ah aP, AI
Cl

(4.6) Si aP, 52 bP.

bP,

Falls bei allmählicher Steigerung der Last P der Stab © zum Beispiel
als erster zu fliessen beginnt (P — Po) und die Stäbe © noch elastisch
bleiben, verliert das Hooksche Gesetz (4.2) seine Gültigkeit. Das Tragwerk

ist elastisch-plastisch aber noch nicht im Kollapszustand (die
Last P liesse sich noch auf P* erhöhen, bis auch die Stäbe © zum
Fliessen kommen). Die Last, bei der zum erstenmal die Fliessspannung
erreicht ist, beträgt nach (4.5)

(4.7) Po Ah

wobei A ho die Stabverlängerung an der elastisch-plastischen Grenze
bedeutet. Sie lässt sich auch durch die «Fliesskraft» S20 des Stabes mit
(4.2)

(4.8) Ah
1

C2

ausdrücken. In Bild 11 stellen die ausgezogenen Linien das
Kraftverformungsdiagramm des Stabes © dar.
Für Lasten Po < P < P* hat man nunmehr mit einem statisch
bestimmten System zu tun, da für diese Lasten der Stab © immer die
Kraft

(4.9) 52 520

aufweist. Die Gleichgewichtsbedingung (4.1) liefert mit (4.9)

1/2
(4.10) 5i

und (4.3)

AI

(P-S20)

VI
2ci

(P-S20).

Für das elastisch-plastische System erhält man die gleichen Resultate
auch mit einer iterativen Lösung. Wir gehen von den Beziehungen
(4.6) der rein elastischen Rechnung

(4.11) SI aP, Sh bP

aus und korrigieren sie, indem wir berücksichtigen, dass der Stab ©
in Wirklichkeit nur die Kraft 520 aufzunehmen vermag.
Die Differenz (Bild 11)

(4.7) <5i52 5r2 - 520 b ¦ (P - Po)

wird als äussere Belastung an den Knoten O angebracht und die
zugehörigen Stabkräfte mit elastischer Rechnung (4.6)

(4.8) A1S1 a<5i52, zli52 bdiS2

/S,

Bild 1.0. Das einfach statisch unbestimmte Stabmodell

S,"

ms.t-.C

I V tS?0"

ûl2
Atüo

Bild 11. Der Iterationsprozess
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ermittelt. Mit (4.7) kann (4.8) auch als

(4.9) A iSi ab(P- Po), A1S2 b2 (P - Po)

angegeben werden. Die Stäbe weisen nach der ersten Korrektur die

(4.10) 5ni 51! + zli5i, 5lr2 520 + A1S2

auf oder nach Einsetzen von (4.9) in (4.10)

(4.11) 5ni =a[P + b(P-Po)], 5n2 520 + b2 (P - Po).

Diese Resultate werden verbessert, indem die Differenz

<5252 5n2 - 520 b2(P- Po)

als Last - wie vorher - auf die Stäbe 'verteilt wird. Die Beziehung
(4.6) liefert

(4.12) A2S1 ab2 (P-Po), A2S2 b3(P-Po)

und die zweite Korrektur

S Slh+ A2S1, 5m2 520 + A2S2

nach Verwendung von (4.12)

B a [P + (P - Po) (b + b2)],

5m2 520 + b3 (P - Po).

Man kann diese Resultate leicht auf die JV-te Korrektur wie folgt
erweitern

Tabelle 2.

(4.13) SNi a[P + (P-Po) (b + b2 + b3 +
(4.14) 5^2 I 520 + bN (P - Po)

bN~l)l

und erkennen, dass es in (4.13) eine Gesetzmässigkeit nach einer
geometrischen Reihe gibt. Da der Quotient der Reihe nach (4.4)

(4.15) <1
Cl + C2

ist, konvergiert sie und für N ¦ 00 führt (4.13) auf

b

1-6(4.16) 5i=a P + (P-Po)

und (4.15) auf

(4.17) 52 520.

Eine Umformung von (4.16) ergibt das gleiche Resultat wie (4.10),
welches durch die einfache, direkte Berechnung erhalten wurde. Der
Verlauf des Iterationsprozesses ist in Bild 11 mit gestrichelten Linien
dargestellt. Die Punkte A, B, C, zeigen die Konvergenz der Stabkraft

© gegen die «Fliesskraft» 520.

Im Hinblick auf die Anwendung des Iterationsverfahrens auf die
Berechnung der elastisch-plastischen Scheibe ist es nützlich, die
Bedingungen ,<Sjr raschen Konvergenz an dem einfachen Be'igüel des
Stabwerkes zu diskutieren. Zunächst seien zwei Extremfälle betrachtet.
Für b 0 (4.15) gilt bereits die elastische Lösung als exakt, da in
(4.13) bzw. (4.14) die Korrektur verschwindet. Die elastisch gebliebenen

Stäbe © übernehmen die gesamte Belastung P. Wenn b 1 ist,
gibt es überhaupt keine Konvergenz mehr, die elastischen Stäbe können

keine Kraft übernehmen. Die Verformungen werden unbeschränkt,
der Kollapszustand ist bereits erreicht. Das Verfahren würde für die
Grenzfälle des Gleichgewichtes versagen. Man sieht leicht ein, dass

für den allgemeinen Fall die Konvergenz umso besser ist, je steifer die
elastisch gebliebenen Tragteile sind.

Auf das Scheibenproblem zurückkehrend, wollen wir dem
gleichen Grundgedanken, welcher an dem Beispiel des einfachen
Stabwerkes entwickelt wurde, folgen. Wesentlich ist, dass der
elastischplastische Zustand durch eine Reihe von rein elastischen Berechnungen

mit fortwährendem Korrigieren erreicht wird. Ebenfalls von
Bedeutung ist die Tatsache, dass man nicht mit Belastungsinkrementen,

sondern mit der Gesamtlast arbeitet. Als erstes berechnen wir die
Scheibe mit der Methode der endlichen Elemente nach Abschnitt 2.

Die erhaltenen Werte der Verformungen und Spannungen

{r}\{e}\{aY

Bereich Grenzen M
© £2 - n'ei > 0 £(«>! ei

£2 - nei -d>0 E(e)2 62

© 82 <0 £<«>! 0

ei + me2 < 0 e«2 0

3) 61 + »162 > 0

£2 - n'ei < 0

*) 61 -\-m (62 - 62g) - 61G < 0

£1 + mei
1 + mn'

£<«>2
1 + mn'

¦ (ei + m62)

© *)
81 -f- m (62 - 62g) - £1G > 0

£2 - «£1 - d < 0

,{«)
61 +m (£2 - d)

1 + mn

1 + mn
[ei -\-m(e2-d)] + d

eia —, £2G « —i
n — n n — n

stellen die erste grobe Näherung dar. Wir kontrollieren nun am
Spannungszustand bzw. Verzerrungszustand jedes Elementes, ob die
Fliessbedingung verletzt ist. Fällt ein Verzerrungspunkt in Bild 11 in
das Gebiet ©, © oder ©, so hat das betreffende Element zu grosse
Spannungen bzw. Hauptspannungsdifferenzen erhalten.

Nach Tabelle 2 können die plastischen Anteile der Dehnungen
berechnet und nach (3.13) der Spannungszustand um

Z^lCTl AieC»! + A26<P>2,

AP1O2 WEM + WÈÈ

korrigiert werden. Nach einer Rücktransformation der Spannungen
von Hauptachsen auf das globale (x, y) System können den

Spannungen entsprechende KnotenkraÏKS 5(p) nach (2.8)

(5i}(p) [P]{ APia}

berechnet werden. Diese Knotenkräfte werden als äussere Belastung
an den Knotenpunkten angebracht und die Scheibe wiederum rein
elastischnach (2.12) durchgerechnet. Die neuen Resultate {Air}, {Aia}
werden jenen der ersten Rechnung superponiert:

(4.18) {r}11 {r}1 + {Air}, {er}11 {¦<r}1- jfjfläl + {zlicr}.

Nach dieser Überlagerung wird wieder auf Hauptsachen transformiert
und der Spannungszustand wie oben kontrolliert und korrigiert. Man
kann so weiterfahren, bis ein eingebautes Abbrechkriterium für die

Konvergenz erfüllt ist. Als Abbrechkriterium dient am besten eine
Schranke für {Apto} oder die Anzahl der Iterationen.

Die Beschleunigung der Konvergenz mit einem Faktor co - ähnlich
dem Überrelaxationsfaktor - ist möglich. Die Beziehungen (4.18)
gehen dann in die Form

r 1 ri 1111111 r 1111 rrm

(H-y)

Pi

Pi

s*

«
Bild 12. Der primäre Spannungszustand
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„Ill »{Air},

>[{Apia}- {Aia}]

über. Wie der optimale Wert von co gewählt werden soll, ist nicht
untersucht worden. Mit co 2 haben wir eine sehr gute Verbesserung
der Konvergenz erzielt.

Es ist erwähnenswert, dass im Verlauf der Berechnungen die
System-Steifigkeitsmatrix [K] in (2.12) keine Änderung erfährt.

5. Orientierung der Berechnungsmethode auf die Probleme des Tunnel-
und Stollenbaues

Es sind noch zwei Faktoren, die in den Rechnungen berücksichtigt

werden müssen. Erstens die Wirkung der Verkleidung und
zweitens der primäre Spannungszustand.

Indem man neben den Dreieckelementen auch Zug- bzw. Druckstäbe

einführt, lässt sich ein Fachwerk zusammensetzen, welches die
gleiche Steifigkeit aufweist jwie die monolithische Verkleidung aus
Beton. Aus den berechneten Stabkräften kann man die Schnittkräfte
und Spannungen in der Verkleidung bestimmen.

Um den Einfluss des primären Spannungszustandes näherungs?
weise berücksichtigen zu können, führen wir den Überlagerungsdruck
und das Eigengewicht der Scheibe als Belastung ein und bestimmen
die Spannungen für homogenes, elastisches Material. Die
Hauptspannungen für den ebenen Verformungszustand betragen (Bild 12)

(5.1) ay Po + y(H~y),

ax Xoay, I Xo '
1-1

Die Verschiebungen erhält man ausgehend von den Verzerrungen

1

(ay - 2vax),

nach einer Integration und Berücksichtigung von (5.1) als

(5.2)
1 - 2vAo

E
(Po + yH)y-y r

u 0.

Wir können dieses Verschiebungsfeld der gelochten Scheibe (mit
Fachwerk) auszwingen, hätten aber bereits vom primären Zustaffls
Kräfte und Verformungen in der Verkleidung, was ja nicht der
Wirklichkeit entsprechen würde. Diese Kräfte und Verformungen müfig|g
deshalb in einem Rechnungsgang eliminiert werden. Denkt man sich
das Loch in der Weise entstanden und die Verkleidung so eingebracht,
dass der primäre Zustand zunächst unverändert bleibt, müssen von
der Verkleidung genau jene Spannungen auf die Scheibe wirksam sein,
welche dem primären Zustand entsprechen. Da diese Spannungen
nach (5.1) bekannt sind, können aus ihnen Knotenkräfte Pé, Pyl
ermittelt werden (Bild 13), welche von der Scheibe auf die Verkleidung

Bild 14. Vergleich der Resultate der analytischen und der numerischen
Berechnung, a) (unten) Verlauf der Normalspannungen längs x-Achse, b)

(rechts) Verlauf der Normalspannungen längs y-Achse

Bild 13. Die Aufteilung in Elemente (mit Verkleidung)

wirkend eingeführt werden. Für diese Kräfte als Belastung ermittelt
man die Spannungen und Verformungen, welche dann, dem primären
Zustand überlagert, für rein elastisches Material den exakten sekundären

Zustand ergeben. Dieser Zustand ist aber auch der Ausgangspunkt

für elastisch-plastische Materialien bei der Anwendung des
Iterationsverfahrens nach Abschnitt 4.

6. Anwendungsbeispiele

Da im Falle des Kreisprofiles selbst für die Erstellung der
Eingabedaten ein Computerprogramm aufgestellt werden kann, diskutieren

wir zunächst die Lösung einiger Tunnelprobleme mit
kreisförmigem Ausbruch. Falls man das Eigengewicht der Scheibe ausser
acht lassen darf (bei grosser Überlagerungshöhe), können die
Betrachtungen aus Symmetriegründen auf den Viertelkreis beschränkt
werden. Bild 13 zeigt die Aufteilung der Scheibe in Elemente mit einer
relativ feinen Masche und die Berücksichtigung eines allfälligen Ein-

6X,6, (t/m?)
Î E i io6t/m2

800
—-o Analyt. Resultale

a Numerische Resultale
j V =0,3

r= 1,0 m

700 m
600 / A

,i

500

400

^S^ R i
ftt— —jj- HSs H

Ù-

300

-/-1 "^

/
1,0 4,0 4£

R/r

E=10° t/m
0,3

4fJ

30

1.5

Analyt. Resultate

a Numerische Resultale

tOO eOO 300 400 6K,6y (t/m*J
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baues durch Fachwerk. Aus einer gewählten Überlagerungshöhe von
h 150 m und dem spezifischen Gewicht y 2,5 t/m3 ergibt sich die
Vertikalspannung p 375 t/m2, welche als Belastung auf die Scheibe
angebracht wird.

6.1 Die gelochte elastische Scheibe ohne Einbau
Dieser einfache Fall lässt sich noch mit den Gleichungen der

klassischen Elastiüfatstheorie behandeln. Der Vergleich der Resultate

Bild 15. Der Einfluss des Einbaues auf Spannungen, a) (unten)
Spannungsverlauf längs x-Achse, b) (rechts) Spannungsverlauf längs y-Achse

ißxp,{t/ms)
ass

800

zaa

d=o
d 8cm
d 25 cm

mo.

¦50.0. r=i.om

too

mo.
7=25cmd=>8c/n

' -200

WB.

d-O.

m 35 3,0 3,5 rs *.s

m

WM

2,0

d=0

d=25cm

a=ecm

Öx.Oy (tfmZ)
100 200 300 400

1 primären Spannungszustand

m

d=25cm
Ohne Tangentialkräfte

d=25cm
Mit Tang krät'ten \

\Fels dem

im/.

Bild 16. Momentenflächen mit und ohne Tangentialkräfte
(Pendelstützen zur Ausschaltung der Tangentialkräfte)

m

wot

d=9cm ohne Tang, krafte
d=8cm mit Tang, krafte
d=25cm ohne Tang krafte
d=25cm mit Tang krafte

'J-primären Spannungszustand

h/

1 ohne
mit

50t

Bild 17. Normalkräfte mit und ohne Tangentialkräfte Bild 18. Berücksichtigung des primären Spannungszustandes, a) Momen-
tenfläche (d 8 cm), b) Normalkräfte (d 8 cm)
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der analytischen und der numerischen Rechnung (Bild 14) gibt uns
einen guten Überblick über die erzielte Genauigkeit bei der gewählten
Masche. Nennenswerte Abweichungen (> 5 %) zeigen sich nur in den
Punkten A und B, wo der Spannungsgradient am grössten ist. Bei der
analytischen Rechnung war eine seitliche Belastung entsprechend der
Querdehnungszahl v 0,3, bei der numerischen Behandlung die Un-
verschieblichkeit der Seiten vorgeschrieben. Das rasche Abklingen der
Störungen lässt beide Formulierungen als gleichwertig zu.

6.2 Die gelochte elastische Scheibe mit Einbau

Der Einbau besteht aus einer monolithischen Betonverkleidung,
welche auch Tangentialkräfte vom Gebirge zu übernehmen vermag.
Das stellvertretende Fachwerk kann so gewählt werden, dass es die
gleiche Biege- und Drucksteifigkeit aufweist wie der Betonring. Im
Bild 15a und 15b ist der Einfluss der Stärke des Einbaues auf das
Spannungsfeld im Fels ersichtlich. Die Momente und Normalkräfte
in der Verkleidung wachsen - wie vermutet - mit zunehmender Beton-
stärke. In den Bildern 16 und 17 wird auch noch die Wirkung von
fehlenden Tangentialkräften gezeigt. Durch Einfügen von Pendelstützen

zwischen Verkleidung und Fels können Reibungskräfte völlig
eliminiert werden. An Hand der Figuren stellt man fest, dass die
Reibung einen stabilisierenden Effekt hat. Für geringe Betonstärken
ist er allerdings so gering, dass in Bild 16 für d 8 cm der Unterschied

wegen dem gewählten Massstab nicht mehr gezeigt werden
konnte.

6.3 Berücksichtigung des primären Spannungszustandes

Nach Abschnitt 5 kann der primäre Spannungszustand näherungsweise

in den Rechnungen berücksichtigt werden. In diesem Falle
erfährt die Verkleidung nur durch die «Entspannung» des Gebirges eine

Bild 19. Elastisch-plastisches Material.
a) (unten) Normalspannungen längs
x-Achse, b) (Mitte) Normalspannungen
längs y-Achse, c) (rechts) Ausbreitung
der plastischen Zonen «o

3,5

d-o

2.5

d=8cm

a=25cm

s,o

j j Abnahme der
Korrekfurkräfte in %

100%

75%

\ ^-^ d=o

50%

25%
BïsS d=8cm

d=25 cm ";^^^c.
Anzahl Jteratronen

Bild 20. Typischer Verlauf der Korrektur-Knotenkräfte beim Iterations-
prozess

Belastung. Hier haben wir es mit einem völlig anderen statischen
System zu tun. An einem vorbelasteten System (ungelochte Scheibe)
werden Tragteile entfernt und unbelastete Stücke (Verkleidung)
hinzugefügt. Den Unterschied in der Beanspruchung (M, N)îxa d 8 cm
zeigen die Bilder 18a und b.

6.4 Die gelochte Scheibe aus elastisch-plastisch idealem Material
Wir betrachten wieder den Viertelkreis mit den gleichen Daten,

wie sie am Anfang dieses Abschnittes angegeben wurden und legen die
Fliessbedingung für das Felsmaterial mit c 30 t/m2 und <p 30°
fest. Das Spannungsfeld und die plastischen Zonen in der Scheibe
stellen sich je nach der Stärke der Verkleidung ein (Bild 19). Die
Genauigkeit der iterativen Rechnung ist im Falle ohnêMnbau beschränkt.
Nach den Untersuchungen in Abschnitt 4 ist dies gut verständlich, da
die Aufnahme der grossen Korrekturknotenkräfte {S}p durch die
elastisch gebliebenen Teile sehr schwer ist. Die Korrekturkräfte
konvergieren nicht gegen Null, sondern zu irgendeinem Wert, welcher
nach noch so vielen Iterationen der gleiche bleibt. Dies ist lediglich
ein Zeichen der Unzulänglichkeit der numerischen Behandlung. Die
Korrekturkräfte stellen sich so ein, dass sie ein System von Kräften
bilden, welche in sich im Gleichgewicht sind. Es ist deshalb nicht
begründet, von der schlechten Konvergenz auf einen Kollaps des
Systems zu schliessen. Die plastifizierte Scheibe ohne Einbau ist aber
nicht von grosser praktischer Bedeutung. Wie Bild 20 zeigt, ist die
Konvergenz schon bei einer sehr dünnen Verkleidung (vergütete
Oberfläche durch Spritzbeton) ausserordentlich gut.

6.5 Berechnung eines Hangtunnels

An diesem Anwendungsbeispiel soll die Spannungsanalyse in
einem Hangabschnitt gezeigt werden. Das Ziel war, möglichst gute

A/

IOO 200 300 400
6x,6y (l/m?)

5x,6y ft/mZ)

-^f
d=25cm a Sem

tl'O

d£25är>

d=8cm a=o

2.0
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Lockergesteine

starrer Rahmen.

****.

3ild 21. Aufteilung der Scheibe in Elemente bei einem Hangtunnel

Grundlagen für die Gewölbedimensionierung zu schaffen. Zu diesem
Zweck wurden für verschiedene Werte der Materialkonstanten und
Gewölbestärken die Beanspruchungen in der Verkleidung ermittelt. In
Bild 21 sieht man die Scheibe mit den gewählten Randbedingungen.
Die Belastung besteht nur aus dem Eigengewicht und aus einem
angenommenen Erddruck auf die linke Abgrenzungsfläche. Da das
Gewölbe durch starre Rahmen auf den tragfähigen Fels fundiert ist, kann
es an den Widerlagern als eingespannt betrachtet werden. Die Pendelstützen

in der rechten Hälfte des Bildes 21 wurden so gewählt, dass
ihre Federkonstanten dem durch sie ersetzten Material entsprechen.
Es ist dies lediglich eine kleine Vereinfachung, welche die Anzahl der
Knoten und Elemente verringert.

Die Berechnungen wurden für ein kohäsionsloses,
elastischplastisches Material durchgeführt. Zum Vergleich hat man aber den
Hang auch im vollständig plastifizierten Zustand im Grenzgleichgewicht

nach Rankine untersucht. Für den letzteren Fall können aus dem
bekannten Spannungszustand (Fliesszustand) nach Kastner [1] durch
graphische Konstruktion Lasten auf das Gewölbe ermittelt werden
(Bild 22). Aus der elastisch-plastischen Lösung mit der Methode der
endlichen Elemente lassen sich ebenfalls die effektiven Lasten auf die
Verkleidung ermitteln. Sie ergeben sich aus dem Spannungszustand
der dem Gewölbe benachbarten Elemente. In diesem Falle haben wir
die Lasten nur zu Vergleichszwecken bestimmt, da sie wegen dem
einheitlichen System Scheibe - Verkleidung zur Bestimmung der
Momente und Normalkräfte gar nicht benötigt werden. Anders beim
vollständig plastischen Zustand. Hier haben wir für die Lasten mit
dem STRESS-Programm den Bogen berechnen müssen. Die Bilder 23
u. 24 zeigen die Momente und Normalkräfte, Bild 25 die zugehörigen

Deformationen. Aus allen Resultaten2) (einschl. Lasten) ist klar
ersichtlich, dass der Grenzzustand des Gleichgewichtes nach Rankine
eine zu ungünstige Dimensionierungsgrundlage ergeben würde.

7. Die Bemessungsaufgabe

Der Tunnelbauer stellt die Frage in einfacher Form: Wie gross
ist die Sicherheit eines unverkleideten oder verkleideten unterirdischen
Hohlraumes bei angenommenen oder ermittelten Materialkennziffern
und angegebener Vortriebsmethode? Wie soll die Stärke und evtl. die
Armierung einer Verkleidung gewählt werden, um Schäden zu
vermeiden? - Man möchte über ähnliche Dimensionierungsgrundlagen,
wie sie der Stahlbetonbau oder teilweise der Grundbau kennt,
verfügen. Heute sind wir trotz Einsatz des Computers und der Anwendung
der Elastizitäts- und Plastizitätstheorie von der eindeutigen Lösung
der Aufgabe noch immer weit entfernt. Der Grund liegt nicht mehr in
der Unfähigkeit, komplizierte und umfangreiche Rechnungen
durchzuführen, sondern in der Unkenntnis von Materialeigenschaften. Wir
kennen die Verformungseigenschaften der Gesteine unter hohem
allseitigem Druck und in Funktion der Zeit kaum. Zur Voraussage des
Kriechverhaltens, des Bruchfliessens usw. gibt es nur Ansätze, aber
fast keine quantitativen Aussagen.

In vielen Fällen ist der Hohlraum für Tage, Wochen oder gar
Monate ohne Einbau stabil, und die nachträglich eingebaute
Verkleidung kann trotzdem mit der Zeit beträchtliche Belastungen
erfahren. Diese Belastungen können mit den heute verwendeten fels-

2) Die Rechnungen wurden im Auftrag des Kantons Graubünden
durch das ISETH und das Ingenieurbüro Jenatsch und Hegland, Chur,
durchgeführt.
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Bild 22. Belastungen im Zustand des Grenzgleichgewichtes (Rankine) und

für das elastisch-plastische Material (beschränktes Fliessen)

*Bpjchzbstand Rankme

Elast.-piasi, llosünt,*

d= 80cm
<p=35°
c o
£¦-15000 t/m?

Bild 23. Momentenflächen
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Bild 24. Normalkräfte Bild 25. Deformationen

mechanischen Modellen nicht erklärt werden. Deshalb divergieren
die Meinungen über den Wert und Nutzen der Tunnelstatik so stark.
Es gibt Stimmen, welche von vornherein jegliche Berechnung
ablehnen, andere, die gewisse Berechnungsverfahren kritiklos übernehmen

und sie als fast unfehlbar betrachten. Uns scheint der richtige
Weg darin zu bestehen, dass man sich zuerst, die wichtigsten Faktoren
berücksichtigend, ein etwas vereinfachtes mechanisches Modell
aufstellt und in einem zweiten Schritt die erhaltenen Resultate nach den
eigenen Erfahrungen und ingenieurmässiger Intuition der komplexen
Wirklichkeit anzupassen versucht. Da man gegenwärtig in der
Felsmechanik grosse Anstrengungen unternimmt, um das Theologische
Verhalten der Gesteine einerseits und die Frage des primären
Spannungszustandes anderseits abzuklären, dürfen wir hoffen, dass in
absehbarer Zeit eine Erweiterung der hier vorgeschlagenen Berechnungsmethode

erzielt werden kann.

Abschliessend möchten wir kurz zusammenfassen, in welcher
Weise dem praktisch tätigen Ingenieur das vorliegende Computerprogramm

als Hilfsmittel für seine Bemessungsaufgaben nützlich sein
kann.

1. Tunnel- und Stollenbauten, unterirdische Rohrleitungen in
Oberflächennähe

Falls man die Konstruktion im Tagbau erstellt und nachher die
Aufschüttung durchführt, spielen Zeiteffekte keine grosse Rolle. Die
Resultate der elastisch-plastischen Berechnung liefern exakte Grundlagen
für die Dimensionierung. Aus den Momenten und Normalkräften der
Verkleidung kann der Spannungsnachweis direkt erfolgen. Wenn die
Konstruktion im Untertagbau erstellt wird, liefert die Annahme der
Aufschüttung Resultate, welche auf alle Fälle auf der sicheren Seite

sind.

viFïïxèfliegende unterirdische Bauwerke

Angesichts der Vielfalt massgebender Faktoren, welche sich durch
die Gesteinseigenschaften und die gewählte Vortriebsmethode
ergeben, können im Moment noch keine einheitlichen Richtlinien
aufgestellt werden. Sie werden sich vielleicht mit den Erfahrungen, welche

man durch die Benützung des Programmes gewinnt, ergeben. Da man
auch Klüfte, Felsanker, alle möglichen Arten von Verkleidungen
(z. B. Gelenkkette), Inhomogenitäten berücksichtigen kann, bleibt die

einzige Unsicherheit in der Wirkung des Zeitfaktors. Die Spannungs-

umlagerung in der Umgebung des Hohlraumes braucht Zeit. Falls
der Grad der Entspannung des Gebirges bis zum Erhärten des Betons
der Verkleidung abgeschätzt werden kann, ist eine Reduktion der
Lasten in einem bekannten Masse möglich.

Der Verfasser möchte an dieser Stelle Prof. H. Grob für die
Anregung und weitgehende Unterstützung zu dieser Arbeit seinen
besten Dank aussprechen. Er ist auch F. Vannotti, dipi. Math. ETH,
für die Durchführung der umfangreichen Programmierarbeiten und
Dr. sc. techn. E. Anderheggen (Institut für Baustatik ETH) für die
Übergabe eines speziellen Programmes zur Auflösung linearer
Gleichungssysteme mit Bandmatrix zu Dank verpflichtet.
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