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87. Jahrgang Heft 37

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER

SCHWEIZERISCHE BAUZEITUNG

AKADEMISCHEN

11. September 1969

TECHNISCHEN VEREINE, 8021 ZURICH, POSTFACH 880

Ein Beitrag zum Bemessungsproblem von Untertagbauten

DK 624.19.001

Der sekunddre Spannungs- und Verformungszustand fiir ein inhomogenes elastisch-idealplastisches Material in der
Umgebung eines unterirdischen Hohlraumes mit Verkleidung

Von Dr.sc.techn. K. Kovari, Institut fur Strassen und Untertagbau der ETH Zirich

1. Einleitung

Die Beurteilung der Stabilitdt eines unterirdischen Hohlraumes
bzw. die sichere und wirtschaftliche Bemessung der Verkleidung von
Tunnel- und Stollenbauwerken erfordern eine moglichst gute Ab-
schitzung des sekundidren Spannungs- und Verschiebungszustandes
im Gebirge. Nachdem man anfénglich bei den Berechnungen nur
ideal elastisches Material betrachtet hatte, wurde vor allem von Kastner
[1] nach praktischen Bemessungsmethoden gesucht, welche auch den
plastischen Eigenschaften des Gebirges Rechnung tragen. In der nach-
folgenden Arbeit wird versucht, — dem Ziel Kastners folgend — mit
Hilfe der Methode der endlichen Elemente [2] ein Rechnungsverfahren
zu entwickeln, welches im Sinne der Mechanik fiir die getroffenen
Annahmen exakte Resultate liefert und zur Losung praktischer Pro-
bleme der Tunnelstatik geeignet ist. Der anstehende Fels wird durch
das mathematisch erfassbare Modell des elastisch-idealplastischen
Kontinuums ersetzt. Die Zulassung von Inhomogenitidten, Vernach-
lassigung einer allfdlligen Zugfestigkeit des Materials und Beriick-
sichtigung des Zusammenwirkens der Verkleidung mit der Umgebung
helfen, dem wirklichen Kréiftespiel in der Nihe des Hohlraumes
moglichst nahe zu kommen. Da aber die Zeit und Kennziffern fiir die
Charakterisierung der Kluftsysteme in die Rechnung nicht eingehen,
miissen die erhaltenen Resultate je nach dem konkret vorliegenden
Fall kritisch iiberpriift werden.

Vor der Durchorterung herrscht im Gebirge der primére Span-
nungs- und Verschiebungszustand, welcher sich aus dem Eigengewicht
der Massen der Uberlagerung ergibt. Allfillige tektonische Restspan-
nungen seien vernachldssigt. Nach dem Erstellen eines Hohlraumes
stellt sich der sekunddre Spannungszustand ein, welcher je nach Be-
schaffenheit des Materials eine Verkleidung erfordert. Man nimmt an,
dass der primédre Zustand nur elastische, der sekundire Zustand auch
plastische Deformationen aufweisen konne.

Um die Berechnungen zu erleichtern, wenn nicht iiberhaupt zu
ermoglichen, beschranken wir uns auf den Fall des ebenen Verfor-
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Bild 1. Die gelochte Scheibe als Kontinuum und Diskontinuum
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mungszustandes, welcher in den meisten Fillen der Wirklichkeit ent-
spricht. Damit ldsst sich das Problem auf die Behandlung der ge-
lochten, inhomogenen elastisch-plastischen Scheibe zuriickfiihren.
Nach dem Prinzip von St. Venant klingen die Stérungen infolge
Lochwirkung mit zunehmendem Abstand von der Tunnelachse
rasch ab, so dass die unendlich ausgedehnte Scheibe mit Recht fiir die
nachfolgenden Untersuchungen durch eine Scheibe mit endlichen
Abmessungen (etwa sechsfacher mittlerer Lochradius) ersetzt werden
kann.

2. Die Losung des Scheibenproblems fiir elastisches Material mit Hilfe
der Methode der endlichen Elemente

Obwohl es in der Fachliteratur iiber die Methode der endlichen
Elemente an guten Darstellungen [2] nicht fehlt, wollen wir zum
besseren Verstdndnis der elastisch-plastischen Rechnungen einen kur-
zen Uberblick iiber die Grundlagen bringen. In Bild 1 (linke Hilfte)
ist eine gelochte Scheibe mit gegebener Belastung und Lagerung dar-
gestellt. Wir denken uns diese Scheibe in dreieckige Elemente endlicher
Abmessungen zerlegt (rechte Hiélfte), wobei die einzelnen Elemente
nur in ihren Eckpunkten — in gelenkigen Knoten — miteinander ver-
bunden werden. Durch diese Zerlegung wird das Kontinuum in ein
wohldefiniertes Diskontinuum mit bekannter Belastung und vorge-
gebener Lagerung der Knotenpunkte iibergefiihrt. Man nimmt an,
dass der Verschiebungszustand fiir jedes Element durch ein lineares
Gesetz

’ u(x, y) = ui + Cix + Cay,

@.1) = A =
l v (x, ) = v; + Cax + Cay
gegeben sei (Bild 2).

Wir denken uns jeden Knoten mit Nummern versehen und. fiir
jedes Dreieck im Knoten i ein lokales Koordinatensystem (x, y) par-
allel zu einem globalen System (x, y) angebracht. Die Konstanten Ci,
C2, . .. lassen sich durch Einsetzen der lokalen Eckpunktkoordinaten
(aj, bj, . . .) in (2.1) durch die Verschiebungen (u, vi, . ..) ausdriicken.
Fiir C1 erhdlt man zum Beispiel

2.2)

Gl — [ui (b5 — br) + wsbrx — uxb;] -

a;br — arb;

Die Verzerrungen (ez, &y, Yzy) der Elemente ergeben sich aus den be-
kannten Beziehungen

au v ou v
SER g U T o
bei Verwendung von (2.1) als
2.3) ex —=C1,; &y — Cs;, y= G2+ Csl
‘yly
K \
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/ \
N\
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/ T= /‘_Ib/
yi
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Bild 2. Das lokale Koordinatensystem

687



Fasst man ¢z, ¢y und 7z, als Komponenten eines Vektors {¢} und
(us, vi, uj, vj, ur, vr) als Komponenten eines Vektors {r} auf, so kann
man den Zusammenhang zwischen den Verzerrungen und den
Knotenverschiebungen vereinfacht wie folgt schreiben:

2.4 {} =[4]{r}.
Die Matrix [4] erhdlt man aus (2.3) mit (2.2) und den entsprechenden
anderen Beziehungen fiir C2, Cs und Cs als

by — br 0 b 0 -=b; O

1
0 ar—a; 0 -axr O a;

ajbr — akbj

[4] =

ar — aj b, = bk —ag bk a; ~/Jj

Das Hooksche Gesetz fiir den ebenen Verschiebungszustand
@5  {o}=[cl{e}

verkniipft die Spannungen (ox, 6y, 72,) durch die quadratische Matrix

[l » 0
5 E v 1-» 0
.6 U= T e
(2.5) [ a+»A-2» 1—2,
0
2

(E = Elastizitdtsmodul, » = Poissonsche Zahl)

mit den Verzerrungen {¢}. Durch Einsetzen von (2.4) in (2.5) ist es
somit moglich, den Spannungszustand {c} direkt durch die Knoten-
verschiebungen {r}

@7 Ao} =I[CllA{r}

anzugeben.

Das angenommene Verschiebungsgesetz (2.1) gewihrleistet die
Kontinuitdt zwischen den Elementen. Somit sind die Vertrédglichkeits-
bedingungen entlang der Seiten nicht verletzt. Da die Matrixen [C]
und [A] in (2.7) nur konstante Glieder aufweisen, sehen wir weiter,
dass auch Spannungskonzentrationen um die Eckpunkte nicht auf-
treten konnen. Vielmehr herrscht innerhalb jedes Elementes nach
(2.7) ein homogener Spannungszustand. Das hier geschilderte Ver-
fahren ist in dem Sinne eine Naherungslosung, als nur die Vertriglich-
keitsbedingungen, nicht aber die Stetigkeit der Spannungen gewihr-
leistet wird. Je feiner aber die Masche der Elemente gewihlt wird,
umso genauer werden die Resultate.

Bild 3 zeigt den Spannungszustand eines Elementes mit positiv
angenommenen Spannungskomponenten und das Dreieckelement als
Bestandteil eines gedachten Rechtecks. Die Knotenkrifte {S} be-
stimmen wir aus der Forderung, dass sie den Spannungen (2.7) statisch
dquivalent seien. Aus Bild 4 lassen sich die Glieder der Matrix [B],
welche die Knotenkréfte mit den Spannungen verkniipft, ablesen.

D/'

— Oy

Ox Ox

yz)
20
=,
(¢ = lr/o-x
Oy .
o
%
LG Te
2
(92
T
l {g
Bild 3. Spannungen Bild 4. «Aquivalente» Knoten-
krafte
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by - br: 0 ar — a;
0 ar—aj bj— by
l)i.~ 0 —Aag
Bl= —
0 —ar b
bj 0 a;
_ 0 a —by

Die Beziehung
28  {s}=[Bl{s}

liefert mit (2.7) unmittelbar den gewiinschten Zusammenhang zwi-
schen den Knotenkriften { S} und den Knotenverschiebungen {r}:

2.9) {8} = [BI[CI[A4]1{r}.

Die Durchfiihrung der Matrix-Multiplikationen in (2.9) ergibt eine
quadratische und symmetrische Matrix

2.10)  [£] = [BI[C][4],

welche als Steifigkeitsmatrix bezeichnet werden kann. Diese Matrix
hétte auch aus rein energetischen Uberlegungen ohne die Einfiihrung
der Matrix [B] erhalten werden kénnen. Als Beispiel seien die ersten
Glieder ihrer ersten Zeile angegeben

— 2

2

Vet —0 [(l — ) (bj — br)* + (ar — aj)? }

[l
2

2v
k12 = % [ v (ar — @) (b5 — br) + (ax — aj) (by — br) }, e

1 B

mit der Abkiirzung » = b = b ~('1 +m

Ahnlich wie bei der analytischen Behandlung eines ebenen Fach-
werkes konnen auch hier je zwei Komponentenbedingungen des
Gleichgewichtes fiir jeden Knotenpunkt / wie folgt formuliert werden:

q
—ZSix ’I' Rim = 0,
@.11) ’
q
—2Siy + Riy = 0.
1

Die Krifte {R} sind entweder gegebene Lasten oder zunichst unbe-
kannte Reaktionen an Auflagern. Die Summierung der Knotenkréfte
erfolgt iiber samtliche, dem Knoten i anstossenden Elemente g. Da
man aber die Knotenkréfte S; mit (2.9) und (2.10) iiber die Steifig-
keitsmatrix [k] durch die Knotenverschiebungen {r| ausdriicken kann,
erhdlt man in Form der Gleichgewichtsbedingungen (2.11) ein System
von linearen Gleichungen. Die Anzahl der Gleichungen ist gleich der
doppelten Anzahl der Knoten. Als Unbekannte konnen sowohl
Komponenten des Verschiebungsvektors {r| als auch jene der Krifte
{R} auftreten.

Ein Knoten kann sein

a) frei verschiebbar,
b) in einer bestimmten Richtung verschiebbar oder
¢) festgehalten.

Im Falle a) treten die beiden Verschiebungskomponenten u; und vs,
im Falle b) eine Verschiebungs- und eine Kraftkomponente und im
Falle ¢) zwei Kraftkomponenten als Unbekannte auf. Das lineare
Gleichungssystem kann mit

(2.12) {R} = [K]{r}

symbolisch dargestellt sein. Die Matrix [K] wird in der Literatur als
System-Steifigkeitsmatrix bezeichnet und aus den Element-Steifigkeits-
matrixen [k] aufgebaut.

Die Zuriickfithrung des Scheibenproblems auf die Losung eines
linearen Gleichungssystems stellt im wesentlichen eine Anwendung
der Matrix-Theorie der Statik [3] dar, welche fiir die Beniitzung lei-
stungsfihiger elektronischer Rechenanlagen sehr geeignet ist. Es kann
somit ein Computerprogramm fiir sémtliche Rechenoperationen und
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fiir die iibersichtliche Darstellung der Resultate aufgestellt werden.
Sind einmal alle Verschiebungen nach (2.12) bekannt, so kénnen die
Spannungen nach (2.7) bestimmt und daraus die Hauptspannungen
erhalten werden.

3. Die Grundlagen der Berechnung fiir elastisch-idealplastisches Material
3.1 Fliessbedingung

Das elastisch-idealplastische Material weist im einachsigen
Spannungszustand das in Bild 5 dargestellte Spannungs-Dehnungs-
diagramm auf. Die Fliessspannung oo kann fiir Materialien mit Kohé-
sion aus einem Bruchversuch erhalten werden. Dem Begriff der Fliess-
spannung entspricht im mehrachsigen Spannungszustand jener der
Fliessbedingung. Fiir die Felsmechanik eignet sich am besten die
Mohrsche Fliesshypothese (Bild 6). Die einfachste Form der Hiillkurve
ist die Coulombsche Gerade mit der Kohésion ¢ und dem Winkel der
inneren Reibung ¢. Die Einfiihrung der Parabel nach Leon [4] als
Hiillkurve schien fiir die Zwecke der folgenden Rechnungen nicht ge-
rechtfertigt, da sich die Bruchhypothese nicht auf das Handstiick,
sondern auf das Gebirge bezieht. Eine genaue experimentelle Erfas-
sung der Gesteinsfestigkeiten aber stosst auf erhebliche Schwierig-
keiten und kann nur an einzelnen Stellen, meist an einer Ausbruchs-
wand durchgefiihrt werden. In Bild 6 bedeuten o1 und o2 die Haupt-
spannungen in der Scheibenebene und o3 die Spannung, welche sich
aus der verhinderten Verformung (in Richtung der Tunnelachse) er-
gibt.

Fiir das Eintreten des Fliessens kann auch o3 massgebend sein,
da es nicht immer die mittlere Hauptspannung zu sein braucht. In
diesem Falle kann man aber nicht mehr von Gleitlinien sprechen, wie
es in der Bodenmechanik (ohne Beriicksichtigung von o3) allgemein
iiblich ist, weil das Gleiten auf Fldchen schief zur Scheibenebene er-
folgen kann. Eine numerische Losung unter Beriicksichtigung von o3
in der Fliessbedingung mit Hilfe der Methode der endlichen Elemente
hat Reys [5] angegeben. Er verwendet die von Drucker und Prager [6]
erweiterte von Misessche Fliessbedingung
(3.1) = ]/Jz =/
wobei Ji1 und Jz2 die Grundinvarianten des Spannungstensors bzw.
Spannungsdeviators und « und k Fliessparameter bedeuten. Da eine
Loésung, ausgehend von (3.1), fiir Zwecke der Bemessungspraxis einen
zu grossen Aufwand an Berechnungen bzw. an Computerzeit bean-
sprucht, haben wir untersucht, unter welchen Bedingungen das Weg-
lassen von o3 (in der Fliessbedingung) die Resultate der Rechnung
nicht beeinflusst.

Aus dem ebenen Verformungszustand ergibt sich fiir das elastische
Material

Go = % [ o3 —v (01 + 02) ] =0
oder
3.2) 03 = v (01 + 02).
Nimmt man
3.3) 02 < 01

an, so gilt mit (3.2)

o3 < 01
da » < 1/2 ist. Solange o3 die mittlere Hauptspannung, das heisst
(3.4)

ist, beeinflusst sie die Fliessbedingung nicht. Setzt man (3.2) in (3.4) ein,
erhilt man eine obere Schranke fiir die Poissonsche Zahl

1

v > o1
Lo

02

03 > 02

(3.5)

Die Beriithrung der Coulombschen Geraden durch den grossen Span-
nungskreis in Bild 6 fiihrt auf die Beziehung zwischen den Haupt-
spannungen

(3.6)

mit

62 = mo1 + b
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1 - sing b 5
Mgn 1+ sing °’ Fpe’

cosp

e T sing

Aus (3.6) folgt

o1 1 1 b)
o2 m e

und nach (3.7) mit b < 0 die Ungleichung

(3.8)

o1 1
(3.9) o

o2 m

Setzen wir dies in (3.5) ein, so finden wir

1
v >
g e =——=
m
oder mit (3.7)
1
(3.10) v > = (1 - sinp)

das Kriterium fiir die Giiltigkeit eines Berechnungsverfahrens, welches
die Hauptspannung o3 in der Fliessbedingung nicht enthélt. Tabelle 1
zeigt die Zuordnung von ¢ zu vmin nach (3.10).

Die Zahlen fiir ¢ und vmin sind nur Richtwerte und liegen auf der
sicheren Seite, da in (3.9) der Term b/mo2 vernachldssigt worden ist.
Wenn also die Bedingung gemaéss (3.10) verletzt wird, bedeutet das
lediglich, dass je nach ¢ und o2 fiir gewisse Bereiche der Scheibe die
Fliessbedingung (3.6) unrichtig formuliert wird. Fiir den starrplasti-
schen Ko6rper hat Ziegler') gezeigt, dass o3 immer die mittlere Haupt-
spannung ist.

Um nun das Materialverhalten im plastischen Bereich weiter zu
diskutieren, betrachten wir die Darstellung von (3.6) in der Haupt-
spannungsebene. Beim Ausschluss der Zugspannungen, das heisst
wenn

GlY @ =0

ist (Bild 7), gilt nur das ausgezogene Stiick der Geraden gi. Die Fliess-
bedingung wird durch OA auf der o1-Achse ergdnzt. Spannungspunkte,
welche nicht im schraffierten Gebiet oder auf g: und OA liegen, sind
nicht moglich. Fiir ein inkompressibles Material (v = 1/2) mit ¢ = 0,
¢ > 0 erhilt man als Sonderfall von (3.6) die bekannte Trescasche
Fliessbedingung [7] fiir den ebenen Verformungszustand (Bild 8).

Tabelle 1.
° 0 10 15 20 25 30 35 40 45
Ymin 0,5 0,41 0,37 0,32 0,28 025 021 0,18 0,14
1) Eine Arbeit dariiber wird in «ZAMP» 5, 1969 veroffentlicht.
AG
%
|
: P
| e
Y3 i
i > ]
Bild 5. Das Stoffgesetz fiir ein elastisch-idealplastisches Material
AG
|
Y
P (o
~ |\
¢ : £ B
0, 03 07
Bild 6. Die Fliessbedingung in der (o, 7)-Ebene
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Nach dem Hookschen Gesetz (2.6) lassen sich die Hauptspannungen
in den Hauptverzerrungen 1 und £2 mit den Abkiirzungen

1-» v

B e e L e

so ausdriicken
(3.13) o1 = Jig1 + Aaez,

02 = J2e1 + Aiea.

Durch Einsetzen von (3.13) in (3.6) erhdlt man nach einiger Zwischen-
rechnung

(3.14) €2 =ne1+d

mit den Konstanten
m—7%2 / 7 1 b

S = ===
l—m}*l/;k1 2 l—m’lz/l1

(3.15) n=

Man kann zeigen, dass fiir diese Gréssen unter Beachtung von (3.10)
und den Ungleichungen

0<m<1, <0

die Beschrankungen n < 0, d < 0 gelten. In Bild 9 fiir (3.14) gilt wie-

40,

o

Bild 7. Die Fliessbedingung in der Ebene der Hauptspannungen

Bild 8. Die Trescasche Fliessbedingung (¢ = 0)

Bild 9.
(Zugspannung ausgeschlossen)

Die Fliessbedingung in der Ebene der Hauptdehnungen
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derum nur das ausgezogene Stiick von der Geraden g1. Die Ergiinzung
(g2) erhdlt man, wenn (3.13) in (3.11) eingesetzt wird, sie fiihrt auf

(3.16) &2 =n'¢e1

mit

G s
A 1-»

Da bei Druckspannungen das positive Vorzeichen gilt, zihlen die
Verzerrungen e1, &2 bei Stauchung positiv.

3.2 Fliessgesetz

Wenn fiir eine bestimmte Belastung einzelne Elemente des Systems
die Fliessgrenze erreicht haben, heisst es noch nicht, dass sofort unbe-
schrédnkte Verformungen einsetzen konnen. Die inneren Bindungen
des Materials, welche durch das Stoffgesetz zum Ausdruck kommen,
verhindern solche grosse Deformationen. Es wird im folgenden ange-
nommen, dass sich die betrachtete Scheibe im oben erwdhnten Zu-
stand des «beschrinkten Fliessens» befindet, und die plastischen De-
formationen von der selben Gréssenordnung wie die elastischen sind.
Das totale Verzerrungsinkrement & setzt sich aus einem elastischen
und einem plastischen Anteil

= ey (o) L oy (®)

zusammen. Der elastische Anteil ergibt sich aus dem Hookschen Ge-
setz, der plastische nach dem Fliessgesetz
308) eyl g L
(D) = . —
(3.18) €ij 80y
wobei 4 im allgemeinen eine skalare Funktion der Spannungen und
Spannungsinkremente ist. Dieses Gesetz besagt anschaulich, dass der
Vektor der Verzerrungsinkremente senkrecht zur Fliessfliche (im
Spannungsraum) stehen muss. Wie weit die Hypothese (3.18) dem tat-
sdchlichen Verhalten der Gesteine im Fliesszustand entspricht, ist
zur Zeit noch nicht ganz klar gestellt. Formuliert man alle Bezie-
hungen im Hauptachsensystem, wie wir es bis jetzt durchwegs getan
haben, so lassen sich ¢;;(¢) und é;(®) fiir ein bestimmtes é;; besonders

leicht bestimmen. Man kann (3.6) als

(3.19) f=mo1—-o02-+b
und (3.11) als
(3.20) f=o2

schreiben und nach (3.18) &1(?) bzw. &2(?) erhalten. Die Ableitungen
von f = f(o;) liefern fiir (3.19)

e1(P)= Jm, el®) =)
oder

2(?)

(3.21) e

= —m = konst.

und fiir (3.20)
21(p) = 0, eal®)= ),
oder
e2(p)

(3.22) T

Je nachdem der Spannungspunkt in Bild 7 auf der Geraden g
oder auf OA liegt, gelten die Beziehungen (3.21) oder (3.22). Da aber
diese Verschiedenartigkeit des Materialverhaltens nur durch eine un-
sichere Hypothese begriindet ist und die Rechnungen wesentlich er-
schwert, nehmen wir an, dass im Fliesszustand das Gesetz (3.21)
giiltig ist.

3.3 Die Bestimmung der Spannungen fiir gegebene Dehnungen im plasti-
schen Bereich

Die allgemeine Giiltigkeit von (3.21) fiir Fliessen erlaubt den
Ubergang von Verzerrungsinkrementen auf endliche Verzerrungen.
Bei einem bekannten Verzerrungsvektor & konnen in der Ebene der
Hauptverzerrungen die zugehdrigen elastischen — und plastischen An-
teile wegen der Erweiterung von (3.21) auf

£2(?)

(3.23) e

Schweizerische Bauzeitung - 87. Jahrgang Heft 37 - 11. September 1969



angegeben werden. Da die Richtung des Vektors &(®) nach (3.23)
festgelegt ist, kann dieser Vektor aus dem Schnittpunkt (Q) zweier
Geraden (Bild 9) bestimmt werden. Der Punkt Q liegt entweder auf
g1 oder g2, im Grenzfall féllt er mit dem Ursprung O zusammen. Die
Verbindungsgerade OQ ergibt den elastischen Anteil (¢ von & In
Bild 9 sind vier Bereiche zu unterscheiden. Im Bereich @ ist das
Material rein elastisch, im Bereich @ fliesst es infolge Zugsspannungen,
im Bereich ® ebenfalls, weil eine der Hauptspannungen verschwindet
(Grenzfall der Zugbeanspruchung). Im Bereich @ tritt das Fliessen
unter der Wirkung von Druckspannungen ein. Wenn wihrend des
Belastungsprozesses der Scheibe der Punkt E in Bild 9 das Gebiet @
nicht betritt (gerissene Zonen), sind die Rechnungen mit endlichen
Verzerrungen e statt Verzerrungsinkrementen ¢ nach unseren An-
nahmen richtig. Da bei den praktischen Aufgaben des Tunnelbaues
die Zugzonen sich auf kleine Gebiete beschrinken, diirften allfllige
Fehler wegen dem Gebiet @ vernachléssigt werden.

In Tabelle 2 sind die Grenzen der einzelnen Gebiete und die
elastischen Anteile des Verzerrungsvektors ¢ = (e1, £2) Zzusammenge-
stellt. Der plastische Anteil ergibt sich aus

5(17) — E— E(P)_

Am Schlusse dieses Abschnittes sei noch angemerkt, dass mit dem
Fliessgesetz (3.23) eine Volumenvergrésserung verbunden ist. Beim
ebenen Verschiebungszustand betrigt die Raumdehnung

30(17) — 51(17) -+ 52(77)

Fiir inkompressibles Material gilt also

32(1’3)

(3.24) e

und fiir ein Material nach (3.23)

82( D)
s;(P) - =-m > 1.

Man hat aber beobachtet [8], dass beim Scherversuch, je nach der
Struktur des Materials sowohl Volumenverminderung als auch
Volumendehnung moglich ist. Lockere Sande zum Beispiel verlieren
an Volumen, wihrend sehr dicht gelagerte Sande ihr Volumen er-
hohen. Es schien uns zweckmdissig, beim Fehlen von besonderen
Materialkenntnissen in der Mitte zu bleiben und fiir den plastischen
Fluss ein inkompressibles Material (3.24) in die Berechnungen einzu-
fithren.

4. Die Losung des Scheibenproblems fiir elastisch-idealplastisches Ma-
terial mit Hilfe der Methode der endlichen Elemente

Der Grundgedanke der Methode stiitzt sich auf die Uberlegungen
von Ilyushin [9] fiir die elastisch-plastische Analyse von Fachwerken
und auf das «initial stress» — Verfahren von Zienkiewicz [10]. An
einem iibersichtlichen statischen Modell sei nun das Vorgehen er-
lautert. In Bild 10 ist ein einfach statisch unbestimmtes Stabwerk mit
den Federkonstanten ci1 und cz2 dargestellt. Um die Stabkrifte zu er-
mitteln, formulieren wir die Gleichgewichtsbedingung

1
“4.1) Sz+251ﬁ—f’:0,
das Hooksche Gesetz
4.2) S1 = c14l, S2=c24lz

und die Vertraglichkeitsbedingungen fiir die Stabverlingerungen

1
— ik,

V2

Mit den Abkiirzungen

@.3) Al =

44 L g e
€2 S VE (Gl =2 e T ecite
erhilt man folgende Resultate:

1 1
@.5) Alh— —aP, AlLL—= — bP,

C1 Cc2
4.6) Si—1a RS2 — b P
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Falls bei allméhlicher Steigerung der Last P der Stab @ zum Beispiel
als erster zu fliessen beginnt (P = Po) und die Stibe @ noch elastisch
bleiben, verliert das Hooksche Gesetz (4.2) seine Giiltigkeit. Das Trag-
werk ist elastisch-plastisch aber noch nicht im Kollapszustand (die
Last P liesse sich noch auf P* erhohen, bis auch die Stibe @ zum
Fliessen kommen). Die Last, bei der zum erstenmal die Fliessspannung
erreicht ist, betrdgt nach (4.5)

C2

@.7 Po=

A [20,

wobei 4 [20 die Stabverldngerung an der elastisch-plastischen Grenze
bedeutet. Sie ldsst sich auch durch die «Fliesskraft» Szo des Stabes mit
4.2)

1
4.8) Abo= — S2
c2
ausdriicken. In Bild 11 stellen die ausgezogenen Linien das Kraftver-
formungsdiagramm des Stabes @ dar.
Fiir Lasten Po < P < P* hat man nunmehr mit einem statisch be-

stimmten System zu tun, da fiir diese Lasten der Stab ® immer die
Kraft

4.9) S2 = S20
aufweist. Die Gleichgewichtsbedingung (4.1) liefert mit (4.9)

S1= (P-820) ]/2

(4.10) 0

und (4.3)

Al — l/-vz— (P - S20).
2c1

Fiir das elastisch-plastische System erhilt man die gleichen Resultate
auch mit einer iterativen Loésung. Wir gehen von den Beziehungen
(4.6) der rein elastischen Rechnung

4.11) S'=aP, ST2=bP

aus und korrigieren sie, indem wir beriicksichtigen, dass der Stab @
in Wirklichkeit nur die Kraft S0 aufzunehmen vermag.

Die Differenz (Bild 11)

4.7) 0152 = ST2— S20 = b * (P — Po)

wird als dussere Belastung an den Knoten O angebracht und die zu-
gehorigen Stabkrifte mit elastischer Rechnung (4.6)

4.8) 4181 = ad1S2, 4182 = b61S2
S
G
Bild 10. Das einfach statisch unbestimmte Stabmodell
Sz
T
S T ¢
i slo
71 <
/ L1/ e
SzoT
Alp
Alzo
Bild 11. Der lterationsprozess
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ermittelt. Mit (4.7) kann (4.8) auch als
4.9) A1S1 = ab (P — Po), 4152 = b (P — Po)

angegeben werden. Die Stidbe weisen nach der ersten Korrektur die
Krifte

4.10) ST = ST + 4181, SM2 = S20 + 41852
auf oder nach Einsetzen von (4.9) in (4.10)
4.11) ST =a[P + b(P-Po)], ST2 = S20 + b%(P - Po).
Diese Resultate werden verbessert, indem die Differenz

0282 = STz — S20 = b2 (P - Po)

als Last — wie vorher — auf die Stdbe “verteilt wird. Die Beziehung
(4.6) liefert

(4.12) 4281 = ab* (P — Po), 4252 = b3 (P — Po)
und die zweite Korrektur

ST = ST+ A2S1, ST = Sz0 4 425:
nach Verwendung von (4.12)

S = g[P -+ (P Po) (b + b)),

ST, = S20 + b (P - Po).

Man kann diese Resultate leicht auf die N-te Korrektur wie folgt er-
weitern

(4.13)
(4.14)

SY¥1=a[P+ P-Po))(b+ b+ b+ ...+ b¥ ),
SN2 = S20 + bY (P - Po)

und erkennen, dass es in (4.13) eine Gesetzmassigkeit nach einer geo-
metrischen Reihe gibt. Da der Quotient der Reihe nach (4.4)

c2
b=

@.15) =1

ei=l=cz2

ist, konvergiert sie und fiir N — oo fiihrt (4.13) auf

=1
1-b

4.16) S1=a [P—}—(P—Po)

und (4.15) auf
4.17) S2 = Szo.

Eine Umformung von (4.16) ergibt das gleiche Resultat wie (4.10),
welches durch die einfache, direkte Berechnung erhalten wurde. Der
Verlauf des Iterationsprozesses ist in Bild 11 mit gestrichelten Linien
dargestellt. Die Punkte A, B, C, ... zeigen die Konvergenz der Stab-
kraft @ gegen die «Fliesskraft» S2o.

Im Hinblick auf die Anwendung des Iterationsverfahrens auf die
Berechnung der elastisch-plastischen Scheibe ist es niitzlich, die Be-
dingungen einer raschen Konvergenz an dem einfachen Beispiel des
Stabwerkes zu diskutieren. Zunéchst seien zwei Extremfille betrachtet.
Fir b = 0 (4.15) gilt bereits die elastische Losung als exakt, da in
(4.13) bzw. (4.14) die Korrektur verschwindet. Die elastisch geblie-
benen Stibe @ iibernehmen die gesamte Belastung P. Wenn b = 1 ist,
gibt es iiberhaupt keine Konvergenz mehr, die elastischen Stibe kon-
nen keine Kraft iibernehmen. Die Verformungen werden unbeschrankt,
der Kollapszustand ist bereits erreicht. Das Verfahren wiirde fiir die
Grenzfille des Gleichgewichtes versagen. Man sieht leicht ein, dass
fiir den allgemeinen Fall die Konvergenz umso besser ist, je steifer die
elastisch gebliebenen Tragteile sind.

Auf das Scheibenproblem zuriickkehrend, wollen wir dem glei-
chen Grundgedanken, welcher an dem Beispiel des einfachen Stab-
werkes entwickelt wurde, folgen. Wesentlich ist, dass der elastisch-
plastische Zustand durch eine Reihe von rein elastischen Berech-
nungen mit fortwidhrendem Korrigieren erreicht wird. Ebenfalls von
Bedeutung ist die Tatsache, dass man nicht mit Belastungsinkremen-
ten, sondern mit der Gesamtlast arbeitet. Als erstes berechnen wir die
Scheibe mit der Methode der endlichen Elemente nach Abschnitt 2.
Die erhaltenen Werte der Verformungen und Spannungen

{5 {el ot
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Tabelle 2.

Bereich Grenzen ele)
® e2—ne1 >0 ele); — g
e2-ne1—d >0 ele)y = &2
@) e2<0 ey =0
&1+ me2 < 0 ele)y =0
(©) &1 + mez > 0 oy = o me2
1+ mn’
g2-ne1 < 0
n
*) &1 +m(e2—¢e2¢) — 16 < 0 £le); = Srai (e1 -+ me2)
@ O 2 (e2-d)
e1 + m(e2—¢e2¢) — €16 > 0 L
n
e2-ne1—d< 0 gle)y = &1 +m(e2—d d
1ok mn[ g ]+
d
*) eig'= = Shegi=nt——
n-n n-n

stellen die erste grobe Nidherung dar. Wir kontrollieren nun am
Spannungszustand bzw. Verzerrungszustand jedes Elementes, ob die
Fliessbedingung verletzt ist. Fallt ein Verzerrungspunkt in Bild 11 in
das Gebiet @, ® oder @, so hat das betreffende Element zu grosse
Spannungen bzw. Hauptspannungsdifferenzen erhalten.

Nach Tabelle 2 konnen die plastischen Anteile der Dehnungen
berechnet und nach (3.13) der Spannungszustand um

AP161 = A1eP)1 + A26(P)y,
AP162 = A2e(P)y + A1e(P)y

korrigiert werden. Nach einer Riicktransformation der Spannungen
von Hauptachsen auf das globale (x, y) System konnen den Span-
nungen entsprechende Knotenkrifte S(®) nach (2.8)

{81}®) = [B]{4P:5}

berechnet werden. Diese Knotenkrifte werden als dussere Belastung
an den Knotenpunkten angebracht und die Scheibe wiederum rein
elastisch nach (2.12) durchgerechnet. Die neuen Resultate { 417}, {410}
werden jenen der ersten Rechnung superponiert:

@18)  {rm={r}t 4 {4ur}, {0} ={o}I-{4P10} + {410}
Nach dieser Uberlagerung wird wieder auf Hauptsachen transformiert
und der Spannungszustand wie oben kontrolliert und korrigiert. Man
kann so weiterfahren, bis ein eingebautes Abbrechkriterium fiir die
Konvergenz erfiillt ist. Als Abbrechkriterium dient am besten eine
Schranke fiir { 40} oder die Anzahl der Iterationen.

Die Beschleunigung der Konvergenz mit einem Faktor o — dhnlich
dem Uberrelaxationsfaktor — ist moglich. Die Beziehungen (4.18)
gehen dann in die Form

e -

7

Bild 12. Der primare Spannungszustand
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/ 1 1 1
{ri} ={r'} + o {41},

1 I 1 1
{oll} = {o'} —w[{4P16} - {A15]]

tiber. Wie der optimale Wert von o gewihlt werden soll, ist nicht
untersucht worden. Mit w = 2 haben wir eine sehr gute Verbesserung
der Konvergenz erzielt.

Es ist erwdhnenswert, dass im Verlauf der Berechnungen die
System-Steifigkeitsmatrix [K] in (2.12) keine Anderung erfahrt,

5. Orientierung der Berechnungsmethode auf die Probleme des Tunnel-
und Stollenbaues

Es sind noch zwei Faktoren, die in den Rechnungen beriick-
sichtigt werden miissen. Erstens die Wirkung der Verkleidung und
zweitens der primédre Spannungszustand.

Indem man neben den Dreieckelementen auch Zug- bzw. Druck-
stabe einfiihrt, ldsst sich ein Fachwerk zusammensetzen, welches die
gleiche Steifigkeit aufweist wie die monolithische Verkleidung aus
Beton. Aus den berechneten Stabkriften kann man die Schnittkrifte
und Spannungen in der Verkleidung bestimmen.

Um den Einfluss des primdren Spannungszustandes ndherungs-
weise beriicksichtigen zu konnen, fithren wir den Uberlagerungsdruck
und das Eigengewicht der Scheibe als Belastung ein und bestimmen
die Spannungen fiir homogenes, elastisches Material. Die Haupt-
spannungen fiir den ebenen Verformungszustand betragen (Bild 12)

.1)
lii—v ) .

Die Verschiebungen erhilt man ausgehend von den Verzerrungen

oy = Po+ vy (H-y),

0r = Aooy, ( Ao =

ey = o (oy — 2v02),

gz =0

nach einer Integration und Beriicksichtigung von (5.1) als
)/,2
.

Wir kénnen dieses Verschiebungsfeld der gelochten Scheibe (mit
Fachwerk) auszwingen, hétten aber bereits vom primdren Zustand
Krifte und Verformungen in der Verkleidung, was ja nicht der Wirk-
lichkeit entsprechen wiirde. Diese Krifte und Verformungen miissen

1 — 2vlo
E

(5.2) v = [ (Po + yH)y -y

w— 0

<

NN
.

RSO

| e

R S AVAVAY
N VAVAVAVAV
OO WAVAS
"éhqggﬂﬂ%ﬂﬁ““”
KRN N\
R AVA

Bild 13.

Die Aufteilung in Elemente (mit Verkleidung)

wirkend eingefiithrt werden. Fiir diese Krifte als Belastung ermittelt
man die Spannungen und Verformungen, welche dann, dem priméren
Zustand iiberlagert, fiir rein elastisches Material den exakten sekun-
ddren Zustand ergeben. Dieser Zustand ist aber auch der Ausgangs-
punkt fiir elastisch-plastische Materialien bei der Anwendung des
Iterationsverfahrens nach Abschnitt 4.

6. Anwendungsbeispiele

Da im Falle des Kreisprofiles selbst fiir die Erstellung der Ein-
gabedaten ein Computerprogramm aufgestellt werden kann, disku-
tieren wir zundchst die Losung einiger Tunnelprobleme mit kreis-
formigem Ausbruch. Falls man das Eigengewicht der Scheibe ausser
acht lassen darf (bei grosser Uberlagerungshdhe), kénnen die Be-
trachtungen aus Symmetriegriinden auf den Viertelkreis beschrinkt
werden. Bild 13 zeigt die Aufteilung der Scheibe in Elemente mit einer
relativ feinen Masche und die Beriicksichtigung eines allfilligen Ein-

deshalb in einem Rechnungsgang eliminiert werden. Denkt man sich 7
das Loch in der Weise entstanden und die Verkleidung so eingebracht, 45
dass der primdre Zustand zunéchst unverdndert bleibt, miissen von 1 £= 106 /fm?
der Verkleidung genau jene Spannungen auf die Scheibe wirksam sein, V=03
welche dem primdren Zustand entsprechen. Da diese Spannungen r=10m
nach (5.1) bekannt sind, konnen aus ihnen Knotenkréfte Pi, Pyt er- 40
mittelt werden (Bild 13), welche von der Scheibe auf die Verkleidung y
6. |1o
Bild 14. Vergleich der Resultate der analytischen und der numerischen - & 2
Berechnung. a) (unten) Verlauf der Normalspannungen langs x-Achse, b)
(rechts) Verlauf der Normalspannungen langs y-Achse
2
B
6x,0y (l/mZ) 30, i RlIT—
[ e
\ £ =108 lm? ‘ /(/ \
V=03 |
===o Analyt. Resultate < el / L—\L"
800 _—
——4& Numerische Resulfate 5]
— =
700 5\_
f \\A ———-- Analyt. Resulfale
600 = X ——= Numerische Resultare
~F
~
500 \ 20
s o
/eI
400 ==
300|
6, 15
200 £ Va }
100 ,/ﬂ
Z 7 7 2
70, 75 20 25 3.0 3,5 40 45 & L0508 200 300 400 Oy Gy (t/m?)
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baues durch Fachwerk. Aus einer gewihlten Uberlagerungshohe von li7A
h = 150 m und dem spezifischen Gewicht y = 2,5 t/m?® ergibt sich die 45
Vertikalspannung p = 375 t/m?, welche als Belastung auf die Scheibe
angebracht wird.
6.1 Die gelochte elastische Scheibe ohne Einbau o &
Dieser einfache Fall ldsst sich noch mit den Gleichungen der
klassischen Elastizitdtstheorie behandeln. Der Vergleich der Resultate
6)’
35
Bild 15. Der Einfluss des Einbaues auf Spannungen. a) (unten) Span-
nungsverlauf lings x-Achse, b) (rechts) Spannungsverlauf l&ngs y-Achse
30—
6,6, (Ym?)
900
oz
800
700 < d
600 d=0 - ¥
500 < d=25¢m r=10m
Oy ?
400 % 8 ( :
X
300
200 d=8cm > a=25cm o
_P;?
100
_/\0’-0 5)“0} (Hm#2)
: 74 10 :
70 75 20 25 30 35 40 45 100 200 300 400
v
Vv

d=25cm
Ohne  Tangentalkrafte

d=25¢cm
Mit Tang. kraften

Fels

2 %751 primaren  Spannungszustand

—
Verkleidung
X aoimi
Bild 16. Momentenflachen mit und ohne Tangentialkrafte a)
(Pendelstiitzen zur Ausschaltung der Tangentialkréfte) X
7

d=8cm ohne Tang krafte
d=8cm mit  Tang. kraffe

d=25cm ohne Tang. krafle
d=25¢cm mit Tang. krafle

Bild 17. Normalkrédfte mit und ohne Tangentialkrafte
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= ;’;75} primaren  Spannungszustand

501
b)
X
Bild 18. Beriicksichtigung des primaren Spannungszustandes. a) Momen-

tenflache (d = 8 cm), b) Normalkrafte (d = 8 cm)
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der analytischen und der numerischen Rechnung (Bild 14) gibt uns
einen guten Uberblick iiber die erzielte Genauigkeit bei der gewihlten
Masche. Nennenswerte Abweichungen (> 59%,) zeigen sich nur in den
Punkten 4 und B, wo der Spannungsgradient am grossten ist. Bei der
analytischen Rechnung war eine seitliche Belastung entsprechend der
Querdehnungszahl » = 0,3, bei der numerischen Behandlung die Un-
verschieblichkeit der Seiten vorgeschrieben. Das rasche Abklingen der
Storungen lasst beide Formulierungen als gleichwertig zu.

6.2 Die gelochte elastische Scheibe mit Einbau

Der Einbau besteht aus einer monolithischen Betonverkleidung,
welche auch Tangentialkrafte vom Gebirge zu iibernehmen vermag.
Das stellvertretende Fachwerk kann so gewahlt werden, dass es die
gleiche Biege- und Drucksteifigkeit aufweist wie der Betonring. Im
Bild 15a und 15b ist der Einfluss der Stirke des Einbaues auf das
Spannungsfeld im Fels ersichtlich. Die Momente und Normalkrifte
in der Verkleidung wachsen — wie vermutet — mit zunehmender Beton-
starke. In den Bildern 16 und 17 wird auch noch die Wirkung von
fehlenden Tangentialkriften gezeigt. Durch Einfiigen von Pendel-
stiitzen zwischen Verkleidung und Fels konnen Reibungskrifte vollig
eliminiert werden. An Hand der Figuren stellt man fest, dass die
Reibung einen stabilisierenden Effekt hat. Fiir geringe Betonstérken
ist er allerdings so gering, dass in Bild 16 fiir d = 8 cm der Unter-
schied wegen dem gewéhlten Massstab nicht mehr gezeigt werden

konnte.

6.3 Beriicksichtigung des primdren Spannungszustandes

Nach Abschnitt 5 kann der priméire Spannungszustand nidherungs-
weise in den Rechnungen berticksichtigt werden. In diesem Falle er-
fahrt die Verkleidung nur durch die «Entspannung» des Gebirges eine

Abnahme der
Korrekturkrdfte in %
100%

75%

Anzahl Jleratonen

3o

25

20

Bild 20. Typischer Verlauf der Korrektur-Knotenkréafte beim Iterations-

prozess

Belastung. Hier haben wir es mit einem vollig anderen statischen
System zu tun. An einem vorbelasteten System (ungelochte Scheibe)
werden Tragteile entfernt und unbelastete Stiicke (Verkleidung) hin-
zugefiigt. Den Unterschied in der Beanspruchung (M, N)fiir d = 8 cm
zeigen die Bilder 18a und b.

6.4 Die gelochte Scheibe aus elastisch-plastisch idealem Material

Wir betrachten wieder den Viertelkreis mit den gleichen Daten,
wie sie am Anfang dieses Abschnittes angegeben wurden und legen die
Fliessbedingung fiir das Felsmaterial mit ¢ = 30 t/m? und ¢ = 30°
fest. Das Spannungsfeld und die plastischen Zonen in der Scheibe

/?/,
Bild 19. Elastisch-plastisches Material. 4 stellen sich je nach der Stirke der Verkleidung ein (Bild 19). Die Ge-
a) (unten) Normalspannungen ldngs | nauigkeit der iterativen Rechnung ist im Falle ohne Einbau beschrankt.
x-Achse, b) (Mitte) Normalspannungen o ,' Nach den Untersuchungen in Abschnitt 4 ist dies gut verstdndlich, da
langs y-Achse, c) (rechts) Ausbreitung i I+ 06, die Aufnahme der grossen Korrekturknotenkrifte { S}? durch die
der plastischen Zonen 40 : elastisch gebliebenen Teile sehr schwer ist. Die Korrekturkrifte kon-
| vergieren nicht gegen Null, sondern zu irgendeinem Wert, welcher
| nach noch so vielen Iterationen der gleiche bleibt. Dies ist lediglich
ein Zeichen der Unzuldnglichkeit der numerischen Behandlung. Die
35 Korrekturkrifte stellen sich so ein, dass sie ein System von Kréften
I bilden, welche in sich im Gleichgewicht sind. Es ist deshalb nicht be-
? ’? griindet, von der schlechten Konvergenz auf einen Kollaps des Sy-
1 stems zu schliessen. Die plastifizierte Scheibe ohne Einbau ist aber
30 —+ nicht von grosser praktischer Bedeutung. Wie Bild 20 zeigt, ist die
| ” Konvergenz schon bei einer sehr diinnen Verkleidung (vergiitete Ober-
I I J/ fliche durch Spritzbeton) ausserordentlich gut.
| d-0
25 : = 6.5 Berechnung eines Hangtunnels
,I ZEEe An diesem Anwendungsbeispiel soll die Spannungsanalyse in
1] einem Hangabschnitt gezeigt werden. Das Ziel war, mdglichst gute
= d=25cm
20 /
1l Y
/
/
/
15 /i
7
\
‘ ;
1,0 b)J 0,.,0, (mZ,
’ 100 200 300 400 oGy tfm)
05,9 (ifm )
700
600 =
i i \\1{: =0 G
500 A =
d=25¢cm  d=8¢m s e lo s b
400 7
7
300 /,,/ P
i = /0’=25cm e ne o
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Bild 21.  Aufteilung der Scheibe in Elemente bei einem Hangtunnel

Grundlagen fiir die Gewolbedimensionierung zu schaffen. Zu diesem
Zweck wurden fiir verschiedene Werte der Materialkonstanten und
Gewolbestdrken die Beanspruchungen in der Verkleidung ermittelt. In
Bild 21 sieht man die Scheibe mit den gewdhlten Randbedingungen.
Die Belastung besteht nur aus dem Eigengewicht und aus einem ange-
nommenen Erddruck auf die linke Abgrenzungsfliche. Da das Ge-
woélbe durch starre Rahmen auf den tragfahigen Fels fundiert ist, kann
es an den Widerlagern als eingespannt betrachtet werden. Die Pendel-
stiitzen in der rechten Hilfte des Bildes 21 wurden so gewdhlt, dass
ihre Federkonstanten dem durch sie ersetzten Material entsprechen.
Es ist dies lediglich eine kleine Vereinfachung, welche die Anzahl der
Knoten und Elemente verringert.

Die Berechnungen wurden fiir ein kohisionsloses, elastisch-
plastisches Material durchgefiihrt. Zum Vergleich hat man aber den
Hang auch im vollstindig plastifizierten Zustand im Grenzgleichge-
wicht nach Rankine untersucht. Fiir den letzteren Fall konnen aus dem
bekannten Spannungszustand (Fliesszustand) nach Kastner [1] durch
graphische Konstruktion Lasten auf das Gewdlbe ermittelt werden
(Bild 22). Aus der elastisch-plastischen Losung mit der Methode der
endlichen Elemente lassen sich ebenfalls die effektiven Lasten auf die
Verkleidung ermitteln. Sie ergeben sich aus dem Spannungszustand
der dem Gewolbe benachbarten Elemente. In diesem Falle haben wir
die Lasten nur zu Vergleichszwecken bestimmt, da sie wegen dem
einheitlichen System Scheibe — Verkleidung zur Bestimmung der
Momente und Normalkrifte gar nicht benétigt werden. Anders beim
vollstdndig plastischen Zustand. Hier haben wir fiir die Lasten mit
dem STRESS-Programm den Bogen berechnen miissen. Die Bilder 23
u. 24 zeigen die Momente und Normalkrifte, Bild 25 die zugehérigen
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Deformationen. Aus allen Resultaten?) (einschl. Lasten) ist klar er-
sichtlich, dass der Grenzzustand des Gleichgewichtes nach Rankine
eine zu ungiinstige Dimensionierungsgrundlage ergeben wiirde.

7. Die Bemessungsaufgabe

Der Tunnelbauer stellt die Frage in einfacher Form: Wie gcoss
ist die Sicherheit eines unverkleideten oder verkleideten unterirdischen
Hohlraumes bei angenommenen oder ermittelten Materialkennziffern
und angegebener Vortriebsmethode? Wie soll die Stirke und evtl. die
Armierung einer Verkleidung gewihlt werden, um Schiden zu ver-
meiden? — Man mdchte iiber dhnliche Dimensionierungsgrundlagen,
wie sie der Stahlbetonbau oder teilweise der Grundbau kennt, ver-
fligen. Heute sind wir trotz Einsatz des Computers und der: Anwendung
der Elastizitdts- und Plastizitdtstheorie von der eindeutigen Losung
der Aufgabe noch immer weit entfernt. Der Grund liegt nicht mehr in
der Unféhigkeit, komplizierte und umfangreiche Rechnungen durch-
zufiihren, sondern in der Unkenntnis von Materialeigenschaften. Wir
kennen die Verformungseigenschaften der Gesteine unter hohem all-
seitigem Druck und in Funktion der Zeit kaum. Zur Voraussage des
Kriechverhaltens, des Bruchfliessens usw. gibt es nur Ansitze, aber
fast keine quantitativen Aussagen.

In vielen Fillen ist der Hohlraum fiir Tage, Wochen oder gar
Monate ohne Einbau stabil, und die nachtriglich eingebaute Ver-
kleidung kann trotzdem mit der Zeit betrichtliche Belastungen er-
fahren. Diese Belastungen kénnen mit den heute verwendeten fels-

?) Die Rechnungen wurden im Auftrag des Kantons Graubiinden
durch das ISETH und das Ingenieurbiiro Jenatsch und Hegland, Chur,
durchgefihrt.
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Bild 22. Belastungen im Zustand des Grenzgleichgewichtes (Rankine) und
fur das elastisch-plastische Material (beschranktes Fliessen)
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Bild 24. Normalkrafte

mechanischen Modellen nicht erkldrt werden. Deshalb divergieren
die Meinungen iiber den Wert und Nutzen der Tunnelstatik so stark.
Es gibt Stimmen, welche von vornherein jegliche Berechnung ab-
lehnen, andere, die gewisse Berechnungsverfahren kritiklos tiberneh-
men und sie als fast unfehlbar betrachten. Uns scheint der richtige
Weg darin zu bestehen, dass man sich zuerst, die wichtigsten Faktoren
beriicksichtigend, ein etwas vereinfachtes mechanisches Modell auf-
stellt und in einem zweiten Schritt die erhaltenen Resultate nach den
eigenen Erfahrungen und ingenieurméssiger Intuition der komplexen
Wirklichkeit anzupassen versucht. Da man gegenwairtig in der Fels-
mechanik grosse Anstrengungen unternimmt, um das rheologische
Verhalten der Gesteine einerseits und die Frage des priméren Span-
nungszustandes anderseits abzuklédren, diirfen wir hoffen, dass in ab-
sehbarer Zeit eine Erweiterung der hier vorgeschlagenen Berechnungs-
methode erzielt werden kann.

Abschliessend mochten wir kurz zusammenfassen, in welcher
Weise dem praktisch tédtigen Ingenieur das vorliegende Computer-
programm als Hilfsmittel fiir seine Bemessungsaufgaben niitzlich sein
kann.

1. Tunnel- und Stollenbauten, unterirdische Rohrleitungen in Ober-
flichenndhe

Falls man die Konstruktion im Tagbau erstellt und nachher die
Aufschiittung durchfiihrt, spielen Zeiteffekte keine grosse Rolle. Die Re-
sultate der elastisch-plastischen Berechnung liefern exakte Grundlagen
fiir die Dimensionierung. Aus den Momenten und Normalkréiften der
Verkleidung kann der Spannungsnachweis direkt erfolgen. Wenn die
Konstruktion im Untertagbau erstellt wird, liefert die Annahme der
Aufschiittung Resultate, welche auf alle Fille auf der sicheren Seite
sind.

2. Tiefliegende unterirdische Bauwerke

Angesichts der Vielfalt massgebender Faktoren, welche sich durch
die Gesteinseigenschaften und die gewihlte Vortriebsmethode er-
geben, konnen im Moment noch keine einheitlichen Richtlinien auf-
gestellt werden. Sie werden sich vielleicht mit den Erfahrungen, welche
man durch die Beniitzung des Programmes gewinnt, ergeben. Da man
auch Kliifte, Felsanker, alle moglichen Arten von Verkleidungen
(z. B. Gelenkkette), Inhomogenitédten beriicksichtigen kann, bleibt die
einzige Unsicherheit in der Wirkung des Zeitfaktors. Die Spannungs-
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Bild 23. Momentenflachen
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Bild 25.

Deformationen

umlagerung in der Umgebung des Hohlraumes braucht Zeit. Falls
der Grad der Entspannung des Gebirges bis zum Erhérten des Betons
der Verkleidung abgeschitzt werden kann, ist eine Reduktion der
Lasten in einem bekannten Masse moglich.

Der Verfasser mochte an dieser Stelle Prof. H. Grob fur die
Anregung und weitgehende Unterstiitzung zu dieser Arbeit seinen
besten Dank aussprechen. Er ist auch F. Vannotti, dipl. Math. ETH,
fiir die Durchfiihrung der umfangreichen Programmierarbeiten und
Dr. sc. techn. E. Anderheggen (Institut fiir Baustatik ETH) fiir die
Ubergabe eines speziellen Programmes zur Auflosung linearer
Gleichungssysteme mit Bandmatrix zu Dank verpflichtet.
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