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87. Jahrgang Heft 28 schweizerische bauzeitung 10. Juli 1969

HERAUSGEGEBEN VON DER VERLAQS-AKTIENGESEL LSGH AFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH, POSTFACH 680

Das Einbeulen von Schacht- und Stollenpanzerungen
Von Ernst Amstutz, dipi, lng., Direktor in der Firma Wartmann & Cie. AG, Brugg

DK 627.842:624.075.2

1. Allgemeines

In zwei Veröffentlichungen in der SBZ habe ich in den Jahren
1950 [1] und 1953 [2] eine Theorie des Einbeulens von kreisrunden
Schacht- und Stollenpanzerungen entwickelt, die inzwischen in der
internationalen Fachliteratur Eingang gefunden hat. Auch andere

Autoren haben sich mit diesem aktuellen Problem beschäftigt und sind
aufanderem Wege entweder zu ähnlichen [3] oder abweichenden [4], [5]
Resultaten gelangt. Durchgeführte Versuche [6], [7], [8] haben je nach
Versuchsbedingungen eher die eine oder eher die andere Theorie
bestätigt. Die Praxis hat gezeigt, dass nach meiner Theorie relativ kleine
Sicherheitskoeffizienten genügen, um Schadenfälle zu verhindern,
während auf anderer theoretischer Grundlage wesentlich höhere
Sicherheitskoeffizienten anzunehmen sind.

Um den Sachverhalt objektiv abzuklären, hat die Firma Wartmann

& Cie. AG, Brugg, in den letzten Jahren mit erheblichen Kosten
Versuche durchgeführt, über die nachstehend berichtet werden soll.
Nachdem in diesen Versuchen die wirklichen und die der Theorie
zugrunde gelegten Bedingungen möglichst genau eingehalten wurden,
zeigt sich sowohl für glatte als auch für Rohre mit Schubankern eine

sehr gute Übereinstimmung mit meiner Theorie, sobald die richtigen
Materialkonstanten in die theoretischen Formeln eingesetzt werden.

Es ist von grosser wirtschaftlicher Bedeutung, die Einbeulgefahr
von Schacht- und Stollenpanzerungen aus Injektionsdruck oder

Gebirgswasser richtig beurteilen zu können. Von der statischen Seite

her scheint das Problem nunmehr gelöst zu sein. Die grösseren
Unsicherheiten liegen auf geologischer Seite. Einmal ist es nicht einfach,
die Höhe des Gebirgswasserdruckes abzuschätzen. Je nach Schichtung
und Klüftung des Felsens kann die Druckhöhe erheblich von der

gewöhnlich zugrunde gelegten Terrainhöhe abweichen. Zum andern

können die elastisch-plastischen Eigenschaften des Felsens

nachträglich zu ungünstigen Klaffungen zwischen Betonummantelung und
Panzerung oder aber zu einer günstigen Vorspannung der Panzerung
durch Gebirgsdruck führen. Es scheint mir, dass nur durch
Vorversuche am Ort der späteren Panzerung [9] die Verhältnisse so reali-

^^S erfasst werden können, dass die statische Theorie auch mit
entsprechendem Nutzeffekt angewendet werden kann.

Bevor die genannten Versuche beschrieben werden, soll die
früher entwickelte Theorie [1, 2] nochmals in etwas erweiterter Form
dargestellt werden. Während in den früheren Ableitungen eine mehr

geometrisch orientierte und daher anschauliche Methode gewählt
wurde, die gewisse vereinfachte Annahmen erforderte, soll hier eine

algebraisch-analytische Ableitung zur Anwendung kommen.

2. Beultheorie

Das Einbeulen eines einbetonierten Rohres unter äusserem,

gleichmässig verteiltem Druck ist nicht ein klassisches Stabili|SM
problem wie zum Beispiel beim freien Rohr, das seine Gleichgewichtslage

bei Erreichen des kritischen Druckes plötzlich verlässt. Vielmehr
wird sich eine Verformung an einer oder mehreren Stellen bereits
einstellen, wenn eine allfällige Vorspannung zwischen Rohr und Um-
mantelung durch den äusseren Wasserdruck übertroffen wird. Die
durch den äusseren Wasserdruck bedingte elastische Verkürzung des

Rohrmantels in Umfangrichtung kann nämlich nur eintreten, wenn
sich der Mantel an einzelnen Stellen abplattet, sich also von der Um-

mantelung abhebt. Mit zunehmendem Druck werden diese Abplattungen

tiefer, bis sie «durchschlagen», das heisst - elastisches Verhalten
vorausgesetzt - wenn die Verformungen ohne weitere Lastzunahme
immer grösser werden. In praktischen Verhältnissen wird allerdings
schon weit früher die Tragfähigkeit des Rohres mit Erreichen der
Plastizität begrenzt. Dann nehmen nämlich die Verformungen nicht
wegen der geometrischen Verhältnisse, sondern wegen des begrenzten
Materialwiderstandes so rasch zu, dass das Durchschlagen des Mantels

praktisch bei Erreichen der Plastizität erfolgt.
Die Erfahrung zeigt - und eine einfache Überlegung bestätigt

dies -, dass die Beulen sich immer in grösserer Länge in Richtung der
Rohraxe ausbilden; denn in diesem Falle widersteht der Beulenbildung

nur der geringe Biegewiderstand der Wandung, während
sich bei begrenzter Länge der Beule eine Schalenwirkung ergeben
musste, also der wesentlich grössere Dehnwiderstand der Wandung
in Rechnung zu setzen wäre. Unsere Betrachtung kann sich daher auf
einen Ring von der Einheitsbre^abeschränken. Weiter wollen wir
voraussetzen, dass Haftung und Reibung zwischen Rohr und
Betonummantelung vernachlässigbar sind, da ihre günstige Wirkung
unsicher ist.

Bild 1 zeigt ein unendlich kleines Element des Rohrmantels vom
ursprünglichen Radius r mit dem Zentrumswinkel d<p Und der
Radialverformung rj. Ausser der äusseren, gleichmässig verteilten
Radialbelastung p greifen daran als Schnittkräfte die Normalkraft N, die
Querkraft Q und das Biegemoment M an.

Die Gleichgewichtsbedingungen am Element von der Länge
(r — rj) ¦ dq> lauten :

Komponentengleichung quer:

(1) dQ-N-d<p-N^(-^j+p(.r-r,)-d<p 0

Komponentengleichung längs:

(2) Q-d<p + dN 0

r))d<p

?Q
m

r**

Bild 1. Kräfte und Verformungen des Mantel-Elementes
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Momentengleichung :

(3) Q ¦ r ¦ d<p — dM 0

Verformungsgleichung :

(4)
d2r\ j_ M

+ ~r2 ~ËJ

a ¦ cos (e • tp) stellt eine Wellenlinie um die Mittellage (b ¦ cos <p + c)
dar (Bild 2).

Die Integrationskonstanten a, b und c sind aus den
Randbedingungen zu ermitteln. Bezeichnen wir mit a denjenigen Winkel q>,

bei dem das eingebeulte Blech den Betonmantel wieder berührt, also
das Ende der Beule, so lauten die Randbedingungen:

In Gleichung (1) stellen die -n enthaltenden Glieder die Zusatzbelastungen

aus der Verformung dar, im 3. Glied darf daher N durch den
Konstantwert No und im 4. Glied gemäss der Kesselformel p durch

No
ersetzt werden.

r

Bezeichnen wir ferner die Ableitungen nach <p mit Punkten, so lauten
die 4 Gleichungen wie folgt :

(10)

(11)

(12)

lia 0

n'a Q

Ma 0

(10

(2')

(3')

(40

No
Q- — N (n + n") —P - r

Q + N- 0

ô • r -— M- 0

EJ
M-=—~z-(rj +t]-)

Aus (11) folgt

(13) b

und aus (12)

(14) c --

a ¦ cos (s • a) + b cos a + c 0

a j e ¦ sin (e ¦ a) + b sin a 0

a (1 — s2) ¦ cos (s a) + c 0

s ¦ sin (e a)

m als2 —• 1) • cos (e a)

Beide Werte in (10) eingesetzt, ergeben nach kurzer Zwischenrechnung
die Bestimmungsgleichung für a:

(15) e- tga. '(£•«)

Aus diesen 4 Gleichungen eliminieren wir die 3 Variablen Q, N und
M, nämlich aus (10 und (20

No
(5) ö + Q" — (.V' + Il
und aus (30 und (40

(6) ß

Die Lösung ist durch Probieren zu finden und ist in Tabelle 1 und
im Diagramm Bild 3 dargestellt.

Als weitere Bestimmungsgleichung für die Konstanten a, b und c
formulieren wir die Verformungsbedingung, wonach die elastische
Verkürzung des Mantels gleich der geometrischen Verkürzung sein
muss. Für die elastische Verkürzung des Mantels benötigen wir die
Normalkraft N.

EJ
¦ (»r + f0

Aus (10 und (20 folgt

(16) N + N-
No

p-r- (.V + V")
Die Elimination von ß aus (5) und (6) führt zur Differentialgleichung
unseres Problems:

(7)

Mit der Abkürzung

r2 No \ I r2 No
¦n- 1 +-ZZ-Z-) + n- 2 +EJ EJ + v

Setzen wir rj aus (9) ein, so erhalten wir

No
(17) N + N- =p-r — [a(l- s2) • cos (e <p) + c]

(8) fm \i +
r2No
EJ

Die Lösung lautet, wie man sich durch Einsetzen in (17) leicht
überzeugt:

lautet die Lösung der Gleichung (7)

(9) n a • cos (s • <p) + b • cos q> + c

Hierbei ist angenommen, dass wir die Bezugsaxe q> 0 in die Sym-
metrieaxe der Beule verlegen, so dass die noch möglichen Sinus-
Glieder entfallen. Von der Richtigkeit der Lösung (9) überzeugt man
sich leicht durch Einsetzen in (7). Das Glied b ¦ cos g> bedeutet
geometrisch eine Parallelverschiebung und das Glied c eine Verengung -
bzw. bei negativem Wert eine Ausweitung - des Mantels. Das Glied

(18) N p-r
Setzen wir gemäss (12)

(19)

No
{a ¦ cos (s <p) + c]

(s2 — 1) • cos (e <x)

so lässt sich leicht zeigen, dass für den praktisch vorkommenden
Bereich 5 < s < 20 das erste Glied in der eckigen Klammer der
Gleichung (18) gegenüber dem Wert c, der an sich schon ein kleiner
Korrekturwert ist, vernachlässigt werden kann. Wir können daher
setzen

(20 N konst p • r —- iVo — SÉp(r — c)

Ea
4 h W *

0
4 0,4

3ÏÏ
2

46 3 0,3

^£o_
44 é 2 0,2

SL-—
4? 1 0,1

?H 0

Bild 2. Beulenform

542
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Bild 3. Öffnungswinkel a und Hilfswerte *, \t und ß

20 E
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Tabelle 1: Hilfswerte

tg (s a) tg a ' tga COS {e a) sin (e a) sin a.

(25)
Y ô 0 W Q
(29) (35) (39) (40) (48)

28,3 8,00 2,88 0,331 0

32,7 16,67 2,21 0,271 0,100

38,7 27,67 2,00 0,251 0,133

71,4 119,03 1,78 0,226 0,168

143,4 484,2 1,73 0,225 0,175

3 270°00' 90°00' oo

4 263°37',2 65°54',3 8,9446
5 261°11',6 52°14',3 6,4550

10 258°19',7 25°50' 4,8409
20 257°40',2 12°53' 4,5749

oo oo 0 -1,00000 -1,0000 4,71239 -2,6667
2,2360 8,9440 -0,11112 -0,99381 0,91287 4,60104 -1,8095
1,2910 6,4550 -0,15310 -0,98821 0,79056 4,55868 -1,3933
0,48413 4,8413 -0,20231 -0,97932 0,43575 4,50868 -0,6650
0,22873 4,5746 -0,21357 -0,97693 0,22297 4,49719 -0,3286

Die elastische Verkürzung A über den halben Umfang des Mantels
beträgt somit

(21)
n ¦ r (N — V) an — avm—i«— *t——

Hierin bedeutet an die Normalspannung aus der Normalkraft N und
av eine allfällige Vorspannung aus der Vorspannkraft V, zum Beispiel
aus Injektionsdruck. Besteht statt einer Vorspannung eine Klaffung k
zwischen Panzerung und Beton, so ist

(22)

zu setzen, das ist also diejenige Spannung, die nötig ist, um die Klaffung

zum Verschwinden zu bringen.
Die geometrische Verkürzung setzt sich aus zwei Teilen zusammen.

Der erste Teil A1 ergibt sich aus der Annäherung des Mantels an
das Kreiszentrum zu

Hierin entfällt wegen Gleichung (15) das mittlere Glied, so dass sich
H reduziert auf:

(28) A2 4-r
mit dem Hilflos

¦ y

(29) y : ¦ a — sin (s a) • cos (« a) + s <*

s ¦ sin2 (e a) • ctg a

(30) Die Bedingung A A1 + A2

liefert somit die Beziehung

an — av a2
(31) n-r- 4r

sin2 (e a)

l \ — -r-dcp \[a(23) A1 l — -r-dq> cos (e tp) + b ¦ cos rp + c] ¦ dtp

— - sin (s a) + b - sin a + c • a

Unter Benützung von (13) und (14) folgt

(24) A1 a-ß

mit dem Hilfswert

1

(25) ß \s — — [s • a ¦ COS (s a) — sin (« a.)]

Der zweite Teil /12 entsteht aus der Neigung der elastischen Linie zu

(26) A2 mr2 + rj • '*]-T7J,?'

In dieser Beziehung ist lediglich noch a mit Hilfe einer weiteren
Bedingung zu bestimmen. Wir formulieren hier die eingangs aufgestellte

Forderung, dass an einer Stelle die Randspannung die
Fliessgrenze o> erreichen soll. Wie aus Bild 2 zu erkennen, ist diese Stelle
der Scheitel der Beule bei <p 0, da sich hier die Krümmungen aus
der Verflachung des Bogens und aus der Wellenlinie addieren.
Massgebend ist ferner die äussere Faser im Abstand e von der neutralen
Achse, da sich hier die Druckspannungen aus der Normalkraft und
aus der Biegung addieren.

Gemäss (40, (9) und (14) finden wir:

Mo
(32)

bzw.

aw an + ¦E— (no + *?Ö0

— an e
— — (a + b + c-E r2

-b)- [a (1 — s2) + c]

(33)
e • a

(e2 — 1) • [1 — COS (e a)]

Unter Benützung von (9) und (13) erhalten wir:

a'
ZZr

2rJ

s • sin (s a)
e ¦ sin (« cp) + 1 sin r,

sin (ea)
e2 • sin2 (s <p) — 2 • e2 —: sm (e cp) ¦ sin cp +

sin2 (e a)
+ e2 — sm2 cp

a2 I 1

(27) A2 — e2<— [s ¦ a — sin (e a) • cos (« «)]

— 2-
sin (e oc) 1

+ ¦

sin a s — 1/s

1 sin2 (s a)

1
sin (e a.) ¦ cos a — sin a • COS (e a)

la — sin a ¦ COS a]

Hieraus bestimmt sich

0*f -
(34)

tr
e

¦an 1

M "ô
mit dem Hilfswert

(35) ô =(e2 — 1) [1 — cos (e • a)]

Gleichung (34) in Gleichung (31) eingesetzt ergibt

(36)

E
1 +

Gp GN

Aß-o

ist sehr stark von s abhängig; um ihn möglichstDer Koeffizient -

konstant zu machen, erweitern wir die Gleichung beidseitig mit e3

wobei wir auf der linken Seite gemäss (8)

™ HB— an
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einsetzen, worin / i den Trägheitsradius darstellt.

Unsere Schlussgleichung lautet nun:

(38)
an — av ry aN

1 +(t) if
\r aig 0

Vi

r ap — an
*-Z—E—

mit den Hilfsfunktionen:

(39) d) « ÜH

(40) y — y
4-ß-o

Die Formel (38) deckt sich mit Gleichung (5) meiner Veröffentlichung

[2] aus dem Jahre 1953, wobei lediglich 0 durch den Festwert
1,68 und y durch den Wert 0,25 ersetzt sind. Da das Resultat auf
diese Koeffizienten ziemlich unempfindlich ist, so ist hiermit der
Nachweis erbracht, dass die in der Veröffentlichung von 1953
gemachten Vereinfachungen zulässig waren.

Die Werte 0 und V sind in Tabelle 1 ermittelt und im Diagramm
Bild 3 dargestellt. In Anbetracht des flachen Verlaufes dieser Kurven
können wir sie im praktisch vorkommenden Bereich 5 < « < 20
durch ihre TSiefstwerte bei e 20 ersetzen, wobei wir auf der sicheren
Seite bleiben. Der Fehler wird teilweise kompensiert, wenn wir auf
der linken Seite die 1 in der Klammer vernachlässigen. Damit nimmt
Gleichung (38) die Form an

(41)
an- m 1,73

r ap — t
1—0,225 M

e E

Wenn an aus (38) oder (41) bestimmt ist, so bleibt uns noch die
Aufgabe, die kritische Belastung ptcr zu ermitteln. Wir greifen hierzu auf
Gleichung (20) zurück:

N an • F* ¦^fpMI
Aus (19), (34) und (35) folgt

c (e2 — 1) ¦ cos (« ot) r
(AZ>\ - of — an
HJ r (V — 1) [1 — cos (e a)] e E

somit wird

T44Ì m aif'F

\1+Q-e- E

Der Hilfswert

COS (s tt)
(45) £> _-—i_i_

1 — COS (s a)

ist ebenfalls in Tabelle 1 ermittelt und im Diagramm Bild 3

eingetragen. Wenn wir den Grösstwert für s 20 mit Q 0,175
verwenden, so bleiben wir auf der sicheren Seite, und es ergibt sich die
vereinfachte Gleichung

(46) "Pier

r 1 + 0,175
Op- -an

F- aN
¦ 0,175

r of — an

Der Vergleich mit meiner Veröffentlichung [2] aus dem Jahre 1953

ergibt in der entsprechenden Gleichung (4) den Wert

(47) Q
3îi
~2~

0,175

also gleich viel wie oben.

3. Spezialfälle

a) Rohr mit Aussteifringen
Hier sind zwei Untersuchungen anzustellen. Einmal ist das

Einbeulen des Gesamtquerschnittes Rohr plus Aussteifung gemäss der
vorstehenden Theorie nachzuweisen. Hierbei ist für die Querschnittswerte

/, i und e der Querschnitt der Steife, der einen mitwirkenden
Streifen des Blechmantels von etwa 30 mal Blechstärke enthält, für F
hingegen der Gesamtquerschnitt mit Blechmantel von Aussteifung zu
Aussteifung einzuführen.

Zum andern ist das Einbeulen des Blechmantels zwischen den
Aussteifringen nachzuweisen, wobei dieser Mantel als freies Rohr
angesehen werden kann, da sich dieser ja im Bereich der grossen Beule
von der Betonauskleidung abgehoben hat. Für diese Untersuchung
steht die Scheibentheorie zum Beispiel nach Flügge [ 10] zur Verfügung.
Bei geschickter Abstimmung von Blechdicke und Ringabstand lassen
sich so sehr wirtschaftliche Lösungen finden. Jedoch ist die
Anwendung auf Panzerungen in grösseren Betonkörpern, zum Beispiel
Staumauern, beschränkt, da bei Stollen das Einbringen des Betons
zwischen Fels und Panzerung durch die Ringe zu sehr behindert wird.

b) Das glatte Rohr

Beim glatten Rohr mit der Wandstärke d wird i
112

und

e — gesetzt. Infolge der verhinderten Querkontraktion ist E durch

(48) E* n—v2

und ap durch

(49) fi- af
m ¦v-\-v2

zu ersetzen. Hierbei ist v 0,25 die Querdehnungszahl und jjl ein
Koeffizient für die «Stützwirkung», der angibt, wievielmal grösser
die Fliessgrenze auf Biegung gegenüber der Fliessgrenze auf Zug ist.
Gemäss [11] Formel (5) ist für Rechteckquerschnitte zu setzen:

(50) 1 1,5 —1,5-0,5/ ¦§ m
\1+zz-°>002))

1,5 — 0,5

\ ap /
worin ap in t/cm2 einzusetzen ist.

In Bild 4 sind die Spannungsdehnungsdiagramme eines
Blechstreifens von Versuchsrohr Nr. 2 für Zug und für Biegung in
Vergleich gesetzt. Man sieht, dass für Biegung das Material sich über
die rechnerische Fliessgrenze hinaus elastisch verhält. Das hängt
vermutlich damit zusammen, dass ein Fliessen nur über den ganzen
Querschnitt und nicht in einzelnen Fasern erfolgen kann.

Man könnte sich fragen, ob mit dieser Erhöhung der
Fliessgrenze nur für den Biegungs-, nicht aber für den Normalkraftanteil
gerechnet werden kann. Durchgerechnete Beispiele zeigen, dass in
praktisch vorkommenden Fällen die Normalspannung kleiner als die
Biegespannung ist. Wenn wir den Grenzfall gleich grosser Anteile
betrachten, so handelt es sich um eine dreieckförmige Spannungsverteilung.

Wir können nun zwei solcher Balken mit gleichem
Biegemoment und entgegengesetzter Normalkraft so übereinanderlegen,
dass die neutralen Axen zusammenfallen. Diese beiden Balken
haben dann denselben Spannungszustand wie ein einzelner Balken
doppelter Höhe, der nur auf Biegung beansprucht ist. Daraus folgt
also, dass beim Balken mit dreieckförmigem Spannungsdiagramm
bis zum Fliessbeginn die Randspannung gleich hoch wird wie beim
reinen Biegebalken. Man kann wohl annehmen, dass dies angenähert
im ganzen Bereich überschlagener Spannungsdiagramme der Fall sein
wird.

Damit geht (41) über in

' \ 2. aa
7I z*

an
->f -

an
ZZ 1 — 0,45
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und (46) in

(52) Pier
an

ii' + ^-i- ap — an \
E* j

Es können selbstverständlich auch die genaueren Formeln (38) und
(44) unter Verwendung der Hilfsfunktionen 0, W und ü gemäss
Diagramm Bild 3 verwendet werden. Es besteht dazu allerdings keine
Notwendigkeit, da die Abweichungen in praktischen Fällen belanglos
sind. Insbesondere sind die Korrekturglieder auf der rechten Seite
der Gleichungen (51) und (52) gerade bei kleinem e, wo die
Abweichungen in F und Q merkbar sind, ohnehin klein.

Eine Vergleichsrechnung für ein extrem dickwandiges Rohr
r/d 50 aus gewöhnlichem Baustahl mit ap 2,4 t/cm2 ergibt mit
a*p 3,8 t/cm2 und E* 2240 t/cm2 nach der genauen Formel
aN 2,10 t/cm2 (s 5,4, 0 1,97, V 0,245, Q 0,275) und
pter 41,5 kg/cm2, während nach der Näherungsformel an
2,05 t/cm2 und pur 40,5 kg/cm2 erhalten wird. Der Fehler der
Näherungsformel beträgt nur 2,4% und zwar auf die sichere Seite.

Für den Extremfall eines sehr dünnwandigen Rohres mit r/d
250 und mit einem hochwertigen Stahl mit ap 6,0 t/cm2 ergibt sich
mit er * 8,8 t/cm2 und E* 2240 t/cm2 nach der genauen Formel
aN 0,865 t/cm2 (e 17,0, 0 1,75, W 0,225 ü 0,175) und
Pier 2,59 kg/cm2, während nach der Näherungsformel aN
0,855 t/cm2 und pur 2,61 kg/cm2 erhalten wird. Der Fehler beträgt
nur 0,8%.

Im Diagramm Bild 5 ist die Beziehung zwischen pier und der
Schlankheit r/d für verschiedene Fliessgrenzen aus dem Zugversuch
als Parameter in logarithmischem Massstab dargestellt, und zwar für
den Bereich r/d < 250 und pur < 100 kg/cm2 das heisst 1000 m
Wassersäule. Aus dem Diagramm geht hervor, dass die Einsparung an
Blechdicke bei Verwendung hochfester Stähle relativ gering ist und
deren Preiszuschlag nicht kompensiert. Solche können aber vorliegen,
wenn der innere Wasserdruck für die Dimensionierung massgebend
ist. Abgesehen von Übergangsbereichen wird man es also
hauptsächlich mit St 37 mit aF 24 kg/mm2 zu tun haben. Empirisch
wurde hierfür im praktisch meist vorkommenden Bereich
60 < r/d < 180 die Näherungsformel

(53) Pier A 40 t/cm2

gefunden, die in diesem Bereich einen Fehler von ± 2 % ergibt.

Bei der Anwendung des Diagrammes Bild 5 der Formel (53) ist zu
beachten, dass noch ein Sicherheitskoeffizient von zum Beispiel 1,5
einzuhalten ist.

c) Rohr mit starren Schubdübeln

Verankerungen des Rohres im Beton können grundsätzlich auf
zwei Arten erfolgen : auf Zug oder auf Schub. Die Verankerung auf Zug
musste die gesamte Wasserlast auf die anteilige Mantelfläche eines

50

45

40

E 30

20

2 3
Dehnung in %o

Bild 4. Spannungs-Dehnungs-Diagramm für Zug und Biegung

Ankers aufnehmen, was zu sehr grossen Kräften führen und zudem
im Mantel grosse Biegemomente ergeben würde. Statisch sinnvoll
ist dagegen eine Schubverankerung, die das Gleiten zwischen Beton
und Blechmantel verhindert.

Die Wirkung von starren Schubdübeln liegt darin, dass diese
die Verkürzung des Blechmantels auf einen Teil des Umfanges
reduzieren und so das Rohr dazu zwingen, in mehreren Wellen längs des

Umfanges einzubeulen. Da eine Schubverankerung im Scheitel der
Beule liegen kann, wo sie aus Symmetriegründen unwirksam ist,
bilden sich bei n Schubankern n/2 Anzahl Beulen.

Gleichung (21) geht damit über in

(54)

und damit erscheint auf der rechten Seite der Gleichungen (38),
(41) und (51) der Faktor m/2 •

Um die Schubdübel in ihren Dimensionen festzulegen, muss eine
Annahme über die Unrundheit der Rohre gemacht werden. Ich
verweise diesbezüglich auf meine Abhandlung aus dem Jahre 1953 [2].

d) Rohr mit elastischen Schubdübeln

Die im vorigen Unterabschnitt gemachten Erörterungen haben
insofern eher theoretische Bedeutung, als absolut starre Schubdübel
nicht und angenähert starre Dübel nur mit relativ hohen Kosten zu
realisieren sind. Für die praktische Anwendung stehen Dübel aus
aufgeschweissten Stahlbolzen im Vordergrund. Diese sollen, um nicht
als Zugdübel zu wirken, glatten Schaft ohne Kopf haben. Solche
Bolzen sind natürlich verhältnismässig nachgiebig, und deshalb muss
die Theorie auf nachgiebige Schubdübel erweitert werden.

Da die Abstände dieser Bolzen verhältnismässig klein sind,
können zur Vereinfachung der Berechnung ihre Reaktionen als über
die Oberfläche des Rohres verteilte Kräfte eingeführt werden. Die
Wirkung der Dübel besteht darin, dass sie sich einer tangentialen
Verschiebung v zwischen Blechmantel und Betonunterlage widersetzen

durch Schubkräfte s, die proportional den Verschiebungen v
sind:

(55) ¦ g- v

g ist eine Steifigkeitszahl, die experimentell zu bestimmen ist. Gemäss
Bild 6 ergibmdie Gleichgewichtsbedingung in Richtung des
Rohrmantels

(56)
dN

+ s 0

errt)

mn

as
7n
fin - - —
so \V^
40
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v\ — !\ \* Sf 60 kc /m
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71 fJF 48

?n 6f- 36 ••
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Hj 24
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Bild 5. Kritische Beuldrücke in Funktion der Schlankheit für verschiedene

Fliessgrenzen
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und die Verformungsbedingungen

du N
(57) E-F

Aus den letzten drei Gleichungen können die drei Unbekannten N,
s und v ermittelt werden, wobei wir uns insbesondere um die
Verschiebung v interessieren und daher N und s eliminieren.
5 aus (55) und N aus (57) in (56) eingesetzt, ergibt die Differentialgleichung

für v

(58)
EF

g-r V 0

Die Lösung des symmetrischen Anteils lautet

(59) v A • ch
E-F cp + B- sh]/hjZ

y ef
Zur Vereinfachung legen wir den Anfangspunkt cp 0 auf die Gegenseite

der Beule, wo aus Symmetriegründen vo 0 sein muss, woraus
A 0 folgt. Wir nehmen ferner an, dass die Beule verhältnismässig
kurz sei und dass daher die Nachgiebigkeit des Mantels so ermittelt
werden könne, wie wenn dessen Normalkraft Nn im Punkte <p n
konzentriert eingeleitet würde. Gemäss (57) und (59) ergibt sich

(60)
th\nrvn \ EF

Nn M. EF

ohne Verdübelung wäre hingegen

(61)
v

~N
nr

'ef

Der Reduktionsfaktor u WË der Verformung ergibt sich somit zuv

(62)

th I n • r EF

g
EF

Mit diesem Reduktionsfaktor ist die rechte Seite der Gleichung (21)
und die linke Seite der Gleichungen (36), (38), (41) und (51) zu
versehen.

e) Unrundes Rohr
Bei einem freien, auf Aussendruck belasteten Rohr wirkt sich

eine Abweichung vom Kreis, ähnlich wie bei einem exzentrisch
belasteten Stab, sehr ungünstig auf die Knickbelastung aus. Es wurde
schon vermutet, dass auch bei Panzerungen mit einem starken Abfall

der Tragfähigkeit zu rechnen sei. Da es sich aber hierbei nicht um ein
eigentliches Stabilitätsproblem, sondern um ein Spannungsproblem
2. Ordnung handelt, sind die Verhältnisse nicht so ungünstig, wie
nachfolgende Untersuchung zeigt:

Wir nehmen an, dass sich der Rohrquerschnitt aus vier Kreisbogen

mit den Radien r + Ar und r — Ar und den Zentriwinkeln

90° - zusammensetzt, wie dies Bild 7 zeigt. Die Beule wird sich

dann im Bereich des grösseren Radius r + A r ausbilden, so dass in
den im Abschnitt 2 gemachten Ableitungen r durch r + A r zu
ersetzen ist. Lediglich in Formel (21) ist der halbe Umfang mit
n/2 (r + A r + r — A r) — rt • r einzusetzen.

In den Formeln (38) und (44) ist daher r durch r + A r zu
substituieren, ferner ist die rechte SÜlIfcder Formel (38), da beide Seiten

*'. * r m Ardurch r gekürzt wurden, mit zu multiplizieren, desgleichen

bei den abgeleiteten Formeln (41) und (51). Die Radien r + A r und
r — Ar können nur schwer gemessen werden, weshalb wir hier die
beiden Durchmesser D + A D und D — AD einführen:

(63)

D + A D 1 ]/2 (r + A r + 1

2
1 T +

3 1/2"

(r-Ar)

(64)

D AD 1
1/5"

B
2

woraus sich ergibt

Ar) + p ([r

31/2"

¦Ar)

1)-Ar

(65)
Ar
r

m
2

3]/2"

+ 1

AD
D 1,522-

AD
D

Für ein Zahlenbeispiel soll der Einfluss anhand der Formeln (51)
und (52) abgeleitet werden:

Annahmen: —r
a

Gleichung (51) lautet für das runde Rohr

an I an \3/:

2250t/cm2

12 •10000
3,0- • an 2250

1 0,45 • 100
3,0

2250

ïA

%%
m

P in kg A

Bild 6. Kräfte und Verschiebungen des
Mantels mit elastischen Schubdübeln

Rechts:

Bild 10. Belastungs-Verschiebungs-Diagramm
der Dübel

Pmax 1550 kg

0.36

-a

0,201 i r,_ 0.6t i^. - 21 t/cm
I (—"4(0.024-0017)" ——S

(90

500

0,17

0.5 10 15 20 25 3.0J Schlupf 4.0 4.5
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Sie ist erfüllt für an 1,191 t/cm2 und ergibt

1000 • 1,191
Pier

Mit einer Ovalität

100 ¦ 1,028

AD
D

halten werden kann) ist

12 -100 -101,52 •

Ar

11,58 kg/cm2 •

1 % (wie sie ohne Schwierigkeit einge-

1,52% und Gleichung (51) lautet:

'/*

3,0 — aN V 2250

Sie ist erfüllt für a n= 1,184 t/cm2 und ergibt

1000 • 1,184

1—0,45-101,52-
3,0-

2250

Pier
100 • 1,029

11,51 kg/cm2.

Eine Ovalität von 1 % ergibt somit nur eine Abminderung der
Beullast von 0,6%, was als im Rahmen der Rechnungsgenauigkeit
ohne weiteres vernachlässigt werden kann. Starke örtliche Abweichungen

vom Radius, wie sie bei sachgemässer Herstellung allerdings nicht
vorkommen sollten, können selbstverständlich die Tragfähigkeit viel
stärker herabsetzen.

/) Rohr mit versetztem Schweissstoss

Wenn die bei einer Längsnaht zusammenstossenden Blechaxen
um das Mass s gegeneinander versetzt sind, so entsteht aus der
Normalspannung an beidseitig des Stosses ein Zusatzmoment

(66) A M F ¦ — ¦ an

und somit eine Zusatzspannung

(67) A a ±
zi Af

3-r • aNd

In Gleichung (32) ist daher an mit dem Koeffizienten

3s
(68) m 1

zu versehen.

Die Biegelinie rj erhält zudem einen asymmetrischen Anteil.
Dieser wirkt sich aber auf den massgebenden Schnitt cp o nicht aus.
Somit ist in den Gleichungen (38) ff aF — an zu ersetzen durch
ap — m ¦ an- Wenn wir wieder das Beispiel aus Kapitel e), und zwar
mit der verhältnismässig kleinen Versetzung s d/10 berechnen, so
lautet die Gleichung (51)

12 • 1002
an

- 1,3 • On

an
2250

1—0,45-100-
3,0

Sie ist erfüllt für an 1,12 t/cm2 und ergibt

1000 • 1,12

3,0—1,3-o-j
2250

Pier 100 ¦ 1,024
10,94 kg/cm2.

90

3+AD

Bild 7. Unrundes Rohr (Ovalität)
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Der Abfall gegenüber dem idealen Rohr beträgt hier bereits
5,5% und erreicht damit die Rechnungsgenauigkeit. Es muss also
darauf geachtet werden, dass die Versetzung weniger als 10% der
Blechdicke ausmacht, was schon eine gute und reichliche Verklammerung

der Schweisskanten erfordert.

4. Beulversuche

Die Firma Wartmann & Cie. AG, Brugg und Zürich, hat in den
Jahren 1962 bis 1968 Versuche vorgenommen, um die theoretischen
Erkenntnisse zu erhärten. Diese Versuche wurden unter Leitung des
Verfassers durch die Herren W. Pisarik, W. Häselbarth und A. Stebih
durchgeführt. Es ging uns im wesentlichen darum, die effektiven
Beullasten in einem möglichst wirklichkeitsgetreuen Modell zu ermitteln,
ohne im übrigen einen allzu grossen Messaufwand zu betreiben. Die
Messungen beschränkten sich daher auf Durchbiegungsmessungen bei
verschiedenen Belastungsstufen in drei Querschnittsebenen des Rohres.
Diese sollten bei unvorhergesehenem Verhalten dazu dienen, aus
dem Verlauf der Durchbiegungszunahmen auf die Beullast zu schliessen.

Spannungsmessungen wurden keine vorgenommen, da aus
anderweitigen Versuchen ersichtlich war, dass hierbei mit grossen
Unregelmässigkeiten gerechnet werden muss.

Die Versuchsmodelle wurden einerseits so gross gewählt, dass
im üblichen Herstellungsverfahren der Rohre (ohne mechanische
Bearbeitung) die Imperfektionen nicht zu gross wurden, und andererseits

so klein, dass die Kosten der Versuchseinrichtung und der
Versuchskörper nicht zu hoch wurden. Der Durchmesser von rund
960 mm und die Wandstärke von 2,5-6 mm entsprechen etwa einem
Massstab V3 bis 1/4 wirklicher Grössenverhältnisse. Die Länge der
Versuchsrohre musste zudem möglichst gross sein, damit die
Randstörungen das Ergebnis nur untergeordnet beeinflussen könnten; sie
wurde mit rund 1,5 m gewählt.

Die Versuchsvorrichtung ist in Bild 8 dargestellt. Sie besteht im
wesentlichen aus einem Druckbehälter, einem Führungsrohr, dem
Versuchsrohr und dem Füllbeton zwischen den beiden letzteren.
Durch die Trennung von Druckbehälter und Führungsrohr wird
vermieden, dass sich die Verformungen des ersteren auf den Beton
übertragen können. Stirnseitig ist der Druckraum nur durch Flanschen
abgeschlossen, so dass das Innere des Versuchsrohres für die
Durchbiegungsmessungen zugänglich bleibt. Als Dichtung des Versuchsrohres

gegenüber den Flanschen des Druckgefässes wurden schliesslich

kleine, am Versuchsrohr angeklebte Gummiwinkel verwendet,
nachdem die zuerst vorgesehenen Gummischnüre nicht befriedigten.
Die der Bewegung des Rohrrandes entgegenwirkende Reibung ist
offenbar nicht wesentlich und musste in Kauf genommen werden. Ihr
Einfluss ist sicher bedeutend kleiner als bei einer Pressdichtung gegen
die Mantelfläche, wie sie anderwärts angewendet wurde, denn eine
solche ergibt am Ort einer Einbeulung eine viel grössere Rückstellkraft.

Um sichere Gewähr für sofortige Übertragung des Wasserdruckes
auf den ganzen Rohrmantel zu haben, war das Führungsrohr mit
Bohrungen versehen, durch die vor dem Betonieren dünne Rohre bis

an die Oberfläche des Versuchsrohres geführt wurden. Um Haftung
und Reibung zwischen Beton und Rohr auszuschalten, wurde das Rohr
mit Paraffin eingestrichen.

Die Durchbiegungen wurden mit einer Messuhr gemessen, die an
einem an einer zentralen Welle verschiebbaren und drehbaren Arm
befestijlpyar. Alle Messungen bezogen sich auf eine Nullablesung am
unbelasteten Rohr.

Es wurden 5 Versuchsrohre geprüft, davon 3 glatte Rohre
verschiedener Wandstärken in normaler Stahlqualität und 2 verdübelte
Rohre verschiedener Wandstärken und verschiedener Verdübelungs-
grade in hochwertiger Stahlqualität. Verschiedener Schwierigkeiten
wegen mussten die meisten Versuche mehrfach durchgeführt werden.
So gelang es nur bei den 2 dünnwandigsten Versuchen, eine über die

ganze Rohrlänge durchgehende Beule zu erzielen, während bei den

übrigen sich nur örtliche Randeinbeulungen ergaben, wie sie in der
Praxis selbstverständlich nicht möglich sind. Als Ursachen für diese

Erscheinung kommen in Frage: Einerseits der für die Unterbringung
der Dichtung frei gebliebene Rand des Rohres und anderseits die
geringere Steifigkeit des Randes, da hier keine Behinderung der
Querkontraktion vorliegt.

Die vorsorglicherweise durchgeführten Durchbiegungsmessungen
erlauben aber den Schluss, dass die effektiven Beullasten für eine lange
Beule nur ganz unwesentlich höher liegen würden, als die mit Eintritt
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Bild 8. Versuchsvorrichtung 1:25, rechts Detail A 1:5

Nebst Materialuntersuchungen für alle Versuchsrohre wurde
noch ein Belastungs-Verschiebungsdiagramm für die Verdübelung
aufgenommen (Bild 10). Der Probekörper wurde nach dem
Beulversuch dem Rohr 4 entnommen. Die Dübel hatten sich, sei es durch
den Versuch, sei es durch die Entnahme und den Transport der Probe,
gelockert, was sich im Diagramm durch einen anfänglichen Schlupf
von rund 0,14 mm ausdrückt. Der Steifigkeitswert C kann jedoch
zwischen den Laststufen 300 kg und 900 kg zu C 21 t/cm2 ermittelt
werden. Da die Verschiebung am Ende des Versuchsbleches statt in
der Mitte der Dübelgruppe abgenommen wurde, ist in Wirklichkeit
mit C 20 t/cm zu rechnen. Dieser Wert gilt für Dübel 0 6 mm,
Länge 33 mm und normalen Beton. Bei gleichbleibenden Verhältnissen
dürfte der Steifigkeitswert linear mit dem Durchmesser der Dübel
zunehmen. Werte finden sich in der Literatur, zum Beispiel [12]. Für 0
19 mm kann dort C 200 t/cm ermittelt werden, also das zehnfache
statt nur das 3,2fache des Wertes für 0 6 mm. Diese Diskrepanz hängt

der Randbeule erhaltenen. Dies ist zum Beispiel aus dem Diagramm
Bild 9 ersich#ich, in dem die Durchbiegungen in der unteren Messebene

im Bereich der sich bildenden Beule in Funktion der Belastung
aufgetragen sind. Man sieht, dass die effektiv erreichte Beullast schon
fast die Asymptote zum Belastungs-Verformungsdiagramm bildet.
Ferner ist auch ersichtlich, dass die Durchbiegung in den der Beulen-
mitte benachbarten Punkten kurz vor Erreichen der Beullast wieder
zurückgeht, die Beule also entsprechend den theoretischen Erkenntnissen

mit zunehmender Last kürzer wird.
Die vorstehende Theorie zeigt, dass sich die kleinste Beullast

ergibt, wenn nur eine Beule über den Umfang entsteht. Andere Autoren
behaupten, dass sich mehrere Beulen bilden. Wie so oft enthalten beide

WÄstellungen eine Teilwahrheit. In Wirklichkeit bilden sich vorerst
mehrere Beulen,- -Sm je nach zufälligen Ungenauigkeiten des Rohres
über den Umfang verteilt sind. Mit steigenlSLast konzentriert sich
die Verformung auf eine einzelne Beule, während die andern sich
wieder zurückbilden.

1.2

1.0

0.Ö

</io
E 0.6

0,4

5°_

0.2

0 ~ 20 21 22
p atu

Bild 9. Gemessene Verformungen in Funktion der Belastung

Tabelle 2: Vergleich von theoretischen und gemessenen kritischen Beuldrücken

Versuch Nr.

Mittlerer Radius mm
Blechstärke mm
Dübelabstände s/t mm -

Elastizitätsmodul E t/cm2
Elastizitätsmodul E* t/cm2 (48)

Fliessgrenze a F ' t/cm2

Fliessgrenze a F* t/cm2 (49)

G
Dübelsteiflgkeit g

is • t
t/cm3

Abminderungsfaktor x (61)

Normalspannung an t/cm2 (51)

Kritischer Beuldruck pur kg/cm2 (52)

Gemessener Beuldruck kg/cm2

478 479 480 478 479

2,65 4,28 6,20 3,31 5,38

— — — 152/125 152/250

2140 2010 2110 2100 2130

2280 2140 2250 2240 2270

2,89 2,82 2,98 4,00 4,14

4,53 4,42 4,68 6,14 6,31

— — — 0,105 0,052

— — — 0,525 0,763

0,94 1,29 1,76 1,58 2,03

4,72 10,85 21,9 9,92 21,5

4,73 11,0 22,0 10,0 21,0
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vermutlich vom Einspannungsgrad des Dübels ab. In dem
vorliegenden, verhältnismässig dünnen Blech ist die Einspannung
bedeutend kleiner als im Träger nach [12].

Theoretisch kann der C-Wert je nach Einspannung im Verhältnis
1:4 variieren. Man muss also, um zuverlässige Resultate zu erhalten,
den Wert C jeweilen experimentell ermitteltn.

Die Resultate der Versuche sind in Tabelle 2 zusammengefasst
und den theoretischen Werten gemäss den Formeln (48) bis (52)
gegenübergestellt. Hierbei ist bei allen Rohren av o angenommen.
Die Abweichung gegenüber den Versuchen bewegt sich im Rahmen
von ±2%, der mittlere quadratische Fehler ist 1,3%. Diese gute
Übereinstimmung überrascht in Anbetracht der sowohl in
theoretischer als auch in versuchstechnischer Hinsicht komplexen
Probleme. Wenn vielleicht auch der Zufall dabei im Spiel war, so sprechen
doch die Resultate der Versuche dafür, dass die vorgelegte Theorie
das gestellte Problem mit ausreichender Genauigkeit löst.
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Direktor in der Firma

Das Gesicht der amerikanischen Universität
Von J. Schilling, dipi. Arch. SIA, Zürich

DK 727.3

In einem Zeitpunkt, da der Bau von grossen und kostspieligen
Erweiterungsbauten für unsere schweizerischen Universitäten
geplant und diskutiert wird, lohnt es sich, eiHfen Blick nach Amerika
zu werfen. Wie sieht eine Universität aus, welches Gesicht soll
sie haben? Sind Universitätsbauten reine Zweckbauten? Darf
unter dem Druck des immensen Raumbedarfes auf jegliche
architektonische Ambition verzichtet werden? Ist die Zeit vorbei, da
Universitätsbauten zu den markantesten und sehenswertesten
Gebäuden einer Stadt zählten?

Zur Beantwortung dieser Fragen können amerikanische
Universitätsbauten wichtige Hinweise liefern. Eine Schlussfolgerung

sei vorweggenommen: Rationelle Planung, Zweckarchitektur
schliesst typische und einprägsame Ausdrucksformeti nicht aus.

In den USA hat sich schon lange eine intensive Zusammenarbeit

bzw. Arbeitsteilung zwischen Architekt und Generalunternehmer

eingespielt. Dem Architekten obliegt die Projektierung
und Detaillierung; er ist verantwortlich für die organisatorische
und architektonische Qualität. Der Generalunternehmer sorgt für
den reibungslosen Ablauf der Bauarbeiten. Auf Grund der Pläne
und Beschriebe des leitenden Architekten werden verschiedene
Generalunternehmer aufgefordert, Pauschalofferten zu stellen.
Deren Preise werden mit der Kostenschätzung von Architekt und

Bild 1. Laboratoriums- und Unterrichtsgebäude des IIT (Illinois Institute
of Technology) in Chicago. Die pavillonartigen Gebäude stehen verhältnismässig

eng nebeneinander beidseits einer Fussgängerachse. Die Pavillons
wurden den jeweiligen Bedürfnissen entsprechend einzeln gebaut, doch
bilden sie in ihrer einfachen, kubischen Architektur ein ablesbares,
einheitliches Ganzes. Die Grosszahl der Bauten stammt von Architekt Mies
Van der Rohe

Bild 2. Zehnstöckiger Laboratoriumsturm der medizinischen Abteilung der
Universität Yale (Architekten: Douglas Orr, de Cossy, Winder). Wie bei den

andern Laboratoriumsbauten für Chemie und Physik (Architekt Philipp
Johnson) in dieser Stadt, weist das Gebäude nur wenige senkrechte
Fensterschlitze auf. Damit wird eine sehr willkommene, zusätzliche äussere
Arbeits- und Stellwand gewonnen. Das Gebäude ist vollständig klimatisiert.

Die Fensterfläche genügt bei normalem Wetter vollständig zur
allgemeinen Raumbeleuchtung
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