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a) b)
Bild 1. a) Durchlaufende Shedschale, b) durchlaufendes Faltwerk

Schnittgrossen in durchlaufenden Flächentragwerken mit gleich grossen Feldern
und gleichmässig verteilter Belastung dk 624.074.5

Von Hans Nyffeler, Bau-Ing., Burgdorf

1. Allgemeines

Die exakte Berechnung von durchlaufenden Flächentragwerken
wie Schalen, Faltwerken, Platten und Scheiben ist nur mit einem sehr

grossen Arbeitsaufwand möglich. Die oft verwendeten Näherungsverfahren

sind lato1 sehr ungenau. Wie nachfolgend gezeigt wird,
ist unter bestimmten Voraussetzungen eine einfache Berechnung möglich,

die erstaunlich genaue Werte liefert. Die genannten
Voraussetzungen sind:

— in jedem Feld gleiche, symmetrisch zur Feldmitte ausgebildete
Tragwerksteile

— gleiche Spannweiten in allen Feldern

— gleiche Randbedingungen an den Längsrändern in allen Feldern

—• in Längsrichtung gleichmässig verteilte Belastung in den einzelnen
Feldern

Die BeSchnung beschränkt sich auf die Bestimmung der Schnitt-
grössen in den Feldmitten und über den Stützstellen. Die gesuchten
Werte des durchlaufenden Tragwerkes werden aus bekannten Schnitt-
grössen von einfelderigen Systemen ermittelt. Das Verfahren eignet
sich für die in Bild 1 dargestellten oder ähnliche Tragwerke. Die
Felderzahl kann beliebig sein. Die Berücksichtigung einer totalen
Endeinspannung des Tragwerkes ist mühelos möglich.

2. Schnittgrossen in einfelderigen Tragwerken

Die Kenntnis der Schnittgrössen in einfelderigen Tragwerken
infolge einer in Längsrichtung gleichmässig verteilten Belastung wird
vorausgesetzt. Über die Berechnung von beidseitig frei drehbar
gelagerten Zylinderschalen und Faltwerken besteht eine umfangreiche
Literatur. Für ein- und beidseitig total eingespannte Faltwerke hat
der Verfasser [6] besondere Berechnungsverfahren entwickelt.
Bekanntlich können Zylinderschalen auch mit Hilfe der Faltwerks-
theorie berechnet werden. Deshalb sind die Schnittgrössen von ein-
und zweiseitig total eingespannten Zylinderschalen bestimmbar. Für
Rechteckplatten stehen für die verschiedenen Lagerungsfälle Tabellenwerte

von Czerny [1], Bittner [2], Stiglat/Wippelffi], Ertürk [4] und
anderen Autoren zur Verfügung. Für Scheiben können die
entsprechenden Werte mit Hilfe der Scheibentheorie gewonnen werden.

3. Tragwerk mit unendlich vielen Feldern

Im Tragwerk mit unendlich vielen Feldern sind die Schnittgrössen
infolge einer gleichmässig über eine Spannwjajte verteilten Belastung
von besonderer Wichtigkeit. Wir bezeichnen nachfolgend einen solchen
Lastfall (Belastung eines einzelnen Feldes) als Hüfslastfall. Die unter
dieser Last entstehenden Schnittgrössen an einer bestimmten Stelle in
Feldmitte bezeichnen wir mit Xi, Xi, X3 usw., diejenigen über den
Stützstellen mit X12, X13, Xi* usw. (Bild 2). Diese Werte werden mit
wachsender Entfernung vom belasteten Feld rasch kleiner. Sie sind
schon nach dem dritten unbelasteten Feld vernachlässigbar klein.

Zur Berechnung der unbekannten Grössen stehen die Schnittgrössen

von drei bekannten Lastfällen zur Verfügung. Bild 3a ifsffljl
diese Lastfälle in der bekannten Einzelfelddarstellung und Bild 3b als

Belastung am Tragwerk mit unendlich vielen Feldern. Um die
Weiterrechnung zu erleichtern, bilden wir durch Überlagern der Lastfälle a)
bis d) in Bild 4 den Lastfall e). Dieser lässt sich in die Lastfälle f)
und g) zerlegen, welche im llgrachteten Bereich Vielfache des Hilfs-
lastfalles von Bild 2 sind.

Aus Bild 4 lassen sich folgende Beziehungen herauslesen:

J.

c) d)
Bild 1c. Durchlaufende Platte. Die Ränder A bis D können frei drehbar

gelagert, total eingespannt oder ungestOtzt sein

Bild 1d. Durchlaufende Scheibe mit Stützung Dber die ganze Höhe an den
Enden
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Bild 2. Bezeichnung der Schnittgrössen im Tragwerk mit unendlich vielen
Feldern infolge der Belastung eines einzelnen Feldes
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Bild 3a. Schnittgrössen bekannter Lastfälle in Einzelfelddarstellung

Bild 3b. Belastung des Tragwerkes mit unendlich vielen Feldern zur
Erzielung gleicher Schnittgrössen wie bei 3a

(lb) X2 +X4 =-mr'Xa — Xc) Um für alle unbekannten Grössen Einzelwerte zu erhalten, bilden

(lc) *3 (Xa — 2 X„ + Xe)
X2 — tfi2 Xi

(ld) Xn + XA. ¦ (Xba + Xcb)

(le) x23 + XMm— -j(Xo, — Xe,).

¦"4 §j °34 %3

X13 flj Xxx

XM a3 Aj3

A45 ß4 X34

Schweizerische Bauzeitung ¦ 86. Jahrgang Heft 7 • 15. Februar 1968 109



o; ^ UNI

P

P -x„
Mlll.lllllllll Illllllllllllllll

b)

I mf i iinrrr

rjj llllllllllllllllllllllll

e;

f)

9*

-^jmiiiiniiiiiil ' liniiiii rr

"o *c I

-x.

lllllllllllllll j11111111 Tafel I. Beïwerte für Feldmomente in x-Richtung

IIIIIMIIIIIIIIIII Il 11 UN
¦um i i iiiiiirr,

*6 *bs *b

i _y _y .y i
ninnili i* ,bs ,° iiiiiin 1111 ittttttti

Iiiiiiiii

I NIMM ITTTTT-

iinii um i iiMiiinniiiiiiiiiiiiiiii IIIIHIill
Äc Äos ä. X.. X.c ncs **e "es nc

4p

4p

j mix m2x m3x mu
Ix 113 m P'ì P'ì

4p

4aj 4Xj2 4"2 ^^23 ^"3 ^"34 ^"4 ^"4i
4p

1,0 0,0323 -0,0021 0,0002
1.1 0,0374 -0,0033 0,0004

1.2 0,0421 -0,0046 0,0006 -0,0001
1,3 0,0462 -0,0058 0,0008 -0,0001
1,4 0,0499 -0,0070 0,0011 -0,0002
1,5 0,0531 -0,0083 0,0014 -0,0002
1.6 0,0559 -0,0094 0,0016 -0,0003
1.7 0,0583 -0,0105 0,0019 -0,0003

1,8 0,0603 -0,0115 0,0022 -0,0004
1.9 0,0621 -0,0124 0,0024 -0,0005
2,0 0,0636 -0,0132 0,0027 -0,0005

4Xt5 4\ 4XM 4X3 4X23 4X2 4X,2 4X,

Bilder 4a bis 4d. Bekannte Lastfälle (siehe Bilder 3)

Bild 4e. Lastfall aus der Oberlagerung von a) bis d)

Bilder 4f und 4g. Durch Zerlegung von e) gewonnene Lastfälle

i P ea J &—ffipa—zs—|

1 m\x m2x m3x mix

h ,2Ph ,2Ph ,2ply r2P'y

b)

c)

d)

e)

f)

9>

Anttmetrieachse :

für Lastfall ti -\
\- Symmetrieachse

I fur Lastfall b)

1,0 0,0323 -0,0021 0,0002

1.1 0,0329 -0,0014 0,0001

1,2 0,0329 -0,0007 0,0001

1,3 0,0322 -0,0001

1,4 0,0312 0,0002

1,5 0,0297 0,0008

1,6 0,0280 0,0011

1,7 0,0262 0,0013

1,8 0,0243 0,0014

1,9 0,0223 0,0015

2,0 0,0205 0,0015

p

wobei die a-Werte bestimmte Übertragungszahlen für die Schnittgrössen

sind.
Die Einzelwerte der Folgen

Bild 5a. Gegebenes Tragwerk mit Belastung

Bild 5b. Tragwerk mit unendlich vielen Feldern und glMhen Schnittgrössen
im betrachteten Bereich wie bei a)

Bilder 5c bis 5g. Zerlegung des Lastfalles b) in einzelne Hilfslastfälle

und

«12 Û23 «34

a,, a%, ct.

Cln (n + l)

ün

streben mit wachsendem n einem Grenzwert C zu. Bei einer genaueren
Untersuchung der Verhältnisse zeigt sich, dass schon die zweiten
Glieder der Folgen so wenig von diesem Grenzwert abweichen, dass
sie, und alle nachfolgenden Glieder, mit sehr guter Näherung durch
diesen ersetzt werden dürfen. Es gilt somit

a)

b)

c)

d)

e)
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Bilder 6a bis 6e. Für die Berechnung mit dem vorliegenden Verfahren
geeignete Plattentypen. Die Felderzahl kann beliebig sein
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Bild 7. Bezeichnung der Biegemomente für den Hilfslastfall einer
durchlaufenden Platte mit frei drehbar gelagerten Längsrändern

Bild 8. Durchlaufende Platte mit drei quadratischen Feldern und Belastung
Im Mittelfeld. Berechnung der Momentenbeiwerte
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Tafel II. Beiwerte für Feldmomente in y-Richtung Tafel III. BeiwerSjfür die-Sfützmomente

1 m ly m2y m3y m4y

1 P'x pli pll pll
1,0

1.1

1,2

1,3

1,4

1,5

1.6

1.7

1,8

1,9

2,0

1,0

1,1

1,2

1,3

1,4

1,5

1.6

1.7

1,8

1,9

2,0

0,0253

0,0235

0,0214

0,0193

0,0172

0,0153

0,0135

0,0118

0,0104

0,0090

0,0078

0,0253

0,0323

0,0395

0,0467

0,0538

0,0605

0,0669

0,0729

0,0784

0,0835

0,0881

-0,0053

-0,0055

-0,0057

-0,0057
-0,0056
-0,0053

-0,0050

-0,0047

-0,0044

-0,0041

-0,0037

-0,0053
-0,0057
-0,0060
-0,0061

-0,0061

-0,0059
-0,0057

-0,0053

-0,0049

-0,0046
-0,0042

0,0005

0,0006

0,0007

0,0008

0,0009

0,0009

0,0009

0,0010

0,0009

0,0009

0,0009

Ix m\y m2y m3V ™4y

ly Pll Pll pll pll
0,0005

0,0005

0,0004

0,0003

0,0003

0,0002

0,0002

0,0001

0,0001

0,0001

-0,0001

-0,0001

ly "tu »123 l"M m43

¦Ix i2
P Ix ,2

P Ix p lx ,2Pix

-0,0001 1,0

-0,0001 1,1

-0,0001 1,2

-0,0001 1,3

-0,0002 1,4

-0,0002 1,5

£,0002 1,6

0,0002 1.7

-0,0002 1,8

¦0,0002 1,9

fl,0002 2,0

1.0

1,1

1.2

1,3

1.4

1.5

1,6

1,7

1,8

1,9

2,0

-0,0384

-0,0415

-0,0438

-0,0457
-0,0474

-0,0485

-0,0496

-0,0503
-0,0511

-0,0515

-0,0519

-0,0384
-0,0427
-0,0463

-0,0495
-0,0521

-0,0543

-0,0560
-0,0574

-0,0586
-0,0595

-0,0602

0,0039

0,0050

0,0060

0,0070

0,0079

0,0087

0,0094

0,0100

0,0106

0,0112

0,0115

0,0039

0,0036

0,0031

0,0027

0,0023

0,0019

0,0015

0,0012

0,0010

0,0008

0,0006

-0,0004

-0,0006

-0,0008

-0,0010
-0,0012

-0,0014

-0,0016

-0,0018

-0,0020
-0,0022
-0,0023

-0,0004

-0,0003

-0,0002
-0,0001

-0,0001

-0,0001

0,0001

0,0001

0,0001

0,0002

0,0002

0,0003

0,0003

0,0004

0,0004

0,0005

lx m12 m23 /«34 m4S

ly .2Ply ,2Ph ,2
P h ,2Ply

folgt

(3) C
X2 + x4

2X3 \x2+xj
Die Werte für X2 + X4 und X3 können aus Gl. (lb) und (lc)

ermittelt werden. Durch Einsetzen in Gl. (3) ergibt sich der gesuchte
Wert C. Mit diesem und den Gl. (1) und (2) lauten nun die Werte für
die gesuchten Schnittgrössen :

1

(4a) X, | — (Xa + 2Xb + Xc)

(4b) i Xa — X,e
~ 4(l+C^

(4c) x3 — (Xa — 2Xt, + Xc)
0

(4d) X4
c— (Xa — 2Xb + Xc)
0

(4e) *!2
1 C2(Xt,,-(v i y \ 1

-Xcs)
\Abs -t- Act) T C)

(40 Xa
Xbs — Xes

4 (1 + C)

(4g) •A34
C yXba— Xcs)

4 (1 + C)

(4h) X4S
C \Xbs — Xcs)

A fi _1_ /-\ '

Bisweilen wird der Wert C so klein, dass die Grössen X3 und XM
klein und die Werte X4 und X4S vernachlässigbar klein werden.

Bei sehr kleinem X3 eignet sich Gl. (3) schlecht für die Bestimmung

von C. Schon der kleinste Fehler in X3 bewirkt, dass C sehr
ungenau wird. In solchen Fällen ist es zweckmässig, den Wert C wie
folgt zu ermitteln. Bei kleinem C gilt mit guter Näherung

X& — CX12 •

Aus (Id) und (le) folgt dann, wenn X4S vernachlässigt wird,

1

X12 j {Xbs ~f~ Xcs)

1

X12 (C + C2) —-j (Xb* — Xcs)

Bei sehr kleinem C kann das quadratische Glied in der zweiten
Gleichung vernachlässigt werden. Mit dieser Vereinfachung erhalten
wir aus den zwei Gleichungen den einfachen Ausdruck

(5) C —
Xbs — Xcs

Xbs + Xcs

4. Tragwerk mit einer beliebigen Anzahl Felder
Ein Tragwerk mit einer beliebigen Anzahl Felder kann stets als

Ausschnitt aus einem Tragwerk mit unendlich vielen Feldern darge-
stellt werden.

Bild 5a zeigt als Beispiel ein vierfelderiges Tragwerk mit einseitiger
totaler Endeinspannung und mit einer Belastung im zweiten Feld.
Bild 5 b zeigt ein Tragwerk mit unendlich vielen Feldern mit derselben
Belastung und denselben Schnittgrössen im betrachteten Bereich.
Der Lastfall Bild 5 b kann in die Hilfslastfäüe c) bis g) zerlegt werden.
Für diese sind die Schnittgrössen nach Abschnitt 3 bestimmbar.
Durch Überlagern der Einzelwerte können nun die Schnittgrössen
für den Lastfall b) gefunden werden. Dadurch sind auch die Schnittgrössen

für das gegebene Tragwerk bestimmt.

5. Berechnung der Biegemomente durchlaufender Platten

Für durchlaufende Platten mit Randbedingungen nach Bild 6a
bis Bild 6 e können die Momentenbeiwerte für die Hilfslastfäüe
tabelliert werden. Für Randbedingungen nach Bild 6a hat der
Verfasser die entsprechenden Werte nach dem beschriebenen Verfahren
ermittelt. Die Ausgangswerte für die Berechnung wurden den Tabellen
von Czerny [1] entnommen. Die Ergebnisse für die in Bild 7
eingetragenen Plattenpunkte sind in den Tafeln I bis III zusammengestellt.
Die Anwendung zeigt Bild 8. Für die dargestellte dreifelderige Platte
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Tafel IV. Vergleich der berechneten Momentenwerte mit den exakten

Erggfinissen {v — 0,2)

Ort Berechnete
Biegemomente

Exakte Ergebnisse nach
Timoshenko/
Woinowsky-Krieger

Feldmitte x-Richtung
Feldmitte ^-Richtung
Stützstelle x-Richtung

0,0374 pl2
0,0318 p/2

-0,0380 pl2

0,0375 pl2
0,0317 p/2

-0,0381 p l2

mit quadratischen Feldern sind die Momentenbeiwerte infolge einer
gleichmässig verteilten Belastung des Mittelfeldes ermittelt worden.
Zunächst wurden die Beiwerte für die Hilfslastfälle den Tafeln I bis in
entnommen. Alsdann erfolgte die Überlagerung nach Abschnitt 4.

Timoshenko und Woinowsky-Krieger [5] haben für diesen LastJall*
die Biegemomente im Mittelfeld und über den Stützstellen exakt
ermittelt. Ihrer Berechnung hegt die Querdehnzahl v 0,2 zugrunde.
Die Werte der Tafeln I bis III gelten für v 0.

Das gleiche gilt für die ermittelten Werte im vorliegenden Bei-
spiel. Werden die entsprechenden Werte von Bild 8 auf eine
Querdehnung von v 0,2 umgerechnet, so ergibt sich eine befriedigende
Übereinstimmung mit den Werten von Timoshenko/Woinowsky-
Krieger, wie Tafel IV zeigt.
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Verhinderung von Schornsteinschwingungen mitteis Stabilisierungsstreifen1 DK 699.842

Es ist allgemein bekannt, dass lange, schlanke Bauwerke wie zum
Beispiel hohe Schornsteine, frei aufgehängte Ölleitungen usw. unter
dem Einfluss von Luftströmungen zum Schwingen angeregt werden.
Diese Erscheinung wird umso ausgeprägter, je geringer die
Eigendämpfung des Bauwerkes ist.

Diese vom Wind erregten Schwingungen finden meistens in der
senkrecht zur Luftströmung stehenden Ebene statt und weiden bei
runden oder annähernd runden Querschnittsformen fast ausschliesslich

durch die Wirbelajfflung verursacht. Die Luftwirbel bilden sich
wechselweise auf der einen und der anderen Seite des Bauwerkes und
leiten eine Kraft ein, welche mit der Frequenz der Wirbelbildung und
senkrecht zur Windrichtung einen positiven und einen negativen

Bild 1. An einem Stahl-Hochkamin angebrachte Stabilisierungsstreifen

Or

HH||bstwert erreicht. Bei einem starren Zylinder ist die Frequenz dieser
Krafteinwirkung gegeben durch

S=fD/V,
worin/die Frequenz der einseitigen Wirbelbüdung; D den
Zylinderdurchmesser; V die Windgeschwindigkeit bedeuten. Diese
Gesetzmässigkeit wird bei schwingungsfähigen Gebilden nicht erfüllt.
Versuche haben gezeigt, dass in gewissen Luftgeschwindigkeitsbereichen

die Frequenz der Wirbelbildung durch die Schwingungsfrequenz
des Zylinders beeinflusst wird. Innerhalb dieses Bereiches bleibt die
Schwingungsfrequenz des Zylinders unverändert und entspricht
dessen Eigenfrequenz.

Mit der zunehmenden Verbreitung von Stahlkonstruktionen,
die von Natur aus nur geringe Eigendämpfung besitzen, wurde
die Schaffung einer wirkungsvollen Vorrichtung dringend, um
Schwingungserscheinungen der fraglichen Art entgegen zu wirken. Zu
diesem Zweck wurden mehrere Lösungen vorgeschlagen und erprobt.
Darunter seien genannt: Die Erhöhung der Eigenfrequenz (Steifigkeit)
solcher Konstruktionen durch Vergrösserung ihrer Massen, die
Verwendung verschiedenartiger Windabweisplatten, welche je nach der
Windrichtung beweglich angeordnet sind, usw. Der praktischen
Anwendbarkeit dieser Lösungen stehen aber meistens die erhöhten
Bau- und Wartungskosten sowie die nicht immer günstigen Wirkungsgrade

entgegen.
Eine weitere Methode bezweckt die Veränderung der Luftabrissfrequenz

mit dem Ziel, den Bereich der Eigenfrequenz der Konstruktion

zu meiden, oder den periodischen Ablauf der wechselseitigen
Wirbelbildung entlang der Zylinderachse zu stören. Zur letztgenannten
Gruppe gehören die Stabilisierungsstreifen («Strakes»), deren
Wirkungsweise Gegenstand eingehender Versuche im National Physical
Laboratory (Aerodynamics Division) des britischen Ministry of
Technology war, und die auch patentiert wurden.

Die Einrichtung besteht aus einer Anzahl Streifen, welche
schraubenförmig an der Oberfläche des Zylinders angebracht werden,
Bild 1. In diesem Falle wurden Vierkant-Stahlstreifen am Umfang
angeschweisst. Windkanalversuche haben ergeben, dass optimale
Ergebnisse mit drei Vierkant-Streifen mit einer Steigung von etwa
5 D und einer Höhe von 0,1 D zu erzielen sind. Es konnte festgestellt
werden, dass der Luftwiderstand eines mit solchen Vierkantstreifen
versehenen Zylinders unabhängig von der Reynolds-Zahl ist. Aus
dieser Erkenntnis konnte abgeleitet werden, dass auch die
aerodynamische Schwingungserregung von der Reynolds-Zahl nicht beeinflusst

wird. Dadurch können die am Modell ermittelten Ergebnisse
mit Sicherheit auf Konstruktionen in natürlicher Grösse übertragen
werden, was denn auch in der Praxis bestätigt wurde.

') Nach C. Scruton: «Note on a device for the suppression of the
vortex-excited oscillations of flexible structures of circular or near-circular
section, with special reference to its application to tall stacks». NPL Aero
Note 1012, Bericht der Aerodynamics Division vom britischen National
Physical Laboratory im Ministry of Technology. Übersetzt und bearbeitet
von M. Künzler.
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