Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 86 (1968)

Heft: 3

Artikel: Vom Atomkraftwerk Mühleberg

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-69968

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

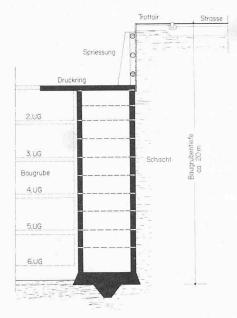


Bild 7. Schachtwand Aeschenvorstadt in Basel, Schnitt 1:300

weisem Aushub der Baugrube liessen wir einen ringförmigen Teil der Decke über zweitem Untergeschoss betonieren, sodass sich sämtliche Schächte der Umfassungsmauern auf diesem Druckring abstützen konnten. Erst jetzt wurde die Baugrube vollends abgeteuft und das Gebäude darin erstellt.

Schlussbemerkungen:

Das Schachtwandverfahren, wie es vorstehend an verschiedenen Beispielen erläutert wurde, ist sehr anpassungsfähig. Die Schächte haben eine grosse Biegungssteifigkeit, sodass sie unten eingespannt oder in beliebiger Höhe gestützt werden können. Diese Baumethode hat sich verschiedentlich allen andern als wirtschaftlich überlegen erwiesen. Voraussetzung ist allerdings, dass alle ihre Vorteile ausgenützt werden. Zu diesen ist die innige Verbindung der anbetonierten Wände mit dem Erdreich und der dreiseitige Erddruck auf die Schächte zu zählen. Ferner kann der Umstand ausgenützt werden, dass die Kohäsion des Bodens kurzfristig nicht gestört wird und daher in Rechnung gestellt werden kann. Beim Abteufen der Schächte wird der Baugrund restlos aufgeschlossen, sodass erdbaumechanische Untersuchungen zuverlässige Unterlagen für die Stabilitätsberechnung ergeben. Die Schächte können soweit nötig für die Entwässerung des Erdreiches für Lichtschächte, Notausgänge usw. benützt werden.

Es versteht sich von selbst, dass der Ingenieur während der Abteufung der Schächte fortwährend Beobachtungen anstellen, mit der Unternehmung die Aushub- und Betonieretappen festlegen und die spätere Stützung der Schachtwand sorgfältig studieren muss. Selbstverständlich kommt dabei der Erfahrung grosse Bedeutung zu. Die Baumethode ist für den Ingenieur nicht gerade bequem, sondern erfordert laufend Kontrollen, Anpassungen und Rückschlüsse. Dafür bietet sie die Möglichkeit, unter Umständen bedeutende wirtschaftliche Vorteile bei grosser Unfallsicherheit und unter Vermeidung von Baulärm zu erzielen.

Adresse des Verfassers: Jakob Bächtold, dipl. Ing. ETH/SIA, Ingenieurbüro Bächtold, Robert&Co., Schosshaldenstrasse 32, 3006 Bern.

Vom Atomkraftwerk Mühleberg DK 621:039

Die Sicherheitshülle für den Reaktor Mühleberg besteht aus einem birnenförmigen Stahlblechgefäss von rund 32 m Höhe und maximal rund 18 m Durchmesser, worin der Reaktor und die wesentlichen nuklearen Hilfsanlagen untergebracht sind, sowie aus dem torusförmigen «Pressure Suppression System». Das Gesamtgewicht aller dieser Stahlblechkonstruktionen, welche wegen der grossen Dimensionen beinahe komplett auf Platz zusammengebaut werden müssen, beläuft sich auf rund 1100 t. Der Auftrag wurde von General Electric Technical Services Co., Baden, an ein Konsortium erteilt, bestehend aus den Firmen Gebrüder Sulzer AG, Wartmann & Cie. AG, Brugg, und Giovanola Frères SA, Monthey, unter Federführung von Sulzer. Diese Firma wird ebenfalls die Ingenieurarbeiten und die Montageleitung übernehmen. Das Reaktorgefäss wurde ebenfalls Gebrüder Sulzer in Auftrag gegeben, die mit der Firma Rotterdamsche Droogdok Maatschappij zusammenarbeitet. Es wird in zwei Hälften fabriziert, welche infolge der Tiansportverhältnisse in der Schweiz erst auf dem Bauplatz zusammengeschweisst werden; die Dimensionen betragen rund 19 m in der Höhe und rund 4,2 m im Durchmesser und das Totalgewicht 265 t. Die beiden Wasserabscheider-Zwischenüberhitzer bestellte Brown Boveri & Cie. AG, Baden, bei Gebrüder Sulzer AG. Es handelt sich um kombinierte Einheiten, welche als horizontale Gefässe von rund 12 m Länge und 4 m im Durchmesser neben den beiden Turbo-Generatoren im Maschinenhaus des Atomkraftwerkes Mühleberg untergebracht werden und die die Betriebsverhältnisse und Wirtschaftlichkeit des Atomkraftwerkes verbessern.

Erzeugung und Verwendung elektrischer Energie in der Schweiz 1966/67 DK 620.9

Obwohl die Wasserführung des Rheins in Rheinfelden weniger reichlich war als im hydrographischen Jahre 1965/66 — sie betrug im Winter nur 114 (Vorjahr 140) %, im Sommer 110 (121) % des langjährigen Durchschnittswertes —, war die Produktionsmöglichkeit der Wasserkraftwerke annähernd ebenso gut wie im Vorjahr. Die tatsächliche Erzeugung der Wasserkraftwerke konnte gesteigert werden, und zwar im Winter um 691 GWh¹) auf 12400 (11709) GWh, also um 6 %, und im Sommer um 1595 GWh auf 17330 (15735) GWh, also um 10 %. Bemerkenswert ist, dass sich der Schwerpunkt der Erzeugung der Wasserkraftwerke immer mehr in die Hochalpen verschiebt. Hiefür sind die Abflussmengen des Rheins in Rheinfelden aber nicht mehr repräsentativ.

Der Landesverbrauch ohne die von den Wasserverhältnissen abhängige fakultative Abgabe an Elektrokessel mit brennstoffgefeuerter Ersatzanlage und ohne den Verbrauch der Elektrizitätswerke

1) 1 GWh = 1 Gigawattstunde = 10⁶ kWh.

für Speicherpumpen erreichte im Winterhalbjahr 12036 (11622) GWh, stieg also gegenüber dem Vorjahr um 3,6 (2,9) %, im Sommerhalbjahr 11551 (11069) GWh, also um 4,4 (1,9) %. Die drei wichtigsten Verbrauchergruppen, das heisst die Gruppe Haushalt, Gewerbe und Landwirtschaft, die gesamte Industrie und die Bahnen weisen ähnliche Zuwachsraten auf, mit Ausnahme der Untergruppe allgemeine Industrie, deren Verbrauchszunahme im Winter 5,4 (3,0) %, im Sommer 8,1 (2,9) % betrug. Demgegenüber nahm der Verbrauch der Untergruppe elektrochemische, elektrometallurgische und elektrothermische Anwendungen im Winter nur wenig zu und dies nur dank guter Wasserführung, im Sommer ging er sogar etwas zurück. Es scheinen sich hier gewisse Verschiebungen in den Fabrikationsprogrammen und den Herstellungsverfahren abzuzeichnen.

Der Energieaustausch mit dem Ausland wurde dank günstiger hydrologischer Verhältnisse reger. Die Ausfuhren stiegen im Winter auf 2225 (1927) GWh, im Sommer auf 5422 (4314) GWh, im Jahr auf 7647 (6241) GWh. Die Einfuhren betrugen im Winter 1261 (1528) GWh, im Sommer 271 (276) GWh, im Jahr 1532 (1804) GWh. Hieraus ergeben sich Ausfuhrüberschüsse von 964 (399) GWh im Winter und 5151 (4038) GWh im Sommer, somit 6115 (4437) GWh im Jahr.

Erzeugung und Verbrauch elektrischer Energie in der Schweiz im Jahre 1965/66 in GWh und Zunahmen gegenüber dem Vorjahr

	Umsatz 1966/67			Zunahme		
	Winter	Sommer	Jahr	Winter	Sommer	Jahr
Energiebeschaffung			A. 40.			
Wasserkraftwerke	12400	17330	29730	691	1591	2286
wovon aus Speichern	(4451)			(164)		
Therm. Kraftwerke	677	146	823	299	6	305
landeseig. Erzeugung	13077	17476	30553	990	1601	2591
Einfuhr	1 2 6 1	271	1532	-267	-5	-272
Energieverwendung						
Haushalt, Gewerbe,						
Landwirtschaft	5 5 8 0	4917	10497	169	226	395
Industrie	4320	4496	8816	165	166	331
wovon allg. Industrie	(2428)	(2323)	(4751)	(125)	(175)	(300)
spez. Anwendungen1)	(1892)	(2173)	(4065)	(40)	(-9)	31
Bahnen	894	861	1755	22	36	58
Übertragungsverluste	1242	1277	2519	58	54	112
Landesverbrauch2)	12036	11551	23 587	414	482	896
Elektrokessel	34	232	266	3	11	14
Speicherpumpen	43	542	585	8	-5	3
ges. Landesverbrauch	12113	12325	24438	425	488	913
Ausfuhr	2225	5422	7647	298	1108	1406
Landesverbrauch und Ausfuhr	14338	17747	32085	723	1596	2319

¹⁾ Elektrochemische, -metallurgische und -thermische Anwendungen.

²) Ohne Elektrokessel und Speicherpumpen.