Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 85 (1967)

Heft: 39

Artikel: Der Trockenwetteranfall bei Abwasseranlagen

Autor: Munz, W.

DOI: https://doi.org/10.5169/seals-69546

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

nicht schwierig, auch aus wenigen Mohr'schen Kreisen die Umhüllenden zu bestimmen, da Berührungspunkte und Tangentenrichtungen aus jedem Versuch bekannt sind. Diese geringe Erweiterung des normalen Triaxialversuches würde sich daher auch im praktischen Laborbetrieb lohnen, da mit gleichem Aufwand genauere Umhüllungskurven erhalten werden. Sind diese stark gekrümmt, so werden allerdings die erdstatischen Berechnungen, die bisher auf dem Konzept der Coulombschen Geraden mit den Koeffizienten c' und Ø' beruhten, wesentlich komplizierter. Noch für lange Zeit wird es daher für den praktisch tätigen Erdbauingenieur zwar interessant sein, zu wissen, dass die Umhüllenden Kurven und die Coulombsche Gerade eine Approximation sind, aber er wird dies kaum praktisch nutzen können.

Zusammenfassend kann gesagt werden, dass die Dissertation von H. Einstein eines der Mosaiksteinchen darstellt, aus denen sich nach und nach unsere Detailkenntnisse über die sehr komplizierte Materie der Böden aufbaut. Es wäre wünschenswert, dass einige der gewonnenen Erkenntnisse auch in der Praxis angewandt und die Erfahrungen darüber zentral, zum Beispiel beim Autor der Dissertation, gesammelt würden. Damit ergäbe sich eine erweiterte Erfahrung über viele für den praktisch tätigen Ingenieur wichtige Fragen.

Im übrigen ist dem Autor und seinen Betreuern zu der sauberen, wissenschaftlich durchgearbeiteten Arbeit Glück zu wünschen.

H.G. Locher, dipl. Bau-Ing., Gümligen/BE

Der Trockenwetteranfall bei Abwasseranlagen

DK 628.222

Von W. Munz, dipl. Ing. ETH, Zürich

1. Anwendung des Begriffs

Bei einer Entwässerung im in der Schweiz vorherrschenden Mischsystem wird das anfallende Regenwasser mit dem häuslichen Schmutzwasser zusammen abgeleitet. Da die grossen momentanen Wassermengen der Starkregen nur wenige Stunden im Jahre dauern, den Betrieb in der Kläranlage aber vollständig stören würden, werden sie über sogenannte Regenüberläufe vom zur Kläranlage führenden Kanalnetz abgezweigt und auf dem kürzesten Weg dem Vorfluter zugeleitet. Für die Bestimmung der Wassermenge, bei der der Überfall anspringen soll, galt in früheren Zeiten der Schmutzwasseranfall als Masstabseinheit. Es ist das Verdienst von Hörler, darauf hingewiesen zu haben, dass die Regenstärke (in 1/s·ha) besser dafür geeignet ist [1].

Solche Regenüberläufe, die eine beträchtliche Ersparnis im zur Anlage weiterführenden Rohr ermöglichen (Verkleinerung der Wassermenge z. B. auf 5%), werden meist als Hochwasser-Entlastungen oder Not-Auslässe bezeichnet, da sie sehr selten anspringen. Aber auch die noch übrig bleibende Regenwassermenge von z. B. 15 l/s·ha Stärke, die immer noch ein Vielfaches des Schmutzwasseranfalles beträgt, würde oft entweder den geordneten Ablauf der Reinigungsvorgänge in Frage stellen oder eine nicht vertretbare Überdimensionierung der Anlage erfordern. Es ist deshalb üblich, in der Zuleitung zur Kläranlage noch einen weiteren Überlauf – er wird zur Unterscheidung von der Hochwasser-Entlastung im folgenden als Regen-Entlastung bezeichnet – anzuordnen. Da dieser häufiger anspringt und doch beträchtliche, mit Schmutzwasser vermischte Regenmengen überlaufen lässt, ist es angebracht, das Überlaufwasser erst nach grober Klärung in einem Regenbecken dem Vorfluter zu übergeben.

Die hydraulische Dimensionierung der Hauptbauwerke der Kläranlage erfolgt nach der Höhe des Anfalls bei Trockenwetter. Deshalb ist es auch sinnvoll, den maximal möglichen, durch die Regen-Entlastung geregelten Zulauf zur Anlage (bei dem also eine Überbelastung der Anlage in Kauf genommen wird) als Vielfaches dieses Trockenwetteranfalles auszudrücken. Es zeigt sich aber, dass in der Praxis über die Grösse dieser «Masseinheit» einige Unklarheit herrscht, zumal der Begriff je nach Anwendung und Land seine Bedeutung wechseln kann. Es sei deshalb versucht, Bedeutung und Grösse des Trockenwetteranfalles und verwandter Begriffe etwas näher zu beleuchten.

Trockenwetteranfall und Schmutzwasseranfall bedeuten streng genommen nicht das selbe. Sind nämlich grössere Mengen an Leckwasser, Sickerwasser, Bachwasser oder unverschmutztem Kühlwasser zu erwarten, so sind diese Wässer – unter dem Namen Fremdwasser zusammengefasst – zum Schmutzwasseranfall zu addieren. Naturgemäss ist die Bestimmung des Fremdwasseranfalles sehr unsicher. Einige Zahlen für Leckwasser, das bei hohem Grundwasserstand in undichte Kanäle eindringen kann, finden sich bei Fair & Geyer [2]:

0,05
$$\cdots$$
 0,2 \cdots 0,5 l/s pro ha Einzugsgebiet (nicht reduziert) 0,1 \cdots 0,8 \cdots 3 $\,$ l/s pro km Kanal

Sickerwasser aus Kellerdrainagen: $0,2 \cdots 2$ (!) 1/s ha nach *Lautrich* [3]. Messungen in bestehenden Kanälen können Anhaltspunkte für die Schätzung des Fremdwasseranfalls geben (siehe *Hörler* [4]).

Richtigerweise ist für die Bemessung der Regen-Entlastung das Schmutzwasser allein als Einheit zu betrachten und das Fremdwasser von der Vervielfachung auszunehmen:

$$QTW$$
 Trockenwetteranfall $Q_{\max} = (1+m) \cdot QS + QF$ QS Schmutzwassermenge QF Fremdwassermenge

Wenn doch hie und da mit $(1+m)\cdot QTW$ gerechnet wird, so wohl im Bestreben, etwas mehr Reserve für die sehr unsichere Annahme des Fremdwasseranfalles zu erhalten. Im folgenden soll der Einfachheit halber immer vom Fremdwasser abgesehen werden, d. h. die Begriffe QTW und QS werden gleichwertig gebraucht.

Um allgemein verwendbare Werte zu erhalten, wird der spezifische Trockenwetteranfall pro Einwohner qtw eingeführt. Abwasser aus Industriebetrieben wird ebenfalls in Einwohner-Einheiten ausgedrückt: zu der Zahl der wirklichen Einwohner wird unter der Bezeichnung Industrie-Gleichwert Ig diejenige fiktive Anzahl Einwohner zugefügt, die wassermengenmässig den selben Anfall QTW verursachen würde. Neben Industriebetrieben sind hier auch die Pendler zu berücksichtigen, die ausserhalb der Region als Einwohner gezählt werden, sich aber tagsüber innerhalb aufhalten. In diesem Sinne liefert auch die Hotellerie Industrie-Gleichwerte¹). Das Abwasser des für den Eigenbedarf der Region tätigen Gewerbes ist jedoch im häuslichen Anfall des «Normalverbrauchers» inbegriffen. Die in der Region wohnhaften Einwohner E ergeben mit den Industrie-Gleichwerten Ig zusammen die Einwohner-Gleichwerte Eg. Leider wird der Ausdruck Einwohner-Gleichwerte häufig im Sinne von Industrie-Gleichwerten verwendet, was oft zu Unklarheiten führt. Weiterhin gehört zu jeder Erwähnung der Gleichwerte die Angabe, auf was sich der Gleichwert bezieht. Neben dem Trockenwetteranfall wird nämlich auch der BSB-Anfall und der Schlammanfall der Industrie durch Gleichwerte ausgedrückt, die zahlenmässig sehr verschieden sein können. In der Einheitsbezeichnung «pro Einwohner und Tag» wird stillschweigend vorausgesetzt, dass es sich auch um Gleichwerte handeln kann.

2. Grösse des häuslichen Schmutzwasseranfalles

Vorerst sei klargestellt: der *qtw* ist keine gemessene, sondern eine vereinbarte Grösse. Eine eindeutige Festlegung wäre angesichts der vielen möglichen Schwankungen (innerhalb eines Jahres, einer Woche, eines Tages und lokal) analog den hydrologischen Gepflogenheiten mittels der Dauerkurve möglich: x Stunden im Jahr erreicht oder überschritten. Auswertungen über Jahre hinaus sind uns aber keine bekannt, auch dürfte die Ausscheidung der Regenzeiten und vor allem die Ermittlung der angeschlossenen Einwohner Schwierigkeiten bieten. So wird in der Regel der Weg beschritten, dass zum angenommenen Jahresmittel *jqtw* Zuschläge gemacht werden, um die Schwankungen zu berücksichtigen.

Für die Festsetzung des Jahresmittels *jqtw* wird vielfach von den Werten der Wasserversorgungsbetriebe ausgegangen. Ein kleiner Unterschied entsteht dadurch, dass auch private Quellergüsse und Sickerwasser in die Kanäle gelangen, aber auch einiges durch Gartenspritzen usw. verloren geht. Von grösserem Einfluss ist der Umstand, dass in den Wasserversorgungs-Statistiken der Kopfverbrauch durch Teilen des gesamten Verbrauchs (inkl. Industrie) durch die Zahl der effektiven Einwohner *E* allein (also nicht *Eg*) erhalten wird. Die Ausscheidung des Industrieanteils ist nicht immer möglich. Weiterhin gehen erhebliche Mengen durch Leckverluste im Versorgungsnetz verloren. Angaben hierüber bringt *Haas* [5].

1) 1 Hotelbett = 1
$$Ig$$

1 Pendler = $1/2 ... 1/3 Ig$

	Stadt Zürich		Statistik der Schweiz. Gas- und Wasser- fachmänner 1960:			
	1964		ille W-Versorgungen total 2 650 000 E)	nur unter 5000 E (total 37 100 E)		
häuslich und Gewerbe:						
Normalabonnenten	198)					
städt. Liegenschaften	9 2	10	251	214		
temporäre Anschlüsse (Neubauten usw.)	3)					
öffentlich:						
Strasseninspektorat	15)					
Wasserversorgung	18	42	51	39		
Laufbrunnen	9)					
häuslich, Gewerbe und öffentlich	2	:52	302	253		
Netzverluste		52	55	56		
Industrie (Grossbezüger))	79	71	38		
Total jwv	3	83	428	347		

In Tabelle 1 ist das Jahresmittel des Wasserverbrauches jwv aus der Statistik der Schweiz. Gas- und Wasserfachmänner 1960 und dem Jahresbericht der Wasserversorgung der Stadt Zürich 1964 auf die einzelnen Abnehmergruppen verteilt angegeben. Der Anteil des häuslichen, gewerblichen und öffentlichen Verbrauches ergibt sich daraus zu 66%, 71% und 73% des jwv. Nicht alle Industrien sind aber Grossbezüger, so dürften noch einige der 1981/ET auf das Konto der Industrie fallen. Auch in den USA veranschlagen Fair & Geyer [2, S. 134] den mittleren Abwasseranfall zu 60 · · · 70 % des Wasserverbrauchs.

Zur Illustrierung sollen noch drei Einzelbeispiele von rein häuslichem Verbrauch aus der Stadt Zürich anhand von 5 jährigen Mittelwerten dienen (Tabelle 2). Für die Zukunft ist meist mit einem weiteren Ausbau der sanitären Einrichtungen zu rechnen. Durch die immer knapper werdenden Wasservorräte sind dem Verbrauchsanstieg allerdings Grenzen gesetzt. Bei Wasserversorgungs-Projekten wird meist mit $jwv = 450 \cdot \cdot \cdot 500 \text{ 1/ET}$ gerechnet [5]. Sofern nicht besonders hoher Wasserverbrauch zu einer genaueren Untersuchung drängt, dürfte der mittlere Abwasseranfall jqtw somit etwa folgenderweise angenommen werden:

häuslich, öffentlich und Gewerbe 250 · · · 300 1/ET Zuschlag für allfälliges Sickerwasser 50 · · · 100 1/ET und sanitäre Entwicklung $300 \cdot \cdot \cdot 400 \, 1/ET$

Total Schmutzwasseranfall jqtw

Wichtig ist bei Angabe von Wassermengen in 1/ET, dass stets ersichtlich ist, um welchen Wert es sich handelt: um jwv, jqtw, jqs oder ein bestimmtes Tagesmittel.

Für den Spitzenwert qtw ist sowohl die Schwankung des Tagesmittels während des Jahres als auch die Schwankung des Stundenmittels während des Tages zu berücksichtigen. Letztere wird oft nach Imhoff mit 24/14 = 1,72 in Rechnung gesetzt, d. h. der Tagesanfall wird auf n = 14 statt 24 Stunden verteilt, was zur Bezeichnung 14-h-Mittel führt. Für Städte wird auch mit 16 oder gar 18 Stunden gerechnet. Hörler brachte in [6] eine Dauerkurve für Tagesschwankungen (Kläranlage Winterthur).

Das Tagesmittel dürfte an Tagen mit starkem Anfall etwa das 1,2- bis 1,5 fache des Jahresmittels erreichen (Fair & Geyer [2]: 1,2 ··· 2faches). Damit berechnet sich der Trockenwetteranfall durch Superposition beider Schwankungen zu

$$qtw = jqtw \frac{24}{u} (1,2 \cdots 1,5).$$

Mit n = 14 und dem Mittelwert 1,35 ergibt sich: qtw = 2,3 jqtw.

Die Grösse der Schwankungen hängt vor allem von der Grösse des Einzugsgebietes ab: je grösser die Fliesszeit, um so weiter wird die Spitze auseinandergezogen. Es wäre interessant, den Einfluss von Gebietsgrösse, -form und Besiedlungsdichte auf die Schwankungsamplitude näher zu verfolgen. Aus den USA liegen verschiedene Beziehungen zwischen der Zahl der angeschlossenen Einwohner und dem Verhältnis qtw/jqtw vor:

Tabelle 2. Einzelbeispiele des rein häuslichen Verbrauches aus der Stadt Zürich (Mittelwerte 1960-1965 nach Wassermesser)

	asserverbrauch
Luxus-Mehrfamilienhaus: Baujahr um 1950, geräumig, aller Komfort, 3½ Geschosse, 5 Familien, 11 ··· 13 Bewohner	330 1/ <i>ET</i>
Landhaus: Baujahr um 1930, geräumig, grosser Garten, 3 Geschosse, 1 Familie, 5 ··· 6 Bewohner	200 l/ET
Vorkriegs-Mehrfamilienhaus: um 1900, Sanitär- Umbau 1960, mittlere Grösse, 3 Geschosse, 3 Familien, 11 ··· 12 Bewohner	115 l/ET

Harmon (1918)
$$qtw/jqtw = (18 + \sqrt{tE})/(4 + \sqrt{tE}) [2] \qquad tE = E/1000$$
 Babbitt/Johnson (1928)
$$qtw/jqtw = 5/\sqrt[5]{tE}$$
 [4]

Andere Werte (Youngstown-Rapport, Gifft 1945) liegen 10 ··· 20 % über den Werten von Johnson (für über 10 000 E). Verglichen mit den bei uns üblichen Werten liegen diejenigen von Johnson etwas hoch. Über die Häufigkeit dieser Spitzenwerte wird jedoch nichts ausgesagt. Da mit der erstgenannten Methode (mit n) als qtw ein gelegentlich überschrittener Wert gewählt wird, ist es angebracht, auch hier eine Abminderung zuzulassen. Im Diagramm (Bild 1) sind die Werte qtw/jqtw sowie qtw und QTW für jqtw = 350 1/ET in Funktion der Einwohnerzahl aufgezeichnet nach der Beziehung:

$$qtw = jqtw \frac{4}{\sqrt[5]{E/1000}}.$$

Für 30 000 *E* wird $qtw = 0.010 \frac{1}{s \cdot E}$.

Ähnliche Werte ergibt die etwas handlichere Formel:

$$qtw = \frac{0.015}{{}^6 \sqrt{E/1000}} \left[\frac{1}{{
m s} \cdot E} \right]$$
 (bei $jqtw = 350 \ {
m l}/ET$).

Für kleinere Anlagen (beispielsweise unter 5000 E) wird es zweckmässig, die Schwankung gegenüber dem Formelwert einerseits zu vergrössern, wenn es sich um die Dimensionierung von Kanälen handelt (siehe auch VSA-Richtlinien für Hausentwässerung); für die Bemessung der Becken ist andrerseits eine Vergrösserung von qtw/jqtw über 3 hinaus kaum mehr nötig. Ausserdem ist in kleinen Orten meist ein geringerer Wasserverbrauch zu verzeichnen, so dass auch aus diesem Grunde selten mehr als 0,011 1/s·E (oder 40 1/h·E) angenommen werden. Ebenso wird bei der Dimensionierung sehr grosser Anlagen ein minimaler Wert von etwa 1,5 · · · 1,8 jqtw wohl kaum mehr unterschritten.

Gelegentlich wird - etwa für die Festlegung der Anforderungen an die Kläranlage - noch eine weitere Grösse benützt: das Mittel während der Tagesstunden, d. h. etwa zwischen 8 h und 20 h. Dieses

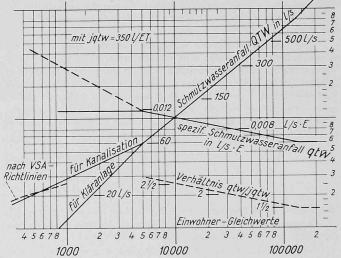


Bild 1. Der Trockenwetteranfall in Funktion der Zahl der angeschlossenen Einwohner (bei einem Jahresmittel von 350 I/ET)

Tabelle 3. Abwasseruntersuchungen Emschergenossenschaft/Lippeverband 1954 nach Husmann [7]

Kläranlage	ange- schlossene Einwohner	gemessene Wasser- menge q in $1/ET$	gemessener Zufluss an BSB (Rohwasser) $\approx \frac{2}{3} Zb$ g/ET	sich daraus ergebende mittlere Konzen- tration s_R in mg/1
Steele-Haferfeld	3 900	33.3	70	2110
Dorsten	5 600	117.8	55	467
Werl-West	11 200	162	96	593
Soest	28 500	168	116	690
Essen-Frohnhausen	70 100	222	92	414
Haltern	11 170	87	43	494
total Mittelwerte	130 470	183.3	91.1	497

«Mittel tagsüber» dürfte im allgemeinen in der Mitte zwischen Tagesmittel und Tagesspitze liegen.

Tagesspitze, Mittel tagsüber und Tagesmittel (24-Stunden-Mittel) können an einem Tag mit durchschnittlichem oder starkem (oder schwachem) Anfall erhoben werden. In Bild 2 sind diese Möglichkeiten grafisch dargestellt. Es stehen somit 4 verschiedene Grössen (mit Berücksichtigung des Fremdwassers noch mehr) für folgende Aufgaben zur Verfügung:

- a) Dimensionierung von Kanälen im Netz
- b) Dimensionierung von Hochwasser-Entlastungen
- c) Dimensionierung von Regen-Entlastungen vor und in der Kläranlage und Kanälen in der Kläranlage
- d) Dimensionierung von Becken nach der Wassermenge

Dafür werden in der Schweiz folgende Werte verwendet:

für a) 0,010 l/s · E ohne Unterschied der Grösse des Einzugsgebietes

- b) qtw (bei Detailberechnung evtl. jqtw)
- c) $(1+m)\cdot qs+qf$
- d) Aufenthaltszeit bei qtw
- In Deutschland wird
- für c) die Spitze eines durchschnittlichen Tages als Trockenwetteranfall bezeichnet,
 - d) hingegen mit dem Mittel tagsüber dieses Tages gerechnet (dabei ist das Jahresmittel nur rd. halb so gross wie in der Schweiz).

In England und den USA wird unter «dry weather flow» das Jahresmittel verstanden, nach dem die Becken bemessen werden. Für Kanäle erfolgen die entsprechenden Zuschläge qtw/jqtw.

3. Der Anfall an Schmutzstoffen biologisch gesehen

Für die biologische Reinigung spielt nicht die Wassermenge, sondern die Schmutzmenge, die in die Anlage gelangt, die entscheidende Rolle. Als Masstab dient meist der biochemische Sauerstoffbedarf (BSB), doch sind auch andere Grössen wie z. B. der Gehalt an organischem Kohlenstoff denkbar.

Messbar ist der BSB als Konzentrationswert s_R in mg/l, massgebend ist aber sowohl für den Vorfluter wie für den Reinigungsvorgang – wie *Wuhrmann* schon betonte – der totale Anfall in kg pro Jahr bzw. Gramm pro Kopf und Tag. Dies geht schon aus der Dimension der für den Reinigungsgrad einer Belebtschlammanlage bestimmenden Schlammbelastung Sb hervor: kg BSB pro Tag und pro kg Trockensubstanz im Belüftungsbecken. Der Zufluss an BSB in den biologischen Anlageteil (abgesetztes Rohwasser) werde im folgenden mit Zb bezeichnet:

$$Zb = s_R \cdot q$$
 $[g/ET] = \frac{1}{1000} [mg/l] [l/ET].$

Häufig wird das Jahresmittel von Zb mit 50 g/ET (in Deutschland 35 g/ET) angenommen. Neuere schweizerische Untersuchungen liegen leider nicht vor, wohl aber solche der Emschergenossenschaft und des Lippeverbandes aus dem Jahre 1954 [7]. Die Ergebnisse bei 6 Kläranlagen mit praktisch rein häuslichem Abwasser, an jeweils donnerstags und freitags (aber nur bei Trockenwetter) mengenproportional entnommenen Proben sind in Tabelle 3 zusammengestellt. Danach ergaben die 130 000 Einwohner einen wesentlich höheren Mittelwert als bisher angenommen.

Über die Schwankungen des 24-Stunden-Mittels während des Jahres ist sehr wenig bekannt, da der Aufwand für solche Messungen sehr gross ist. Immerhin dürfte angenommen werden, dass an einem trockenen Tag mit stärkerem Abwasseranfall – auf den z. B. die Probenerhebung für die Funktionskontrolle einer Kläranlage fallen kann – auch der BSB-Anfall in der Regel über dem Jahresmittel liegt.

Weniger Aufwand wird für die Ermittlung der Schwankungen während des Tages benötigt. Es sei hier auf die schon erwähnten Untersuchungen von Winterthur [6] verwiesen (drei 24stündige Messungen im Ablauf der mechanischen Kläranlage). In Bild 3 wurden die Schwankungen der Wassermenge und der BSB-Konzentration, bezogen auf ihre arithmetischen 24-Stunden-Mittel, aufgetragen. Es kann daraus wohl geschlossen werden, dass die Konzentration im Laufe des Tages in ähnlichem Masse schwankt wie die Wassermenge.

Die Schwankungen des BSB-Anfalles während eines Tages erfolgen also ungefähr mit der 2. Potenz der Wassermengenschwankungen.

Glücklicherweise ist es infolge der Trägheit der biologischen Vorgänge nicht notwendig, auf kurzfristige Spitzen zu dimensionieren. Neben dem sehr zweckmässigen 24-Stunden-Mittel [8] kommt höchstens noch das Mittel tagsüber für die Bestimmung der für die Belüftung erforderlichen Sauerstoffmenge in Frage.

Obschon die Dimensionierung des biologischen Teils allein nach dem BSB-Zufluss Zb möglich wäre, so wird gleichwohl die Wassermenge als komplizierende weitere Variable wieder eingeführt, wenn die Reinigungsvorschrift als zulässige Ablaufkonzentration sab angegeben wird. Dann muss neben Zb auch noch a angenommen werden. d. h. für jede Wassermenge q muss die grösste dabei zu erwartende BSB-Menge Zb (oder s_R) geschätzt werden und die dazugehörige erforderliche Grösse des biologischen Anlageteils berechnet werden. In Bild 4 sind die erforderlichen In-

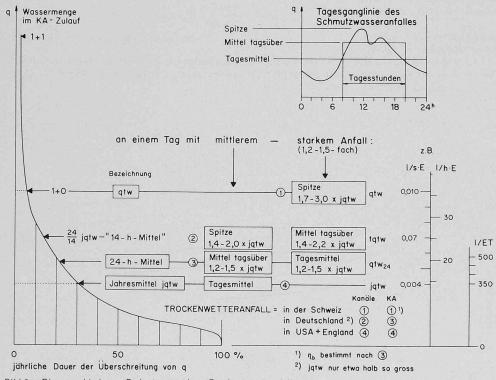


Bild 2. Die verschiedenen Bedeutungen des «Trockenwetteranfalles»

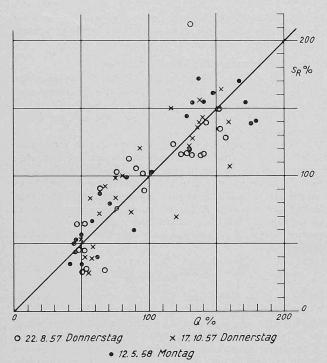


Bild 3. Die einzelnen Stundenmittel dreier Tage bezüglich BSB-Konzentration s_R und Wassermenge Q gemessen am arithmetischen Mittel jedes Tages (Ablauf der mechanischen Kläranlage Winterthur [61)

halte i eines Belüftungsbeckens in Funktion von q und Zb für eine vorgeschriebene Abflusskonzentration von 20 mg/l ablesbar. Geht man anderseits von einer «vernünftigen» Beckengrösse mit z. B. einer Stunde Aufenthalt bei der Tagesspitze aus (das entspricht etwa 36 l/E Inhalt), so erhält man mit S = 3000 mg/l beispielsweise die Datenpaare

$$q = 500 \, 1/ET \, \, \mathrm{und} \, \, Zb = 72 \, \mathrm{g}/ET \, \, (\eta_b = 86 \, \%)$$
 oder
$$300 \qquad \qquad 50 \qquad \qquad 88$$

Aus dem Diagramm ist ebenfalls sehr schön ersichtlich, wie bei gegebenem Zb mit sinkender Wassermenge der erforderliche Aufwand grösser wird (der Aufwand für die mechanische Reinigung bleibt jedoch proportional zur Wassermenge). Stärker als Zb weist die Wassermenge übrigens auch Unterschiede von Ort zu Ort auf (Sickerwasser).

Wird hingegen der Reinigungsgrad als Ablaufvorschrift gewählt, so sind die Schwankungen der Wassermenge irrelevant. Ein Bemessungsdiagramm für Belüftungsbecken $i=f(\eta,Zb)$ findet sich in [9]. Für die Kontrollmessungen bedeutet die Verwendung des Reinigungsgrades anstelle der Ablaufkonzentration keine prinzipielle Erschwe-

rung, da die durchfliessende Wassermenge in Zu- und Ablauf ja dieselbe ist und somit aus der Rechnung herausfällt.

$$\eta_b = \frac{s_R - s_{Ab}}{s_R} = \frac{Zb - Ab}{Zb}$$
 (Ab = Abfliessende BSB-Menge [g/ET])

Eine Beschränkung der Ablaufkonzentration hat trotzdem eine Bedeutung als Grenzwert bei besonders grosser Zulaufkonzentration (z. B. infolge Industrieabwasser).

4. Zusammenfassung

Grössere Mengen von Fremdwasser (Sicker-, Bach-, Kühlwasser) sind separat zu berücksichtigen:

$$QTW = QS + QF$$
.

Hochwasser-Entlastungen werden nach der kritischen Regenintensität bemessen:

$$Q_{kr} = r_{kr} \cdot F_{red} + QTW$$
 (eventuell: $jQTW$ statt QTW).

Für Regen-Entlastungen wird Q_{kr} als Vielfaches des Trockenwetteranfalles angegeben:

$$Q_{kr} = (1+m) \cdot QS + QF.$$

Die Ermittlung von QS bzw. QTW geschieht durch Multiplikation des gewählten spezifischen Anfalles qtw mit der Anzahl hydraulischer Einwohnergleichwerte:

$$QTW = qtw \cdot Eg_{hyd}$$
 wobei $Eg_{hyd} = E + Ig_{hyd}$.

Für die Industriegleichwerte kann im allgemeinen von den nur für den Regionalbedarf arbeitenden Gewerbebetrieben abgesehen werden, hingegen können unter Umständen Hotellerie und Pendler wesentliche Beiträge leisten.

Bei der Nennung von Gleichwerten ist immer anzugeben, ob es sich um hydraulische, biochemische oder andere handelt.

Für Kanalberechnungen (einschl. Hochwasser-Entlastungen) kann mit qtw=0,010 l/s · E gerechnet werden.

Das Jahresmittel des Schmutzwasseranfalles jqs bzw. jqtw beträgt in der Regel etwa 70% des Jahresmittels des Wasserverbrauches (abhängig vom Grad der Industrialisierung) und kann im allgemeinen zu etwa $300 \cdot \cdot \cdot 400$ l/ET angenommen werden.

Der spezifische Trockenwetteranfall *qtw* bedeutet in der Schweiz die Tagesspitze an einem Tag mit starkem Anfall. Er kann als Vielfaches des Jahresmittels in Abhängigkeit von der Zahl der angeschlossenen Einwohner entweder nach dem Diagramm, Bild 1 berechnet werden, oder auch nach der Gleichung

$$qtw = \frac{0.015}{^{6}\sqrt{E/1000}}$$
 [l/s·E] (bei $jqtw = 350$ l/ET, 5000-130000 E).

Die Aufenthaltszeiten in den Becken der Kläranlage beziehen sich auf den QTW. Oft werden noch zusätzliche Bedingungen für $Q_{\rm max}$ gestellt.

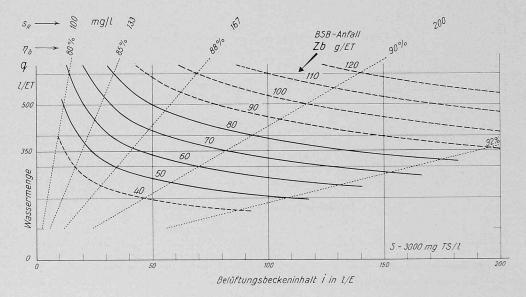


Bild 4. Erforderlicher Inhalt eines Belüftungsbeckens bei einer vorgeschriebenen Abflusskonzentration von 20 mg BSB/I und verschiedenen Annahmen für die Wassermenge q und den BSB-Anfall Zb. Schlammkonzentration S $=3000\ \text{mg/I}$

Der Bemessung des biologischen Anlageteils wird meist das 24-Stunden-Mittel eines Tages mit starker Belastung zugrunde gelegt $(qtw_{24}$ häufig 500 l/ET). Dabei ist mit einem höheren Schmutzanfall Zb als 50 g/ET (Jahresmittel) zu rechnen. Durch die Verwendung von Zb und dem Reinigungsgrad η_b allein wird die Bemessung unabhängig von der Wassermenge mit ihren Schwankungen und bleibt eine rein biologische Angelegenheit (Diagramm siehe [9]).

Literatur

- [1] Hörler, A., Die Wirkung der Regenauslässe, «Schweiz. Bauzeitung», Bd. 118, (15. Nov. 1941), H. 20, S, 229–234
- [2] Fair, G. M. und Geyer, J. C., Water Supply and Waste-Water Disposal, Wiley & Sons, New York 1963.
- [3] Lautrich, R., Der Abwasserkanal, Verlag Wasser und Boden, Hamburg 1964.
- [4] Ingenieur-Handbuch Band II, Schweizer Verlagshaus AG, Zürich 1966: Hörler, A., Kanalisation.
- [5] Ingenieur-Handbuch Band II, Schweizer Verlagshaus AG, Zürich 1966: Haas, A., Wasserversorgungs- und Hydrantenanlagen.
- [6] Hörler, A., Belebtschlammversuche der EAWAG, Schweiz. Z. Hydrol. 26/2 (1964).
- [7] Husmann, W., Zur Frage des Einwohnerlastwertes Einwohnergleichwertes, «gwf» 107, Heft 34 (1966).
- [8] Zehender, F., Über die Methodik der Probenahme zur Untersuchung von Abwasserreinigungsanlagen, «Schweiz. Z. Hydrol.» 10/4 (1948).
- [9] Munz, W., Die Wirkung verschiedener Gewässerschutzmassnahmen, «Schweiz. Z. Hydrol.» 28/2 (1966).

Adresse des Verfassers: Walter Munz, dipl. Ing., EAWAG, Physikstrasse 5, 8044 Zürich.

Mitteilungen

Bahnverbindungen mit Russland. Wie die Informationszentrale der Europäischen Eisenbahnen meldet, ist eine tägliche Schnellverbindung Moskau-Budapest eingerichtet worden, die die Entfernung zwischen den beiden Hauptstädten (2100 km) in 36 Stunden bewältigt. Auch in den Verbindungen mit Westeuropa sind gewisse Verbesserungen zu verzeichnen. So wurden in dem täglich verkehrenden Zug Moskau-Berlin zwei neue Kurswagen Moskau-Paris eingestellt; des weiteren wird eine tägliche Verbindung zwischen Moskau und Hoek-van-Holland mit Anschluss nach Grossbritannien geschaffen. Zu erwähnen sind schliesslich die dreimal wöchentlich zwischen Moskau einerseits, und Rom, Stockholm und Kopenhagen anderseits bestehende Verbindung sowie die zweimal wöchentlich geplante Verbindung zwischen der sowjetischen Hauptstadt und den Städten Oslo bzw. Djoulfa (Iran).

Persönliches. Die Firma Rothpletz, Lienhard & Cie AG, Ingenieurbüro und Bauunternehmung, die seit langem nebst dem Ingenieurbüro in Aarau ein solches in Bern führt, hat nun auch ein Ingenieurbüro in Olten eröffnet. Es ist hervorgegangen aus der Übernahme des ehemaligen Büros Tansky & Dr. Ackermann und wird von Karl Zünd, dipl. Ing. SIA, geleitet. – Das bisher in Alpnach geführte Zweigbüro des Ingenieurbüros Hickel & Werffeli ist nach Sarnen verlegt worden; zum Leiter wurde Ing.-Techn. HTL M. Stockmann eingesetzt.

Schweiz. Bauzeitung. Die Jahrgänge 1945 bis 1959 hat abzugeben Fritz Hirt, dipl. Ing., 8700 Küsnacht ZH, Kusenstrasse 4, Telefon (051) 90 65 23. – «Die Eisenbahn» 1874 bis 1882 (16 Bände) und die «Schweiz. Bauzeitung» 1883 bis 1934, alles gebunden, hat abzugeben Ing. H. Roth-Pestalozzi, 3006 Bern, Mülinenstr. 13, Tel. (031) 4481 77.

Nekrologe

† Hermann Versell. Nach einem langen Leben, das 89 Jahre währte, ist Maschineningenieur Hermann Versell müde, aber zufrieden in einem Zürcher Krankenheim am 10. August 1967 gestorben. Geboren am 20. März 1878, verbrachte er seine Jugend in Chur, wo sein Vater Martin Versell 1870 eine Maschinenfabrik gegründet hatte. Dieses Unternehmen baute anfänglich landwirtschaftliche Maschinen nach amerikanischem Vorbild. Nachdem Schutzzölle dem Export nach Deutschland ein Ende gemacht hatten und die Mechanisierung der Landwirtschaft in der Schweiz und besonders in Graubünden sich noch nicht durchzusetzen vermochte, wurde der Betrieb auf Einrichtungen für die Wasserversorgung und auf Eisenkonstruktionen umge-

stellt. Inzwischen hatte Hermann Versell am Eidg. Polytechnikum studiert und eine längere Praxis in Wien absolviert. Kurz vor dem ersten Weltkrieg übernahm er die Betriebsleitung der Maschinenfabrik Versell & Cie. Infolge des unregelmässigen Bedarfs an Eisenkonstruktionen während der Kriegsjahre hatte das Unternehmen einen schweren Stand. Seine Umwandlung in eine Aktiengesellschaft im Jahre 1916 nahm Ingenieur Versell wahr, um sich in Zürich und später in Wallisellen anzusiedeln. Während vieler Jahre hatte er die Vertretung der angesehenen Maschinenfabrik Duisburg für Hebezeuge und Krane (Demag) und der Maschinenfabrik Stöhr in Offenbach inne.

H. VERSELL Masch.-Ing.

1878

1967

Seiner 1924 eingegangenen zweiten Ehe entstammte der Sohn Luzius, der sich als Schauspieler einen Namen gemacht hat. Schauspielerisch erheiternd trug auch sein Vater Hermann manches Mal zu den Anlässen der Bündner Unterstützungsgesellschaft in Zürich bei. Kollege Versell genoss freundschaftliche Geselligkeit bis ins hohe Alter. Als alter Herr blieb er der Studentenverbindung Helvetia treu verbunden.

Wohl unter dem Eindruck der finanziellen Schwierigkeiten, die ihn und seinen weiteren Familienkreis im Zusammenhang mit der 1923 endgültig liquidierten Churer Maschinenfabrik schwer getroffen hatten, aber auch aus einer besonderen Neigung, befasste sich Versell immer wieder und bis gegen sein Ende hin mit volkswirtschaftlichen Fragen. Er gewann dabei die Überzeugung, dass sich Zeiten konjunkturellen Aufstieges mit solchen eines Niederganges gesetzmässig folgen müssen. Im Selbstverlag gab er 1936 die Schrift «Konjunkturgestaltung» heraus, worin er die Gesetzmässigkeit in Konjunktur und Krise nachzuweisen suchte und für die Behebung der damals weltweiten Krisensituation eine Reihe von Thesen aufstellte.

Ein auffallender Charakterzug des persönlich anspruchslosen Menschen Hermann Versell war seine Hilfsbereitschaft für Mensch und Tier. Den Tieren, unseren stummen Brüdern, wie er sie nannte, galt seine besondere Liebe. Jeden heimatlosen Hund nahm er bereitwillig in seinem Hause auf.

Hermann Versell gehörte einer Generation von Ingenieuren an, denen die Ungunst der Zeit schwierige Lebensprobleme gestellt hatte. Auch er hat sie zu meistern gesucht, wobei sich menschliches Versagen mit seinem Helferwillen Bedrängten gegenüber paarte. G. Risch

Buchbesprechungen

Das Wohnhaus. Plan, Bau, Einrichtung. Herausgegeben von der Deutschen Verlags-Anstalt in Zusammenarbeit mit der Redaktion –db– Deutsche Bauzeitung. 196 S. mit vielen, teilweise vierfarbigen Abb., Grundrissen, Schnitten, Details und Konstruktionszeichnungen. Stuttgart 1966, Deutsche Verlags-Anstalt G.m.b.H. Preis geb. DM 48.—

Sicherlich war es seinerzeit ein netter Gedanke der Herausgeber der «Deutschen Bauzeitung», einen unbeschränkten, internationalen Wettbewerb für die Planung eines mittleren Einfamilienhauses auf einer nichtssagenden Parzelle landläufiger Wohnquartiere zu veranstalten. Wenn auch das publizierte Ergebnis – vermutlich nicht zuletzt infolge der Zusammensetzung des Preisgerichts – keinesfalls überzeugend, sondern ausgesprochen modeverschrieben wirkte, war es gleichwohl interessant, die Vor- und Nachteile des offensichtlich bevorzugten neuen Formalismus anhand eines konkreten Beispiels abwägen zu können. Schliesslich war es immer noch von Interesse, die weitere Entwicklung eines Bauprojektes in dieser Geistesrichtung zu verfolgen, und in einer Reihe Hefte der Deutschen Bauzeitung jeweils einen Artikel über die Studien und Vorgänge bis zur Verwirklichung vorzufinden.

Diese mehr journalistischen Einzelbeiträge zu einem ernstzunehmenden Buch über das Wohnhaus schlechthin zusammenzufassen, war aber entschieden zu hoch gegriffen. Einmal bildet die extrem eigenwillige Formgebung, die aus einem derartigen Wettbewerb herauskommen musste, schwerlich die richtige Grundlage für eine einigermassen allgemeingültige Lösung des Wohnproblems bei den gegebenen Verhältnissen. Gegen das Raumprogramm ist zwar nichts einzuwenden, aber es bedeutet nicht allein die Grundlage der Planung.