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Once again, the values of the An, A 'n, Bn and B'n are independent of
the position of the load P along the y axis.

6. Numerical Examples

Illustrative numerical examples are now given for both the above

cases for various positions of the applied concentrated load P.
All the examples refer to a Square plate where

(6.1a) a b 1 Di 0,15 D Dxy 0,425 D

and, unless otherwise stated,

Du 2D(6.1b) DX D

In all cases

(6.1c) H D and ^t l/2~/ 2

see equations (3.3) and (4.4).

6.1 All edges simply supported

Four positions of the applied concentrated load are considered as

shown in Fig. 3, where in cases (iii) and (iv) it is noted that Dx — 2D
and Dy D. Cases (i) and (iii) provide identical situations as does

case (ii) with case (iv), the values of the physical quantities are, however,

derived by quite different numerical processes and so this pro-
vides a useful check on the calculations. The resulfs of the calculations

are sketched in Fig. 4.

With conventional methods it is a matter of some difficulty to
calculate accurate values for Qx, Qy and Vx, Vy. It is a feature of the

present method, however, that it is considerably easier to calculate
these values than to calculate the deflection w (0; rf) underneath
the applied load to within the same degree of aecuraey. This is illustra-
ted in Tables 1 and 2 where values of the physical quantities are given
for various truncations of the series. It is noted, incidentally, that it is

necessary to consider even values of n only for case (ii) and also that

an expeditious choiee of the co-ordinate axes leads even more quickly
to accurate results.

6.2 Two opposite edges simply supported and remaining edges free
Three positions of the applied concentrated load are considered as

shown in Fig. 5. The results of the calculations are sketched in Fig. 6,
Table 3 illustrates the convergence of the physical quantities for
various truncations of the series.
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Sur l'aplanissement elastique d'une coque de faible courbure
Par Walter Schumann, EPF, Zürich

DK 624.074.4

Introduction et equations generales

Dans la theorie bidimensionnelle sur la flexion des plaques minces

sollicitees par une Charge p on suppose l'epaisseur H de celles-ci faible

par rapport aux deux autres dimensions. Lorsque le deplacement
lateral W des points du plan moyen est de l'ordre de grandeur de H,
mais neanmoins | grad W\2 < 1, on utilise comme point de depart les

equations differentielles non-lineaires de v. Kärmän [1], dans lesquelles
intervient ä cöte de IFla fonetion d'Airy 0 de l'effet membrane. Comme
dans la pratique on se borne ä des deplacements faibles d'une part et

que d'autre part on cherche ä eviter les systemes non-lineaires dont
l'integration n'est pas toujours aisee, nous avons ete conduit ä etudier
dans la suite un probleme quelque peu modifie.

.P

<y><£ S£S=UB —h

z\
Supposons que la plaque en question possede avant l'appliquation

de la Charge une certaine courbure, donnee par une fonetion w

definissant la surface moyenne initiale (Fig.). Pour la flexion d'une teile

coque de faible courbure on a en coordonnees cartesiennes x, y les

equations differentielles suivantes, donnees par Marguerre [2]:

AA (W—w)

~~D P + Nx-
82 W
8 x2

+ 2NX
82W

dx dy
+ Ny

82W
8 y2

AA0 E(k — K)

(1)

(2)

Dans ces equations A designe l'operateur de Laplace, E le module
d'elasticite, D la rigidite ä la flexion et k, K les courbures de Gauss des

surfaces w, W. Les fonetions Nx S F820/8y2, Nxy — F820/8x8y,
Ny — F820/8x2 sont les forces normales et tangentielles dües a. l'effet
de membrane avec F comme aire de section effective par unite de

longueur (dans le cas homogene on aurait F H).

Supposons maintenant que la coque, sous l'influence de la
Charge p, ait ete aplanie, c'est-ä-dire que fV 0. Pour la surface

initiale w et la fonetion d'Airy 0 on obtient alors le Systeme

(3) Aw —^,
D

A0 Ek E
82 w 62 w / 82 w i_
8 x2 8 y2 \ 8 x 8 y

(4)

La premiere de ces equations est au signe pres identique ä l'equation
de base de la theorie lineaire de la flexion. Rappeions toutefois que
contrairement ä la supposition faite dans cette demiere (| w\ < H)
la grandeur du deplacement w dans notre cas peut tres bien etre du

meme ordre que l'epaisseur H. Les equations (3) et (4) resolues suc-
cessivement se presentent comme un Systeme lineaire, malgre les

termes nonlineaires contenus dans k. Dans des cas concrets de

conditions aux limites, oü les moyens de la theorie classique peuvent etre

utilises l'integration est donc relativement simple.

Vient s'ajouter un probleme de stabilite ä savoir qu'une coque
mince de faible courbure initiale peut sauter pour une certaine Charge

dans une position avec courbure de sens opposee. Des problemes de ce

gerne sont traites dans de nombreux travaux (voir par ex. [3]) et en

particulier dans le cadre de la theorie non-lineaire generale presentee

par Mushtari et Galimov [4]. Si ce phenomene a lieu dans notre cas,

Fequilibre de la position plane sera instable. Envisageons dans la suite

seulement le cas particulier important de la Charge uniforme .p const.

La courbure initiale critique est celle oü l'equilibre de la coque

aplanie par une Charge dite eile aussi «critique» est indifferent, c'est-ä-

dire oü il existe au moins une position d'equilibre voisine (dans le sens

du calcul des variations), decrite par une surface elastique m La

fonetion J satisfait donc ä l'equation (1), ä condition d'y poser

W=K, AAw —p/D. Les forces normales sont ä tirer de la
fonetion d'Airy 0 obtenue par l'integration de (3) et (4). Ces forces

etant proportionnelles ä p2EF/D2, il est indique d'introduire des

«forces» nx, nxy, ny et un parametre A sans dimensions afin d'eviter la
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repetition de ce facteur dans la suite (les coordonnees seront ecrites plus
tard sans dimensions). Posons donc

(5)

Nx
XD

Nxy

X ¦¦

XD
L2

p2EFLs

Ny
XD

¦ny.

D3

L'equation pour le critere de stabilite s'ecrit alors:

(6) WM 82£

dx2
2 nxy

82Z

dx dy
tly m

d^
0,

et exprime un probleme de valeur propre dit general [5].
Pour faciliter la recherche de X par approximations enoncons

encore le principe du minimum qui correspond ä cette equation. II
peut etre etabli ä l'aide de la seconde Variation de l'energie potentielle
[6] et s'ecrit ici:

Min
L2 $$[(A ry _ 2 (1 — 1 x] dx dy

IK§ + 2nxy—-~-d x dy
düy dxdy

oü x est la courbure de Gauss de la surface f. 'Lintegration est ä
etendre sur tout le domaine de la plaque et le crochet au denominateur
est suppose etre positif defini. On trouve facilement une borne
superieure X0 de X, en laissant tomber la condition du minimum, c'est-ä-dire
en introduisant dans (7) une fonetion f cinematiquement admissible.
On peut aussi obtenir une borne inferieure Xu en estimant convenable-
ment le denominateur dans (7). En effet, l'expression entre crochet
sous le signe integrale au denominateur est une fonetion scalaire et par
suite independante du choix du Systeme d'axes de coordonnees. En
associant donc ä chaque point un Systeme d'axes dont les directions
seraient precisement Celles des forces normales principales «lt n2 (nt
> n2) au dit point, on verrait aisement que cette expression a pour
borne superieure nx jgradfl2. En designant par « la plus grande
des forces normales principales «a on trouve:

(8) nx\dx) + 2 nXy—-—- +
d x d y

ny l
dy

< n |grad f |2

En resume nous obtenons les inegalites suivantes:

X
L2^{(At:y — 2(1— v)x]dxdy 'M

Min -ttt; .—[ < X <

(9)

<

« JJIgrad f \2 dx dy

£2J7 [(^ l? — 2(\—v)x] dxdy

jJrv^) +2nxv^x-^y+nv m
8y

dxdy

L'equation differentielle d'Euler-Lagrange qui correspond au
principe du minimum pour Xu s'enonce:

(10) AAÜ. + Xn
L2

AZ 0,

et exprime par exemple dans le cas oü A f 0 au bord un probleme de
valeur propre dit particulier pour Xu. Ce probleme est plus facile ä re-
soudre que celui qui est pose par l'equation (6). En effet, on peut souvent
en trouver, comme on le verra dans l'application qui va suivre, la
Solution rigoureuse, ou bien alors ramener l'equation (10) ä l'equation
integrale du type Fredholm suivante [5]

(11) v (x,y) + K~\iG (x,y, x„ J)v(x, y)dx dj 0

oü le noyau G est la fonetion de Green de A J 0.
Un raisonnement analogue ä celui fait dans [5] peut etre fait pour

comparer deux cas avec conditions aux limites differentes. Soient par
exemple A la valeur propre et £ la fonetion propre correspondante d'une
plaque encastree avec courbure initiale et soit A* la valeur propre d'une
plaque de meine contour, mais articulee le long de celui-ci et possedant
par suite une courbure initiale differente de la premiere. Si nx designe la
grande des deux forces normales principales de la plaque encastree et

« 2 la petite des deux forces normales principales de la plaque articulee,
on a alors

(12)

8J_

dx
V I 8t. 8t, 8t,\2
j+2"-T717 + "ylT7)<"l|gradC|2'

«*|gradC|2<«*(üy + 2«* im + n*(^Y
2 x\8xJ w dx dy y\dy)

Comme Z est une fonetion cinematiquement admissible pour la
plaque articulee, on obtient finalement un theoreme de comparaison

(13) A* < |
ä condition que gj < n* en chaque point. On peut facilement ve-
rifier que cette derniere condition est largement satisfaite dans le cas
de la Symmetrie de rotation. Elle le sera donc egalement pour un
contour qui differe peu du cercle. II faudrait toutefois la verifier dans
chaque exemple.

Au Heu de varier les conditions aux limites pour w, on peut aussi
comparer deux cas avec differentes conditions aux limites pour 0.
En effet, la force normale nl dans le cas d'une plaque circulaire posee
est plus petite que la force normale n* dans le cas d'une plaque
circulaire articulee. L'inegalite (13) sera donc valable dans ces cas-ci
et aussi pour des contours peu differents du cercle.

Dans la suite nous nous proposons de discuter quantitativement
des exemples elementaires de symetrie circulaire pour montrer qu'il
existe des cas pratiques qui entrent dans le cadre de cette theorie. Ces
exemples montrent en outre quantitativement l'influence des conditions
aux limites sur les valeurs propres qui nous Interessent en premier lieu.

Quelques exemples avec symetrie de rotation
Considerons une plaque circulaire de rayon R chargee unifor-

mement et possedant une courbure initiale donnee par une surface
moyenne initiale w (r), oü r est la distance d'un point quelconque
ä Taxe de symetrie z. Nous nous proposons de traiter trois cas
extremes par leurs conditions aux limites et leur connexion:
a) plaque articulee le long du contour r — R,
b) plaque posee le long du contour r R,
c) plaque libre le long du contour r R et posee le long du bord d'un

trou concentrique de rayon sR.

L'equation (4) s'ecrit avec la variable g r/R sans dimensions
et la notation d/dg '

(14)
1 1

fe a*0'
E E
— w' w" [(co')2]'
o 2 o

La theorie lineaire nous enseigne d'autre part que (3) admet dans
les cas a) et b) la Solution

pR4
64 D

5 + v 2 (3 + v)

1 +v ~
1 + v

e2-l- 1
(voir par exemple [7]). On peut alors facilement integrer (14) et on
obtient pour la force normale radiale l'expression:

F0' p2EF R6

D2 ~27T
>Afr

R2 g

(15)

i + 3 (1 + »)
*

II est commode de choisir ici L — R/4, la constante «0 est alors
precisement egale ä la force normale sans dimensions nr au centre
o 0 de la plaque. Cette constante est determinee par la condition

aux limites pour 0,et qui s'enonce: dans le cas a) [g 0" — v 0%^
0, dans le cas b) [ä>7e]p_i

pour les deux cas envisages:
0. On obtient ainsi les constantes

(16)

a)

b)

3—v
1—v

3 + v

1 +v

3_-M
1 +v

2 (5—v) 3+v
+ -

7—v
3 (1— v) 1+v 6(1— v)

2Q+v) 1

3 (1 + v) 6 '

(17)

Dans le cas c) on tire d'abord de l'equation (3)

p R4

64 D
[a log g — 8 o2 log o + c g2 + d + g4]
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(18)
8 62ioge MHH i— (1—*v,

1 — £2 1 + V

(8 e2 — a) log I — s2 (c + e2)

L'integration de l'equation (14) fournit ensuite l'expression suivante
pour la force normale radiale:

(19)

Nr P2EF R* j I
D2 212 |

Ci 4(a—4o2)(logo)2 +

4 g
——sei 4(2 + c)g2 'Q+-

-(6 + < + X + i e2 + « Ig
Les constantes Q et C2 sont determinees par les conditions aux
limites Nr/P_e Nr/P_i 0

Examinons maintenant le probleme de stabilite. On peut verifier
qu'il sufflt de prendre pour t, une fonetion dependant eile aussi uni-
quement de g. L'equation (6) devient avec la nouvelle variable { {',
la valeur propre A p2EFR8/2l6D3 et nr — NrR2/16 XD

(20) r + + 16 A Tlr f 0

Cherchons d'abord des bornes pour la valeur propre A. Le
membre droite de la double inegalite (9) s'ecrit ici pour la symetrie
circulaire

(21) KrÜ ¦2(1—»)ff ]dg

16 fn Q. d g

oü l'integration est ä effectuer entre 0 et 1 dans les cas d) et b), mais entre
s et 1 dans le cas c). Nous avons choisi J f„(l — Q2) pour les deux
Premiers cas et \ f0(ö — s) pour le dernier.

En ce qui concerne la borne inferieure A«, il est facile de voir
qu'on peut faire un raisonnement analogue ä celui qui nous a permis
d'etablir l'equation (10), avec cette simplification qu'on obtient ici
directement une equation pour I et non pas pour A |:

(22)
1

+ 16 Xu n0 0

la constante n0 designant comme avant le maximum de nr. Si nous

posons 4 ]/A„ n0 x l'equation (22) admet dans les cas a) et b) la
Solution | AJ1(%g), oü J± est la fonetion de Bessel d'ordre 1 de

premiere espece. La condition aux limites Mr/P_1 0 nous mene
alors ä l'equation transcendante

(23) /»(X)-
1

JAx) o.

Dans le cas c) il faut poser i AJX (xg) + BNt (xg), Ni etant la
fonetion de Bessel d'ordre 1 du seconde espece. Les conditions
aux limites MrJ.p=e — Mr/P=1 0 fournissent ainsi un Systeme
lineaire homogene pour les constantes A et B dofnnl faut annuler le
determinant.

On peut aussi essayer de trouver une approximation de la valeur

propre par un developpement en Serie de f. On introduit ä ce propos

pour le cas a) par exemple la Serie I Y\bn gn dans l'equation
""1,3

differentielle (20). La comparaison des coefficients de memes puissances
donne la formule de recurrence

(24)
bn

«2— 1

["•'"-(ttt) 3 (1 + v)
bn-<

6BI

En satisfaisant de nouveau la condition aux limites Mr/P_x 0
on est ramene ä une equation algebrique de degre (m—1)/2 pour A.
La convergence de ce procede est toutefois tres lente.

Dans le tableau suivant des calculs numeriques ont ete effectues
pour v 0,35 et respectivement pour e 1/4, 1/2, 3/4.

x=
s Xu A *0 ku + ^o

2
BG i

MX 4
3

Ni -1

casa) 0,018 0,023 0,029 0,024 2,6 1,5 0,93

casb) 0,058 0,26 0,16 6,7 2,3 1,2

case) 0,25 0,014 0,029 0,021 4,9 5,0 3,8

0,5 0,029 0,052 0,040 4,7 2,8 2,6

0,75 0,22 0,45 0,34 4,5 1,9 2,0

Ayant trouve les valeurs propres dans quelques cas simples,
nous pouvons maintenant, pour une Charge p donnee, determiner
les rayons R correspondants. Le diametre 2R peut etre interprete
comme la portee limite oü la plaque est dans un equilibre indifferent.
Dans le cas oü la Charge p est par exemple le poids propre yF,y
designant le poids speeifique effectif, on trouve avec D EJ/(\ — v2)

(25) R
4A

(1 — v2) ¦

m
Comme 1 ne varie pas enormement d'un cas ä l'autre dans le

tableau, ce rayon est pratiquement independant des conditions aux
limites. II est par contre legerement plus grand dans le cas d'une
plaque «Sandwich» avec des couches exterieures minces et une couche
interieure epaisse de poids et de resistance n6gligeable (J/F H2/4)
que dans le cas d'une plaque homogene (J/F H2/\2).

Dans la pratique on est encore interesse de connaitre la fieche
initiale Wf, la plus grande tension de flexion om et la plus grande
tension de membrane on. II est commode d'exprimer ces trois valeurs
sous la forme suivante:

(26)

Wf — /A2"

IoM MX* \z\ — 1 (y£)2

i

N m I ~j | (y E) 2

oü z designe l'ordonnee du point considere, relative ä la surface
«neutre».
Les trois coefficients/, Met Ns'obtiennent en recherchant successive-
ment les extrema de la surface moyenne initiale, de la repartition des

moments de flexion Mr, Mt et de la repartition des forces normales

Nr, Nt. Ils dependent du nombre de Poisson v et des conditions aux
limites. mais sont independants des autres caracteristiques de la plaque.

Les valeurs numeriques des facteurs fX'MX et N A sont presen-
tees dans les trois dernieres colonnes du tableau. Le tableau et les

formules (26) nous montrent les resultats suivants:
1. Les valeurs propres varient beaueoup d'un cas ä l'autre,
2. les fleches par contre sont toutes du meme ordre de grandeur (appro-
ximativement identiques dans les trois cas c). Elles sont superieures ä

l'epaisseur dans le cas de la plaque Sandwich mentionnee plus haut.

3. Pour la plaque Sandwich en question on a \z\ (F/J) (J/F)
On voit alors que la plus grande tension de flexion et la plus grande
tension de membrane sont du meme ordre de grandeur.
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Zur Klassifikation von Kräften
Von Christoph Wehrli und Hans Ziegler, ETH, Zürich

DK 531.21

1. Einleitung
Um die Bewegungsdifferentialgleichungen eines mechanischen

Systems mit endlichem Freiheitsgrad zu erhalten, das im folgenden als
holonom und skleronom vorausgesetzt werden soll, verwendet man
oft mit Vorteil die Lagrangeschen Gleichungen

(1.1)
8 T
8 qk

d T
d qic

Hier bedeuten die a* (k 1, 2, ...,«) die Lagekoordinaten, die a't
die verallgemeinerten Geschwindigkeiten; Tist die Bewegungsenergie,
und die Qk sind - sofern für lateinische Zeiger die Summationsregel
verbindlich erklärt wird - die durch den Ausdruck

(1.2) 6 A Qk ä qk

für die virtuelle Arbeit definierten verallgemeinerten Kräfte.
Die Lagrangeschen Gleichungen eignen sich auch vorzüglich

für das Studium der allgemeinen Eigenschaften des Systems, zum
Beispiel seines Stabilitätsverhaltens. In diesem Zusammenhang
erweist es sich als zweckmässig, die verallgemeinerten Kräfte zu
klassifizieren1). Dabei handelt es sich darum, festzustellen, welche von
ihnen (a) explizit von der Zeit abhängen und somit instationär sind,
(b) Funktionen der verallgemeinerten Geschwindigkeiten bzw. (c)
nur solche der Lagekoordinaten sind. Bei der Gruppe (b) interessiert
sodann die Frage, welche Anteile bei wirklichen Bewegungen keine bzw.
stets negative Arbeit leisten, d. h. gyroskopisch bzw. dissipativ sind.
Davon hängt zum Beispiel, wie schon Lord Kelvin und Tait2) gezeigt
haben, ihr Einfluss auf die Stabilität einer Gleichgewichtslage ab.
Ähnlich ist es3) bei den verallgemeinerten Kräften der Gruppe (c),
die sich von einem eindeutigen Potential ableiten lassen oder nicht und
je nachdem als nichtzirkulatorisch oder als zirkulatorisch bezeichnet
werden.

Die angedeutete Klassifikation bietet keine wesentlichen
Schwierigkeiten bei linearen Systemen, d. h. dann, wenn die verallgemeinerten
Kräfte Qi in den a* und den as linear sind. Scheidet man explizit von
der Zeit abhängige Anteile sofort als instationäre verallgemeinerte
Kräfte aus und misst man die a* von der alsdann vorhandenen
Gleichgewichtslage aus, so stellen sich die Q, in der Form

(1.3) Qi ¦ Cjk qk — gjk qk

dar, wobei die Koeffizienten Cjk, gjk nunmehr konstant sind. Jede der
beiden Matrizen (cjt), (gjk) kann eindeutig in einen symmetrischen
Anteil (0 und einen antimetrischen (") aufgespalten werden, und eine
einfache Analyse der Leistung Qjq'j zeigt4), dass die einzelnen Bestandteile

verallgemeinerte Kräfte der folgenden Klassen darstellen:

(cj j.): nichtzirkulatorische
(c'lk): zirkulatorische

(gjk)' dissipative (falls die Matrix positiv definit)
(g'jk)'- gyroskopische.

Diese Zuordnung ist freilich nicht eindeutig umkehrbar. So müssen
sich zwar nichtzirkulatorische verallgemeinerte Kräfte stets durch eine

*) Vgl. H. Ziegler, On the Concept of Elastic Stability, Advances in
Applied Mechanics IV, Academic Press Inc., New York, N. Y., 1956, S. 366.

2) Sir W. Thomson and P. G. Tait, Treatise on Natural Philosophy,
Neudruck unter dem Titel «Principles of Mechanics and Dynamics»,
Dover Publications, Inc., New York, N. Y., Bd. 1, S. 388.

3) H. Ziegler, loc. cit. S. 377.

4) H. Ziegler, loc. cit. S. 372.

symmetrische Matrix {c'lt) darstellen und gyroskopische stets durch
eine antisymmetrische Matrix (g'-k). Andernfalls hätten die ersten
nämlich kein eindeutiges Potential, und die Leistung der letzten wäre
nicht bei jeder wirklichen Bewegung null. Zirkulatorische
verallgemeinerte Kräfte werden aber auch durch asymmetrische Matrizen
(cjk) dargestellt und können daher nichtzirkulatorische Anteile
enthalten. Analog kann man aus der Asymmetrie einer Matrix (gjk) mit
positiv definitem symmetrischem Anteil nur auf dissipative
verallgemeinerte Kräfte schliessen, denen noch gyroskopische beigemischt
sein können.

Die Klassifikation der in den a*, a> linearen verallgemeinerten
Kräfte g,- bietet also offensichtlich keine Schwierigkeiten. Die Trennung

der zu verschiedenen Klassen gehörenden verallgemeinerten
Kräfte ist indessen nicht immer ganz einfach. Im Falle nichtlinearer
Funktionen Qi(qk, cjk) treten weitere Komplikationen auf, und es
stellt sich die Frage nach der Struktur der verallgemeinerten Kräfte,
welche der einen oder anderen Klasse angehören. Als Beitrag zur
Beantwortung dieser Frage soll im folgenden untersucht werden, in
welcher Weise sich die im System wirkenden elementaren Kräfte,
wenn sie dem einen oder anderen einfachen Typ angehören, in den
verallgemeinerten Kräften reproduzieren.
2. Die verallgemeinerten Kräfte

Für die Herleitung der Lagrangeschen Gleichungen ist es üblich5),
das System als Gesamtheit von Massenpunkten aufzufassen. Dieses
Bild ist für Systeme, welche sich aus starren Körpern zusammensetzen,
zulässig und zweckmässig und soll auch hier verwendet werden.
Ferner sollen die im folgenden auftretenden Funktionen als stetig und,
soweit dies nötig ist, auch als differentiierbar vorausgesetzt werden.

Es sei mß ein typischer Massenpunkt und tß (xß, yß, zß)
sein Fahrstrahl in einem kartesischen Koordinatensystem. Da das
System als skleronom vorausgesetzt wurde, ist der Fahrstrahl eine
eindeutige Funktion
(2.1) Tß tß (qk)

der Lagekoordinaten allein. Die allgemeinste zulässige Verschiebung

des Systems wird durch einen Satz von Inkrementen Sqk der
Lagekoordinaten beschrieben, und diese Inkremente sind im holono-
men System voneinander unabhängig. Die virtuelle Verschiebung
von mß ist nach (2.1)

3 tß(2.2) Stu
qk

d qk

Sind Kß die an den Massenpunkten mß wirkenden Kräfte einer
bestimmten Klasse, so ist - wenn für griechische Zeiger die Summationsregel

nicht verwendet wird-ihre virtuelle Arbeit für das ganze System

(2.3) ÖA YlKßörß I1K»
8 Tu

d qk
<5 qk

ß ß

Die zugehörigen verallgemeinerten Kräfte sind also nach (1.2) durch
8 tu

(2.4) Qi Y,Kß
8 q}

gegeben.

Im allgemeinsten Fall sind die Elementarkräfte gemäss Kß (t,.,
iv, t) von allen Fahrstrahlen, allen Geschwindigkeiten und der Zeit
abhängig und damit insbesondere instationär. Es folgt dann aus (2.4),
dass - von seltenen Aussnahmen abgesehen - auch die gj explizit von
der Zeit abhängen.

5) Vgl. z. B. E. T. Whittaker, Analytische Dynamik der Punkte und
starren Körper, übersetzt von F. und K. Mittelsten Scheid, Springer-
Verlag, Berlin 1924, S. 37.

Schweiz. Bauzeitung • 84. Jahrgang Heft j 1. Dezember 1966 851


	Sur l'aplanissement élastique d'une coque de faible courbure

