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Cnce again, the values of the 4a, A, Fiand B are independent of
the position of the load P along the » axis,

6. Numerical Examples

1l.ustrative numerical examples are now given for both the above
cases for various positions of the applied concentrated load P,
All the examples refer to a square plate where

(6.1a) g=h=1, Dy=0I5D, Dey = 0425 D
and, unless otherwise stated,

(6.1b) D:=D, Dy=10.

In all cases

{6.1¢c) H=D and u=}2/2

sge equations (3.3) and (4.4).

6.1 All edees simply supported

Four positions of the applied concentrated load are considered as
shown in Fig. 3, where in cases (iii) and (iv) it is noted that Ds = 2D
and Oy = D, Cases (i) and (ii) provide identical situations as does
case (i) with case (iv), the values of the physical quantities are, how-
ever, derived by quite different numerical processes and so this pro-
vides a useful check on the caleulations. The results of the calculations
are sketched in Fig. 4.

With conventional methods it is a matter of some difficulty to
calculate accurate values for Or, Qv and Vi, Fy. It is a featare of the
present method, however, that it is considerably easier 1o calculate
these values than to calculate the deflection w (0: #) underneath
the applied load to within the same degree of accuracy, This is illustra-
ted in Tables 1 and 2 where values of the physical quantities are given
for various truncations of the series. It is noted, incidentally, that it is
necessary to consider even values of # only for case (i) and also that
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Introduction et dquations générales

Drans la théorie bidimensionnelle sur la flaxion des plagues minces
sollicitées par une charge p on supposc |'épaisseur H de celles-ci faible
par rapport aux deux autres dimensions. Lorsque lz2 déplacement
latéral W des points du plan moven est de Vordre de grandeur de A,
mais néanmoins | grad W 2 < 1, on utilise comme point de départ les
equations différentielles non-findaires de . Kérmar [1], dans lesquelles
intervient a coté de B la fonction d”Adry @ de Peffet membranz. Comme
dans la pratique on se borne 4 des déplacements faibles d'une part et
que d'autre part on cherche & eviter les sysiémes non-linéaires dont
I'intégration n'est pas toujours aisée, nous avons éié conduil & étudier
dans fa suite un probléme quelque peu modifié.

Supposons que |a plaque en question posséde avant Iapoliquation
¢e la charge une certaine courbure, donnée par une fonction w
céfinissant la surface movenne initiale (Fig.). Pour Ia flexion d*une tefle
coque de faible couwrbure on a en coordonnées cartésiennes x, ¥ les
équat.ons differentielles suivantes, données par Marguerre [2]:

Ad (B — wh =
(1 1 &W =W P W
= = . ——— RN L £ e
D [P i B "ax 2y Ny 2y
2} 440 = Etk—K)

Dans ces Squations 4 désignz 'opératzur de Leplace, £ l¢ module
d'élasticité, O la rigidité 4 la flexion et &, K les courburas de Gauss des
surfaces w, W, Les fonctions Nz = F&@idy®, Nyy — — Frdijaxdy,
Ny = Fe*d/éx? sont les forces normales et tangentiellzs dives & Ceffet
de membrane avec F comme gire de section effective pac unité de
longueur (dans e cas homogéne on aurait F = H).
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an expediticus choice of the co-ordinate axes leads aven more quickly
to accurate resulis.

6.2 Two opposite edges simply supported ond remaining edges free

Three positions of the applied concentrated load are considered as
shown in Fig. 5. The results of the calculitions are sketched in Fig. 6,
Table 3 illustrates the convergence of the physical quantities for va-
rious truncations of the series.
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Supposons maintenant que la cogue, sous Pinfluence de la
charge p, ait & aplanie, c'est-d-dire gae B = 0. Pour la surface
initiale w et la fonction d”Afry ® on obtient alors l& systéme

(3) Adw=——,

@  Aa0= E'J:_E[f:_.“.'.'_"“_[—‘d--‘-‘ }J
2 By wol Ay

La premitre de ces équations est au signe prés identique & I'éguation
de base de la théorie linéaire de la flexion. Rappelons toutefols que
contrairement & la suppaosition faite daas cette derniére ((w. <€ H)
I grandeur du déplacement w dans notre cas peut trés bien éire du
méme ordre que I'épaisseur M, Les équations (3) et (4) résolues suc-
cessivernen: se présentent comme un systéme linéaire, malgré les
termes nonlinéaires contenus dans &, Dans des cas concrets de con-
ditions aux limites, ol les moyens de la théorie elassigue peuvent élre
utilisés I'intégration est done relativement simple.

Vient s'ajouter un probléme de stabilité & savoir qu'une cogue
mince de faible courbure initiale peat sauter pour une certaine charge
dans une positicn avee courbure de sens opposee. Des problémes de ce
genre sont trajtés dans de nombreux travaus (voir par ex. [3]) et en
particalier dans le cadre de la théorie non-linaire génerale présentée
par Musheari et Galimar [4]. 8i c& phénomére a licu dans notre cas,
'équilibre de la position plane sera instable. Envisageons dans la suite
seulement be cas particulies important de la charge uniforme p = const.
La courbure initiale critique est celle o I'équilibre de la cogue
aplanie par une charge dite elle aussi scritique» est indifférert, c'est-d-
dire o il existe au moins une position d"3quilibre voisine (dans le sens
du calenl des variations), décrite par une surface élastique L. La
fonction & satisfait donc & éguation (1), & condition d'y poser
W —=¢, Adw =—piD. Les forces normales sont & tirer de la
fonetion d 4iry @ obtenue par l'intégration de (3) et (4). Ces forces
étant proporticnnelles & prEFD, il est indigue d'introduire des
TOTCES™ Me, May. My e Ui parameétre A sans dimensions afin déviter la
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répétition de ce facteur dans la suit2 (les coondonnées seront écrites plus
tard sans dimensions). Posons donc

' AD LD : A
‘-""’.r—"- J—ﬂ:. Ney = — i [ 2T J"l'.,- i IJ:J Hy «
s .
{5) .. p*EFL*
ol = - .
D!-

L éguation pour le critére de stabilité s"é&erit alors:

A i o [
— | e b iy = y—— | =0,
I Bx? Bxdy B3

€t exprimz un probléme de valeur propre dit géneral [5].

Pour faciliter Ia recherche de 2 par approximitions éncngons
encore e principe du minimum qui correspond & cetle &guation. (1
peut étre Etabli a 'aide de la secorde variation de ["énergic potentielle
[6] et s'écrit jci:

(6} dAL 4

Jf[u =20 —nxldxdy

"
] a8t ,‘," E‘“-I :
[T o T e[
N EXx gx dy aypy

oil % est la courbure de Gawrs de la surface & 'Lirtégration est &
Stendre sur tout le domaine de la plague et Ie crochel au dénominateur
280 supposé &re positif défini. On trouve fazilement une borne supé-
rieure 4; de 4, en laissant tomber la condition du minimum, c'est-a-dire
en introduisant dans (7) une fonction £ cinématiguement admissible,
On paut apssi obtenir ung borne inférieure 1, en estimant convenable-
ment le dénominateur dans (7). En effet, Mexpression enire crochet
sous le signe intégrale au déncminateur est une fonction scalaire st par
suite indépendante du choix do svstéme d'axes de coordonnées. En
associant donc & chague point un systéme d’axes dont les directions
seraient précisément cellzs des forees rormales principales ny, 2, (m,
= ngh au dit point, on verrait aisément que celle expression a pour
borne supéricure #, grad$ *. En désignant par & la plus grande
des forces normales principales o, on trouve:

gL \? &k L BEAS
(8) n;(, ) ME 5 e 1B n.( E") < filgrad 317
(46 & dx &y B

En résumé nous obtenons les inégalités suivantes:

L2 J[CA2) — 200 —w) s} dxedy

= A%
.-rj'flgrad ldzdy

Ay = Min
9)
:nj[{J *P-. 2 (¥ _.-a;]d.,.d.

i
H[n, _] I-Znn. i _*.
I!'I'I.II

+ ny { 5 ) ] dxdy

L'équation differenticlle d'Ewfer-Lagrange qui correspond av
principe du minimum pour 4y 5'énonce:

- M n
F [ (o 73

(10) AL=0,

et exprime par exemple dans ke cas oi 4L = Dau bord un probléme de
valeur propre dit particulier pour 45, Ce probléme est plus facile a ré-
soudre que celul qui est posé par 1"équation {6), En effet, on peut souvent
en trouver, comme on le verra dans 'application qui va suivre, la
solution rigoureuse, ou bien alors ramener 'équation (10) 4 Péguation
intégrale du type Fredholm suivante [5)]

(1 oo+ 4 13 ”G G s 5 Y S Ty x dF =)
ai-le noyau G est la fonction de Green de A% = 0,

Un raisonnement analogue & eelui fait dans [5] peut étre fait pour
comparéer deux cas avec conditions aux limites différenies, Soient par
exemple 4 |1 valeur propre et £ la fonctior propre correspondante d'une
plague encastrée avec cou-bure initiale et soit 4® la valeur propre d'une
plague de méme contour, mais articulée ke long de celui-ci ¢t possédant
par suite une courbure initiale différente de la premiére. Si n, désigne la
grande des deux forees normales prineipales de la plague ercastrée et

Schweiz. Baveeitung « 84, Jahrgang =efi 43 - 1. Dezembar 1968

n 3 la petite des deux forces narmales principales de la plaque articulée,
on a alors

[ EE\? at Bt
e | — 2y —— -
ox Ex ¥

TN
+ L) =mn sradf|2,
y‘._d_r) i B
B

& aE !
. ) + n"( )
i o gy

Comme £ est une fonction cinématiquement admissible pour la
olague articulés, on obtient finalement un théoréme de comparaison

13}

12
&L 8L

Fage 2
™ dx By

I n* grad {2 = p* (
3 €

AY A

i conditicn que m, = ¥ en chague poinl. On peut facilemert vé-
rifier que ette derniére condition 25t largement satisfaite dans le cas
de la symmetrie de rotation. Elle le sara done également pour un
contour qui différe peu du cercle. 11 faudrait toutefois la vérifier dans
chaque exemple.

Au lieu de varier les conditions aux limiles pour w, on peul aussi
comparer deux cas avec differentes conditions aux limites pour @
En eTet, la lorte normale m, dans le cas d'une plague circulaire posée
est plus petite que la force ormale #% dans Jz cos d'une plague
circulaire articulée. L'inégalité (13) sera donc valable dans ces cas-ci
et aussi pour des contours pea différents du cercle.

Dans la suite nous nious proposons de discuter quantitativement
des exemples &lémentaires de symétrie circulaire pour montrer qu'il
existe des cas pratigaes gui entrent dans le cadre de cette théorie. Ces
exemples montrent én outre quantitativement l'imfluence des conditions
aux limites sur les valeurs propres gui nous intéressent en premier lieu.

Quelgues exemples avec symétrie de rotation

Considérons une plague circulaire de rayon R charge unifor-
mément el possédant une courbure initiale donnée par une surface
moyenne initiale w [r), o0 r est la distance d’un point quelcongue
i laxe de syrdétrie z. Mous nous proposons de traiter trois cas
extrémes par leurs conditions aux limites et leur connexion:
a) plegue articulée Iz long du contour r = R,
b) pleque posée le long du contour ¢ = R,
¢) pleque libre le lorg du contour » = R et posée le long du bord d’un

trou concentrigue de ravon eR.

L'¢guation (4} 3'écrit avec la variable ¢ = r'R sans dimensions

¢t la notat.on didp = *

! Jﬂ[ I-{E'I"}' 1 - £ W

el e B 4

La théorie linéaire nous enseigne d'aulire part que (3) admet dans

les cas @) et b) la solution
okt [ 5+
6 [ 1-r

114} [tw]‘i

ITJ

21F

= ¥) .
| g EJ_EJ

(voir par exemple [71 On peut alors facilement intégrer (14) ¢t on
chtiert pour la force normale radiale 1'expression

ZEF po
R*a DE 21:

R W
e:+3“__._lr}y+ &EJ.

Il gst commode de choisir ici L = R4, In constante s, est alors
precisément égale & la force normale sans dimensions s au centre
o =0 de la plague, Cette constante ot déterminée par la condi-
tion aux limites pour & et qui s*¢nonce: dans le cas a) [o ©° —» 7,
= 0, dans le cas &) [@[a];_; = 0. On obtient ainsi les constantes
pour les deux cas envisagss;

(15)

@ = E_F(S ) G . 1 M
e ]—;l-J 3I(l—r) 1+ 61—
(L)
A4 20344 1
) ""_(I—l-u-]_ElI P -+ i
Dans le cas ¢) on tire d'abord de 'équation (3)
(mn —_.....F_R_[gupgn_._au*lugy-fcn’-n‘—g']
64 D
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fut}

4 5 ln'lgl.'
411 3 4
# T [[ b 1 —g 4 I
= 203 4 »
(18} 1 i Eelog e { r}{L—:—’}.
1 — e 1 +»

d=(FF—agloge— e+ .

Llintegration de 'équation (14) fournil ensuite "expression suivante
pour la force normale radiale:

g EF R* B . ;
i :C' : h: +4la—do)loge) +
Fy E i
119} | i [ .{;i —ar+4(2+ ) + f ]iugg— s
3 r ot
—{ﬁ;f‘—‘ .._ﬂ]“‘!'_{z_f { __'l.
4- 2 3 4 6|

Les constantes ¢, el €; soni déterminées par les conditions aux
lamites Nefp_r= Nefn_ =0,

Examinons mamienant le probléme de stabilité, On peut verifier
qu'il suffit de prendre pour © une fonction dépendant elle auss: uni-
gquement de o. L'égquation (6) devient avec la nouvelle variable £ =27,
In valsur propre 4 = pPEFRY2'5 D el ne = — N RY16 4D

4 s

(20) ¢ e . +1l6dn =0,
R

Cherchons d'abord des bornes pour la valeur propre 1. Le
membre droite de la double inégalité (9) £8crit ici pour la symétrie
circulairg

F
i og—2 [I-v-r.‘r-.z}'] oo

e
(—
S

i
= el

2 ]
4 16 [, B odp
ol Pintégration est 4 effectuer entre 0 et | dans les cas a) et b), maisentre
e et | dans le cas ¢). Nous avons choisi T = .01 — o) pour les deux
premiers cas et £ = £,(p — #) pour le dernier.

En ce qui concerne la borne inféricure Z., il est facile de voir
cu'on peut faire un raisoanement enalogue & celul qui nous a permis
d'érablir 'équation (10), avec cette simplification qu'on obtient ici
directament une équation pour £ et mon pas pour 2 £

& — 16 At =0

L o

(22) £

la constante n, désignant conune avant le maximum de #. 51 nous
posons 4 |4, my = g Péquation (22) acmet dans les cas o) ¢t &) la
solution: & = AJ (xp), oi J; est la fonction de Bessel diordre 1 de
premiire espéce. La conditicn aux limites M./y_, = 0 nous méne
alors & 'éguation transcendante
| —=»
(23) Silg)————— K =0,
F 4

Dans le cas )il faut poser £ = AJ (x0) + BN, (g2}, N, élant |a
fonction de HSessel dlordre | du seconde espéee. Les conditions
aux limites Myl ¢ = My, = O fournissent aingi un svstéme
lindaire homogéne pour les constantes A ¢t B dont il Jaut annuler lo

déterminart,
On peut aussi essayer de trouver une approximation de la valeur

propre par un développement en série de £, On introduit 4 ce propos

pour le:ces @) par exemple ‘la série £ - Eﬁ-, o dans "éguation
T

différentielle (200. La comparaison des coéfficients de mémes puissances
donne la formule de récurrence

by == A '-<
1

Topwn?
x ["n!"u-z— (_I |_) by +

(24)
5 LS a,_,,].
A+ 6

850

En satisfaisant de nouveau la condition aux limites Mef_, =0
on est ramend & unc équation algébrique de degreé (m—1)/2 pour 4.
La convergence de c2 procédé est toutefois trés lente,

Drans le tablesu suivant des caleuls numériques ont été effectués
pour ¢ = 0,35 et respectivement pour & = 1/, 1/2 3/4,

[ 5%
el a | o | oa [ Ben Lttt
|
casa) 0,018 0,023 | 0,029 0,024 2.6 1.5 0,93
éns i) U,IZI'STH: __E,I&_! 0,16 61 | 2.3 1,2
casc) 0~25i0.ﬂl4 0,029 0021 | 49 30 38
0,5 0,029 0,052 0,040 4.7 ZE 26
0,75 0,32 0,45 | 034 %5 | 19 | 20

Ayant trouve les valeurs propres dans quelques cas simples,
nous pouvons maintenant, pour une charge p donnée, délerminer
les rayons R correspondants. Le diamétre 2R peut Stre interprété
comme [a portéz limite on la plagus st dans un équilibre indifférent.
Dans le cas ol la charge p est par example le poids propre #F,
désignant lz poids spécifique effectil, on trouve avec D = EJ/(1 —+Y)

H] 1

)
. 41 e L B -
(25) e (P} (f] .

a4

(] =3y

)

Comme 2" ne variz pas énormément d'un cas & autre dans le

tableau, ce rayon est pratiqguement indépendant des conditions aux

limites. Il est par contre légérement plus grand dans le cas d'une

plague «Sandwich» evec des couches extérieures minces ot une couche

intéricure ¢paisse de poids et de résistance négligzable (J/F — H3/4)
que dans le cas d'une plague homogéne (JIF = H12).

Dans la pratique on est encore interess® de connaitre la fleche
initiale wr, la plus grande tension de fexion ou et la plus grande
tension de membrane o« . 11 est commode d’exprimer ces trois vakeurs
sous la forme suivante:

S

K X : 1
(26) o= Mitls ';_;) 2 E) T,

a S 3
=Nt () oot
o = désigne Pordonnée du point considérs, relative a Ia sarface
IS,
Les trois coéfficents £, Af ot N s'obtiennent en recherchant successive-
ment Jes extrema de la surface moyznne initiale, de la répariition des
moments de flexion My, A et de la répartition des forces normales
MNe, M. Ds dépendent du nombre ce Poisson » et des conditions aux
limites. mais sont indépendants des autres caractéristiques de la plague,

A 21 A

Les valeurs numérigues des facteurs £2° M2 et N 17 sont présen-
tées dans fzs trois dermiéres colonnes du tableau. Le tableau et fes
formules (26) mous montrent les résultats suivants;
1. Les valeurs propres varient beaucoup d’un cas 3 'autre,
2 les fléches par contre sont toutes cuméme ordre de grandeur (appro-
x mativement identiques dans les trois cas ¢), Elles sont supéricures i
I'zpaissenr dans le cis de la plague Sandwich mentionnée plus haut.

A LS
1. Pour la plague Sandwich en question ona |z (FJY " = WE) Y
On vait alers que la plus grande tension de flexion et la plus grande
tension de membraneg sont du méme ordre de grandeur
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Zur Klassifikation von Kriften

Von Christoph Wehrli und Hans Ziegler, ETH. Zirich

1. Einleitung

Um die Bewegungsdifferentialgleichungen eines mechanischen
Systems mit endlichem Freihzitsgrad 2o erhalten, das im folgenden als
holonom und skleconom vorausgesetzt werden soll, verwendet man
oft mit Vortei! die Lagrangeschen Gleichungen

aTn &
(1.1 ('e.ff;,')‘ =0
Hier bedeuten die gx (k = 1,2, ..., m die Lagekoordinaten, die oy
die verallgemeinertzn Geschwindigkeiten; T ist die Bewegungsenergis,
unid die @ sind — sofern fur latesnische Zeiger die Summationsregel
verbindlich erklirt wird - die durch den Ausdruck

(1.2) 5A=0dq

flir die virtuelle Arbeit definierten verallgemeinerten Krifve.

Die Lagrangeschen Gleichungen eignen sich auch voraiiglich
fiir das Studium der allgemeinen Eigenschaften des Systems, zum
Beispiel seines Stabilititsverhaltens, In diesemn  Zusammenhang
erweist es sich als weckmdssig, die verallgemeinerten Krifie zu klas-
sifizieren'). Dabei handell es sica darum, festzustellen, welcke von
ihnea (a) explizit von dzr Zeit abhingen und somit instationfr sind,
(b) Funktionen der wverallgemeinerien Geschwandighkeiten baw. ()
nur solche der Lagekoordinaten sind. Bei der Grupps (b) interessiert
sodann die Frage, welche Anteile bai wirklichen Bewegungen keine bzw.
stets negative Arbeil leisten, d. h gyroskopisch bzw, dissipativ sind.
Davon hingl zum Beispiel, wie schon Lord Kelvin und Tait?) gezeigt
haben, ihr Einfluss auf die Stabilitit einer Gleichgewichislage ab.
Ahnlich ist es) bei den verallgemeinerten Kritten der Gruppe (c).
die sich von einem eindeutigen Potential ableiten lassen oder nicht und
je nichdem als nichtzirkalatorisch oder als zirkulatorisch bezeichnet
werden.

Die angedeutece Klassifikation bietet keine wesentlichen Schwie-
righeiten bei linearen Systemen, d. h. dann, wenn die verallgemeinerten
Krifte ¢ in deén ge und den g linear sind, Scheidet man explizit von
der feit abhingige Anleile sofort als instationdre verallgemeineric
Kriifte aus und misst man die ge von der alsdarn vorhandencn
Gleichgewichislage aus, so stzllen sich die @y in der Form

{1.3)

dar, wobei die Koeffizienten zjx, £ nunmenr kenstant sind. Jede der
beiden Matrizen (o), (g7) kann eindeutig in sinen symmetrischen
Anteil (%) und einer: antimetrischen () aufgespalien werden, und eine
cinfache analyse der Leistung Q¢ zeipt®), dass die einzelnen Bestanc-
teile verallgemsinerte Krille der folgenden Klassen darsiellen:

(i) nichtzirkulatorische

lefy): zirkulatorischs

{g;t}: dissipative (falls die Matrix positiv definit)

(g )t gyvroskopische,
Digse Zuordnung ist fréilich nicht eindeutig umbehrbar, So mifssen
sich rwar nichtzirkulatorische verallgemeinerte Krifte steis durch eine

Qi = — o g — gk g
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Akademische Verlagsgesellschalt, Leipzig, 1945,

(6] HBeyan, G H.: Stability of a Plane Plate under Thrusts in its own Plane.
Proceedings of the London Mathemaut cal Society, Val. 22, 1891, p. 54,

7] Favre, H.: Cours de Mécanique;, T. 111 Leemann, Zineh, 19449, p. 1200

Adresse de auteur: Prof, Dr. Walrer Schumann, EPF, 8006 Ziirich,
Leonhardstrasse 33,

PK 511.2

symmetrische Matrix (c,) darsiellen und gyroskopische stets durch
eine antisymmetrische Matrix (g3, Andernfals hitten die ersten
ndmlich kein eindeutiges Potential, und die Leistung der letzten witre
nicht bei jeder wirklichen Bewegung null Zirkulatorische veralige-
meinerte Kriifte werden aber auch durch asymmetrische Matrizen
{c5a) dargestellt und kdnnen daher nichizirkulatorische Anteile ent-
halten. Analog kann man aus der Asymmetrie einer Matrix (g/2) mit
positiv definitem symmetrischem Antell nur auf dissipative verallge-
meinerte Krdfte schliessen, denen noch gvroskopische beigemischt
sein konnen.

Dic Klassifikation der in der. ge, ¢e linearen verallgemeinerten
Kriifte () bietet also offensichtlich Keite Schwierighkeiten, Die Tren-
nung der zu wverschicdencn Klassen gehorenden verallgemeinerien
Kriifte ist indessen nichl immer ganz einfach, Im Falle nichtlinearer
Funktionen Qylge, ge) mreten weitere Komplikationen aef, und es
stellt sich die Frage nach der Strukiur der verallgemeinerten Krifie,
welche der einen cder anderen Klasse angehoren, Als Eeitrag zur
Beantworiung dieser Frage soll im folgenden untersucht werden, in
welcher Weise sich die im System wirkenden zlementaren Kriifte;
wenn sie dem einen oder anderen einfachen Typ angehéren, in den
verallgemeinerten Kriften reproduzieren.

2. e verallgemeinerten Kriifte

Fiir die Herleitung der Lagrangeschen Gleichungen ist es iiblich®),
das System als Getamtheit von Massenpunkien aufzufassen. Dieses
Bild st fii- Systeme, welche sich aus starren Kirpern zusammensetzen,
zuldssig und zweckmissig und :oll auch hier verwendel werden.
Ferner sollen die im folgenden auftretenden Funklionen als stetig und,
soweit dies nitig ist, auch als differentilerbas vorausgesetzt werden.

Es sei imy ein typischer Massenpunkl und re = (¥, weo2)
sein Fahrstrahl in einem kartesischen Koordinatensystem. Da das
System als skleronom vorausgesetzt wurde, st der Fahrstrah eine
sindeutige Funktior.

[2.1) Ea = tu (gu)

der Lage<oordinaten allein. Dic allgemeinste zuldssige Verschie-
bung des Systems wird durch einen Satz von Inkrementen dgy der
Lagekoordinatzn beschrieben, und diese Inkremente sind im- hclono-
men  System  voneinandesr unabhingig. Die virtuelle Verschiebung

vOm B, 15t nach (2.1)

3
[2.2) dru =3 ;: & ge .
Sind K, die an den Massenpunkien mr, wickenden Kridfie einer be-
stimraten Klasse, soist - wenn [lir griechische Zeiper die¢ Summalions-
regel nicht verwendet wird — ihre virtuell e Arbeit (Or das ganze System

- 4 er
23 -y i s
w2 a) 4 A ,;'Kn: drg _;IK,. ﬂq*éq‘_
Bie zugehdrigen verallgemeinerien Krifte sind also nach (1.2} durch
ar
[2.4) Oy = Exa s
I a4
gegeben,

Im algemeinstzn Fall sind die Elemertarkrifte gemiss Ky (r.,
f#, 1} ¥von allen Faarstrahlen, alten Geschwindigheiten und der Zeit
abhingig und damit insbesondere instationdr. Es folgt dann aus (2,4),
dass — von seltenen Aussnahmen abgesehen - auch die @y explizit von
der Zeit abhiingen.

) ¥Vgl. z. B, E T. Whittakzr, Analvtische Dynamik der Punkiz und
starren Kdrper, iibersetzt von F. und K. Mittelsien Scheid, Springer-
Verlag, Berlin 1924, 8. 37,
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