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84. Jahrgang Heft 46 SCHWEIZERISCHE BAUZEITUNG 17. November'

HERAUSSEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, ZÜRICH

Prof. Dr. Gustav Eichelberg zum 75. Geburtstag
Am 21. November feiert der ehemalige Ordinarius (1929-1959)

für Thermodynamik und Verbrennungsmotoren an der Eidgenössischen

Technischen Hochschule seinen 75. Geburtstag. Der Jubilar
vermittelte dem Ingenieur-Studenten das erforderliche Rüstzeug
wissenschaftlichen Denkens und begeisterte ihn für die Schönheit
technischen Schaffens. Er förderte das Verantwortungsbewusstsein
für seinen Beruf.

Der Jubilar befasste sich nach seinem Studium in der Firma
Gebrüder Sulzer AG in Winterthur mit den Problemen des
Grossmotorenbaues. Damals herrschte auf diesem Gebiet noch reine
Empirie. Angeregt durch die Denkweise seines früheren Lehrers,
Prof. Dr. A. Stodola, der vor allem im Dampfturbinenbau aus den
Gesetzen der exakten Naturwissenschaften dem praktisch tätigen
Ingenieur anwendbare Arbeitsverfahren aufzeigte, erkannte er die
Möglichkeit, die selben Methoden auf den Bau von Dieselmotoren
auszudehnen. Als Untersuchungsgegenstände seien genannt:
Torsionsschwingungen von Kurbelwellen, Ventilfederschwingungen,
Verfahren der direkten Brennstoffeinspritzung und der thermodynami-
sche Ablauf des Motorenprozesses mit Ladungswechsel. Von
besonderer Bedeutung waren die rechnerische Bestimmung und die

experimentelle Nachprüfung der Temperaturverteilung sowie die daraus

resultierenden Wärmespannungen und Deformationen. Mit diesen
wegweisenden Arbeiten wurde Eichelberg zu einem der massgebenden

Begründer der wissenschaftlichen Entwicklungsmethoden auf
dem damals in lebhaftem Aufbau begriffenen Gebiet des
Grossmotorenbaues. Der heute erreichte hohe Stand der Entwicklung ist
weitgehend das Ergebnis solcher Methoden.

Der Reichtum der damals in der Praxis gewonnenen Erfahrungen
und die Tiefe des dabei Erlebten wirkten sich befruchtend auf die
spätere Lehrtätigkeit des Jubilars aus. Sein Einblick in die wirklichen
Probleme fand einen Niederschlag in seinen lebendigen Vorlesungen.
Das fachliche Bestreben war stets getragen von tiefer begründeten
menschlichen Belangen. Diese geistige Haltung, die in der Sorge um
die Erhaltung der Menschenwürde und um den Sinn der Arbeit ihren
Ausdruck fand, verlieh dem Wort des Lehrers besonderes Gewicht.

Unsere besten Wünsche für das weitere Wohlergehen verbinden
sich mit dem herzlichen Dank für die reiche Fülle des Empfangenen.
Vor allem möchten wir unseren verehrten Lehrer bei bester Gesundheit

und in der gewohnten Lebendigkeit bei freudigem Tun wissen.
Prof. M. Berchtold

Eine Kette von longitudinal gegeneinander schwingenden Einzelmassen als einfaches
Modell zur Behandlung von Rotorschwingungen mit nachgiebigen und dämpfenden Lagern
Prof. Dr. G. Eichelberg zum 75. Geburtstag gewidmet von Dr. sc. techn. Benjamin Münch, Maschinenfabrik Oerlikon, Zürich

DK 531.391.3:621.824

Zusammenfassung

Die Untersuchung kritischer Drehzahlen von Rotoren mit
elastisch nachgiebigen und dämpfenden Lagern, welche ihrerseits
wieder elastisch auf einer festen Unterlage abgestützt sind, erfordert
einen hohen Rechenaufwand. Ein einfaches mechanisches Modell,
nämlich ein System von drei longitudinal gegeneinander schwingenden
Einzelmassen, leistet für Studien und qualitative Vergleichsrechnungen
gute Dienste. Das Modell kann auch zur Auswertung von auf einer
Auswuchtmaschine gemessenen Schwingungsausschlägen verwendet
werden, um daraus Werte für die Elastizität und Dämpfungsfähigkeit
von Gleitlagern zu gewinnen.

1. Einleitung
Die Konstruktion schnellaufender Maschinen, insbesondere der

verschiedenen Arten von Turbomaschinen, erfordert die Beherrschung
des dynamischen Verhaltens des Rotors, wenn dieser im Betrieb unter
dem Einfluss stets vorhandener geringer Unwuchten zu
Biegeschwingungen angeregt wird. Mit der Entwicklung des Maschinenbaus
entstanden daher zur Bestimmung der kritischen Drehzahlen eine
Menge von rechnerischen und graphischen Verfahren, deren Resultate
oft in komplizierteren Fällen durch Modellversuche ergänzt wurden
[7]*).

Die zunehmende Verbreitung des Einsatzes programmgesteuerter
digitaler Rechenmaschinen brachte eine wesentliche Hilfe bei der
Berechnung der biegekritischen Drehzahlen, besonders in Fällen mit
mehr als zwei Lagern. Die angewandten Verfahren [5], [6], [7], [8]
bedienen sich alle der Matrizenrechnung, indem die vier mechanischen
Grössen an jeder Stelle der Welle, nämlich der radiale Schwingungsausschlag,

die Neigung der Wellenaxe, das Biegemoment und die
Querkraft, als Komponenten eines Zustandsvektors aufgefasst werden.

Ein einzelnes Element des Rotors, zum Beispiel ein glattes
Wellenstück, eine Scheibe oder ein starres oder querelastisches Lager,
ist dann charakterisiert durch seine Übertragungsmatrix, mit welcher
der Zustandsvektor an der einen Seite dieses Rotorelementes zu
multiplizieren ist, um den Zustandsvektor an der anderen Seite zu
erhalten. Kompliziertere Elemente eines Rotors, zum Beispiel ein

*) Literaturverzeichnis am Schluss dieses Aufsatzes.

elastisch nachgiebiges Lager, dessen Lagerkörper mit bekannter Masse
seinerseits wieder elastisch auf einer feststehenden Unterlage abgestützt
ist, lassen sich auf diese Weise durch die Untersuchung ihrer
Übertragungsmatrix leicht in die Rechnung einführen. Mit diesem
Verfahren gelingt einerseits die Lösung des Eigenwertproblems, nämlich
die Berechnung der kritischen Drehzahlen (Eigenwerte der
Schwingungsfrequenzen) mehrfach gelagerter Rotoren und anderseits auch
die Ermittlung der Resonanzausschläge, wenn ein gegebener Rotor
mit elastisch nachgiebigen und dämpfenden Lagern mit gegebenen
Unwuchten läuft.

In der Praxis geht es nunmehr noch darum, alle für die Rechnung
wesentlichen Parameter zu bestimmen. Die elastische Nachgiebigkeit
und Dämpfungsfähigkeit von ölgeschmierten Gleitlagern wurde von
Hagg und Sankey [3], [4] experimentell mittels eines besonderen
Prüfstandes untersucht. Eine andere Möglichkeit zur Ermittlung dieser
Werte wird im Abschnitt 4 dieses Aufsatzes angegeben. Dabei wird
keine besondere Versuchseinrichtung benötigt, sondern lediglich eine
moderne Auswuchtmaschine. Weitere Probleme bieten die Bestimmung

der Elastizität einer Lagerauflage an kompakten Konstruktionen,

etwa bei der Verwendung von Schildlagern bei Turbogeneratoren.

Besonders bei biegesteifen, starren Rotoren gewinnen die
Einflüsse der Lager- und Fundamentauflage eine erhöhte Bedeutung,
wobei durch zahlreiche Konstruktionsstudien die günstigste Lösung
gesucht werden muss. In solchen Fällen ist es oft zunächst nicht
notwendig, das dynamische Verhalten des Rotors mittels der oben
erwähnten genaueren Verfahren zu untersuchen, sondern es genügt die
Rechnung mit einem einfachen mechanischen Modell. Das Verhalten
eines solchen Modells, nämlich eines Systems einer Anzahl in Serie
mit Federn und Dämpfungsgliedern untereinander und mit einer
festen Unterlage verbundenen Einzelmassen, wird im folgenden näher
behandelt und auf seine Eignung untersucht.

2. Kette von longitudinal schwingenden Massen als einfaches Modell
Als einfaches mechanisches Modell zur angenäherten

Untersuchung von Rotorschwingungen mit nachgiebigen Lagern und
Fundamenten wählen wir die in Bild 1 für vier Massen schematisch
skizzierte Kette von longitudinal gegeneinander schwingenden Massen.
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Schwingungsrichtung

k2 m2 k3

-ff I -ff-

Bild 1 (links). Mechanisches Modell mit
longitudinal schwingenden Massen

HF- '*

Bild 2 (rechts). Darstellung der Federelemente (a)
und Dämpfungselemente (b)

Die Federelemente mit den Federkonstanten ki und die Dämpfungsglieder

Di sind in Bild 1 wie auch in den andern Abbildungen nach
der im Bild 2 angegebenen Art dargestellt. Als Dämpfungsglieder
setzen wir solche voraus, welche eine der Schwinggeschwindigkeit
proportionale Dämpfungskraft liefern.

Die erste Masse dieses Ersatzsystems soll nun mittels einer Feder
und eines Dämpfungsgliedes an eine feste Unterlage gebunden sein;
die folgenden Einzelmassen mit denselben Elementen (aber mit anderen

Feder- und Dämpfungskonstanten) je an die vorhergehende Masse.
Das System ist auf diese Weise «einfach zusammenhängend», das
heisst es stehen nur Massen mit aufeinander folgendem Index miteinander

in direkter Verbindung.
Die Analogie zwischen einem wirklichen Rotor und dem

Modellschwinger mit drei Massen ist in Bild 3 dargestellt. Zur auf diese Weise
angenäherten Behandlung eignen sich symmetrische Rotoren, welche
auf zwei gleich gebauten Lagern mit derselben Lagerabstützung
gelagert sind. Diese Bedingung ist in der Regel bei Turbogeneratorrotoren

gut erfüllt, oft aber auch bei Turbinenrotoren, etwa bei doppel-
flutigen Niederdruckrotoren von Dampfturbinen.

Ein besonderes Problem bildet die passende Aufteilung der
Gesamtmasse mit des Rotors in zwei Teilmassen mM und ms, welche
näherungsweise in der Rotormitte und in den Lagerpartien des Rotors
konzentriert sein sollen. Grundsätzlich können die Aufteilung der
Massen und die einzusetzende «Rotorelastizität» beliebig gewählt
werden, jedoch derart, dass das Schwingungsverhalten des

Modellschwingers demjenigen des wirklichen Rotors im untersuchten
konkreten Falle möglichst nahe kommt. In der praktischen Anwendung
kann man sich aber nicht mit einer so allgemein gehaltenen Anweisung
begnügen. Es wird empfohlen, die Teilmassen mM und mE so zu
wählen, dass deren Summe die Rotormasse ergibt. Massenaufteilung
und eingesetzte Rotorelastizität sollen ferner so aufeinander
abgestimmt werden, dass der auf starren Lagern gelagerte Rotor in der

genauen Rechnung und im Modell (eine Masse mM mit der
Rotorelastizität an eine feste Unterlage gebunden) dieselbe kritische Drehzahl

(Eigenfrequenz) aufweist. Werden die oben angegebenen beiden
Bedingungen erfüllt, so bleibt noch ein einziger frei wählbarer
Parameter übrig, mit welchem das Modell dem konkreten Fall angepasst
werden kann. Wird beispielsweise der Rotor durch eine Unwucht in

der Mitte zum Schwingen angeregt, kann durch passende Wahl der
Parameter erreicht werden, dass die Schwingungsausschläge des
wirklichen Rotors und des Modells dieselben sind.

3. Theorie des Modellschwingers
Das in Bild 1 schematisch dargestellte Schwingungssystem soll

nun auf sein Verhalten untersucht werden, wenn an einer oder mehreren

der Massen m{ periodische Störkräfte angreifen. Wir wollen
unserer Problemstellung gemäss voraussetzen, dass die Störkräfte
zwar untereinander phasenverschoben sein können, jedoch alle mit
derselben Kreisfrequenz co periodisch sein sollen. Am j-ten Massenpunkt

greife die Störkraft Pi an:

(1) Pt p Pt cos (w t + ipi)

oder

(2) Pi Pxi cos (cot — Pyi sin (cor)

mit

J Pxi — Pt cos Vi
(3)

[ Py i — P',I sm y>t

Die Amplitude Pi hängt von der gegebenen Unwucht Ut (in cmkg)
und der Kreisfrequenz co ab:

(4) Pi
UiCO2

g

g 980,7 cm/s2

Auf gleiche Weise kann natürlich auch eine periodische Störkraft
in die Rechnung eingesetzt werden, deren Amplitude Ti direkt als

Kraftamplitude (z. B. in kp) gegeben ist.
Den auftretenden Schwingungsausschlag der Masse mt aus der

Ruhelage bezeichnen wir gemäss Bild 4 mit qi. Entsprechend der
Problemstellung verzichten wir auf die Untersuchung von
Einschwingvorgängen und betrachten nur stationäre Lösungen. Wir
wählen daher für die periodische Bewegung des Massenpunktes m%

Tabelle I.Koeffizienten der linearen Gleichungen zur Bestimmung der Schwingungsausschläge

Gleichung
Unbekannte Teilamplitude (Masse mi)

Konstante

Xi-l yi-i Xi yt Xi+1 yt+i

Ai — k( + Dito kt + ki+i
— mtco2

— (Di+Di+i)co — kt+i + Di+i co Pxi

1 — Dito — kt + (Dt + Dt+i) co ki + ki+i
— m{co2

— Di+i co — kt+i Pyt

Rotor

2 *"£

usamu

kL (Lager)

Logerkorpermi

kf (Auflage)

mH (Rotormitte)

Roforelashziföt

tnE (Endpartie)

Logernachgiebigkeit
und -Dämpfung

m, (Lagerkörper)

Lagerauflage

k{+f tnit-1

OUi

Feste Unterlage

Bild 4. Allgemeiner Massenpunkt m,-, angreifende Kräfte
und Schwingungsausschlag

Bild 3 (links). Analogie zwischen einem symmetrisch schwingenden Rotor

mit elastisch nachgiebigen und dämpfenden Lagern, welche ihrerseits
elastisch abgestützt sind, und dem Modellschwingungssystem
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Tabelle 2. Schwingungssystem mit n Massen mv, Koeffizienten des linearen Gleichungssystems zur Bestimmung der Amplituden xi und yi

GM. | y, 1 y* 1 y3 X;-z B m B § I *;+i m X;+2. in X/,-2 yn-2 jjßgH y»-t H y> Kffnsf.

| k,+k2
-Daa -4 +DZ0> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 ||

| k,+k2
—tn^to2 -4» -4 0 0 0 0 0 0 0 0 0 0 0 0 ff 0 0 0 0 0 + Py1

| M +1>2U *2 ^^5
-03»

El +D3» 0 ff 0 0 0 0 0 0 0 0 0 0 0 0 0 o J^j

| -D2u M +t)2u
+t>3u

k2+k3
-rn2ul -4» H 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 ||

n 0 0 0 ff 0 0 -k,-i +t>i.1« ki-sh
-Ml-t"* - fya -k; +Dta 0 0 0 0 0 0 ff 0 0 0 "?,-,

B 0 ff 0 0 ff 0 -D^u> -h-< + t);U -/rtf^fU2
-D;U -k; 0 0 0 0 0 0 0 0 0 0 Ja

A 0 0 0 0 0 0 0 o M +D;u
-M/U1

-D;u
~~k,'+i *B 0 0 0 0 ff 0 0 0 ^

0 0 0 0 0 0 0 0 -D;*> -ki -r-Öi-H»

k,- HH |§|| nfi 0 0 0 0 0 ff 0 0 B
^<v» 0 0 0 0 0 0 0 0 0 0 ffl +D;„°>

kn.,+kit*
-ki+2 +ö,-+2u 0 0 0 0 0 o py

gffi 0 0 0 0 o 0 0 0 0 0 -Aff" H +Df+2u
-ß. u -ki+2 0 0 0 0 0 0 |j8

ag ff ff 0 0 0 0 0 0 0 0 0 0 0 0 ff 0 flj HH kn-i+k„

mm || +*>»*> Hl

| ff ff 0 0 0 0 0 0 0 ff 0 0 0 0 0 0 -4-," m + D„-iu

+Dna
k„.f+k„

-D„u M B
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ff ff j| +D," 1 -Dn*> H
| 0 0 0 0 0 0 0 0 0 0 0 0 0 ff 0 0 0 0 -4» IS +4,» i—m„n>2 H
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Bild 5. Turbogeneratormotor in der Wucht- und Schleuderanlage der
Maschinenfabrik Oerlikon

den Ansatz:

(5) qt ai cos (co t + cpi)

Mit den aus Amplitude ai und Phasenwinkel cpt gebildeten Grössen

(6)
Xi at cos <pi

yi fs at sin cpi

erhalten wir die zeitliche Veränderung von qt und deren Ableitungen
nach der Zeit f.

(D
qt — Xi cos (co t) — yi sin (co t)
q'i — Xico sin (co t) — yt co cos (co r)
cji — Xi co1 cos (co t) + yt co2 sin (co t)

Sind die Teilamplituden xi und ^ einmal bekannt, so lassen sich

aus (6) leicht die Amplitude ai und der Phasenwinkel cpi ermitteln:

(8)
at ]/x2 + y2

cpi zrctg (yilxt)

1

100

v^0
0 1000 2000 3000 U/min 1000

Bild 6. Resonanzkurve eines mit einer Testunwucht
drehenden Turbogeneratorrotors. Die ausgezogene Kurve gibt
das Rechnungsergebnis als Dreimassenfiall wieder, die
eingezeichneten Punkte die auf der Wuchtmaschine gemessenen

Schwingungsausschläge

Die Bewegungsdifferentialgleichung des Massenpunktes mi
erhalten wir, indem wir die Gleichgewichtsbedingung der Kräfte mit
Einschluss der Trägheitskräfte (im d'Albertschen Sinne) formulieren:

(9)
— mi qt — kt (qt — qt-i) — Dt (qt — q\-i)
+ ki+i (qt+i — qi) + Dt+i (q\+i — q'i) + Pf 0

Die Differentialgleichung (9) für den Massenpunkt mt verknüpft
dieZeitfunktionen der Schwingungsaufschläge qt-i,qi,qt+i der Massen

mt-i, mt und mt+i miteinander. Führen wir in (9) den Ausdruck (3)
für die periodische Störkraft Pi und den Lösungsansatz (5) bzw. (7)
ein, so können wir nach Cosinus- und Sinusgliedern separieren und
erhalten die beiden linearen Gleichungen unter den Teilamplituden

xt-i, yi-i,xi,yt,Xi+i und.yi+i der drei aufeinanderfolgenden Massen

mt-i, mi und mi+i.
Gleichung At, Cosinusglieder:

(10)
Ditoyi-t — ki Xi-i + Dt+i coyi+1 — ki+i xi

— mtco2 xt + (ki + kt+i)xt—(Di + Dt+i)coyt =Pxi

Gleichung Bt, Sinusglieder:

(11)
— Dtco xt~i — kt yi-i — Dt+i co xt+i — kt+i yt
— mt co2 yt + (kt + ki+i)yt + (Di + Dt+i)coxi — Pvi

Die Glieder der beiden Gleichungen (10) und (11) sind - als Teil
einer Koeffizientenmatrix - schematisch in der Tabelle 1 dargestellt.

Analog zum allgemeinen Fall des Massenpunktes mt erhalten wir
die Bewegungsdifferentialgleichungen des ersten, an die feste Unterlage

gebundenen Massenpunktes mx sowie des letzten Massenpunktes
mn am freien Ende der Kette. Im ersten Falle ist zu berücksichtigen,
dass die feste Auflage keine Bewegungen zulässt. Somit gilt:

(12) Q0 qa q„ 0

Den Massenpunkt mn am freien Ende beeinflussen keine

Bindungskräfte eines weiteren Massenpunktes mn n mehr, somit
verschwinden dort in der Bewegungsdiflferentialgleichung alle Glieder,
welche Grössen mit dem Index i + 1 enthalten.

Für jeden der n Massenpunkte ergeben sich auf diese Weise zwei
lineare Gleichungen. Man hat also schliesslich 2 n lineare Gleichungen
zur Bestimmung der 2 n unbekannten Teilamplituden xt und yt. Die
Koeffizientenmatrix des linearen Gleichungssystems ist für den
allgemeinen Fall in der Tabelle 2 dargestellt. Man beachte, dass von Null
verschiedene Koeffizienten nur in der Nähe der Hauptdiagonalen der
Matrix auftreten, eine Tatsache, welche damit zusammenhängt, dass

unser Modell als Kette von «einfach zusammenhängenden»
Massenpunkten konstruiert wurde. Eine solche «Bandmatrix» erleichtert die

Auflösung des linearen Gleichungssystems ausserordentlich.
Schliesslich interessiert noch, in welchem Verhältnis der

Rechenaufwand für die Durchrechnung eines als Modell nach Bild 3

gewählten Dreimassensystems steht verglichen mit demjenigen, der zur
Berechnung der erzwungenen Schwingungen eines Rotors mit elastischen

und dämpfenden Lagern mit einem der im Abschnitt 1 erwähnten
Verfahren erforderlich ist. Beim Dreimassenfall reduziert sich das

lineare Gleichungssystem auf 6 Gleichungen, und es ist auch hier der
Einsatz einer programmgesteuerten Rechenmaschine zweckmässig.
Es zeigt sich aber, dass der Rechenaufwand nur etwa 4% des für die

genaue Rechnung notwendigen beträgt, so dass das Modell für viele
Anwendungen Vorteile bietet.

4. Anwendungen

a) Das beschriebene mechanische Modell eignet sich zur Beurteilung

von Konstruktionsstudien von Lagerabstützungen. Dort geht es

zunächst im Entwurfsstadium mehr um eine vergleichende Gegenüberstellung

einer grösseren Anzahl von Varianten, ohne dass schon eine

höhere Genauigkeit der Rechnung gefordert werden musste. Der
Lagerkörper im weiteren Sinne umfasst dann die feststehenden Teile

des Lagers sowie einen Anteil der Lagerkonstruktion, etwa bei einem

Schildlager den zentralen Teil des Lagerschüdes.

b) An die Stelle der experimentellen Ermittlung der Elastizität und

Dämpfungsfähigkeit eines ölgeschmierten Gleitlagers mittels eines

besonderen Prüfstandes nach Hagg und Sankey [3] können Versuche

mit ausgeführten Rotoren in einer modernen Auswuchtmaschine

treten, wie sie heute in den meisten Firmen des Maschinenbaus
vorhanden sind. In einer grösseren Auswuchtmaschine, welche den

Betrieb mit höheren Drehzahlen bis zur Nenndrehzahl gestattet, wird
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ein Rotor mit gleichartigen Gleitlagern gelagert, wie sie später im
Betrieb eingebaut werden. Der Lagerkörper der Wuchtmaschine wird
sorgfältig isotrop weich oder hart (das heisst nach allen radialen
Richtungen gleich nachgiebig mit veränderlicher Steifigkeit der Auflage)
ausgeführt; gemessen werden während des Wuchtvorganges die
Schwingungsausschläge des Lagerkörpers, also der Masse mr. oder m±
in unserem Modell. Die Elastizität und Dämpfung der Auflage
(Lagerung des Lagerkörpers) sind Eigenschaften der Wuchtmaschine
und können mittels eines einfachen Schwingungsversuches bestimmt
werden. Am gut ausgewuchteten Rotor wird nun eine bekannte
Testunwucht angebracht. Ohne zusätzlichen Mehraufwand an
Messtechnik können mit Hilfe der ohnehin an der Wuchtmaschine
vorhandenen genauen Messinstrumente die Schwingungsausschläge bei
verschiedenen Drehzahlen gemessen werden. Die Nachrechnung der
so gewonnenen Resonanzkurve erfolgt mit verschiedenen eingesetzten
Ölfilmparametern, bis eine genügende Übereinstimmung zwischen
Rechnung und Messergebnis vorhanden ist.

Als Beispiel sei ein an einem Turbogeneratorrotor nach Bild 5
in der Auswucht- und Schleuderanlage der Maschinenfabrik Oerlikon
aufgenommener Amplitudenverlauf (Bild 6) angegeben. Die Hauptdaten

des Rotors betragen:
Rotormasse 31600 kg
Rotordurchmesser (Ballen) 1000 mm
Nenndrehzahl 3000 U/min
Lagerabstand 7060 mm
Lagerdurchmesser 360 mm

Die Lagerkörper im Gesamtgewicht von 2830 kp waren beim
Versuch «isotrop weich» mit einer Federkonstanten von 12300 kp/cm
und einer Dämpfungskonstanten von 250 kps/cm gegen die feste
Unterlage abgestützt. Der Rotor lief im Versuch mit einer statischen
Testunwucht von insgesamt 130,4 cmkg, welche zur Hälfte in der
Mitte und zu je einem Viertel an jedem Barllenende symmetrisch
angebracht war. Die Aufteilung der Rotormasse für die Rechnung als
Dreimassenfall wurde wie folgt vorgenommen:
Masse in Rotormitte 16600 kg
Masse an den Lagerstellen 15000 kg
Federkonstante des Rotors 6,1 ¦ 105 kp/cm
Da die Unwuchten nur zum Teil in der Mitte angebracht waren,
wurde entsprechend deren Anordnung in die Rechnung eingesetzt:

Unwucht in der Mitte 110 cmkg
Unwuchten an den Lagerpartien 20 cmkg
Die Nachrechnung des Schwingungssystems als Dreimassenfall mit
den Lagerparametern
Federkonstante des Ölfilms 8 • IO5 kp/cm
Dämpfungskonstante des Ölfilms 3,4 • IO3 kps/cm
ergab die in Bild 6 angegebene Resonanzkurve, welche mit den
Messungen gut übereinstimmt und damit die Brauchbarkeit der
Näherungsrechnung zeigt.
c) Schliesslich sei noch daran erinnert, dass das System der n
longitudinal gegeneinander schwingenden Massen mechanisch analog ist
zu einem Torsionsschwingungsproblem von' « miteinander durch
elastisch nachgiebige und dämpfende Wellenstücke verbundenen
Drehmassen. In dieser Analogie entspricht der Masse mt die
Drehmasse @ibzw. das Schwungmoment GD2, der Federkonstanten ki die
Drehsteifigkeit des z-ten Wellenstückes, der Dämpfungskonstanten Di
die analoge Dämpfungskonstante für die Torsionsschwingung, der
Schwingungsamplituden die Amplitude des Winkelausschlages und
endlich den an den Massen mi angreifenden periodischen Störkräften
Pi die an den Drehmassen ®t wirkenden periodischen Störmomente.
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Wärmeschock-Beanspruchungen in zylindrischen Gefässen dk 539.41:621-222.2

Professor Dr. G. Eichelberg zum 75. Geburtstag am 21. November 1966 gewidmet von Dr. A. Christ, Escher Wyss AG, Abt. Forschung

Einleitung
Unser verehrter Jubilar hat sich im Zusammenhang mit dem

Dieselmotorbau sehr viel mit Wärmespannungen beschäftigt; deshalb
möchte ich bei dieser Gelegenheit etwas zu diesem Thema beitragen.

Die theoretischen Grundlagen zum Berechnen von stationären
und instationären Wärmespannungen liegen zwar seit langer Zeit
fest, und es lässt sich dazu kaum noch etwas Wesentliches beisteuern.
Jedoch ist die mathematische Handhabung reichlich kompliziert,
insbesondere bei nichtstationären Fällen. Deshalb wird in der alltäglichen

Praxis solchen Problemen entweder aus dem Wege gegangen
oder es werden die Probleme an «Spezialisten» zum Bearbeiten
weitergeleitet. Dementsprechend ist auch das «technische Gefühl»,
d. h. das konkrete Vorstellungsvermögen für solche Vorgänge im
allgemeinen nicht stark entwickelt; oft werden harmlose Fälle
überbewertet, gefährliche unterschätzt.

Hier möchten die folgenden Ausführungen einsetzen. Sie werden
weniger den Theoretiker als den Konstrukteur ansprechen und ihm
eine auf anschauliche Weise von einfachen Vorstellungen hergeleitete
Formel an die Hand geben zum Berechnen der maximalen
Wärmespannungen in der Wand eines zylindrischen Gefässes oder Rohres,
und zwar einerseits für den Fall gleichmässiger Aufwärmung und
anderseits für den wohl häufigeren Fall des eigentlichen
Wärmeschocks. Unter Wärmeschock soll der Vorgang verstanden werden, bei
dem sich die Temperatur des an der Gefäss- oder Rohrwand
vorbeiströmenden Mediums plötzlich ändert. Dabei wird angenommen,
die Wärmeübergangszahl zwischen Medium und Wand sei endlich
und bekannt.

Selbstverständlich wird nicht verkannt, dass es schon lange ein
einfaches Verfahren zum Bestimmen aller nichtstationären Tempe¬

raturfelder unter beliebigen Randbedingungen gibt; nämlich das
graphische Verfahren von Schmidt. Es verlangt jedoch, dass der
Temperaturverlauf im fraglichen Wandstück von Anfang an schrittweise

verfolgt wird. Dabei interessiert aber der Temperaturverlauf
gar nicht so sehr, sondern es ist lediglich nach der maximalen
zusätzlichen Spannung infolge des Wärmeschocks gefragt. Wohl kann
aus den Temperaturkurven diese Information gewonnen werden,
aber insgesamt stellt doch das ganze graphische Verfahren einen
etwas langen und in jedem sich stellenden Fall neu zu begehenden
Weg dar, so dass auch aus diesem Grund eine Formel zur Spannungsberechnung

recht erwünscht wäre.

Einfache Temperaturfelder

Ausgangspunkt unserer Betrachtungen bildet das stationäre
Temperaturfeld in einer ebenen Wand (Platte). Hier fällt die
Temperatur & in der Wand (Dicke 6) bekanntlich linear ab, d. h. die
Neigung der Temperaturverteilungskurve d&/dx ist eine Konstante,
weil überall dieselbe Wärmemenge durchfiiesst. Die pro m2 durch-
fliessende Wärmemenge, d. h. die Wärmestromdichte q' ist ja mit der
Neigung des Temperaturverlaufes direkt verknüpft durch das Fourier-
sche Erfahrungsgesetz

(1) q — X
d&
dx

wobei das Minusvorzeichen andeutet, dass die Wärme entgegen der
Richtung des Temperaturanstieges fiiesst, (Bild 1).

Der einfachste instationäre Vorgang ist der Fall gleichmässiger
Aufwärmung. Auf der einen Seite (bei x 0) ist die Wand isoliert
gedacht, während von der anderen Seite her (x <5) ein zeitlich kon-
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