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peut etre traitee comme suit. On pose A z w; wx+i, y+i est donne par
Texpression (50) qui conduit ä:
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L'equation de Westergaard [8, p. 577]
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s'ecrit comme (52) enyremplacant ^P (x+i,y+i) par

L'equation de Huber
az"" + 2 cz"" + bz— =p [8, p. 593]

conduit ä une expression d'une complication analogue ä Celle de la
formule (52).

Cette complication parait certes assez grande. II faut toutefois
Tapprecier en fonction de la difficulte des problemes et de celle des
Solutions connues. Pratiquement, Tapplication revient ä de nombreuses
Operations elementaires que les moyens de calcul modernes doivent
permettre de maitriser. II se peut que les difficultes d'application
proviennent plutöt des conditions aux limites. Dans les formules, en
cours de calcul, il est toujours possible de negliger ä bon escient les

termes vraiment negligeables. La methode permet en principe la
Solution numerique suffisamment exacte des problemes de la nature
de ceux qui ont ete consid6res.

Adresse de Tauteur: Ferdinand Campus, 85, Avenue des Grenadiers,
Bruxelles 5.

La methode des elements finis en elasticite bidimensionnelle
Par Georges Dupuis 1 et William Prager2, Laboratoire de Recherche IBM, Rüschlikon ZH

DK 539.3:518.61

Resume: La methode des elements finis, appliquee ä la
determination approchee du champ de deplacement d'un disque elastique
soumis ä des contraintes donnees au bord, conduit ä un Systeme
d'equations lineaires qui sont generalement deduites de considerafiö'ns'
intuitives. Le sens precis de ces equations dans le cadre de la theorie
mathematique de Telasticite est etabli ici. Les formules explicites sont
donnees pour un reseau forme de triangles rectangles isoceles. Un
exemple numerique illustre leur application.
1. Introduction

Le procede des elements finis applique aux disques, plaques et
coques et aux Continus elastiques ä trois dimensions est une generali-
sation naturelle de la m6thode matricielle developpee dans Tindustrie
aeronautique ä propos de Tanalyse de structures complexes d'ailes et
de fuselages (voir, par exemple [1], [2] oü Ton trouvera d'autres
ref6rences).

Pour illustrer Tidee de base, considerons Tetat de tension plane
generalisee engendre dans un disque polygonal, d'epaisseur constante,
soumis ä des contraintes donnees sur son contour. Appliquons sur Taire
de ce disque un reseau triangulaire, et discretisons le champ de deplacement

bidimensionnel par les vecteurs deplacements des nceuds de ce

reseau, en supposant que, ä Tinterieur de chaque triangle, les com-
posantes du deplacement dans un Systeme de coordonnees rectangu-
laires cartesiennes xi, xi sont des fonctions lineaires de ces
coordonnees. De cette maniere, le champ de deplacement de chaque triangle
est entierement defini par les vecteurs deplacements de ses trois
sommets.

Le champ de deplacement considere est continu dans tout le
domaine occupe par le disque et engendre un etat de deformation
constant ä Tinterieur de chaque element triangulaire. L'etat de tension
plane deduit de Tetat de deformation par la loi de Hooke, est constant

pour chaque element. Les distributions uniformes de contraintes
transmises ä travers un segment du reseau separant deux triangles
adjacents ne sont, en general, pas en equilibre. Cet etat de tension
constant par region est donc engendre par des charges de ligne uni-
formement distribuees le long de chaque segment du reseau.

Les composantes de ces charges de ligne sont des fonctions
lineaires des composantes de deplacement des nceuds. Dans le cas oü les

forces de volume sont nulles, on peut presumer obtenir une approximation

raisonnable du champ de deplacement de la maniere suivante:

1. Pour chaque segment, on remplace la distribution uniforme de

charges de ligne par des forces paralleles equipollentes appliquees aux
extremites. La resultante des forces ainsi obtenues en un noeud sera

appelee force interieure en ce noeud.

J) Actuellement Assistant ä l'Institut de Math6matiques Appliqutes
de TEPUL.

2) jgeaSellenient Professeur de Mecanique Appliquee ä T Universite de

Californie, San Diego.

2. Pour chaque segment de bord du disque, on remplace la com-
posante suivant xi des contraintes donnees par deux forces paralleles
equipollentes appliquees aux extremites. De m&ne pour la composante
suivant xz. La resultante des forces ainsi öbtenue en un noeud de bord
sera appelee force exterieure en ce noeud (pour tous les nceuds
interieurs ä la frontiere du disque, la force exterieure disparait).

3. Pour chaque noeud, on ecrit que les forces exterieures et
interieures sont egales. Ces relations sont nommees conditions d'equilibre

nodal. Elles sont lineaires relativement aux deplacements des

nceuds.

Puisque les contraintes de bord donnees, et par suite les forces
exterieures, satisfont trois equations d'equilibre, trois conditions
d'equilibre nodal sont dependantes des autres et peuvent etre suppri-
mees. Si le reseau triangulaire est forme de n nceuds, il reste 2«-3
conditions d'equilibre nodal independantes pour les 2n composantes
de deplacement des n nceuds. Pour eliminer les deplacements rigides
du disque qui n'entrainent aucune deformation, on peut annuler trois
composantes de deplacement des nceuds. Le nombre de composantes
de deplacement independantes est donc egal au nombre de conditions
d'equilibre nodal independantes.

Au lieu de proceder de cette maniere intuitive, on peut appliquer
le principe du minimum de Tenergie potentielle (cf [3]). Dans ce

cas, le champ de deplacement lineaire par regions, continu, considere
ci-dessus, est une fonction concurrente du probleme de Variation,
et Tenergie correspondante est une forme quadratique dans les 2n-3
parametres de deplacement independants. La condition d'extremum
de cette forme quadratique est äquivalente aux conditions d'equilibre
nodal independantes.

Une autre maniere d'obtenir ces conditions est developpee au
paragraphe 2. Au paragraphe 3, on donne les formules explicites pour
un reseau forme de triangles rectangles isoceles. Un exemple numerique
illustrant Tapplication de ces formules est traite au paragraphe 4.

2. Obtention des equations d'equilibre nodal

La figure 1 represente un Systeme d'axes rectangulaires car-
tesiens xi, xz et un disque quadrilateral sur lequel est applique un
reseau triangulaire grossier. On affecte aux noeuds un indice en

Fig. 1. Reseau triangulaire et
domaines D* typiques
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lettres romaines et aux segments du reseau, un indice en lettres
grecques. Une quantite associee aux noeuds ou aux segments sera
affectee de Tindice superieur correspondant. Par exemple, x\, x\
sont les coordonnees du noeud i et La est la longueur du segment a.

II est commode pour la suite d'introduire le Symbole a?-{ defini
de la maniere suivante:

(1)
1 si le noeud i est sur le segment a

0 si le nceud i n'est pas sur le segment <

Le domaine polygonal form6 des triangles qui ont le noeud i
pour sommet sera note DK A la flg. 1, le domaine D{ est represent6
par des hachures pour une Position interieure et pour une position
de bord du noeud i.

Pour obtenir la premiere condition d'equilibre nodal relative
au noeud i, considerons le champ de deplacement, lineaire par
r6gions, correspondant ä un deplacement unitaire du noeud i dans
la direction xx et ä aucun deplacement des autres noeuds. Les
composantes suivant x2 de ce champ artificiel de deplacement sont iden-
tiquement nulles et les composantes suivant xt seront notees vf.
Notons que vf est nulle si i n'est pas sur a; le deplacement vT varie
lineairement le long du segment a de vf 1 en i ä vf 0 ä Tautre
extremite du segment a.

En accord avec le paragraphe 1, ce champ artificiel de deplacement

represente une Solution des equations fondamentales de Telasti-
cite bidimensionnelle pour le disque soumis ä certaines charges de
ligne uniformement distribuees qf, qf agissant le long des segments
a du domaine Di.

L'etat engendre par les contraintes donnees au contour sera dit
etat naturel. Si a. est un segment de bord, nous noterons les forces de
ligne donnees par rf et t%; si a est un segment interieur, nous pose-
rons t\ — t% 0. Designons par «f, u\ les deplacements de Tetat
naturel le long du segment a et appliquons le theoreme de reciprocite de
Betti ä Tetat artificiel connu et ä T6tat naturel inconnu; nous ob-
tenons3):

(2) H/ö? m +«?«")dl ü/'? m dl

oü dl est Telement de longueur du segment a. sur lequel porte
Tintegration. Les sommes de la relation (2) contiennent la contribution de
tous les segments a du domaine D{; si nous posons qf qf 0 pour
tous les segments a exterieurs au domaine Df, les sommations en (2)
peuvent Stre etendues ä tous les segments du reseau.

Puisque qf, qf sont constants le long de a, on peut ecrire Tinte-
grant du premier membre de (2) comme le produit scalaire de la Charge
totale Qf qfLa, Qf qf La par le deplacement naturel moyen.

(3) £/? — Mdl, m 7f""dl
le long du segment a. Or, vf 0 sauf si i est sur a et comme vi*
varie lineairement le long de a, Tintegrant du deuxieme membre de (2)
represente la contribution du segment a ä la premiere composante El
de la force exterieure au noeud i. (Notons que, pour un noeud
interieur, on a E{ 0 car t" 0 sauf si a est un segment de bord.)
L'equation (2) peut donc s'ecrire sous la forme

(4) Yß2fm + Qfui) E\

De la meme maniere, considerons un etat artificiel correspondant
ä un deplacement unitaire du noeud i dans la direction x2 et ä aucun
deplacement des autres noeuds. Appliquons encore le theoreme de
Betti entre cet etat artificiel et Tetat naturel; nous obtenons:

(5) Y,(Rf Ul + Rf Uf) El

oü Rf, Rf sont les charges totales agissant sur le segment a dans
Tetat artificiel et E2 est la seconde composante de la force exterieure
au noeud i.

Notons que (4) et (5) sont des equations exactes pour les deplacements

moyens 17?, 17".

3) Une application similaire du thäoreme de Betti est faite en [4].

A cause des 6quations d'equilibre liant les contraintes de bord
donnees, il n'y a que 2«-3 equations de ce type independantes pour un
reseau de n noeuds. Si le reseau, considere comme un treillis libre,
est r fois hyperstatique, il y a j 2« — 3 + r segments et 2r deplacements

moyens U\, U 2 inconnus. II s'en suit que le nombre d'inconnues
du Systeme d'equations du type (4) et (5) excede largement le nombre
d'equations. Pour equilibrer le nombre d'equations et d'inconnues, il
faut exprimer les deplacements moyens Ul, [/" en fonction des deplacements

naturels XJ\, U2 des noeuds. Naturellement on n'obtiendra ainsi
qu'une Solution approchee.

La plus simple approximation correspond ä la formule des
trapezes pour les quadratures numeriques. Elle donne

(6) hSU £/* n^^Yi^ut
oü la sommation est etendue ä Tensemble des noeuds du reseau. Subs-
tituons (6) ä (4), il vient:

(7) — 2] Ha«* (Öf Ui + Qf Uf) Et

Comparons maintenant (7) avec la premiere condition d'equilibre
nodal au noeud 1 A cette fin, consid6rons le champ de deplacement
lineaire par regions correspondant aux deplacements XJ\, U2 de Tetat
naturel et evaluons la charge totale correspondante sur le segment a.
Par definition de ß?s et i?fft,la premiere composante de cette Charge
vaut

(8) Pai Yj<Q^ui + Rikui)

eti?f*oü la sommation est etendue ä tous les noeuds du reseau car Q
ne sont differents de zero que si a appartient au domaine D{. La
premiere composante de la force interieure l{ au noeud / vaut la
moitie de la resultante des charges P" pour tous les segments a
aboutissant au noeud i

(9) n 'iE2> (ß?* U* + R«k f7|)

La premiere condition d'equilibre nodal en i est l'equation l\ — E{
qui semble differente de la relation (7). Pour montrer que ces deux equations

sont, en fait, identiques, appliquons le theoreme de reciprocite de
Betti aux etats artificiels correspondants respectivement ä un deplacement

unitaire du noeud i suivant xx et ä un deplacement unitaire du
noeud k suivant x2. La Charge totale sur le segment a dans le premier
6tat a pour seconde composante Qf et le deplacement moyen suivant
x2, le long de a, dans le second etat vaut aakJ2. En supprimant le
facteur 1/2, on peut donc ecrire Tune des expressions du travail
du principe de Betti sous la forme Vaai: Qf- Evaluons Tautre expres-

oc

sion du travail de maniere semblable; nous obtenons

(10) J]a** Qf £a«*i?°

De maniere analogue, en appliquant encore le principe de Betti aux
etats artificiels correspondants ä un deplacement unitaire dans la
direction xt, des noeuds i et k respectivement, on obtient

(11) 2]aa*ß«' ^fla*g«*

Substituons (10) et (11) en (9); nous reconnaissons que la premiere
condition d'equilibre nodal, /* E\, est identique ä la relation (7).

3. Formules explicites et exemple numerique

On a montr6 au paragraphe 2 que les conditions d'equilibre nodal
peuvent etre obtenues en utilisant la formule des trapezes pour evaluer
les deplacements moyens, le long des segments du reseau, qui inter-
viennent dans les relations exactes (4) et (5). Dans ce paragraphe, on
donne les formules pour un reseau forme de triangles rectangles,
isoceles.
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Fig. 3-8. Equations dSduites de (4) par la formule des trapezes. Fig. 3: point interieur; Fig. 4: point au coin superieur gauche; Fig. 5: point sur le

bord superieur; Fig. 6: point sur le bord gauche; Fig. 7: point sur le bord införieur; Fig. 8: point au coin inferieur gauche
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Fig. 2. Domaine Dl et contribution des triangles aux

valeurs de 8 Qf / (Et), 8 ßf / (£f (Fig. 2a) etSRfl(Et),
8 Rfl(Et) (Fig. 2b). £ module d'elasticite; coefflcient

de Poisson 1/3; t 6paisseur du disque

La figure 2a montre le domaine Dl pour un point i interieur et

la contribution des triangles aux valeurs de 8ß"fl(Et), SQf/(Et), oü

t est Tepaisseur du disque, E le module d'elasticite et oü Ig coefflcient
de Poisson a 6te choisi egal ä 1/3. En donnant la contribution individuelle

des triangles adjacents, on dispose de toute Tinformation necessaire

pour le cas oü i est un point de bord. La contribution des triangles aux
valeurs de 8 Rf-l(Et), 8 K?/(Et) s'obtient ä partir de la flg. 2a en effec-

tuant une symetrie par rapport ä la seconde bissectrice et en permutant
la premiere et la seconde composante (figure 2b).

En utilisant la formule des trapezes pour evaluer les deplacements

moyens U% de (4), on obtient les equations indiquees aux figs. 3-8 pour
un point i interieur et pour des positions de bord typiques du point i.

Lorsque le champ de deplacement ä determiner possede un axe

de symetrie, par exemple parallele ä x2, la disposition des triangles
doit etre egalement symetrique. Pour un noeud i sur Taxe de symetrie,

la fig. 2 doit etre remplacee par la fig. 9. Si les charges totales Qf,
Q'f donnees ä la fig. 9 sont substituees ä l'equation (4) avec les valeurs

moyennes U*, U% correspondant ä une Interpolation lin6aire, on
obtient les equations donnees aux fig. lOa-c.

Pour illustrer la qualite des resultats que Ton peut obtenir avec

ces formules, evaluons les deplacements de la poutre representee ä

la fig. 11. Les champs de contrainte et de deplacement sont sym6triques

par rapport ä Taxe des y. La face superieure de la poutre est sollicitee

par une Charge verticale uniformement repartie. La face inferieure n'est
soumise ä aucune contrainte et la resultante des contraintes tangentiel-
les, paraboliquement reparties, agissant sur les deux faces laterales

equilibrent les charges verticales de la face superieure. Pour exclure les

deplacements rigides de la poutre, on impose que le deplacement
horizontal de Torigine 1 et que le deplacement vertical du point 7

soient nuls.
La Solution rigoureuse de ce probleme est discutee en [5]. Avec

le reseau indique ä la figure 11 on ne peut esperer obtenir des resultats

tres precis. La table 1 montre les valeurs approchees et exactes des

deplacements verticaux des points 1 ä 6 (voir figure 11).

Les equations donnees aux figures 3-8 sont obtenues en utilisant
la formule des trapezes pour evaluer les deplacements moyens, le long
des segments du reseau, qui interviennent dans les relations exactes

(4) et (5). Onpourrait attendre que des equations donnant de meilleures
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Fig. 9. Pendant de la figure 2 lorsque'le
noeud i est sur un axe de sym6trie vertical

Fig. 10. Pendants des figures 3, 5,et71orsque
le nosud i est sur un axe de sym6trie vertical
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Table 1: Deplacements verticaux

Point 12 3 4 5 6

valeur approchee 32,955 31,954 28,989 24,144 17,566 9,446
valeur exacte 34,275 33,232 30,133 25,073 18,208 9,757

approximations pour les deplacements des noeuds, soient obtenues en
utilisant des formules de quadrature d'un plus haut degr6 de precision.

Cependant, Tapplication ä Texemple considere d'equations obtenues

ä partir de formules d'int6gration basee sur une Interpolation
quadratique, donne de moins bons resultats que ceux de la table 1. Par
exemple, on obtient pour le deplacement du point 1, la valeur 32,695.

Remerciement. Les auteurs sont reconnaissant ä M. le Professeur
Mahmut Tanrikulu de T Universite Technique d'Istanbul qui a attire
leur attention sur une erreur numerique dans leurs resultats originaux.
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Kritische Betrachtungen zur Rohrhydraulik
Von Andre Kropf, dipl. Bau-Ing. ETH, Zürich

I. Einleitung
Bis zu seiner Ernennung zum Dozenten für Mechanik war Prof.

Dr. H. Favre Adjunkt der Versuchsanstalt für Wasserbau an der ETH
unter der Leitung von Prof. Dr. E. Meyer-Peter. Aus dieser Zeit
stammt eine der grundlegenden Arbeiten auf dem Gebiet der Hydraulik,

nämlich seine «Contribution ä Tetude des courants liquides» im
nichtstationären Zustand. Damit hat Favre dem Praktiker ein
Hilfsmittel in die Hand gegeben, das ihm ermöglicht, verschiedene, relativ
komplizierte Probleme rechnerisch zu erfassen, die sich in der Praxis
oft wiederholen, aber in den seltensten Fällen eingehendere
Modellversuche rechtfertigen. Dies trifft namentlich zu bei der angenäherten
Bestimmung des erforderlichen Sohlenabsturzes bei seitlichen
Einmündungen, bei der Dimensionierung seitlicher Überfallwehre
(Regenauslässe) und bei der Ermittlung der Wasserspiegellage in
Sammelrinnen von Klärbecken. Es ist nur zu bedauern, dass Favres
grundlegende Studien nicht fortgesetzt wurden, um auch jene Fälle
zu erfassen, in denen die allgemeine Formel der nicht stationären
Bewegung ihre strenge Gültigkeit einbüsst, weil gewisse
Voraussetzungen nicht mehr erfüllt sind.

In meiner praktischen Tätigkeit hat mir die Formel von Prof.
Dr. Favre, selbst ausserhalb ihres strengen Gültigkeitsbereiches, als
Näherungsformel, so gute Dienste geleistet, dass ich es als ein Bedürfnis
empfinde, ihm aus Dankbarkeit den nachstehenden Beitrag zu seinem
65. Geburtstag zu widmen.

II. Auszug aus früheren Arbeiten
Die allgemeine Abfiuss-Formel [1, 5]1) der Rohrhydraulik lautet:

(1) J J_ v2

~ÖTg~

worin /, D, v und g die übliche Bedeutung haben, während mit A die
Widerstandsziffer bezeichnet wird.

Gleichung (1) nach v aufgelöst und an Stelle des Durchmessers D
D

der hydraulische Radius R — eingesetzt, ergibt Gl. (la):

(la) g HJ2 i?2

die der Form nach mit der Formel von Chesy

v C yJR übereinstimmt.

Im Baufach ist die StricWer-GauWer-Manningsche Formel
geläufiger, deren Ansatz lautet:

(2) V kjV2R2ß

Zwischen dem Ar-Wert der Stricklerschen Formel und dem
A-Wert der allgemeinen Formel besteht somit die einfache Beziehung:

(3)

DK 532.542

Hierzu Tafeln 21-24

Der Umstand, dass zur Ermittlung der selben Grösse, neben den
bereits erwähnten Formeln, noch andere nebeneinander bestehen
können, deutet bereits darauf hin, dass keine derselben voll befriedigt.
Dies geht schon aus dem Umstand hervor, dass weder A noch k wirkliche

Konstanten sind, sondern komplexe Funktionen der Reynold-
schen Zahl und der relativen Rauhigkeit. Es soll deshalb versucht
werden, gestützt auf die publizierten Messresultate Nikuradses, deren
Richtigkeit vorausgesetzt wird, eine möglichst allgemeine Abfiuss-
formel herzuleiten, in welcher die Widerstandsziffer nur von der
Beschaffenheit der Rohrwandung abhängen soll.

Als Ausgangspunkt unserer Betrachtungen nehmen wir folgenden
Ansatz an:

(4) kJaRk

(nochworin k eine Konstante sein soll, während die Exponenten a. und /

zu ermitteln sind.
Bisher haben die meisten Autoren für a denWert 1/2 eingesetzt,

in der Annahme, dass im turbulenten Bereich der Widerstand immer
streng mit dem Quadrat der Geschwindigkeit zunehme, was aber nicht
immer zutrifft.

Noch grössere Zweifel wirft die allgemein anerkannte A-Formel
auf, weil darin der Exponent von R mit ß \ offensichtlich nicht
stimmen kann, ansonst die in der Praxis bewährte Strickler-Formel
(ß 2/3) falsch sein musste. Es ist deshalb verständlich, dass die
Widerstandsziffer A nicht allein von der Wandrauhigkeit abhängt,
sondern gleichzeitig einen Korrekturfaktor implizit einschliesst. Wenn
die Formel (la) dennoch richtige Resultate liefert, so nur deshalb, weil
frühere Autoren den Verlauf der A-Funktion auf Grund eingehender
Messungen im Laboratorium und an ausgeführten Leitungen empirisch

ermittelt haben [5, 1].

Die neuere Forschung unterscheidet drei Gruppen von Leitungen,
je nach dem generellen Verlauf der A-Funktion, nämlich:

Gruppe A: Glätte Rohre

Für absolut glatte Rohre2) ist A eine Funktion der Reynoldsschen

vDZahlte also proportional der Geschwindigkeit v, dem Rohr-

*) Literaturverzeichnis am Schluss des Aufsatzes.

durchmesser D und umgekehrt proportional der kinematischen
Zähigkeit v (siehe Kurve a in Bild l)3).

Gruppe B: Rohre mit rauhem Charakter.

Für diese Gruppe von Rohren ist A zudem noch abhängig von der

2 s s
relativen Rauhigkeit —pr- -=-=-. (s absolute Rauhigkeit, d.h.

JJ ZK
mittleres Mass der Unebenheiten der Rohrwandung in mm). Die von
Nikuradse [5] für diese Art von Rohren abgeleiteten Funktionen

A \Rj,—f^-\ verlaufen generell wie Kurve b in Bild 1. Für kleine

2) Hierzu wurden gezogene Messingrohre verwendet mit absolut glatter
Wandung; die zugehörigen A-Werte können daher als oberste Grenzwerte
betrachtet werden.

3) Für Reinwasser bei 10 °C, v 1,31. 10"6 m2/s.
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