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peut étre traitée comme suit. On pose 4 z = w; Wa+1, y+1 €st donné par
I’expression (50) qui conduit a:
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La méthode des éléments finis en élasticité
Par Georges Dupuis ' et William Prager 2, Laboratoire de Recherche

Résumé: La méthode des éléments finis, appliquée a la déter-
mination approchée du champ de déplacement d’un disque élastique
soumis & des contraintes données au bord, conduit & un systéme
d’équations linéaires qui sont généralement déduites de considérations
intuitives. Le sens précis de ces équations dans le cadre de la théorie
mathématique de I’élasticité est établi ici. Les formules explicites sont
données pour un réseau formé de triangles rectangles isocéles. Un
exemple numérique illustre leur application.

1. Introduction

Le procédé des éléments finis appliqué aux disques, plaques et
coques et aux continus élastiques a trois dimensions est une générali-
sation naturelle de la méthode matricielle développée dans I’industrie
aéronautique & propos de I’analyse de structures complexes d’ailes et
de fuselages (voir, par exemple [1], [2] ou I’on trouvera d’autres
références).

Pour illustrer I’idée de base, considérons 1’état de tension plane
généralisée engendré dans un disque polygonal, d’épaisseur constante,
soumis & des contraintes données sur son contour. Appliquons sur I’aire
de ce disque un réseau triangulaire, et discrétisons le champ de déplace-
ment bidimensionnel par les vecteurs déplacements des nceuds de ce
réseau, en supposant que, a Iintérieur de chaque triangle, les com-
posantes du déplacement dans un systéme de coordonnées rectangu-
laires cartésiennes x1, x2 sont des fonctions linéaires de ces coor-
données. De cette maniére, le champ de déplacement de chaque triangle
est entierement défini par les vecteurs déplacements de ses trois
sommets.

Le champ de déplacement considéré est continu dans tout le
domaine occupé par le disque et engendre un état de déformation
constant a lintérieur de chaque élément triangulaire. L’état de tension
plane déduit de I’état de déformation par la loi de Hooke, est constant
pour chaque élément. Les distributions uniformes de contraintes
transmises & travers un segment du réseau séparant deux triangles
adjacents ne sont, en général, pas en équilibre. Cet état de tension
constant par région est donc engendré par des charges de ligne uni-
formement distribuées le long de chaque segment du réseau.

Les composantes de ces charges de ligne sont des fonctions liné-
aires des composantes de déplacement des nceuds. Dans le cas ou les
forces de volume sont nulles, on peut présumer obtenir une approxi-
mation raisonnable du champ de déplacement de la maniére suivante:

1. Pour chaque segment, on remplace la distribution uniforme de
charges de ligne par des forces paralléles équipollentes appliquées aux
extrémités. La résultante des forces ainsi obtenues en un nceud sera
appelée force intérieure en ce neeud.

1) Actuellement Assistant a I'Institut de Mathématiques Appliquées
de ’EPUL.

2) Actuellement Professeur de Mécanique Appliquée a I’Université de
Californie, San Diego.
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L’équation de Westergaard [8, p. 577]
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s’écrit comme (52) en y remplagant ¥ (z41,4+;) par

L’équation de Huber
az” + 2 ¢z + bz = p [8, p. 593]

conduit a une expression d’une complication analogue a celle de la
formule (52).

Cette complication parait certes assez grande. Il faut toutefois
I’apprécier en fonction de la difficulté des problémes et de celle des
solutions connues. Pratiquement, I’application revient a de nombreuses
opérations élémentaires que les moyens de calcul modernes doivent
permettre de maitriser. Il se peut que les difficultés d’application
proviennent plutot des conditions aux limites. Dans les formules, en
cours de calcul, il est toujours possible de négliger a bon escient les
termes vraiment négligeables. La méthode permet en principe la
solution numérique suffisamment exacte des problémes de la nature
de ceux qui ont été considérés.

Adresse de ’auteur: Ferdinand Campus, 85, Avenue des Grenadiers,
Bruxelles 5.

DK 539.3:518.61

2. Pour chaque segment de bord du disque, on remplace la com-
posante suivant x1 des contraintes données par deux forces paralléles
équipollentes appliquées aux extrémités. De méme pour la composante
suivant x2. La résultante des forces ainsi obtenue en un nceud de bord
sera appelée force extérieure en ce nceud (pour tous les nceuds
intérieurs a la frontiére du disque, la force extérieure disparait).

3. Pour chaque nceud, on écrit que les forces extérieures et
intérieures sont égales. Ces relations sont nommeées conditions d’équi-
libre nodal. Elles sont linéaires relativement aux déplacements des
neeuds.

Puisque les contraintes de bord données, et par suite les forces
extérieures, satisfont trois équations d’équilibre, trois conditions
d’équilibre nodal sont dépendantes des autres et peuvent étre suppri-
mées. Si le réseau triangulaire est formé de » nceuds, il reste 2n-3
conditions d’équilibre nodal indépendantes pour les 2n composantes
de déplacement des n nceuds. Pour éliminer les déplacements rigides
du disque qui n’entrainent aucune déformation, on peut annuler trois
composantes de déplacement des nceuds. Le nombre de composantes
de déplacement indépendantes est donc égal au nombre de conditions
d’équilibre nodal indépendantes.

Au lieu de procéder de cette maniere intuitive, on peut appliquer
le principe du minimum de I’énergie potentielle (cf [3]). Dans ce
cas, le champ de déplacement linéaire par régions, continu, considéré
ci-dessus, est une fonction concurrente du probléme de variation,
et I’énergie correspondante est une forme quadratique dans les 273
paramétres de déplacement indépendants. La condition d’extremum
de cette forme quadratique est équivalente aux conditions d’équilibre
nodal indépendantes.

Une autre maniére d’obtenir ces conditions est développée au
paragraphe 2. Au paragraphe 3, on donne les formules explicites pour
un réseau formé de triangles rectangles isocéles. Un exemple numérique
illustrant Papplication de ces formules est traité au paragraphe 4.

2. Obtention des équations d’équilibre nodal

La figure 1 représente un systéme d’axes rectangulaires car-
tésiens x1, x2 et un disque quadrilatéral sur lequel est appliqué un
réseau triangulaire grossier. On affecte aux nceuds un indice en

Fig. 1. Réseau triangulaire et
domaines D? typiques
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lettres romaines et aux segments du réseau, un indice en lettres
grecques. Une quantité associée aux nceuds ou aux segments sera
affectée de I'indice supérieur correspondant. Par exemple, x!, xI
sont les coordonnées du nceud i et L* est la longueur du segment «.

Il est commode pour la suite d’introduire le symbole a%* défini
de la maniére suivante:

’ 1 si le neeud i est sur le segment o

)

%t —
1 0 si le nceud 7 n’est pas sur le segment o

Le domaine polygonal formé des triangles qui ont le nceud 7
pour sommet sera noté D¢. A la fig. 1, le domaine D? est représenté
par des hachures pour une position intérieure et pour une position
de bord du nceud ;.

Pour obtenir la premiére condition d’équilibre nodal relative
au nceud i, considérons le champ de déplacement, linéaire par
régions, correspondant & un déplacement unitaire du nceud i dans
la direction x; et & aucun déplacement des autres nceuds. Les com-
posantes suivant x, de ce champ artificiel de déplacement sont iden-
tiquement nulles et les composantes suivant x, seront notées 03,
Notons que v# est nulle si 7 n’est pas sur «; le déplacement v% varie
linéairement le long du segment o de v3* = 1 en 7 & v%¢ = 0 2 lautre
extrémité du segment o.

En accord avec le paragraphe 1, ce champ artificiel de déplace-
ment représente une solution des équations fondamentales de 1’élasti-
cité bidimensionnelle pour le disque soumis & certaines charges de
ligne uniformement distribuées ¢%*, ¢%° agissant le long des segments
o du domaine D?.

L’état engendré par les contraintes données au contour sera dit
€tat naturel. Si « est un segment de bord, nous noterons les forces de
ligne données par % et 1% si o est un segment intérieur, nous pose-
rons ¢ == 14 = 0. Désignons par u%, u% les déplacements de I’état na-
turel le long du segment « et appliquons le théoréme de réciprocité de
Betti a I’état artificiel connu et & ’état naturel inconnu; nous ob-
tenons3):

@ Zf(qofi uf + g% u%) dl = th? v gl
o o

ou d/ est I'élément de longueur du segment « sur lequel porte Iinté-
gration. Les sommes de la relation (2) contiennent la contribution de
tous les segments o du domaine D¢ ; si nous posons g% = ¢%* = 0 pour
tous les segments « extérieurs au domaine D¢, les sommations en 2)
peuvent étre étendues a tous les segments du réseau.

Puisque ¢¥*, ¢5° sont constants le long de «, on peut écrire Pinté-
grant du premier membre de (2) comme le produit scalaire de la charge
totale QF = g** L*, Q%% = ¢%* L* par le déplacement naturel moyen.

1
o l o o 1 o

3) 1:Ffu1dl, lzz;fuzdl
le long du segment «. Or, v$* = 0 sauf si 7 est sur « et comme v
varie linéairement le long de «, I'intégrant du deuxiéme membre de (2)
représente la contribution du segment o & la premiére composante E?
de la force extérieure au neeud i. (Notons que, pour un nceud inté-
rieur, on a E; = 0 car t§ = 0 sauf si « est un segment de bord.)
L’équation (2) peut donc s’écrire sous la forme

@ Y (@F U + 0% U = Ef .
o

De la méme maniére, considérons un état artificiel correspondant
a un déplacement unitaire du nceud i dans la direction x, et 4 aucun
déplacement des autres noeuds. Appliquons encore le théoréme de
Betti entre cet état artificiel et I’état naturel; nous obtenons:

) YR U% + R U%) — ES
o

ol R¥, R¥ sont les charges totales agissant sur le segment o dans
Iétat artificiel et E: est la seconde composante de la force extérieure
au neeud 7.

Notons que (4) et (5) sont des équations exactes pour les déplace-
ments moyens U, U%.

3) Une application similaire du théoréme de Betti est faite en [41.
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A cause des équations d’équilibre liant les contraintes de bord
données, il n’y a que 27-3 équations de ce type indépendantes pour un
réseau de n nceuds. Si le réseau, considéré comme un treillis libre,
est r fois hyperstatique, il y a s = 2n — 3 + r segments et 25 déplace-
ments moyens U$, U inconnus. Il s’en suit que le nombre d’inconnues
du systéme d’équations du type (4) et (5) excéde largement le nombre
d’équations. Pour équilibrer le nombre d’équations et d’inconnues, il
faut exprimer les déplacements moyens U%, U% en fonction des déplace-
ments naturels U¥, U¥ des nceuds. Naturellement on n’obtiendra ainsi
qu’une solution approchée.

La plus simple approximation correspond & la formule des
trapezes pour les quadratures numériques. Elle donne

1 , 1
(6) U%:E;aww, Y=

k k
axe v
k

ou la sommation est étendue a I’ensemble des nceuds du réseau. Subs-
tituons (6) a (4), il vient:

1 ;
M o 5 Ve (0¥ U + 0§ UB) = Ef .
o k

Comparons maintenant (7) avecla premiére condition d’équilibre
nodal au noeud i. A cette fin, considérons le champ de déplacement
linéaire par régions correspondant aux déplacements U¥ , U de I’état
naturel et évaluons la charge totale correspondante sur le segment .
Par définition de Q$* et RY",la premiére composante de cette charge
vaut

®) O )
k

ou la sommation est étendue a tous les neeuds du réseau car Q $* et R3*
ne sont différents de zéro que si « appartient au domaine D?. La
premiére composante de la force intérieure I¢ au nceud 7 vaut la
moitié de la résultante des charges P$ pour tous les segments o
aboutissant au neceud 7

o ol ’ !
©) 1= ). )a QU + R UY .
ok

La premiére condition d’équilibre nodal en i est ’équation I{ = E?¢
qui semble différente de la relation (7). Pour montrer que ces deux équa-
tions sont, en fait, identiques, appliquons le théoréme de réciprocité de
Betti aux états artificiels correspondants respectivement a un déplace-
ment unitaire du nceud i suivant x; et 4 un déplacement unitaire du
neeud & suivant x,. La charge totale sur le segment « dans le premier
état a pour seconde composante Q%et le déplacement moyen suivant
X,, le long de «, dans le second état vaut a®*¥/2. En supprimant le
facteur 1/2, on peut donc écrire I'une des expressions du travail
du principe de Betti sous la forme Za""“ Q% Evaluons [’autre expres-
o
sion du travail de maniére semblable; nous obtenons

3 y .
Zaak Q3 — ZaoaniLk )

o oL

(10)

De maniére analogue, en appliquant encore le principe de Betti aux

états artificiels correspondants & un déplacement unitaire dans la
direction x,, des nceuds i et k respectivement, on obtient

Zauk ern — Zaai Q(ick .

o o

(11

Substituons (10) et (11) en (9); nous reconnaissons que la premiére con-
dition d*équilibre nodal, I¥ = E?, est identique a la relation (7).

3. Formules explicites et exemple numérique

On a montré au paragraphe 2 que les conditions d’équilibre nodal
peuvent étre obtenues en utilisant la formule des trapézes pour évaluer
les déplacements moyens, le long des segments du réseau, qui inter-
viennent dans les relations exactes (4) et (5). Dans ce paragraphe, on
donne les formules pour un réseau formé de triangles rectangles,
isoceles.
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Fig. 3-8. Equations déduites de (4) par la formule des trapézes. Fig. 3: point intérieur; Fig. 4: point au coin supérieur gauche; Fig. 5: point sur le
bord supérieur; Fig. 6: point sur le bord gauche; Fig. 7: point sur le bord inférieur; Fig. 8: point au coin inférieur gauche

0 F 0] 0 i =1 i i -9 i[24 -9 3 i[e 3
[ e i Uy + U, =16EWE
. i 1 =
(3) = ? = Uy + ! -.2 ! U, =0 U + U, 16E4/E 0 6 o 6 s o !
3 o)/ 3 0
o 1 Of -1 1 [e] .
! 3 il-e 3| 3 |24 -3
o 1 7 5 3 o) re 3 12 = | + = i
U + Up = 16EL/E sgiat 2y b hed S
(b) P——u + 1 ty=0 b _d b o :
Fig. 4 Fig. 5
ul 1 o o I3 0]
Fig. 3
3 0O 3 -6 0 -6 o O 6. -6} -3 [5] 3 -g
(a) Uy + U, = 16E{/E (a) Uy + Up = 16E1/E
(a) ?4 -1g| U1 i -6 6| Uz =16E;/E 9 il24 -9 ite 12 -9) o 3
F -¢] ) [
5. 4 s o o SR F ; (b) Uy + U, = 16E4/E
(b) Uy + U, = 16E,/E o3 e
3 il-6 -3 il24 -3 i
3 6| 9 0|
Fig. 7 Fig. 8
(b) P*—8 u, + [Z*—H U, =16EL/E
5 o 5 o Fig.6
hr _____ d = f B by i f moyens U¢ de (4), on obtient les équations indiquées aux figs. 3-8 pour
-3, 578 . s I3 845 oite; . . 5
! o ! 4 un point 7 intérieur et pour des positions de bord typiques du point i.
Pl b5 2, ' - A , . <
! e sle %e o \ k@:\'L o A o Lorsque le champ de déplacement & déterminer possede un axe
A s | e s de symétrie, par exemple paralléle & x,, la disposition des triangles
T Lk a = . A z . . . r .
e 33 3,0 s /] doit étre également symétrique. Pour un neeud 7 sur I’axe de symétrie,
1 - A 3 2
S o o S B 2 o o la fig. 2 doit étre remplacée par la fig. 9. Si les charges totales O,
I I d Q% données a la fig. 9 sont substituées a I'équation (4) avec les valeurs
Lo = ST = 5 moyennes U%, U% correspondant & une interpolation linéaire, on ob-

(a) (b)

Fig. 2. Domaine D¢ et contribution des triangles aux
valeurs de 80 %%/ (Er),8 0%/ (Er) (Fig.2a) et 8 R¥[(Et),
8 RY'/(Et) (Fig.2b). E = module d’élasticité; coefficient
de Poisson = 1/3; £ = épaisseur du disque

La figure 2a montre le domaine D? pour un point i intérieur et
la contribution des triangles aux valeurs de 8 0 $¥/(Et), 8Q%¢/(Et), ou
¢ est I’épaisseur du disque, E le module d’élasticité et ol le coefficient
de Poisson a été choisi égal 4 1/3. En donnant la contribution individu-
elle des triangles adjacents, on dispose de toute I’information nécessaire
pour le cas ol i est un point de bord. La contribution des triangles aux
valeurs de 8 RY/(E't), 8 R$%/(Et) s’obtient 4 partir de la fig. 2a en effec-
tuant une symétrie par rapport a la seconde bissectrice et en permutant
la premiére et la seconde composante (figure 2b).

En utilisant la formule des trapézes pour évaluer les déplacements

R et 3 —
I
| I '
I & N I
LR (@l ey
| }
I =3,9 i 3,9 !
2 3,0 [ 3,0 3 2 o
" & 2
o (—v,z? g$ ‘{w‘) o
0,-9 0,-9 !
e c g B 0
(b) ‘ Uy +
Fig. 9. Pendant de la figure 2 lorsque le u“
neeud i est sur un axe de symétrie vertical
Ca—
: c |
Fig.10. Pendants des figures 3, 5, et 7lorsque (c) L | L
le neeud i est sur un axe de symétrie vertical '#]1
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tient les équations données aux fig. 10a—c.

Pour illustrer la qualité des résultats que 'on peut obtenir avec
ces formules, évaluons les déplacements de la poutre représentée a
la fig. 11. Les champs de contrainte et de déplacement sont symétriques
par rapport a 'axe des y. La face supérieure de la poutre est sollicitée
par une charge verticale uniformement répartie. La face inférieure n’est
soumise & aucune contrainte et la résultante des contraintes tangentiel-
les, paraboliquement réparties, agissant sur les deux faces latérales
équilibrent les charges verticales de la face supérieure. Pour exclure les
déplacements rigides de la poutre, on impose que le déplacement
horizontal de Iorigine 1 et que le déplacement vertical du point 7
soient nuls.

La solution rigoureuse de ce probléme est discutée en [5]. Avec
le réseau indiqué a la figure 11 on ne peut espérer obtenir des résultats
trés précis. La table 1 montre les valeurs approchées et exactes des
déplacements verticaux des points 1 a 6 (voir figure 11).

Les équations données aux figures 3-8 sont obtenues en utilisant
la formule des trapézes pour évaluer les déplacements moyens, le long
des segments du réseau, qui interviennent dans les relations exactes
(4) et (5). On pourrait attendre que des équations donnant de meilleures

3—731I Y oy =-16/3,T=0
| I
\
- R34
2 ? Us=10) 2, | 2ln ==
I l T = 3(4-y2)
" i T7 e 5 4 3 2 1 =
2
|
1
E3 24 5 Oy T
Up =16EL/E : A 5
5 _wl 2 2 Fig. 11. Représentation schématique du pro-
bléeme illustratif
0 —48‘
| Uz =162/E
-6 24

Schweiz. Bauzeitung - 84. Jahrgang Heft 23 - 9. Juni 1966



Table 1: Déplacements verticaux

Point 1 2 3 4 5 6
valeur approchée 32,955 31,954 28,980 24,144 17,566 9,446
valeur exacte 34,275 33,232 30,133 25,073 18,208 9,757

approximations pour les déplacements des nceuds, soient obtenues en
utilisant des formules de quadrature d’un plus haut degré de précision.

Cependant, I’application 4 I’exemple considéré d’équations obte-
nues a partir de formules d’intégration basée sur une interpolation
quadratique, donne de moins bons résultats que ceux de la table 1. Par
exemple, on obtient pour le déplacement du point 1, la valeur 32,695.

Remerciement. Les auteurs sont reconnaissant 2 M. le Professeur
Mahmut Tanrikulu de I'Université Technique d’Istanbul qui a attiré
leur attention sur une erreur numérique dans leurs résultats originaux.

Kritische Betrachtungen zur Rohrhydraulik
Von André Kropf, dipl. Bau-Ing. ETH, Ziirich

I. Einleitung

Bis zu seiner Ernennung zum Dozenten fiir Mechanik war Prof.
Dr. H. Favre Adjunkt der Versuchsanstalt fiir Wasserbau an der ETH
unter der Leitung von Prof. Dr. E. Meyer-Peter. Aus dieser Zeit
stammt eine der grundlegenden Arbeiten auf dem Gebiet der Hydrau-
lik, nédmlich seine «Contribution a I’étude des courants liquides» im
nichtstationdren Zustand. Damit hat Favre dem Praktiker ein Hilfs-
mittel in die Hand gegeben, das ihm ermoglicht, verschiedene, relativ
komplizierte Probleme rechnerisch zu erfassen, die sich in der Praxis
oft wiederholen, aber in den seltensten Fillen eingehendere Modell-
versuche rechtfertigen. Dies trifft namentlich zu bei der angendherten
Bestimmung des erforderlichen Sohlenabsturzes bei seitlichen Ein-
miindungen, bei der Dimensionierung seitlicher Uberfallwehre
(Regenausldsse) und bei der Ermittlung der Wasserspiegellage in
Sammelrinnen von Kldrbecken. Es ist nur zu bedauern, dass Favres
grundlegende Studien nicht fortgesetzt wurden, um auch jene Fille
zu erfassen, in denen die allgemeine Formel der nicht stationiren
Bewegung ihre strenge Giiltigkeit einbiisst, weil gewisse Voraus-
setzungen nicht mehr erfiillt sind.

In meiner praktischen Titigkeit hat mir die Formel von Prof.
Dr. Favre, selbst ausserhalb ihres strengen Giiltigkeitsbereiches, als
Néherungsformel, so gute Dienste geleistet, dass ich es als ein Bediirfnis
empfinde, ihm aus Dankbarkeit den nachstehenden Beitrag zu seinem
65. Geburtstag zu widmen.

II. Auszug aus friiheren Arbeiten
Die allgemeine Abfluss-Formel [1, 5]%) der Rohrhydraulik lautet:
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(1) J=Z,32g

worin J, D, v und g die iibliche Bedeutung haben, wiahrend mit 4 die
Widerstandsziffer bezeichnet wird.
Gleichung (1) nach v aufgel6st und an Stelle des Durchmessers D

/D)
der hydraulische Radius R = i eingesetzt, ergibt Gl. (1a):

(1a)

die der Form nach mit der Formel von Chésy
v=CJJR iibereinstimmt.

Im Baufach ist die Strickler-Gaukler-Manningsche Formel
geldufiger, deren Ansatz lautet:

@) v — kJU2 R2I3

Zwischen dem k-Wert der Stricklerschen Formel und dem
A-Wert der allgemeinen Formel besteht somit die einfache Beziehung:

1 I /8¢
(3) k= Rl /6 7
1) Literaturverzeichnis am Schluss des Aufsatzes.
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DK 532.542
Hierzu Tafeln 21-24

Der Umstand, dass zur Ermittlung der selben Grosse, neben den
bereits erwdhnten Formeln, noch andere nebeneinander bestehen
konnen, deutet bereits darauf hin, dass keine derselben voll befriedigt.
Dies geht schon aus dem Umstand hervor, dass weder A noch k wirk-
liche Konstanten sind, sondern komplexe Funktionen der Reynold-
schen Zahl und der relativen Rauhigkeit. Es soll deshalb versucht
werden, gestiitzt auf die publizierten Messresultate Nikuradses, deren
Richtigkeit vorausgesetzt wird, eine moglichst allgemeine Abfluss-
formel herzuleiten, in welcher die Widerstandsziffer nur von der
Beschaffenheit der Rohrwandung abhingen soll.

Als Ausgangspunkt unserer Betrachtungen nehmen wir folgenden
Ansatz an:

@ v=4kJ*RA

worin k eine Konstante sein soll, widhrend die Exponenten o und 8 noch
zu ermitteln sind.

Bisher haben die meisten Autoren fiir « den Wert 1/2 eingesetzt,
in der Annahme, dass im turbulenten Bereich der Widerstand immer
streng mit dem Quadrat der Geschwindigkeit zunehme, was aber nicht
immer zutrifft.

Noch grossere Zweifel wirft die allgemein anerkannte A-Formel
auf, weil darin der Exponent von R mit § = - offensichtlich nicht
stimmen kann, ansonst die in der Praxis bewihrte Strickler-Formel
(8 = 2/3) falsch sein miisste. Es ist deshalb verstindlich, dass die
Widerstandsziffer 2 nicht allein von der Wandrauhigkeit abhéngt,
sondern gleichzeitig einen Korrekturfaktor implizit einschliesst. Wenn
die Formel (1a) dennoch richtige Resultate liefert, so nur deshalb, weil
frithere Autoren den Verlauf der A-Funktion auf Grund eingehender
Messungen im Laboratorium und an ausgefiihrten Leitungen empi-
risch ermittelt haben [5, 1].

Die neuere Forschung unterscheidet drei Gruppen von Leitungen,
je nach dem generellen Verlauf der 2-Funktion, ndmlich:
Gruppe A: Glatte Rohre

Filir absolut glatte Rohre?) ist A eine Funktion der Reynoldsschen

Zahl Rei— g , also proportional der Geschwindigkeit v, dem Rohr-

durchmesser D und umgekehrt proportional der kinematischen
Z#higkeit » (siche Kurve a in Bild 1)3).
Gruppe B: Rohre mit rauhem Charakter.

Fiir diese Gruppe von Rohren ist 2 zudem noch abhéngig von der

relativen Rauhigkeit2 = i. (s = absolute Rauhigkeit, d.h.

D 2R

mittleres Mass der Unebenheiten der Rohrwandung in mm). Die von
Nikuradse [5] fiir diese Art von Rohren abgeleiteten Funktionen

A (R,,., —ZD—S) verlaufen generell wie Kurve 5 in Bild 1. Fiir kleine

2) Hierzu wurden gezogene Messingrohre verwendet mit absolut glatter
Wandung; die zugehorigen A-Werte konnen daher als oberste Grenzwerte
betrachtet werden.

3) Fur Reinwasser bei 10 °C, » = 1,31 . 1079 m?/s.
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