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Résolution aux différences finies de quelques problémes de mécanique

Par Ferdinand Campus, Liége

1. Généralités
L’équation
(1) ay’ +by?+dy +cy+e=0

a coefficients quelconques n’est généralement pas intégrable. Sa
résolution aux différences finies peut étre effectuée comme suit. Pour
deux valeurs consécutives de la variable indépendante x,_, et
X — X - dix;onyadmetique

dx
2) Yn = Yn—1 + = (a1l V%)
7 e / “
3) Wy = ?;(}’n_yfwl)*yn-—l

et on introduit ces expressions dans I’équation (1). Elle devient:

2 T
+ bn )’;12 -+ ( d(;” + dn + ,C"ii> y’n_ an y;’l__l Laks
4 2 a i
- o ( dxn —‘CLZL> y;z—l + cnYn-1 + en = 0

Si les coefficients sont constants, en combinant (4) et (1) considérée
pour x,_1, on obtient:

2a cdx
L byl + (H +d + —2—)y;l L byl —
(s (2 d
) — (d—i—d —iixf) )

La résolution de ’équation du 2e degré donne la valeur de y%
en fonction des coefficients de 1’équation (1), de y,—1 et de Vaoilie
degré d’approximation de la solution dépend de la valeur de dx choisie
en conséquence. La dualité des racines de I’équation (4) ou (5) ne
cause pas d’ambiguité; la racine qui convient est déterminée par les
conditions du probléme, en général par le signe de y7 . Les termes
linéaires s’adaptent aux signes des fonctions. Il n’en est pas de méme
du terme quadratique, dont le signe + dépend précisément du signe
(cest a dire du sens) de »".

Dans les équations de la dynamique la variable dépendante y est
une longueur, la variable indépendante x un temps. Dans les équations
de la statique, les deux sont des longueurs. On facilite la compréhen-
sion, et la résolution du probléme en rendant les équations adimen-
sionnelles. Il suffit pour cela de la transformation 7 = yfe et & = x/d.
L’équation (1) devient

(6) Al 2 BPargtas € ar it =0

a __be

F, —? et @=—tc

avec A=
si les coefficients sont constants. Si certains ne le sont pas, la trans-
formation est faite pour un certain état de référence, mais I’équation (1)
conserve sa forme générale, les coefficients variables devenant adimen-
sionnels. La forme non dimensionnelle de 1'équation met en évidence
les conditions de similitude. Pour I’équation (6) a coefficients constants,
elles sont

a be
7 = @ 5 ? = % et e — ¢

Dans ce cas, ’équation (5) aux différences finies devient

2 2 A4 Eulsy 2
iBn,,+<’dE +1+42 )nniBnn_l
() 2.4 cdéy , id
= o R e S

Qu’elle soit ou non dimensionnelle, I’équation aux différences
finies s’écrit en général

®) Ly L =)

Cette équation peut avoir une racine nulle lorsque £ = 0 pour
une certaine valeur de la variable indépendante. Ce cas est différent de
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celui ou le coefficient B constant ou variable est nul. Le probléme
est alors linéaire et y7, n’est pas nul mais sa valeur est — E/D. Le cas
des équations linéaires sera traité plus loin pour des ordres égaux ou
supérieurs au deuxieme.

La résolution par I’équation du deuxieme degré (8) s’applique
non seulement a 1’équation du type (1) courante en mécanique, mais
aussi a toute équation qui contiendrait un terme quadratique autre
que 2 ou un terme linéaire inverse ou un radical dont le terme sous le
signe serait linéaire ou quadratique. La fonction y et ses dérivées
sont explicites; les coefficients non constants sont des fonctions
connues de la variable indépendante et en tous cas parfaitement
définis pour toute valeur de celle-ci.

2. Précision de la méthode
Si I’on se référe a la forme (8) de I'équation résolvante,

) [T R,

W

ou

(10) i etk B BB SapB OB o DB
Ym0 DA D3 8 DS 64 D7

Si les coefficients A, B et Cde (6) sont constants, dans (9) et (10) D dépend
seulement du choix de dx, cependant que E dépend en outrede y,—, etde
¥n-1. La solution y, dépend comme terme primaire de £/D, comme si
I’équation de base était linéaire. Les termes suivants dépendent des
puissances croissantes de E/D et de B/D. B ne dépend que des données
du probléme, tandis que D et E dépendent du choix de dx. Il y a
intérét pour la précision & réduire le rapport B/D, c’est a dire a aug-
menter D en réduisant dx. Cependant, ce faisant, on augmente le
nombre des intervalles et des calculs d’'un maniére inversement
proportionnelle. On se limiterait forcément dans cette voie si le béné-
fice de précision n’était pas plus que proportionnel. Or il I’est, de telle
sorte que I’on ne sera limité dans la recherche de la précision que par
les nécessités et par les moyens dont on dispose pour faire les calculs.
Si I’on considére diverses formes élémentaires de fonctions qui peuvent
intervenir dans la variation d’une fonction quelconque y, on peut
comparer comme suit les valeurs des écarts

d / / . .
€= Yn— Vn—1 —Tx(yn + Yn-1) ,en se limitant aux termes en dx>.

mm—1)m—2) m,

Siy = x™ (m entier), e = — 2 o6
Pourm =1 2 3 4
3
e =20 0 _EQL —2xn71dx3

La précision diminue appréciablement lorsque la valeur de m
augmente; I’erreur est par exces.

Siy= % 5 e = Zx[ff%:)‘c; (par exces).

Siy =eZ; G = a;); e%n-1 (par exces).

Siy = sin x, e— % cos xn— (de signe variable).
siy=wer o=y (Fo ) i
Siy=e%cosx, ¢ =— s it (de signe variable).

6

Si les d& sont de l'ordre de grandeur de 0,10, les écarts sont de
I’ordre de grandeur de 0,001 et souvent inférieurs. Comme le calcul
s'effectue pas  pas, les erreurs systématiques e s’additionnent sur un
certain nombre d’intervalles. Si dé = 0,10, pour couvrir l'unité, il
faut dix pas et 'erreur cumulée peut étre de I'ordre de 0,01. Si 'on
prenait d€ = 0,01, pour 100 intervalles, I'erreur cumulée serait de
I’ordre de 0,0001.
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Il y a donc un intérét effectif pour la précision de diminuer d&.
Si I’on dispose d’ordinateurs, il est apparent que le choix de d& = 0,01
permettrait une précision qui dépasse souvent les besoins. Sauf dans les
cas d’allure défavorable de variation de la fonction, par exemple la
prédominance de termes paraboliques de degré élevé, supérieur
a 3 ou 4, ou de fonctions tangentes. Cependant les allures de variation
a croissance trés rapide ou a tendance rapide vers linfini sont peu
fréquentes en calcul numérique. Si elles se présentaient, il faudrait le
cas échéant recourir aux ordinateurs avec des valeurs appropriées
de dé&.

Les faibles valeurs de d¢& réduisent les valeurs de B/D et de E/D
dans I’expression (9) ; elles sont donc favorables a I’exactitude du calcul
numérique. Le recours a la forme non dimensionnelle de ’équation de
base est avantageuse pour le choix de ¢&, qui est un nombre sans
dimension, par exemple 0,20, 0,10 ou 0,05. Il en résulte que dx = 0,204,
0,10 d ou 0,05 d si I’on effectue les calculs sur 1’équation dimension-
nelle. Le parametre d prend ainsi une signification unitaire. Divers
calculs effectués a la régle au moyen de valeurs de d& méme supérieures
a 0,10 ont conduit dans des cas simples contrdlables & des précisions
trés satisfaisantes. Par ailleurs, il existe un moyen de vérifier I’exacti-
tude suffisante des valeurs numériques trouvées, c’est de les introduire
dans I’équation de base (1). Cette vérification portera sur un résultat
final ou sera effectuée de distance en distance.

Pour I'opération des calculs pas a pas, il est commode de les
disposer en tableaux systématiques, qui préviennent les grandes
erreurs et donnent un apergu tres suggestif des résultats et de I’in-
fluence des divers paramétres. Des calculs rapides d’orientation ou de
premiére approximation sont possibles, sans omission de facteurs
essentiels, en recourant a des valeurs relativement grandes de d&
(p. ex. 0,50). Le degré de précision peut étre contr6lé par I’équation
de départ (1). La variation des coefficients introduit naturellement
une cause supplémentaire d’imprécision ainsi qu’une augmentation
des calculs. Ces variations sont cependant le plus souvent modérées.
Elles peuvent étre discontinues. 1.’échelonnement des d¢& sera choisi en
conséquence et notamment de maniére a faire coincider les discontinui-
tés avec une étape entiére &, des calculs. Le cas échéant, on adopte des
valeurs différentes de d¢ par intervalles.

3. Exemple du calcul des chambres d’équilibre

Ce probléme, dont I’étude a inspiré la méthode exposée, est un
cas assez complexe et intéressant d’oscillations amorties. L’équation
du type (1) qui le régit résulte d’un systéme de deux équations diffé-
rentielles simultanées. L’exposé trés succinct qui suit ne s’attache qu’au
caractere purement mathématique, sans entrer dans les aspects
hydrauliques, étrangers a cette étude.

NE

Fig. 1

Sur la figure 1, les fleches indiquent les sens positifs de u, de
dyldt, de O et de Q. L’équation du mouvement variable est:

[ du 2 "ﬂf,
g g =P ie(a’t =10

L’équation de continuité est:

an ¥ of

dy
=0 = ==
13) us T + 0 —0Or
ou
Qy —
12) D& 10 =0y
S
d’ou
du Qy’ + Q*y2 4+ 0 — Q) d 2
== Op ===
(14) 0 5 avec &
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En éliminant « et «’, on obtient finalement I’équation du mouvement
de I’eau dans la chambre d’équilibre:

2 Q% b 2
*er( )}

2b(Q—0,) 02
e

(1s)

§ 4 2

§ oy L =00 (B0 = 0 e
gs s

Au point de vue hydraulique, I’équation (15) se présente sous une
forme de généralité quasi compléte. Q, Q- et e peuvent étre des fonc-
tions de ¢, cependant que £ peut varier avec y. Un cas présente quelque
difficulté, c’est celui de la cheminée déversante, ou Q. est fonction
de y. Il faudrait admettre par approximation que cette fonction est
linéaire, I’ajustement de la fonction pouvant étre fait par la méthode
des moindres carrés. Comme cette linéarisation ne porte que sur un
terme généralement accessoire, elle ne peut pas affecter I’exactitude
d’une maniere importante. Cette opération est assez fréquente dans la
résolution analytique des problémes du mouvement varié en hydrau-
lique, en ce qui concerne les termes quadratiques de pertes de charge
[1], [2], qui sont inchangés dans la méthode exposée. Les parametres e
et b de ces termes sont pris avec le signe + lorsque )’ est positif et que
u est positif, ce qui se vérifie par ’équation (13).

On peut passer aux variables sans dimensions par les trans-
formations

sy = S
bo Q% ° 200002 °

(16) ul

by, O, et £, correspondant a un état de référence défini. L’équation (15)
devient:

BO—0) @
An// 4‘ R')],Z :”: (go Qo%),,,r)] +7]+
0
(17) Is(Q'— 07) b(Q—0)?
=10
T g0 T b02
avec
s> Q
4= 4eig0r oz
08 Q0 95
(18) _frgs e b @2
etR_( ie,)4bogg 4 by Q2

Les signes - sont déterminés comme il est indiqué plus haut. Si
Q =0, 2% =0et Or = 0, les coefficients sont constants et b, = b,
Qo = Q et £, = 2. L’équation (17) devient

a9 Ay " +Rn*Ly+9£1=0
avec

s { Gy
(20) A= oy o R— 205 (i il W)

On passe aux différences finies par la voie indiquée au premier para-
graphe. On obtient ainsi pour ’équation (17)

2, [24s , 5@ —01) 8 ﬂ}
R’L1]n+[d.[ Sk ono-Qo P 2 X
2An dr
@1 Sl =l (71-_7)
s Is(Q'—07) b O©—0)
Xt e e Y

Pour I’équation (19) a coefficients constants:

2 A dz e ’
R 7,/: s (_d—r + 1+ -2—) 75 +R1]712_1_
2 2 4 dvy
@2 —(dT:i:IM2)77n_1+277n41+2=0

Il n’y a jamais d’ambiguité, ni pour les doubles signes des coeffi-
cients, ni pour le signe du radical de la racine; ils découlent des
conditions du probléme et des sens de n” et de «. Il faut naturellement
les déterminer avec exactitude dans chaque cas. Quant a dz, on le
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prendra égal a une fraction de I'unité, d’ou dt = Dl

25,0, 2
S2
Des applications numériques ont montré que la méthode est parti-
culierement bien adaptée a la solution du probléme. A titre d’exemple,
on trouve ci-apres les résultats d’un calcul relatif 3 une suppression
instantanée du débit dans un dispositif & coefficients constants et sans
étranglement a la base de la chambre.
Le débit Q, de I’état de régime antérieur est annulé instantanément
au temps O initial du régime variable.

b Q3 Q, b S Uy 0, ”
Donc  y, = — = ’”0=T0 et yo:?':fg.Quanta
Yo, il est déterminé par I’équation du mouvement, qui est dans ce cas
I g
GO s =SSm0

Le signe de b est positif jusqu'au premier maximum de y; il devient
négatif entre le premier maximum et le minimum consécutif et ainsi de
suite. On rend I’équation adimensionnelle par

sy s2t
2 S e Sl e WS WS T2
(24) n b 03 et 7 200,02

Elle devient:

(25) — "+ 02572 +5n=0

o il
4 gb*Q% 2

Il faut y ajouter I’équation de continuité

26) g

Donc Mol== =l E= R et N =10

Soit s v, = 0,0416; lorsque " >0 on a:
4 gb°07 Q

(25bis) 0,0416 " 4+ 025 7> +n =10,

L’¢quation aux différences finies s’écrit selon (22);

0,0832 dt
025 7 + (20 + S5 + 025 0k, —
2, 0,0832 dr
% (O 20

analogue a I’équation (8).
A titre exemplatif sans trop longs calculs, on adoptera dr = 0,20.
Alors (27) devient

(27bis) 0,25 n% + 0,516 7/, + 0,25 5>, — 0,316 7%, ; + 2 7u—y = 0

)>0

i
(28) 2
x |1— |/1— (0,94 77;,1_ 118607 2 =7, 51l Mn-1) | >0

7, = — 1,032 X

n

( 05 e —~ OIE in o
e 0,2662

= —1,032 x

Lorsque

(25ter) 7y, <0, ona 0,0416 7 —0257n +7=20
et

— 0,257 + 0,516 nt, — 0,25 572, —
(27ter)

— 0,316 74y + 21n—1 =0

75, = 1,032 X
(28bis) > h
X \1—1/1— (0,94 n;,_, + 1,186 57,_, — 7,51 77n—1)) <0
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Le tableau suivant résume les résultats des calculs. F désigne la
valeur du premier membre de I’équation (25). On remarquera dans ce
tableau que I'on a déterminé spécialement les temps des maximums
et des minimums (sauf au temps 1,7389). Comme 7, = 0, il suffit
d’écrire
0,0832 d wor

(29) d T(; 2 ) 7/’71—1 i 2 Na—1 = 0

+ 0,25 r/’nz_l — (

Cette équation du 2e degré détermine d, et 7, = Tp—1 + d1,.

dr T 7' 7 7 B

0 2 —1 0 0
0,20 0,20 1,723  —0,6277 —2,77 —0,001
0,20 0,40 1,268  —0,3286 —1,78 —0,0006
0,20 0,60 0,885 —0,1133 —2,05 —0,0026
0,20 0,80 0,485 ~+0,02878—1.95 -+0,0012
0,20 1,00 0,0868 0,0809 —2,032 —0,002
0,0439 1,0439 0 0,0811 —1,93 +0,0007
0,20 1,2439 —0,278 0,0533 —0,85 —0,0014
0,095 1,3389 —0,316 0,0251 0 —0,0001
0,20 1,5389 —0,2186 —0,0284 0,974  +0,0015
0,20 1,7389 0,0036 —0,0499 1,248  +0,002
0,20 1,9389 0,1795 —0,0316 0,511  —0,0022
0,1075 2,0464 0,207  —0,0108 0 —0,0001
0,20 2,2464 0,1383 0,02373 —0,687  —0,0001
0,1775 2,4239 0 0,0360 —0,873  —0,003
0,20 2,6239 —0M32 0,02278 —0.447  —0,00017

Au temps 7o, il y a changement de signe de . On a également
déterminé les temps z; d’inflexion de 7 (n” = 0), parce que les relations
(2) et (3) ne conviennent pas pour deux points n — 1 et n situés de part
et d’autre d’un point d’inflexion. Pour »” = 0, on a

(25 quater) + 02579, 4+ 75 =20

qui donne aux différences finies:

dT; y
7%7 (1 = 0’25 ?};/l—l) U:z—l A d T Mpq A

52 X (1 = 025 7%_,) & 025 w7y + s = 0

ou

dv; £ 0,25 77, — tns
== 005 X

4 0,0416 /
L0250, s
(30bis) X 0.0416 +d T 4 X

( = 0,25 ’7;:—1 — N1 )
B
A 0,0416

Pour la précision des calculs, il vaut mieux utiliser I’équation (30bis).
On a z = 7p—y + dz;.

+ 0,25 'r];f_l + p—1 =0

On peut également déterminer par une équation du 2e degré en
dr le temps pour lequel = 0. Ce calcul est un peu moins simple que
les précédents et n’ajoute rien a la précision.

Si I'on prend dz =1, on trouve pour 7 =1, 5" = 0,240 et
7 = 0,12. Si 'on prend dz = 0,50, on trouve

T = 0,50 gl = 1205 n=—0,18
7 = 1,00 n =—0,119 0,109

Si I’on prend d7 = 0,10, on constate que les résultats different
trés peu de ceux du tableau correspondant & dz = 0,20. Cette valeur
semble donc appropriée & la précision permise par le calcul a la regle.
Avec dt = 0,10, il serait utile de recourir & un instrument de calcul
plus exact. La méthode exposée s’applique avec une grande facilité
au calcul des chambres d’équilibre parce que les conditions initiales
déterminent complétement la solution du probleme.

L’équation (23), du type Ay” + Ry? 4+ y =0 a coefficients
constants est partiellement intégrable sous la forme

n =
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1/2

/ 2R
5 o i . A Rt
_R+2R2+Ce )

\

Dans le cas du probléme envisagé ci-dessus, pour ¢ = 0,

P A o
Yo=20, )y =y, dou C—yO—ZRZ—. D’ou
2R 2R 12

el ( —Ty) e
Y = ‘f“‘ﬁ? 1—e +}0€
2R 2R
o i e 2R 4

Y =5 2R i

Ces formules ne permettent pas de calculer directement y”, y’ et
» pour une valeur donnée de 7. Le calcul aux différences finies a partir
de ces formules est plus compliqué que par la méthode exposée et pas
plus précis.

1l est & remarquer que I’équation (23) est assez voisine de celle qui
régit le remplissage et la vidange des sas des écluses de navigation, qui
s’écrit
(23bis) Az”" + Rz? +z =2z, .

Lorsque les coefficients sont constants et que pour =0, z = 0

etz =0,ona
2R Z:II/Z
4 > i
(21+2R e

P Z—=2 A 1

= [ R TIR R

La méthode de calcul aux différences finies exposée pour les chambres
d’équilibre est entierement applicable a ce probléme des écluses, quel
que soit le dispositif.

4. Exemple de la chainette [3, p. 178]
Son €quation est

1 —
(@
Dotz ¢ (yy' — yits) = 0 — viy)

et, en tenant compte de (3)

4c? 4 4c?
Ge—1)r= (25 + 1) v + 2550,

dx? dx? dx
N e Aedse S
(32) Vi W 2 dx2 Vn-t i Ay s Vl +y;zz—1

Pour rendre ’équation adimensionnelle, on pose

(33) n=—" ot &= =, dou v =it g7
: , 4 +d& | 4 dé&
GRNGE = i

4dé& ; 2d &2 e
(33ter) N = Nn—1 + T _de gl d—dEe Vl S

L’équation (33) est adimensionnelle et absolue. Toutes les
chainettes sont donc homothétiques. On prend comme origine le
sommet § =0, 7 =0, " =0 et n” = 1. Bien que I’équation (33)
contienne un radical, sa forme est telle qu’elle se rationalise et devient
linéaire aux différences finies.

5. Equations linéaires d’ordre supérieur
Soit I’équation a coefficients quelconques

@A) Ayt BpEla GEE2 s + My +Ny+P=0.

S’ils sont constants, on additionnera les premiers membres pour deux

valeurs successives x,_1 et x, = x,_1 -+ dx en tenant compte de (2)
et (3)
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24 [ mo  mm\ | 2B [ mey mey
O <J’n _}’,1_1/)4‘?()’” —y,hl) ........ +

2M
S T (yﬂ ‘yll—l) + N(J"u =1 _Vn—l) +2P=0.

Par des transformations analogues a (2) et (3), on obtient finale-
ment une expression de y. ou y}, ou y; en fonction des éléments au
point n— 1 jusqua I'ordre m — 1. Si les coefficients ne sont pas
constants, on parvient a un résultat analogue en introduisant dans
I’équation (34) considérée pour x, les expressions de y et de ses déri-
vées en n en fonction des mémes éléments en 7 — 1 par application des
relations des types (2) et (3) jusqu’a Iordre m.

Pour rendre I’équation (34) adimensionnelle, il suffit de poser

Yy x .
n = 3 et 't = M ; on obtient
’ A B = 5
(34bis) M = 4 i ==t +n"+Nyp+1=0.

Selon les cas, on se référera a I'expression de 77, de #” ou de 7 selon
le probléme a résoudre et le degré de complication des formules. Les so-
lutions pourront étre commodes si, comme pour le probléme des cham-
bres d’équilibre du paragraphe 3, les conditions initiales déterminent
entierement la solution. Il arrive fréquemment que cela ne soit pasle cas.
On commence alors les calculs & ’origine ou le plus grand nombre de
conditions sont déterminées. Les autres restent indéterminées et sont
entrainées dans les calculs numériques jusqu’aux limites ou elles sont
déterminées. Si les fonctions des quantités indéterminées restent
linéaires, ce qui advient le plus souvent, on obtient finalement un sys-
téme d’équations linéaires qui permet de calculer les paramétres
jusque la indéterminés.

Lorsque I’ordre de I’équation (34) est élevé, on obtient des expres-
sions de ya, ¥y, ou ¥y comportant un grand nombre de termes, ce qui
peut demander le recours a des ordinateurs de grande capacité pour le
calcul. Cela est entiérement justifié, car il s’agit de la résolution de
problemes difficiles et souvent importants. Lorsque I’ordre est élevé,
les solutions comportent souvent des puissances élevées de d&, dont
lordre de grandeur peut devenir insignifiant. La méthode se simplifie
alors d’elle méme en indiquant les termes qui peuvent étre négligés.

6. Pont suspendu a tablier rigide [4, p. 270]
L’équation de Melan

d*w d*w h
(35) El — (H <F /1) e p—q—ﬁ—

dx*

devient aux différences finies

<%{—H—h) o
— (S5 Hh) Wi+ %W;Qﬁz@_q%)
ou
('diz i %) =
o B g

On prendra comme pas dx ’écartement des suspentes. La question
n’est considérée ici que du point de vue exemplatif mathématique,
évidemment tres incomplet du point de vue mécanique.

7. Poutre sur sol élastique [5] [6]
L’équation de H. Favre

(37) YY" —by" 4+ ay =p(x)oul
conduit a
4 i
e (sz — bn + an T/\) =
(38) = pa-1+Pn—(@n1 + @n) yn-r —an dxy’, | +
4 a2y, 4w
it (dx2 +bu—an—y )ynfl S U
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T
et },/// e

avece U= —E,—I El 5
L’¢équation connexe
(39) ay—py' =0 conduit a

/ o dix? Sl dxZ
40 l————) = va- (1 —) gl ad
(40) yn( B 4 ) Yn—1 S5 Brsl 4 1 Yop—1 X
8. Compression excentrique et charge critique X1 f , e

des piéces droites comprimées
i

On considere a titre d’exemple une piece
droite sollicitée comme il est indiqué a la
figure 2. L’équation d’équilibre s’écrit:

1
|
1
I
i
1
i
i
1
1
|
1
'
I
1
1
'
'
1
1

M {
41 7 2y = ——
(1) Y+ sty=—p7
avec 52—»—]i et
~ EI

M= N +)+a(U—x).
Aux différences finies:

2 dx?
Yn (1 +S”T)

Fig. 2

42)

dx dx* ([ My M
Sk fiselk.. 2 ) 7 n—1 n)
y’”( Sn-17g +yﬂ—1dx+4E<1n_l i
Comme My, = Mu—— Q (Xxn — Xn-1) = Mp—— Qdx,
¢ dx?) dx?
Y (\1 +S;T) = Yn-1 (I_S;—l i )
dx> (Mnfl

(42bls) 7 My Q dx
s e L aith )

4E

Le calcul numérique & partir de x =0, y, =0, ¥, =0, M,
=N +f)—QI, jusqua x =1, y=f, M = N(e + f) conduit a
une équation du premier degré en f qui détermine toute la sollicitation.
Le calcul peut étre fait sans négliger aucun terme; on obtiendra une
précision satisfaisante en choisissant dx = 0,20/ a 0,10 /. On sera
surtout guidé dans ce choix par la variation discontinue de 1.

Pour se rendre compte, a titre d’exemple, de la précision des
résultats, on examine ci-apres le probléme simple de la charge critique
d’une piéce droite prismatique doublement articulée:

I EI EI

No=——— 987~

L’équation
N
Vb=V ity =0

conduit aux différences finies a:

(43)

(43bis) yn=Ayn1+ By, ,, Yo =Ayn_ 1 — Cyu
dx>
1—s?
4 d °d
avec 4 = dxz’B: de,C: . xdxz'
I 1+ s : 1+ 52

Pour déterminer la charge critique, on choisit dx = I/n et I’on part de
x =0, y, =0 et y, = Y, valeur arbitraire non nulle et qui n’influe
en rien sur la solution. Pour toute valeur de », on obtient
dx? . e e dx?
4 ) e (sz 4 )

/

Yn = Y'dxFp (52

Ces expressions égalées a 0 donnent respectivement les valeurs critiques
de N pour la piéce biarticulée de longueur / ou de longueur 2/, C’est a
dire

2 2 2 2
Ncr:4nE—I(2dx 16 m*EI szdx)h
12 4 12 4 /n
On se rend compte d’aprés les relations (43bis) que au fur et & mesure
que n augmente, les fonctions Fet F” deviennent d’un degré de plus en

> ou Ner =
n

dx? 822

4 00 en méme temps que cette inconnue
n=

plus éleve en s?
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devient de plus en plus petite, de telle sorte que ses puissances élevées
deviennent rapidement négligeables. On est ainsi justifié de négliger les
stdxt
16
valeur critique par une équation bicarrée. On constate et on comprend
que ’on obtient plus de précision en annulant F” parce que cela cor-

termes de degré supérieur a , de maniére & déterminer la

respond a une piéce de longueur double et dx = Tn) . Par exemple,

pour n = 1, par y; = 0, on obtient
16 EI

o =" > écart 62,29

Pour n = 2, par y, = 0, on obtient la méme valeur, cependant que par

. 10,88 EI
y; = 0, on obtient Ner = ——

12
[ di,z 4 2 4 4
e ) Fed (1—s2de) (1 i ng——%szdﬂ) —0

13,07 EI
2

dx®\* 50
(l—l'SzT)F =

, écart 10,25 9%,. Pour n = 4,

d’ou Ner = » ccartilnlsiys

2\ 4 4 2\ 2
= (1»-sz d: ) — 6 s2dx? (lwfji—) + s*dx* =0

En négligeant les termes de dégré supérieur a s*dx*, on obtient
35 stdx*—56s%dx* +8=0,
10,16 EI

d’ol s2dx? = 0,1587 et Ner = TR écart 2,94 %
4 4 2
Pourn=5,F’=0donne166de~ i +1=0,
16 4
L St 11(0)7 20 B bt
d’otl- T 0,025, Ner = ¥ écart 1,329 par exces. Si 'on
L o8 AL e s*dx? !
considére I’équation réduite a — 44 i + 1 =0, on obtient
s2d x? 9,16 EI ,
= 0,0227 et Ner = o écart par défaut de 7,83%.
Si’on ajoute au premier membre de la derniére équation 166 x 0,02272,
27] o2 9,86 EI
on obtient = 0,0227 -+ 0,00195 = 0,02465 et Ner = 7

valeur pratiquement exacte.

Si 'on prend n > 5, la précision obtenue par F’ = 0 reste
stationnaire, parce que I’augmentation de précision due a la diminution
de dx est compensée par la somme croissante des termes de degré
supérieur a s*dx* qui sont négligés. Aussi bien cet exemple n’est il
traité que pour donner dans un cas simple bien connu une idée con-
créte de la précision de la méthode et de ses possibilités pour un cal-
culateur réfléchi. Lorsqu’il ne s’agit pas de résoudre une équation dont
dx est inconnue comme dans le cas considéré, mais bien d’effectuer
des calculs numériques sur des dx connus,
on est libre de négliger ou non, a bon
escient, les termes que 1’on juge négligeables.
Il y a lieu de remarquer aussi que la mé-
thode, tout en étant de caractére approxi-
matif, ne comporte aucune hypothése
arbitraire et ne néglige aucun élément; elle (o= 100

I, = 487cm#4 |---%

™

I, =267cm*

permet au contraire & volonté de tenir
compte de tous les paramétres. Elle est

fondamentalement correcte; c’est ainsi que 2=100
la détermination des charges critiques |} 3
exposée ci-dessus est entierement conforme I, = 287cm* 4= 100

au principe d’Euler.

La méthode convient donc pour la
détermination des charges critiques dans Ly
les cas complexes, p. ex. pour des pi€ces  Fig. 3
non prismatiques. Le Professeur L. Stabilini
[7, p. 480] établit par la méthode de Vianello la charge critique de la
pi¢ce schématisée a la figure 3. En raison de la symétrie, on considérera
4 trongons dx de 0,50 m et on annulera y’ au milieu de la piece.
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En appliquant quatre fois la formule (43bis), on obtient:

d22 dZ'Z
At ) (s ) -

4

4 -2 -2 4
= (Hsi—‘i’; —6si—di——2232d2 +52sfs§L;); L
4 2 dx® 4 dxt 2 4 dxS 4 4 dx®
—_ =il e oD A Leby,
6)50; S5 7 s ilidis, 16 228255 7 —f—3132256)

x2

En ramenant tout & sf etenégalanta 0, on obtient 1 — 18,97 s f X

2

T L 0

TR e L e s

On se rend compte que I'on aurait pu négliger les termes de degré
275

s
supérieur & 4. L’équation bicarrée donne - e 0,0596, d’ou

dx3

X

4 % 0,0596 x 287 x 2,1.10°

INE— 2500 = 57300 kg. Le terme du 2¢

dx? P
4 18,97
valeur dans les termes de degré supérieur a 2, on obtient

2dxt | 14 37,55 x(0,05272 — 8,272 % 0,0527° o
S 18,97 =10.0°82
d’oll Ner = 56 100 kg.
Par la méthode de Vianello, M. Stabilini trouve la valeur N = 56 300
kilos.
On peut établir I'équation aux valeurs critiques de N, qui pour les
conditions de la figure 3 est

degré donne si = 0,0527. Si on introduit cette

tg sih X tg s25 = L
§2

“44

Elle est satisfaite au mieux par la valeur 56 100 kg, qui est établie plus
facilement par le calcul aux différences finies que par 1’établissement et
la résolution de I'équation (44). Enadoptant 8 trongonsde dx — 0,25 m,
on obtient a partir de 1’6quation bicarrée sans correction Ngy —
56 700 kg. Le gain de précision est donc faible bien que les calculs
soient plus que doublés.
9. Equations a plusieurs variables dépendantes

Siu, v, wetc. sont des fonctions de la méme variable indépendante
x, les relations du type (2) et (3) peuvent étre écrites pour les dérivées
successives en fonction du pas dx. On peut ainsi calculer dans le plan
et dans I'espace des phénoménes définis par des équations du type (1)
ou du type (34).
10. Equations 2 plusieurs variables indépendantes

Si z est fonction de x et de y, variables indépendantes, des re-
lations du type (2) et (3) peuvent étre écrites pour les dérivées partielles
successives et introduites dans les équations aux dérivées partielles. I
faut faire choix de pas dx et dy appropriés. Les calculs deviennent
naturellement plus longs et le recours a des ordinateurs de grande
capacité pourra étre utile. Cependant des calculs & la régle pourront
souvent €tre praticables et donner assez rapidement des approximations
satisfaisantes. Il est difficile de développer des généralités a ce sujet,
chaque probleme doit faire I'objet d’un examen propre. Les plus
grandes difficultés pourront provenir des conditions aux limites
déterminantes lorsqu’elles ne sont pas toutes groupées mais dispersées.
Dans les cas les plus favorables, cela conduira a entrainer dans les
calculs un ou plusieurs parametres indéterminés, qui seront déterminés

par la résolution d’un systéme d’équations linéaires. Il est & remarquer
que ces conditions aux limites initiales ou finales sont souvent peu
réalistes dans les cas d’intégrabilité connus: discontinuités, limites a
I'infini, etc. Non seulement il n’est pas nécessaire de recourir a de tels
artifices pour le calcul aux différences finies mais ce n’est méme en
général pas permis. Le calcul aux différences finies s’accomode mieux
ou exige méme de tenir compte de conditions aux limites réelles ou
réalisables.

11. Consolidation verticale d’un sol compressible
L’équation qui traduit le phénoméne est

dp 02

45) w € 21; ou p* = Cp

Les pas sont dz et dt. Par les différences finies obtient la relation
. d2  cdt Pnere ¥ Pl
Poileid \Sin s 0 o =dz ey TP ) —

; dz*  Cdt
*pm,Hl( 4 + 2

(46) 2
) + Cdt (pm+1,t_p;/n,t)

Elle sera appliquée de proche en proche a partir de z = 0 (surface
du sol) et du temps # = 0 du début d’application de la surcharge
extérieure. On procéde par périodes d successives sur toute la hauteur
ndz de la couche compressible; pour chaque période une équation
linéaire détermine le paramétre indéterminé p{, entrainé dans les
caleuls jusqu’a ndz. La place fait défaut ici pour développer I’aspect
mécanique de la question; ce qui précéde suffit pour la résoudre avec
telle précision que I’on désire au point de vue numeérique. Il est aussi
possible de tenir compte d’une variation de C.

12. Equation de Lamé
L’équation
47) az’ =2 czl bz =" (x)y)
conduit par les différences finies a la relation suivante:

ady* + 2 edxdy -+ bdx?
dx2dy? — Zati,y+1 =
2 ady + cdx
2 dxdy

ady* + cdxdy
Tdyz; Zzyy+1 +

7

G:
Z 2, y+1 o Gk

bdx*4-cdxdy
dx*dy?

A= a /”
Z g, y+1 +_4T Zpyn1 T

2 bdx + cdy .
2dxdy et T

“48)
+ 22

4 z, y+1

Zuti,y +

@ . bi o C 2
o 2 dy Zx+1,y+jzz+1,y+zzx+1,y+7(x+1,y+1)

Les expressions des dérivées premiéres et secondes ne sont pas
plus simples, de telle sorte qu’il vaut mieux les calculer numériquement.
L’équation
49 Adz=7"+z* = ¥P(x,)
se déduit de la précédente en faisant @ = b = 1 et ¢ = 0. On obtient:

dx?
dx? + dy?
LR o
dx* + dy?

dx*dy?
m ¥ (w+1,0+1) -

; = dy?
Zrt1,y+1 = (ZZ-H)ZI A dy + Zot1,y ‘) o

4

d 2
(50) : [ORRES S ) -+

4
+

13. L’équation bi-harmonique
I’¢quation 44z = ¥ ou

(51) % L 0) s S o gj(x’y)
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peut étre traitée comme suit. On pose 4 z = w; Wa+1, y+1 €st donné par
I’expression (50) qui conduit a:

16 32 16 16 l6
(dx“ T aear " dy“) Gt (dx“ & dxzt?y_2> 4

16 16 /16 16
dx*dy* + dy* ) Zertoy (Tx? o a'xza?‘) ¢
16 16

X 2L 43 + (o5 + e

\

X Zgyyt1 + (
) Z.:H—l,y dy

(52)

8 4 L, N 8 4
i (dex“ + dxzdy2> “at LAE T (dy“ oy Ffzdyz)

10 wa

- 4 4 .
x Za:+1,,ydy2 > dx Z:v,y+1+ zx,y+1+7yzx+1,y+ Z:L'+l,y+

4 o o e dx) 4 )
7 dx? (Zz,_z/+1+zx,y+1 dx-1izx,1/+1 4 ) dyz. X "“?::

e

“” u ceu SRS
X (Zx+1,y+ Zar1,y T Zgh1,y 4 ) F ¥ (zt1,9+1)

La méthode des éléments finis en élasticité
Par Georges Dupuis ' et William Prager 2, Laboratoire de Recherche

Résumé: La méthode des éléments finis, appliquée a la déter-
mination approchée du champ de déplacement d’un disque élastique
soumis & des contraintes données au bord, conduit & un systéme
d’équations linéaires qui sont généralement déduites de considérations
intuitives. Le sens précis de ces équations dans le cadre de la théorie
mathématique de I’élasticité est établi ici. Les formules explicites sont
données pour un réseau formé de triangles rectangles isocéles. Un
exemple numérique illustre leur application.

1. Introduction

Le procédé des éléments finis appliqué aux disques, plaques et
coques et aux continus élastiques a trois dimensions est une générali-
sation naturelle de la méthode matricielle développée dans I’industrie
aéronautique & propos de I’analyse de structures complexes d’ailes et
de fuselages (voir, par exemple [1], [2] ou I’on trouvera d’autres
références).

Pour illustrer I’idée de base, considérons 1’état de tension plane
généralisée engendré dans un disque polygonal, d’épaisseur constante,
soumis & des contraintes données sur son contour. Appliquons sur I’aire
de ce disque un réseau triangulaire, et discrétisons le champ de déplace-
ment bidimensionnel par les vecteurs déplacements des nceuds de ce
réseau, en supposant que, a Iintérieur de chaque triangle, les com-
posantes du déplacement dans un systéme de coordonnées rectangu-
laires cartésiennes x1, x2 sont des fonctions linéaires de ces coor-
données. De cette maniére, le champ de déplacement de chaque triangle
est entierement défini par les vecteurs déplacements de ses trois
sommets.

Le champ de déplacement considéré est continu dans tout le
domaine occupé par le disque et engendre un état de déformation
constant a lintérieur de chaque élément triangulaire. L’état de tension
plane déduit de I’état de déformation par la loi de Hooke, est constant
pour chaque élément. Les distributions uniformes de contraintes
transmises & travers un segment du réseau séparant deux triangles
adjacents ne sont, en général, pas en équilibre. Cet état de tension
constant par région est donc engendré par des charges de ligne uni-
formement distribuées le long de chaque segment du réseau.

Les composantes de ces charges de ligne sont des fonctions liné-
aires des composantes de déplacement des nceuds. Dans le cas ou les
forces de volume sont nulles, on peut présumer obtenir une approxi-
mation raisonnable du champ de déplacement de la maniére suivante:

1. Pour chaque segment, on remplace la distribution uniforme de
charges de ligne par des forces paralléles équipollentes appliquées aux
extrémités. La résultante des forces ainsi obtenues en un nceud sera
appelée force intérieure en ce neeud.

1) Actuellement Assistant a I'Institut de Mathématiques Appliquées
de ’EPUL.

2) Actuellement Professeur de Mécanique Appliquée a I’Université de
Californie, San Diego.
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bidimensionnelle
IBM, Riischlikon ZH

L’équation de Westergaard [8, p. 577]

q—kz
Nz — ——— ==
P D

q— kzzi1, yi1

D

s’écrit comme (52) en y remplagant ¥ (z41,4+;) par

L’équation de Huber
az” + 2 ¢z + bz = p [8, p. 593]

conduit a une expression d’une complication analogue a celle de la
formule (52).

Cette complication parait certes assez grande. Il faut toutefois
I’apprécier en fonction de la difficulté des problémes et de celle des
solutions connues. Pratiquement, I’application revient a de nombreuses
opérations élémentaires que les moyens de calcul modernes doivent
permettre de maitriser. Il se peut que les difficultés d’application
proviennent plutot des conditions aux limites. Dans les formules, en
cours de calcul, il est toujours possible de négliger a bon escient les
termes vraiment négligeables. La méthode permet en principe la
solution numérique suffisamment exacte des problémes de la nature
de ceux qui ont été considérés.

Adresse de ’auteur: Ferdinand Campus, 85, Avenue des Grenadiers,
Bruxelles 5.

DK 539.3:518.61

2. Pour chaque segment de bord du disque, on remplace la com-
posante suivant x1 des contraintes données par deux forces paralléles
équipollentes appliquées aux extrémités. De méme pour la composante
suivant x2. La résultante des forces ainsi obtenue en un nceud de bord
sera appelée force extérieure en ce nceud (pour tous les nceuds
intérieurs a la frontiére du disque, la force extérieure disparait).

3. Pour chaque nceud, on écrit que les forces extérieures et
intérieures sont égales. Ces relations sont nommeées conditions d’équi-
libre nodal. Elles sont linéaires relativement aux déplacements des
neeuds.

Puisque les contraintes de bord données, et par suite les forces
extérieures, satisfont trois équations d’équilibre, trois conditions
d’équilibre nodal sont dépendantes des autres et peuvent étre suppri-
mées. Si le réseau triangulaire est formé de » nceuds, il reste 2n-3
conditions d’équilibre nodal indépendantes pour les 2n composantes
de déplacement des n nceuds. Pour éliminer les déplacements rigides
du disque qui n’entrainent aucune déformation, on peut annuler trois
composantes de déplacement des nceuds. Le nombre de composantes
de déplacement indépendantes est donc égal au nombre de conditions
d’équilibre nodal indépendantes.

Au lieu de procéder de cette maniere intuitive, on peut appliquer
le principe du minimum de I’énergie potentielle (cf [3]). Dans ce
cas, le champ de déplacement linéaire par régions, continu, considéré
ci-dessus, est une fonction concurrente du probléme de variation,
et I’énergie correspondante est une forme quadratique dans les 273
paramétres de déplacement indépendants. La condition d’extremum
de cette forme quadratique est équivalente aux conditions d’équilibre
nodal indépendantes.

Une autre maniére d’obtenir ces conditions est développée au
paragraphe 2. Au paragraphe 3, on donne les formules explicites pour
un réseau formé de triangles rectangles isocéles. Un exemple numérique
illustrant Papplication de ces formules est traité au paragraphe 4.

2. Obtention des équations d’équilibre nodal

La figure 1 représente un systéme d’axes rectangulaires car-
tésiens x1, x2 et un disque quadrilatéral sur lequel est appliqué un
réseau triangulaire grossier. On affecte aux nceuds un indice en

Fig. 1. Réseau triangulaire et
domaines D? typiques
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