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Resolution aux differences finies de quelques problemes de mecanique
Par Ferdinand Campus, Liege

DK 531:518.61

1. Generalites

L'equation

(1) ay" ± by'2 + dy' + cy + e 0

ä coefficients quelconques n'est generalement pas integrable. Sa

resolution aux differences finies peut etre effectuee comme suit. Pour
deux valeurs consecutives de la variable independante xn-\ et

xn - xn-i + dx, on admet que

(2)
dx

yn yn-i + -j- (yn~i + yn)

(3)
2

et on introduit ces expressions dans l'equation (1). Elle devient:

±bny'„ 4 - ——)yn — any-n_

7'„_i + Wmm. + eK 0(4)

' 2 an cn dx \ i

^T + dn+^r)yn-
2 an cn dx '

dx

Si les coefficients sont constants, en combinant (4) et (1) consideree

pour xn~i, on obtient:

±by'*+ 2 a c dx
dx 2

(5) 2a
dx -d- cdx

)y'n±b y'n-i —

y'n_x + 2 cyn~i + 2 e 0

La resolution de l'equation du 2e degre donne la valeur de y'n

en fonction des coefficients de l'equation (1), de yn-\ et de y'n-\. Le

degre d'approximation de la Solution depend de la valeur de dx choisie

en consequence. La dualite des racines de l'equation (4) ou (5) ne

cause pas d'ambigufte; la racine qui convient est determinee par les

conditions du Probleme, en general par le signe de y'„. Les termes

lineaires s'adaptent aux signes des fonctions. II n'en est pas de meme
du terme quadratique, dont le signe ± depend precisement du signe

(c'est ä dire du sens) de y'.

Dans les equations de la dynamique la variable dependante y est

une longueur.la variable independantex un temps.Dans les equations
de la statique, les deux sont des longueurs. On facilite la comprehen-
sion, et la resolution du probleme en rendant les equations adimen-
sionnelles. II suffit pour cela de la transformation rj y/e et I x\d.
L'equation (1) devient

(6) A rf ± B r\'2 + rf

A a
"d2

Cn+l=o
be
d2

B et

si les coefficients sont constants. Si certains ne le sont pas, la
transformation est faite pour un certain etat de reference, mais l'equation (1)

conserve sa forme generale, les coefficients variables devenant adimen-
sionnels. La forme non dimensionnelle de l'equation met en evidence
les conditions de similitude. Pour l'equation (6) ä coefficients constants,
elles sont

a
"d2

be
d2

et

Dans ce cas, l'equation (5) aux differences finies devient

±^+(f+1+if)<i<-
(7) 2A Cdt

d{ )v/n_1+2Ctln-1 + 2 0

Qu'elle soit ou non dimensionnelle, l'equation aux differences
finies s'ecrit en general

(8) ±By' +Dy'+E=0
Cette equation peut avoir une racine nulle lorsque E 0 pour

une certaine valeur de la variable independante. Ce cas est different de

celui oü le coefficient B constant ou variable est nul. Le probleme
est alors lineaire et y'n n'est pas nul mais sa valeur est — EjD. Le cas

des equations lineaires sera traite plus loin pour des ordres egaux ou
superieurs au deuxieme.

La resolution par l'equation du deuxieme degre (8) s'applique
non seulement ä l'equation du type (1) courante en m6canique, mais
aussi ä toute equation qui contiendrait un terme quadratique autre
que y'2 ou un terme lineaire inverse ou un radical dont le terme sous le
signe serait lineaire ou quadratique. La fonction y et ses derivees

sont explicites; les coefficients non constants sont des fonctions
connues de la variable independante et en tous cas parfaitement
definis pour toute valeur de celle-ci.

2. Precision de la methode

Si l'on se refere ä la forme (8) de l'equation resolvante,

(9)

(101

äH/.±-40^)

E BE2 B2 E* 5 B3E4

D AD3 8D5 i i 64 D1

Si les coefficients A, B et C de (6) sont constants, dans (9) et (10) D depend
seulement du choix de dx, cependant que E depend en outre de yn-\ et de

y'n-t. La Solution y'n depend comme terme primaire de EjD, comme si

l'equation de base etait lineaire. Les termes suivants dependent des

puissances croissantes de EjD et de B/D. B ne depend que des donnees

du probleme, tandis que D et E dependent du choix de dx. II y a

interet pour la precision ä reduire le rapport B/D, c'est ä dire ä
augmenter D en reduisant dx. Cependant, ce faisant, on augmente le

nombre des intervalles et des calculs d'un maniere inversement

proportionnelle. On se limiterait forcement dans cette voie si le bene-

fice de precision n'etait pas plus que proportionnel. Or il l'est, de teile

sorte que l'on ne sera limite dans la recherche de la precision que par
les necessites et par les moyens dont on dispose pour faire les calculs.

Si l'on considere diverses formes elementaires de fonctions qui peuvent
intervenir dans la Variation d'une fonction quelconque y, on peut

comparer comme suit les valeurs des ecarts

dx /
: yn — yn-i—T-(yn

Si y xm (m entier), e

Pour TM 1

e 0

y'n-i) ,en se limitant aux termes en dx3.

m{m — 1) (m — 2)
12

3

dx3

dx3

- z. Xn—i a X

La precision diminue appreciablement lorsque la valeur de m

augmente; l'erreur est par exces.

Si y —
x

Si y ex,

Siy sin x,

Si y tg x,

Si y e~x cos x

dx3
1 r2 r2

dx3

(par exces).

12
ex«-i (par exces).

dx3
cos Xn-i (de signe variable).

dx3
2 COS2 Xn-l

e~x"-i cos x-n-i dx3

,t22,, \ (de signe
5 tg pH variable)_

(de signe variable).

Si les rfl sont de l'ordre de grandeur de 0,10, les ecarts sont de

l'ordre de grandeur de 0,001 et souvent inferieurs. Comme le calcul

s'effectue pas ä pas, les erreurs systematiques s s'additionnent sur un
certain nombre d'intervalles. Si dl 0,10, pour couvrir Turnte, il
faut dix pas et l'erreur cumulee peut Stre de l'ordre de 0,01. Si l'on
prenait rf| 0,01, pour 100 intervalles, l'erreur cumulee serait de

l'ordre de 0,0001.
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II y a donc un interet effectif pour la precision de diminuer dt.
Si Ton dispose d'ordinateurs, il est apparent que le choix de dl 0,01
permettrait une precision qui depasse souvent les besoins. Sauf dans les
cas d'allure defavorable de Variation de la fonction, par exemple la
predominance de termes paraboliques de degre eleve, superieur
ä 3 ou 4, ou de fonctions tangentes. Cependant les allures de Variation
ä croissance tres rapide ou ä tendance rapide vers Tinfini sont peu
frequentes en calcul numerique. Si elles se presentaient, il faudrait le
cas echeant recourir aux ordinateurs avec des valeurs appropriees
de dt.

Les faibles valeurs de dt reduisent les valeurs de BjD et de EjD
dans Texpression (9); elles sont donc favorables ä Texactitude du calcul
numerique. Le recours ä la forme non dimensionnelle de l'equation de
base est avantageuse pour le choix de dt, qui est un nombre sans
dimension, par exemple 0,20,0,10 ou 0,05. II en resulte que dx 0,20a",
0,10 d ou 0,05 d si Ton effectue les calculs sur l'equation dimensionnelle.

Le parametre d prend ainsi une signification unitaire. Divers
calculs effectues ä la regle au moyen de valeurs de dt meine superieures
ä 0,10 ont conduit dans des cas simples contrölables ä des precisions
tres satisfaisantes. Par ailleurs, il existe un moyen de verifier Texactitude

süffisante des valeurs numeriques trouvees, c'est de les introduire
dans l'equation de base (1). Cette verification portera sur un resultat
final ou sera effectuee de distance en distance.

Pour Toperation des calculs pas ä pas, il est commode de les
disposer en tableaux systematiques, qui previennent les grandes
erreurs et donnent un apercu tres suggestif des resultats et de l'in-
fluence des divers parametres. Des calculs rapides d'orientation oü de
premiere approximation sont possibles, sans Omission de facteurs
essentiels, en recourant ä des valeurs relativement grandes de dt
(p. ex. 0,50). Le degre de precision peut etre contröle par l'equation
de depart (1). La Variation des coefficients introduit naturellement
une cause supplementaire d'imprecision ainsi qu'une augmentation
des calculs. Ces variations sont cependant le plus souvent moderees.
Elles peuvent etre discontinues. L'echelonnement des dt sera choisi en
consequence et notamment de maniere ä faire coincider les discontinui-
tes avec une etape entiere tn des calculs. Le cas echeant, on adopte des
valeurs differentes de dt par intervalles.

3. Exemple du calcul des chambres d'equilibre
Ce probleme, dont Tetude a inspire la methode exposee, est un

cas assez complexe et interessant d'oscillations amorties. L'equation
du type (1) qui le regit resulte d'un Systeme de deux equations diffe-
rentielles simultanees. L'expose tres succinct qui suit ne s'attache qu'au
caractere purement mathematique, sans entrer dans les aspects
hydrauliques, etrangers ä cette etude.

NE

w< n

Fig. 1

Sur la figure 1, les fleches indiquent les sens positifs de u, de
dyjdt, de Q et de Qr. L'equation du mouvement variable est:

(11)
/ du du'"",12, /

L'equation de continuite est:

(13)

ou

(12)

d'oü

(14)

dv
US=ü~fr + Q — Qr

dt

Oy' + Q — Qr

du
~dt

Qy" + Q*y'2 + Q' — Q'r
avec Q* du

dy

En eliminant u et «', on obtient finalement l'equation du mouvement
de l'eau dans la chambre d'equilibre:

IQ
-y' +

IQ* b Q2

s2 ±e\y'2± 2b{Q — Qr)Q

(15)

gs s2

Aupoint de vue hydraulique, l'equation (15) se presente sous une
forme de generalite quasi complete. Q,Qr et e peuvent etre des fonctions

de t, cependant que Q peut varier avec y. Un cas presente quelque
difficulte, c'est celui de la cheminee deversante, oü Qr est fonction
de y. II faudrait admettre par approximation que cette fonction est
lineaire, Tajustement de la fonction pouvant etre fait par la methode
des moindres carres. Comme cette linearisation ne porte que sur un
terme generalement accessoire, eile ne peut pas affecter Texactitude
d'une maniere importante. Cette Operation est assez frequente dans la
resolution analytique des problemes du mouvement varie en hydraulique,

en ce qui concerne les termes quadratiques de pertes de Charge
[1], [2], qui sont inchanges dans la methode exposee. Les parametres e
et b de ces termes sont pris avec le signe + lorsque y' est positif et que
« est positif, ce qui se verifie par l'equation (13).

On peut passer aux variables sans dimensions par les trans-
formations

(16) ¦n
s* y

b^Q2
s't

2b0Q0Q0

b<>, ßoet ^o correspondant ä un etat de reference defini. L'equation (15)
devient:

a • j_ P Ü b{Q — Qr)Q 1Ar] +Rrj2± r) + n +
b0Qo "o

(17) ls(Q'-Q'r) b(.Q—Qr)2
gboQ2 b0Q2

a m
Is3 Q

4b2gQ20Q20

(18)
et H IQ* \ s2 bQ2

gs
± e) 4 b0ü20

± 4b0Qf

Les signes ± sont determines comme il est indique plus haut. Si
Q' 0, Q* 0 et Qr 0, les coefficients sont constants et b0 b,
Qa — Q et Q0 ß. L'equation (17) devient

(19) A rf + R n'2 ± v + n ± 1 =0

(20) A
Is3

4 gb2Q2 Q
et R ± 0,25 ± 1 ± bQ2,

On passe aux differences finies par la voie indiquee au premier para-
graphe. On obtient ainsi pour l'equation (17)

l i2A« b{Q—Qr)Q dx

(21) *V' -Anrj
2AnI ZA)

"-1 ~ VTc

v IHQ'-Q'r) b(Q-Qr)2 _n
b0Ql

Pour l'equation (19) ä coefficients constants:

^;2+(^±i + ^)
(22) wBm&gmm 0

II n'y a jamais d'ambigulte, ni pour les doubles signes des
coefficients, ni pour le signe du radical de la racine; ils decoulent des

conditions du probleme et des sens de r\' et de «. II faut naturellement
les determiner avec exactitude dans chaque cas. Quant ä dr, on le
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prendra egal ä une fraction de Turnte, d'oü dt °-H^—I dx.
s2

Des applications numeriques ont montre que la methode est parti-
culierement bien adaptee ä la Solution du probleme. A titre d'exemple,
on trouve ci-apres les resultats d'un calcul relatif k une suppression
instantanee du debit dans un dispositif k coefficients constants et sans
etranglement ä la base de la chambre.

Le debit Q0 de Tetat de regime anterieur est annule instantanement
au temps 0 initial du regime variable.

Donc y0
bQl So s u0

-^ et mY*m
Q" n I—rr Quant a

y"a, il est determine par l'equation du mouvement, qui est dans ce cas

(23)
lQ bQ2 I

Le signe de b est positif jusqu'au premier maximum de y; il devient
negatif entre le premier maximum et le minimum consecutif et ainsi de
suite. On rend l'equation adimensionnelle par

(24) n

Elle devient:

(25)
Is3

iry _
s2t

bQ20
6

i
" 2bQ0Q

0,25 n'2 + rj 0
4 gb2Q% Q

II faut y ajouter l'equation de continuite

(26)

Donc rj0

Soit

U 7]

Is3

1 Qs_

2s

~ 1 V'0 2 et r]"o 0

0,0416; lorsque r\' > 0 on a:4gb2Q20Q

(25bis) 0,0416 n" + 0,25 n'2 + t? B 0

L'equation aux differences finies s'ecrit selon (22);

0,0832 dx-

(27)

n 0- ,2 / 0,0832 dx\ |' V* + \d~v~ + ~2~) 1 + ' B
_

0,0832 _ rfr\
~\ dx 2

I V'n-i + 2 ??»-i ¦ 0

analogue ä l'equation (8).
A titre exemplatif sans trop longs calculs, on adoptera dx 0,20.
Alors (27) devient

(27bis) 0,25 n'n + 0,516 V'n + 0,25 S — 0,316 H + 2 H | 0

1,032 X

X \ 1 —
0,25 <_! —0,316 »?;_! +2^_,

1 ^wy^. / > 0
0,2662

V'= — 1,032 X

(28)
X 1 1 — (0,94 ??;l1— 1,186 -n'n_x + 7,51 nn-x) > 0

Lorsque

(25ter) -n'n < ° » on a 0,0416 »?" — 0,25 -n' + -n 0

et

- 0,25 ^;2 + 0,516 §- 0,25 J7'„2_1 -
(27tef) — 0,316 Tj'n-l + mM 0

i?; i 1,032 X

(28bis) / -i/- I \
X ^1 — l/l — (0,94 n'l_x + 1,186 »?'„_! —7,51 nn-i)) < 0

Le tableau suivant resume les resultats des calculs. F designe la
valeur du premier membre de l'equation (25). On remarquera dans ce
tableau que Ton a determine specialement les temps des maximums
et des minimums (sauf au temps 1,7389). Comme n'n 0, il suffit
d'ecrire

(29)
HEni / 0,0832 dx0\

i equaticn du 2e dsgre determir le dx0 et t0 xn-i + dx0.

dx X V V '?" F

0 2 —1 0 0

0,20 0,20 1,723 —0,6277 —2,77 —0,001
0,20 0,40 1,268 —0,3286 —1,78 —0,0006
0,20 0,60 0,885 —0,1133 —2,05 —0,0026
0,20 0,80 0,485 + 0,0237 —1,95 + 0,0012
0,20 1,00 0,0868 0,0809 —2,032 —0,002
0,0439 1,0439 :-fl»Pr4 0,0811 —1,93 +0,0007
0,20 1,2439 —0,278 0,0533 —0,85 —0,0014
0,095 1,3389 —0,316 0,0251 0 —0,0001
0,20 1,5389 —0,2186 —0,0284 0,974 +0,0015
0,20 1,7389 0,0036 —0,0499 1,248 + 0,002

0,20 1,9389 0,1795 —0,0316 0,511 —0,0022
0,1075 2,0464 0,207 —0,0108 0 —0,0001
0,20 2,2464 0,1383 0,02373 —0,687 —0,0001
0,1775 2,4239 0 0,0360 —0,873 —0,003
0,20 2,6239 —0,132 0,02278 —0,447 —0,00017

Au temps to, il y a changement de signe de b. On a egalement
determine les temps ri d'inflexion de r\ (rf 0), parce que les relations
(2) et (3) ne conviennent pas pour deux points n — 1 et n situes de part
et d'autre d'un point d'inflexion. Pour if 0, on a

(25 quater) ± 0,25 n'n + V =0
qui donne aux differences finies:

dx2.
(l ± 0,25 ,;_,)^ + d xi n'^ x

(30)

dx:
4 L

(30bis) X

1 i

1 ± 0,25

X (1 ± 0,25 t^) ± 0,25 v'n-, + Vn-x 0

± 0,25 r\'n-x — »7»-

0,0416

± 0,25 v'n-!— Vn-

0,0416

± 0,25 ri'2^ — r/n-i

0,0416

+ d xt r\'n_x X

± 0,25 »y^j + rjn-i 0

Pour la precision des calculs, il vaut mieux utiliser l'equation (30bis).
On a xi t„_j + dxt.

On peut egalement determiner par une equation du 2e degre en
dx le temps pour lequel -n 0. Ce calcul est un peu moins simple que
les precedents et n'ajoute rien ä la precision.

Si Ton prend dx 1, on trouve pour x 1, ??' 0,240 et

rj 0,12. Si Ton prend dx 0,50, on trouve

x 0,50 n' 1,275 n= — 0,18

x 1,00 V — 0,119 v 0,109

Si Ton prend dx 0,10, on constate que les resultats different
tres peu de ceux du tableau correspondant k dx 0,20. Cette valeur
semble donc appropriee ä la precision permise par le calcul ä la regle.

Avec dx 0,10, il serait utile de recourir ä un instrument de calcul

plus exact. La methode exposee s'applique avec une grande facilite
au calcul des chambres d'equilibre parce que les conditions initiales
determinent completement la Solution du probleme.

L'equation (23), du type Ay" + Ry'2 + y 0 k coefficients

constants est partiellement integrable sous la forme
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y R 2 R2 + Ce

1R VI2
-~ry

Dans le cas du probleme envisage öi-dessus, pour t 0,

1
jVo 0 / y'0 d'oü C y'0

2R

2R2

y R + 2R2 V / +yo

D'oü

2Ä
'~7~-1'

y =¦
1 +^

2Ä
TV 2R

1R
~A~-

2R 2 R A '»y e

Ces formules ne permettent pas de calculer directement y", y' et
y pour une valeur donnee de t. Le calcul aux differences finies ä partir
de ces formules est plus complique que par la methode exposee et pas
plus precis.

II est k remarquer que l'equation (23) est assez voisine de celle qui
regit le remplissage et la vidange des sas des ecluses de navigation, qui
s'ecrit

(23bis) Az" + Rz'2 + I 1
Lorsque les coefficients sont constants et que pour t 0, z 0
et z' 0, on a

Zi —z
R 2 R2

1 j A
2R
~A~

1/2

La methode de calcul aux differences finies exposee pour les chambres
d'equilibre est entierement applicable k ce probleme des ecluses, quel
que soit le dispositif.

4. Exemple de la chainette [3, p. 178]

Son equation est

(31) /' — ]/l +y'2

D'oü: c2 (y2—mm (y'n2 — y'n-i)

et, en tenant compte de (3)

(32)

dx

y'n

4 c2 I
+ lLTy»-i

4 c2 + dx2 I 4 cdx
4 c2 —dx2 y*>-1+ Tö dx2 V i+r,

Pour rendre l'equation adimensionnelle, on pose

y(33) i] - et
c

t — d'oü rf |/l +

4 +dt2(33bis) ,; -j±~r iS + -jiffp 1/x + US
4 dt

4 — dt2

(33ter) »?„ ij0-i + - —»?;_, +4 — dt2 4 — dt2

L'equation (33) est adimensionnelle et absolue. Toutes les
chainettes sont donc homothetiques. On prend comme origine le
sommet t 0, »? 0, r\' 0 et t\" 1 ¦ Bien que l'equation (33)
contienne un radical, sa forme est teile qu'elle se rationalise et devient
lineaire aux differences finies.

5. Equations lineaires d'ordre superieur
Soit l'equation ä coefficients quelconques

(34) Ay- + By^i + Cy^ + My' + Ny + P I 0

S'ils sont constants, on additionnera les premiers membres pour deux
valeurs successives xn-i et xn xn-i + dx en tenant compte de (2)
et (3)

2A
dx

1 m-i 2>-i\ 2 B

1 2M \
+ dx

{yn~

yn-i

-yn-i) + N(y»+ yn-i) + 2P 0.

Par des transformations analogues ä (2) et (3), on obtient finale-
ment une expression de yn ou y'n ou y"n en fonction des elements au
point n — 1 jusqu'ä l'ordre m — 1. Si les coefficients ne sont pas
constants, on parvient ä un resultat analogue en introduisant dans
l'equation (34) consideree pour xn les expressions de y et de ses deri-
vees en n en fonction des memes elements en n — 1 par application des
relations des types (2) et (3) jusqu'ä l'ordre m.

Pour rendre l'equation (34) adimensionnelle, il suffit de poser

I
P eti lü on obtient

(34bis) ~—V-+Mm Mm
B m—i
^rv— + n' + Nr] + 1 9 0

Selon les cas, on se referera ä Texpression de rf, de n' ou de r\ selon
le probleme k resoudre et le degre de complication des formules. Les
Solutions pourront etre commodes si, commepour le probleme des chambres

d'equilibre du paragraphe 3, les conditions initiales determinent
entierement la Solution. II arrive frequemment que cela ne soitpas le cas.
On commence alors les calculs ä Torigine oü le plus grand nombre de
conditions sont determinees. Les autres restent indeterminees et sont
entrainees dans les calculs numeriques jusqu'aux limites oü elles sont
determinees. Si les fonctions des quantites mdeterminees restent
lineaires, ce qui advient le plus souvent, on obtient finalement un
Systeme d'equations lineaires qui permet de calculer les parametres
jusque lä indetermines.

Lorsque l'ordre de l'equation (34) est eleve, on obtient des expressions

de yn, y'n ou y"n comportant un grand nombre de termes, ce qui
peut demander le recours ä des ordinateurs de grande capacite pour le
calcul. Cela est entierement justifie, car il s'agit de la resolution de
problemes difficiles et souvent importants. Lorsque l'ordre est eleve,
les Solutions comportent souvent des puissances elevees de dt, dont
l'ordre de grandeur peut devenir insignifiant. La methode se simplifie
alors d'elle meme en indiquant les termes qui peuvent etre negliges.

6. Pont suspendu ä tablier rigide [4, p. 270]

L'equation de Melan

d2w
(35) EI

d4w
dx* H + h

dx2 P- H

devient aux differences finies

/ 4 EI
dx2

4 EI
dx2 +

H-hjwn

+
4 EI
dx K-i + 2{p-lJi)

H + h
dx2

W„
(36) j4_

dx2 +

El
H_ +

EI Mn-! +
4 7V

dx P-«±)
On prendra comme pas dx Tecartement des suspentes. La question
n'est consideree ici que du point de vue exemplatif mathematique,
evidemment tres incomplet du point de vue mecanique.

7. Poutre sur sol elastique [5] [6]

L'equation de H. Favre

(37) y"" — by" + ay =p (.x) ou 0

conduit ä

dx2\¦ — bn ~~r dn '
Adx2 4

(38) Pn-l + Pn

+ {-d¥ + bn-1~an

(an-i + an) yn-

dx2

-an dxy'n_x +
4

J'b-I + dx y,
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L'equation connexe

(39) cy — ßy-

ety"
T
EI

conduit ä

(40) yn 1
a-n dx2 \
Jn~~4~) V»-i (1 + an-i dxn-i dx2\

8. Compression excentrique et Charge critique
des pieces droites comprimees

On considere ä titre d'exemple une piece
droite sollicitee comme il est indique ä la
figure 2. L'equation d'equilibre s'ecrit:

(41) y" + s2y §§_M
EI

N
etEI

M=N(e+f) + Q(l — x)

Aux differences finies:

dx2"•(i+*,-^r)
(42)

yn-i 1

4

2 dx
n-1 4"

Comme Mn Mn-\ -

m 2 dx2
M [! +sn—^

(42bis)

ß(x»

/////////
Fig. 2

At2 Mn-\

¦ yn-l 1

4 £ V /„_
Xre-l) Mn-i — Qdx

dx2
4

+ Mn\
In

+

H rfx + 4£
/M„-i
V /n-1 +

M,n-i
In

Qdx
In

Le calcul numerique ä partir de x 0, j>0 0, y'0 H 0, M0

N(e +/) — Q/, jusqu'ä x l, y f, M N (e + f) conduit ä

une equation du premier degre en/qui determine toute la sollicitation.
Le calcul peut etre fait sans negliger aucun terme; on obtiendra une
precision satisfaisante en choisissant dx 0,20 / ä 0,10 /. On sera
surtout guide dans ce choix par la Variation discontinue de I.

Pour se rendre compte, ä titre d'exemple, de la precision des

resultats, on examine ci-apres le probleme simple de la Charge critique
d'une piece droite prismatique doublement articulee:

fl!li!lMlJJ
L'equation

(43) y"
N
EI

¦ y" + s2y

conduit aux differences finies ä:

(43bis) yn Ayn-i + By'n_t y'n Ay'n_x — Cyn-

I dx2

avec A
1

dx*
B

dx

1 + r
dx2

C
s2dx

1 + s'-
dx2

Pour determiner la Charge critique, on choisit dx l/n et Ton part de

x 0, y0 — 0 et y'0 Y', valeur arbitraire non nulle et qui n'influe

en rien sur la Solution. Pour toute valeur de n, on obtient

yn — Y'dxFn s
dx2

et y' Y'F idx2\
n {S2-^

devient de plus en plus petite, de teile sorte que ses puissances elevees
deviennent rapidement negligeables. On est ainsi justifie de negliger les

s*dx4
termes de degre superieur ä

16
de maniere ä determiner la

valeur critique par une equation bicarree. On constate et on comprend
que Ton obtient plus de precision en annulant F' parce que cela cor-

(2 0
Par exemple,

2 n
respond ä une piece de longueur double et dx

pour n 1, par y{ 0, on obtient

^r 16 EI WKSKUb
Ncr —|— ecart 62,2%

Pour n 2, par y2 0, on obtient la meme valeur, cependant que par
10,88 EI

Tz 0, on obtient TV« ecart 10,25%. Pour n 4,

11,07 EI

s*dx* m
d'oü Nc

l2

dx2^"

ecart 12, 15%

nne
1—s5

dx2
— 6s2dx2 [1—s dx2V + s*dx4 0

En negligeant les termes de degre superieur ä s4dx*, on obtient

35 s4dx4 — 56 s'-dx2 + 8 0,

d'oü Pdx2 0,1587 et Na- 10'^ El- e cart 2,94 %

d'oü-

Pour n 5, F' 0 donne

^dx

l2

166 s*dx*
16 44^ + 1=0:

10 5J
0,025, Arcr m —Tz— ecart 1,32% par exces. Si Ton

l2

s'-dx2
considere l'equation redmte ä — 44 — 1-1=0, on obtient

s'dx2
0,0227 et Nc-,

9,16 EI
ecart par defaut de 7,83 %.

4 Ii— l2

Si Ton ajoute au premier membre de la derniere equation 166 x 0,02272.

s2dx2
on obtient —-— 0,0227 + 0,00195 0,02465 et Nor

9,86 EI

Ces expressions egalees ä 0 donnent respectivement les valeurs critiques
de A^ pour la piece biarticulee de longueur / ou de longueur 21, c'est ä

dire
16 n2EI

I, =2B7cm*

I2= 487cm*

I, -287cm*

4 n2EI I dx2
Ncr j2

I S2—— OU Nc,
n2EI dx2\
l2 K 4 1,

N

li WO

On se rend compte d'apres les relations (43bis) que au für et ä mesure

que n augmente, les fonctions .Fet F' deviennent d'un degre de plus en

plus eleve en s2 -
dx2

——I en meme temps que cette inconnue
4 n2

4 il— | | HH "" l2 '

valeur pratiquement exacte.

Si Ton prend n > 5, la precision obtenue par F' 0 reste

stationnaire, parce que Taugmentation de precision due ä la diminution
de dx est compensee par la somme croissante des termes de degre

supferieur ä s4dx4 qui sont negliges. Aussi bien cet exemple n'est il
traite que pour donner dans un cas simple bien connu une idee con-
crete de la precision de la methode et de ses possibilites pour un cal-

culateur refl6chi. Lorsqu'il ne s'agit pas de resoudre une equation dont
dx est Tinconnue comme dans le cas considere, mais bien d'effectuer
des calculs numeriques sur des dx connus,
on est libre de negliger ou non, ä bon
escient, les termes que Ton juge negligeables.
II y a lieu de remarquer aussi que la
methode, tout en etant de caractere approxi-
matif, ne comporte aucune hypothese
arbitraire et ne neglige aucun element; eile

permet au contraire ä volonte de tenir
compte de tous les parametres. Elle est
fondamentalement correcte; c'est ainsi que
la determination des charges critiques
exposee ci-dessus est entierement conforme
au principe d'Euler.

La methode convient donc pour la
determination des charges critiques dans
les cas complexes, p. ex. pour des pieces

non prismatiques. Le Professeur L. Stabilini
[7, p. 480] etablit par la methode de Vianello la Charge critique de la

piece schematisee k la figure 3. En raison de la symetrie, on considerera

4 troncons dx de 0,50 m et on annulera y' au milieu de la piece.

L-i.00

i
l2'1,00

li • tpo

Fig. 3
N
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On a s. — ¦
N N

0,589 s2E x 287 2 Ex 487

En appliquant quatre fois la formule (43bis), on obtient:

F'

IHK dx2\2 1. 2 oVX

fi -i- 4 dx* I

,42 rfjC6 ¦— 6si's2-g4r + 17*

rf*2

4

4 rfjC4

,» 2 dx2 22 rf*422 ^2-4-+ SZ^^j-ig

16
4 dx6 4 dx8

156

En ramenant tout k s i —— et en egalant ä 0, on obtient 1 — 18,97 s | x
dx2 dx4 dx6 ' dx8

X —+ 37,55,4—-8,272<—+0,34^—= 0.

On se rend compte que Ton aurait pu negliger les termes de degre

s\dx2
superieur ä 4. L'equation bicarree donne—-— 0,0596, d'oü

N
0,0596 X 287 x 2,1 106

57 300 kg. Le terme du 2e2500

~4~ ~ 18,97

valeur dans les termes de degre superieur ä 2, on obtient

degre donne s 1 0,0527. Si on introduit cette

dx2 1 + 37,55 X 0.05272 — 8,272 X 0.05273
4 18,97

0,0582

d'oü Ncr 56 100 kg.
Par la methode de Vianello, M. Stabilini trouve la valeur Ncr — 56 300
kilos.

On peut etablir l'equation aux valeurs critiques de N, qui pour les
conditions de la figure 3 est

(44) tg sth x tg J2/2 iL
*2

Elle est satisfaite au mieux par la valeur 56 100 kg, qui est etablie plus
facilement par le calcul aux differences finies que par Tetablissement et
la resolution de l'equation (44). Enadoptant 8tronconsde dx 0,25 m,
on obtient k partir de l'equation bicarree sans correction AV
56 700 kg. Le gain de precision est donc faible bien que les calculs
soient plus que doubles.

9. Equations ä plusieurs variables dependantes
Si u, v, w etc. sont des fonctions de la meme variable independante

x, les relations du type (2) et (3) peuvent etre ecrites pour les derivees
successives en fonction du pas dx. On peut ainsi calculer dans le plan
et dans Tespace des phenomenes definis par des equations du type (1)
oü du type (34).

10. Equations ä plusieurs variables independantes
Si z est fonction de x et de y, variables independantes, des

relations du type (2) et (3) peuvent etre ecrites pour les derivees partielles
successives et introduites dans les equations aux derivees partielles. II
faut faire choix de pas dx et dy appropries. Les calculs deviennent
naturellement plus longs et le recours ä des ordinateurs de grande
capacite pourra etre utile. Cependant des calculs ä la regle pourront
souvent etre praticables et donner assez rapidement des approximations
satisfaisantes. II est difficile de developper des generalites ä ce sujet,
chaque probleme doit faire Tobjet d'un examen propre. Les plus
grandes difficultes pourront provenir des conditions aux limites
determinantes lorsqu'elles ne sont pas toutes groupees mais dispersees.
Dans les cas les plus favorables, cela conduira ä entrainer dans les
calculs un ou plusieurs parametres indetermines, qui seront determines

par la resolution d'un Systeme d'equations lineaires. II est ä remarquer
que ces conditions aux limites initiales ou finales sont souvent peu
realistes dans les cas d'integrabilite connus: discontinuites, limites ä
Tinfini, etc. Non seulement il n'est pas necessaire de recourir ä de tels
artifices pour le calcul aux differences finies mais ce n'est mSme en
general pas permis. Le calcul aux differences finies s'accomode mieux
ou exige meme de tenir compte de conditions aux limites reelles ou
realisables.

11. Consolidation verticale d'un sol compressible
L'equation qui traduit le phenomene est

dP _ r d2P

dt dz2
(45) ou p* Cp"

Les pas sont dz et dt. Par les differences finies obtient la relation

(dz2 Cdt\ I (P'm-H.t + P'm.t \
Pm+l,t+l\-4 2~/ \ 2 +Pm,t+i) —

I dz2 Cdt\ £, 1 \ I I |— Pm.t-H [-T~+ T~) + Cdt(.Pm-H,t — Pm,t)
(46)

Elle sera appliquee de proche en proche ä partir de z 0 (surface
du sol) et du temps t 0 du debut d'application de la surcharge
exterieure. On procede par periodes dt successives sur toute la hauteur
ndz de la couche compressible; pour chaque periode une equation
lineaire determine le parametre mdetermine p'ot entraine dans les
calculs jusqu'ä ndz. La place fait defaut ici pour developper Taspect
mecanique de la question; ce qui precede suffit pour la resoudre avec
teile precision que Ton desire au point de vue numerique. II est aussi
possible de tenir compte d'une Variation de C.

12. Equation de Lame

L'equation
(47) az" + 2 cz'- + bz" V (x, y)
conduit par les differences finies ä la relation suivante:

ady2 + 2 cdxdy + bdx2 ady2 + cdxdy
Zx+l, y+i — Zx, y+i +dx2dy2

2ady + cdx j

(48)
2 dxdy z + c

dx'dy2H2 dx x'y+1 4 x'y+n +
c bdx2 + cdxdy 2 bdx + cdy+ X^.a+i"1 jj« Zx+1'V "T" 'mm j-j.. HUI +dx2dy2

+

2 dxdy x+1-y

W
n,»+T z*+i,v+^ z*+i,v+-^ i + !>y + D2 dy x+1

Les expressions des derivees premieres et secondes ne sont pas
plus simples, de teile sorte qu'il vaut mieux les calculer numeriquement.
L'equation

(49) A z z" + z- V (x, y)
se d6duit de la precedente en faisant a ö letc 0. On obtient:

dx2
Zx+uy+l —

(50) +

(zx+1,y + ffl| dy + z'x+liy -^-j +dx2 + dy
dy2

dx2dy2
4 (dx2 + dy2)

^Cx+uy-H)

13. L'equation bi-harmonique

L'equation AAz W cm.

(51) Z"" + 2Z""+Z- <F(Xty)
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peut etre traitee comme suit. On pose A z w; wx+i, y+i est donne par
Texpression (50) qui conduit ä:

(JL\ dx4 S33K33dx2 dy2 dy

x Zx'y+i + Yd*

i\ 16
7) W—m - [7^ +

16

dx^dy2

(52) +

+

6 16

a>2 dy'
l 16 16 i

Vj |M| + H
/ 16 16

BfflPff U^+rf*w
+

rf*4 rf*2rfy

z*+i,ydy +

rfa4 dx2dy2/ x^+1 \ dy4 dx2dy2

4
X Zx+l,y ds + "a^"Za;, y+1 + zi, J/+1 + ~fo Zx+l,y ' Zx+l,y '

dy

dx2¦ mm dx+z«- WmWkw
dx2 yx,y+l^zx,y+la*Tzx,y+l 4 j T jyi

\Zx+l,y + Zx+l,y ~+ Zx+l,y~4~) + ^(z+l.J,3/+l)

L'equation de Westergaard [8, p. 577]

q — kzAAz
D

- kzx+i
D

s'ecrit comme (52) enyremplacant ^P (x+i,y+i) par

L'equation de Huber
az"" + 2 cz"" + bz— =p [8, p. 593]

conduit ä une expression d'une complication analogue ä Celle de la
formule (52).

Cette complication parait certes assez grande. II faut toutefois
Tapprecier en fonction de la difficulte des problemes et de celle des
Solutions connues. Pratiquement, Tapplication revient ä de nombreuses
Operations elementaires que les moyens de calcul modernes doivent
permettre de maitriser. II se peut que les difficultes d'application
proviennent plutöt des conditions aux limites. Dans les formules, en
cours de calcul, il est toujours possible de negliger ä bon escient les

termes vraiment negligeables. La methode permet en principe la
Solution numerique suffisamment exacte des problemes de la nature
de ceux qui ont ete consid6res.

Adresse de Tauteur: Ferdinand Campus, 85, Avenue des Grenadiers,
Bruxelles 5.

La methode des elements finis en elasticite bidimensionnelle
Par Georges Dupuis 1 et William Prager2, Laboratoire de Recherche IBM, Rüschlikon ZH

DK 539.3:518.61

Resume: La methode des elements finis, appliquee ä la
determination approchee du champ de deplacement d'un disque elastique
soumis ä des contraintes donnees au bord, conduit ä un Systeme
d'equations lineaires qui sont generalement deduites de considerafiö'ns'
intuitives. Le sens precis de ces equations dans le cadre de la theorie
mathematique de Telasticite est etabli ici. Les formules explicites sont
donnees pour un reseau forme de triangles rectangles isoceles. Un
exemple numerique illustre leur application.
1. Introduction

Le procede des elements finis applique aux disques, plaques et
coques et aux Continus elastiques ä trois dimensions est une generali-
sation naturelle de la m6thode matricielle developpee dans Tindustrie
aeronautique ä propos de Tanalyse de structures complexes d'ailes et
de fuselages (voir, par exemple [1], [2] oü Ton trouvera d'autres
ref6rences).

Pour illustrer Tidee de base, considerons Tetat de tension plane
generalisee engendre dans un disque polygonal, d'epaisseur constante,
soumis ä des contraintes donnees sur son contour. Appliquons sur Taire
de ce disque un reseau triangulaire, et discretisons le champ de deplacement

bidimensionnel par les vecteurs deplacements des nceuds de ce

reseau, en supposant que, ä Tinterieur de chaque triangle, les com-
posantes du deplacement dans un Systeme de coordonnees rectangu-
laires cartesiennes xi, xi sont des fonctions lineaires de ces
coordonnees. De cette maniere, le champ de deplacement de chaque triangle
est entierement defini par les vecteurs deplacements de ses trois
sommets.

Le champ de deplacement considere est continu dans tout le
domaine occupe par le disque et engendre un etat de deformation
constant ä Tinterieur de chaque element triangulaire. L'etat de tension
plane deduit de Tetat de deformation par la loi de Hooke, est constant

pour chaque element. Les distributions uniformes de contraintes
transmises ä travers un segment du reseau separant deux triangles
adjacents ne sont, en general, pas en equilibre. Cet etat de tension
constant par region est donc engendre par des charges de ligne uni-
formement distribuees le long de chaque segment du reseau.

Les composantes de ces charges de ligne sont des fonctions
lineaires des composantes de deplacement des nceuds. Dans le cas oü les

forces de volume sont nulles, on peut presumer obtenir une approximation

raisonnable du champ de deplacement de la maniere suivante:

1. Pour chaque segment, on remplace la distribution uniforme de

charges de ligne par des forces paralleles equipollentes appliquees aux
extremites. La resultante des forces ainsi obtenues en un noeud sera

appelee force interieure en ce noeud.

J) Actuellement Assistant ä l'Institut de Math6matiques Appliqutes
de TEPUL.

2) jgeaSellenient Professeur de Mecanique Appliquee ä T Universite de

Californie, San Diego.

2. Pour chaque segment de bord du disque, on remplace la com-
posante suivant xi des contraintes donnees par deux forces paralleles
equipollentes appliquees aux extremites. De m&ne pour la composante
suivant xz. La resultante des forces ainsi öbtenue en un noeud de bord
sera appelee force exterieure en ce noeud (pour tous les nceuds
interieurs ä la frontiere du disque, la force exterieure disparait).

3. Pour chaque noeud, on ecrit que les forces exterieures et
interieures sont egales. Ces relations sont nommees conditions d'equilibre

nodal. Elles sont lineaires relativement aux deplacements des

nceuds.

Puisque les contraintes de bord donnees, et par suite les forces
exterieures, satisfont trois equations d'equilibre, trois conditions
d'equilibre nodal sont dependantes des autres et peuvent etre suppri-
mees. Si le reseau triangulaire est forme de n nceuds, il reste 2«-3
conditions d'equilibre nodal independantes pour les 2n composantes
de deplacement des n nceuds. Pour eliminer les deplacements rigides
du disque qui n'entrainent aucune deformation, on peut annuler trois
composantes de deplacement des nceuds. Le nombre de composantes
de deplacement independantes est donc egal au nombre de conditions
d'equilibre nodal independantes.

Au lieu de proceder de cette maniere intuitive, on peut appliquer
le principe du minimum de Tenergie potentielle (cf [3]). Dans ce

cas, le champ de deplacement lineaire par regions, continu, considere
ci-dessus, est une fonction concurrente du probleme de Variation,
et Tenergie correspondante est une forme quadratique dans les 2n-3
parametres de deplacement independants. La condition d'extremum
de cette forme quadratique est äquivalente aux conditions d'equilibre
nodal independantes.

Une autre maniere d'obtenir ces conditions est developpee au
paragraphe 2. Au paragraphe 3, on donne les formules explicites pour
un reseau forme de triangles rectangles isoceles. Un exemple numerique
illustrant Tapplication de ces formules est traite au paragraphe 4.

2. Obtention des equations d'equilibre nodal

La figure 1 represente un Systeme d'axes rectangulaires car-
tesiens xi, xz et un disque quadrilateral sur lequel est applique un
reseau triangulaire grossier. On affecte aux noeuds un indice en

Fig. 1. Reseau triangulaire et
domaines D* typiques
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