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Kipp-Probleme als zusammengesetzte Stabilitätsaufgaben
Von Jean Gut, dipl. Ing. ETH, S. I. A., Küsnacht ZH

In den folgenden Ausführungen seien
Balken mit doppelt-symmetrischem I-Profil
betrachtet, welche durch Lasten mit Angriffspunkt

an den gedrückten Querschnitts^^^B
auf Kippen beansprucht werden. Wir fassen
diese Stabilitätsaufgaben als Überlagerung
von zwei Teilproblemen auf und zeigen, wie
man durch diesen Kunstgriff ohne grossen
Rechenaufwand aus den Lösungen der
Teilprobleme recht engliegende obere und untere
Schranken für die gesuchten kritischen Lasten
angeben kann. Zur Bestimmung der
Teillösungen erweisen sich die von Professor
Dr. F. Stüssi mit Meisterschaft entwickelten
baustatischen Methoden als besonders nützlich:

der erstmals von ihm zur Lösung von
solchen Kippaufgaben gewählte Weg der
schrittweisen Annäherung (das Engesser-
Vianello-Verfahren des Knickstabes) [1] in
Verbindung mit der bewährten Seilpolygongleichung

[2, 3] zur Integration von linearen
Differentialgleichungen.

Die Differentialgleichung
Zur Herleitung der Differentialgleichung

des Problems ist nach S. Timoshenko [4] im
Bild 1 ein verformtes Stabelement im
Querschnitt und Grundriss herausgezeichnet. Seine
horizontale Auslenkung ist mit u und sein
Drehwinkel mit q> bezeichnet; die vertikale
Durchbiegung v aus den planmässig wirkenden

Lasten (Grundzustand) wird entsprechend
der klassischen Theorie vernachlässigt.
Zwischen den Verformungen u, <p und dem
MomentMx, beziehungsweise dessen Komponenten

Mv, Mr, bezogen auf die Querschnitts-
axen -n, J nach der Verformung, bestehen
bei Vernachlässigung von Gliedern höherer
Ordnung die Beziehungen

B *¦**

MS

>.?

---4

(1) Ely U" ¦Mr\ Mx <p

(2) E Cm<p"" — GJd <p" mr

Hierbei bezeichnet Ely die Biegesteifig-
keit um die Hauptaxe y, ECm die Wölb-
und GJa die Drillsteifigkeit des Trägerp^^^B
die Ableitungen )' beziehen sich auf die
Stabaxe z. In der Torsionsgleichung steht
mr für alle angr^Kden Verdrehmomente,
welche durch die Verformungen sowohl aus
den imieren Ablenkungskräften wie aus den
äusseren Lasten entstehen und die nun zu
bestimmen sind.

Aus dem Biegemoment Mx rührt die
Torsionskomponente Mr Mxu' als Schnittkraft

her; das zugehörige Verdrehmoment
beträgt

(a) Mi ¦ Mx W.

Eine Last Pn mit Angriffspunkt auf der
gedrückten Querschnittshälfte erzeugt das
Verdrehmoment mr + Pn an <p-n}). Bei mehreren

solchen Lasten wirkt an jedem Angriffsort
ein solches Verdrehmoment; wir schreiben
für die Gesamtheit symbolisch

(b) mr2 YiPn Un fn ¦

Aus Gl. (2) wird damit

ECm<p""— GJa i

(2a)

— Mx u" + £]Pre an q?n ¦

Die Gleichungen (1) und (2a) umschreiben

zusammen das Stabilitätsproblem. Setzt
man Gl. (1) in Gl. (2a) ein, so folgt daraus
die massgebende homogene Differentialgleichung

(3)

ECm <p"" — GJd <p"

Ml
Ely + J^Pn an <Pn

Bild 1. Querschnitt und Grundriss eines
Stabelementes vor und nach der Auslenkung

mit der alleinigen Variablen tp, welche
zusammen mit den Randbedingungen, z. B.

(4) <p (0) <p (L) 0 <p"(0) <p"(L) 0

bei Gabellagerung (Flanschenden frei drehbar)

die ideale kritische Belastung Pn als
kleinsten Eigenwert liefert.

Lösungsweg

Die Differentialgleichung (3) lautet in
konzentrierter Schreibweise

J) Bei Lastangriff auf der gezogenen
Querschnittseite wäre nvr negativ, d. h. stabilisierend.
Die später benützten Einschränkungen verlieren
für diesen Fall ihre strenge Gültigkeit.

(5)

DK 624.075.3

M[q>] P2-Ni M + P
wobei

Mi [q>],

MM es ECm<p"" — GJd <P"

NiM
1 (M2A2 | M2X

Ely ^

Nu M Yi{~T~)an,pn J^Pn an (pn

die von L. Collatz [5] eingeführten Bezeichnungen

sind. Die Bezugslast P erscheint in
dieser Gleichung in linearer und in quadratischer

Form. Das Verfahren der schrittweisen

Annäherung, das wir seiner
praktischen Vorzüge wegen anwenden wollen,
lässt sich exakt nur auf Gleichungen von der
Gestalt

(6) M[<p] A-N[q>]

anwenden2), in welcher der jetzt mit A
benannte Eigenwert linear vorkommt. Zur
Lösung der Aufgabe zerlegen wir das
gegebene Problem in die folgenden zwei
Teilprobleme:

(7a) I M[<pi\ =/ti •JVifo'i] mit AX=P2

(7b) II M fo>ii] An ¦ JVn fori] mit Au P.

Anschaulich bedeutet das, dass wir die Kräfte,
welche die Instabilität verursachen, durch
eine Art Belastungsumordnung aus zwei
Teilkraftgruppen aufbauen, die zusammen der
Gesamtlastgruppe äquivalent sind (vergleiche
Bild 2). Im Problem I greifen alle äusseren
Lasten in der Schweraxe des Balkens an,
wodurch die Instabilität allein durch die
Ablenkungskräfte aus dem Moment Mx
verursacht wird. Im Problem II werden die
äusseren Lasten durch entsprechende
Gleichgewichtsgruppen an ihren tatsächlichen
Angriffsort versetzt; die Instabilität erfolgt durch
die Verdrehmomente aus diesen
entgegengesetzt-gleichen Kräften.

Jede dieser Teilkraftgruppen lassen wir
nun getrennt am System angreifen und
ermitteln für jedes Teilproblem den zugehörigen
kleinsten EigenwertA. Die Iterationsvorschrift

2) In [1] und [3] wird ein anderer Weg
beschritten.

+
=i i=

Bild 2. Aufteüung des Gesamtproblems in zwei
Teilprobleme
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lautet mit den allgemeinen Bezeichnungen der
Gl. (6): Man schätzt die Form der
Verdrehungskurve <po, bildet damit den
Ausdruck N [H und findet durch Integration des

Randwertproblems

M fo] N [<pj

unter Berücksichtigung der gegebenen
Randbedingungen die neue Lösungskurve q>i. Mit

(8) Mfo]™ A-N[Vl]
zusammen erhält man aus dem Quotienten

A MM] N[<p0]

NM] NM.

an irgendeiner Balkenstelle einen ersten
Wert A für den niedrigsten Eigenwert, der
um so genauer ist, je besser o>o und <pi in ihrem
Verlauf miteinander übereinstimmen. Bei
ungenügender Ähnhchkeit ist der Rechnungsgang,

ausgehend von der neuen Kurvenform

<pi, zu wiederholen; das Verfahren
konvergiert normalerweise gut3). Einen besseren
Wert A erhält man, wenn an Stelle des

Ordinatenvergleiches in einem beliebigen
Balkenpunkt eine Mittelwertbildung durch
Integration über das ganze System tritt. Aus
Gl. (8) leitet man leicht den Rayleighschen
Quotienten ab

(9) A
j<PiM M] dz f<PiN M] dz

J<PiN M] dz [<PiN M] dz
'

welcher für die exakte Lösungskurve den
genauen Eigenwert, für Näherungskurven
eine obere Schranke für den kleinsten Eigenwert

liefert3). Die Integrale erstrecken sich
über das Tragwerk bzw. bei den Ausdrücken
mit NM so weit, wie die Verdrehmomente
reichen; für Einzelmomente entfällt die
Integration (siehe Zahlenbeispiel).

Es bleibt noch die Aufgabe, aus den
Lösungen der Teilprobleme die kritische
Last P des Gesamtproblems zu bestimmen.
Das nichtlineare Überlagerungsgesetz wurde
von G. Strigl [6] angegeben. Die Frage lautet:
Wie gross dürfen die Teillasten

X\ oc A\
hi i ß Au

3) Die Bedingungen zur Sicherung der
Konvergenz des Verfahrens, die Eigenschaften
des Rayleighschen Quotienten usw. vgl. L. Col-
latz [5].

Af

§Aa

*¦* l*
Bild 3. Zusammenhang zwischen den kritischen
Lasten der Teilprobleme I, II und des
Gesamtproblems

sein, damit bei gleichzeitigem Angriff die
Stabilitätsgrenze erreicht wird? Die
grundsätzliche Form des Resultates ist im Bild 3

dargestellt. Im (Ai, Au)-Koordinatensystem
ist der Zusammenhang durch eine Kurve
gegeben, weffe die Koordinatenaxen in
den Abständen Ai bzw. An vom Nullpunkt
schneidet und mit der konkaven Seite stets
nach diesem weist. Die Kurve ist um so
stärker gekrümmt, je stärker sich die
Eigenfunktionen der Form nach voneinander unter-

IliB|Klen; im Grenzfall <pi B pn wird sie zur
Geraden. Auf dieser Kurve suchen wir
denjenigen Punkt, welcher für beide Teilprobleme
den gleichen WertP ergibt. Aus den
eingeführten Beziehungen zwischen A und P in
den Gleichungen (7) folgt, dass di^B Punkt
auch auf der Kurve mit der Parameterdarstellung

GJd 62,4 • 103 tcm2

h
P2

P,

d. h. auf der Parabel

I 11
hegen muss. Der Schnittpunkt von Parabel
und Überlagerungskurve liefert die gesuchte
Last P.

Die Überlagerungskurve kann nach unten
durch die sogenannte Dunkerley-Gerade mit
der Gleichung

Ai + Am
1

eingeschränkt werden. Eine Abgrenzung
nach oben ergibt sich durch die Tangenten
in den Schnittpunkten mit den Koordinatenaxen;

den Tangentenabschnitt Ii erhält
man durch Einsetzen der Eigenfunktion <pn

in den Rayleighschen Quotienten Gl. (9) für
das Teilproblem I und umgekehrt:

(10) |i
J <pn M [pn] dz Anfpn Nu [pul dz

J cpii Nx Mi] dz \ (pn Ni [cpn] dz

Damit sind die Schranken für die kritische
Last durch quadratische Gleichungen
gegeben :

„¦> A-i
P2. -\ -mln F An

Pmin — zti 0

bzw. analoge Gleichungen für die Schnittpunkte

Pmax mit den Tangenten. Die Werte
Pmin und Pmax liegen eng zusammen, weil
durch die vierfache Integration der Gl. (7)
die Verschiedenheit der angreifenden
Verdrehmomente in den beiden Teilproblemen stark
geglättet werden.
Sie sind ferner um so näher zusammen, je
mehr die Werte Ai, Au der Grösse nach
verschieden sind.

Zahlenbeispiel

Der untersuchte Träger (Bild 4) liegt an
seinen Enden frei auf (Gabellagerung Gl. (4))
und wird in den Abständen 0,3 L und 0,7 L
durch zwei gleiche Querträger in seiner
Vertikalebenebelastet. DieEinspannunggegen
Verdrehen nehmen wir in diesen Punkten als
starr an, <p 0. In Trägermitte wirkt eine
Einzellast, die am gedrückten Flansch
angreift. Die benötigten Zahlenwerte sind

EIy 2,17 • 10" tcm2

ECm

ü
1052 • 106 tcm4

a Ba 34,121cm

Als Beispiel zur Berechnung der Teillösungen
zeigen wir die Ermittlung von zli, wobei wir
der Darstellung in [3] folgen. Die auf Normalform

gebrachte Gl. (7a) lautet

_GJj_
ECm Ely ¦ ECm

<p 0

Wir wählen die Knotenpunkte im Abstand
von A z 0,05 L 25 cm, um die starken

¦ggjMänkungen von M2X ohne grossen Dis-
kretisationsfehler und die resultierende Form
der Verdrehungskurve <pi durch eine
ausreichende Anzahl von Teilpunkten zu erfassen.

Diese verhältnismässig enge Teilung
zwingt uns aus Raumgründen, in einigen
Tabellen nur die ersten Zeilen anzugeben und
damit die Rechenoperationen anzudeuten.

In einer ersten Integrationsstufe berechnen

wir die Werte p* in den Knotenpunkten
aus einem dreigliedrigen Gleichungssystem.
Die Seilpolygongleichung für den Punkt m
lautet mit der Abkürzung

GJd Az2
y -Er7^ ¦ -^- ü 0,003089:

—<Pm-i + <P

ECm 12

2 + 10 y

l-y
Az

K
1 ü

ü
Ely ' EC&

¦<Po

Km bedeutet die Knotenlast im Punkt m, die
möglichst statisch gleichwertig die stetige

Mx <Po

Belastungp „. „„ in m ersetzen soll.

Die Seilpolygongleichung approximiert die
Belastungsfunktion zwischen den Teilpunkten
m — 1, m, m + 1 durch eine Parabel4)

Az
Km — ~jx~ [Pm-l + 10 pm + Pm+i]

Die Unstetigkeiten in den Teilpunkten 6
und 10 werden durch Anwendung der
Randformel

Az r.—r=- [i,5pm-i + 3^m — 0,5pm+i]Krr,

berücksichtigt. In der Tabelle I sind die Km
ausgehend von den geschätzten Werten <po

4) Die normale Diflerenzenmethode
approximiert die Belastungsfunktion durch eine
Treppenlinie und verliert dadurch im Vergleich
zur Seilpolygongleichung sehr an Genauigkeit.
Vgl. F. Stüssi [3].

1fifp
23,7 cm

r ii
i

¦

1,50

p
\ 1.00 \

i

1.00

P

l 1ßO I

jjj:. V *> A

-42P^^

+30P Hxin cmt

Bild 4. Grundlagen zum Zahlenbeispiel
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Tabelle I. Belastungsglieder

Mx

0

- 7

-14
-21

0

- 0,246

- 0,442

- 0,539

' <Po,io

Mx <p0

Zusätzlicher Faktor der Km

0

- 12,054

- 86,632

- 237,699

P2 ¦ 9»o,io

1

AzK(M2x<p0)

— 207,2

— 1116,1

— 2854,8

• P2Po,io
Az2

12

Büd 5. Berechnete Verdrehungskurven der Teilaufgaben

~.r>2lA.aP

bei100000
Pari

Z-Ai'P

Bild 6. Einschränkung der gesuchten kritischen
Last

berechnet, in Tabelle II das Gleichungssystem

zur Berechnung der cp"x angeschrieben.

Die Randbedingungen <p" 0 ersetzen
die Gleichungen in den Randpunkten.

Aus den Lösungen <p\ (vgl. Tabelle III)
erhält man <pi in Analogie zur Beziehung
M" —p der Balkenstatik als Seillinie zur
stetigen Belastung —q>'[. In der Tabelle III
sind wieder die Knotenlasten Km (— <p\)
und daraus die Momente q>i in den Knotenpunkten

berechnet. Die Randbedingungen
(p 0 bestimmen die Schlusslinie.

Nun bemerken wir, dass in den Punkten6
und 6' die Bedingung cp6 0 noch nicht
erfüllt ist; wir müssen dort zwei gleich grosse

Ely E Cm 1 — y

Tabelle II. Gleichungssystem für <p"

1) 2,0372 pj— <p"2 + 207,2

2) — <p'[ + 2,0372 p* — ?>3 + 1116,1

3) — 9>2 + 2,0372 fl — rp" + 2854,8

Verdrehmomente X ansetzen, welche aus der
Elastizitätsgleichung

Vö,6 X+ <p6 0

folgen, und die verzerrte Verdrehungskurve
X • cpx=i überlagern (das lineare Superposi-
tionsgesetzt gilt, weil wir ein gewöhnliches
Randwertproblem integrieren). pi_i haben
wir mit dem gleichen eben beschriebenen

Rechnungsgang ermittelt. Die Werte X~q> und
<Pkorr <p + Xcp sind in der Tabelle
eingetragen.

Die Stabihtätsbedingung lautet im
Punkt 10 unter Berücksichtigung der
ausgeklammerten Konstanten in den Tabellen I und
III:

m
12

252 10-"
12

'
1052

woraus

Ai P2 I 780870 t2

Die Auswertung des Rayleighschen Quotienten

Gl. (9) mit der Simpsonschen Regel liefert

/Li I 782 619 t2 (P | 884,71).

Ai o>0,io

io-« 1

2,17 0,99691

Beim Teilproblem II greift ein einziges
konzentriertes Verdrehmoment an; damit
entfällt das Schätzen und Verbessern der Kurve
po. Der kleinste Eigenwert beträgt An
— 422,7 t; die zugehörige Lösungskurve wie
auch die des Teilproblems I ist im Bild 5

dargestellt.

Die Berechnung der Tangentenabschnitte
nach Gl. (10) ergibt mit der Simpsonschen
Regel

422,7 ¦q>2n^10- 34,121

&i=-

r 2 Mx

782 619 • [<p2, ™*- dzJ ' Ely
34,121 cp2 ,„

M 946 974t2

554,7t

Wir erhalten damit die Schranken (Bild 6)

355 t < Pu < 3641

511t <Bu< 524 t,
welche ausserordentlich nahe zusammenliegen

und sich nach der Abminderung im
plastischen Bereich kaum noch unterscheiden.

Tabelle IM. Momente <pi zu den Lasten —<p\

— od" K(—<p") (ö) V Xq3 Vkorr Vi Vi
Vi max

Vo

A 0 — 164 911 0 0 0 0 0

1 — 4 260,3 — 51075 — 113 836 — 164911 — 97 789 — 262 700 — 0,2445 — 0,246

2 — 8 471,8 — 100 860 — 12 976 — 278 747 — 193 368 — 472115 — 0,4394 — 0,442
3 — 11882,2 — 140 174 127198 — 291 723 — 284 468 — 576 191 — 0,5363 — 0,539

4 — 12 879,8 — 150 509 277 707 — 164 525 — 368 648 — 533 173 — 0,4963 — 0,499
5 — 9 828,9 — 114148 391 855 + 113 182 — 443 191 — 330 009 — 0,3072 — 0,308

6 — 2 979,7 — 35 532 427 387 505 037 — 505 037 0 0 0

7 + 4093,8 + 47 209 380178 932424 — 551 624 + 380 800 0,3544 0,355

8 9 250,4 110 769 269 409 1312 602 — 583 729 728 873 0,6784 0,679

9 14 170,8 168 338 101071 1 582 011 — 602 515 979 496 0,9117 0,912

10 17 380,0 2x101071

Az
12

Az
12

1 683 082

Az2
12

— 608 719 1 074 363

Zlz2

12

1 1
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Der Sappeur
Von Oberstdivisionär J. J. Vischer, dipl. Bau-Ing. ETH, Waffenchef der Genietruppen, Bern

DK 358.232

Für den Uneingeweihten sei zunächst die Vorbemerkung gemacht,
dass unter Sappeur zweierlei verstanden werden kann. Einmal ist
dies die Bezeichnung des einfachen Soldaten, der in einer Sappeur-
kompagnie eingeteilt ist. Er soll nicht zimperlich sein und sich in jeder
Lage zu helfen wissen, auch wenn er vor eine unerwartete Bauaufgabe
gestellt wird und sich mit Mitteln behelfen muss, die er nicht in seiner
Ausrüstung findet. Als «Sappeur» fühlt sich aber auch ein Offizier,
der aus dieser Truppe hervorgegangen ist und unbekümmert um den
Grad, den er erlangt hat. Auch dieser Sappeur weist oft eine rauhe
Schale auf und hat das Wort «unmöglich» aus seinem militärischen
Vokabular gestrichen. Für jede technische Aufgabe, die ihm gestellt
wird, sucht er eine Lösung auf Grund seiner technischen Bildung,
seiner praktischen Erfahrung und seines Emfallreichtums. Es ist
deshalb wohl erlaubt, unter diesem Titel das militärische Wirken des
Genieobersten Fritz Stüssi zu würdigen. Denn Sappeur war und ist er
mit Leib und Seele.

Dass der wissenschaftlich hochbegabte Ingenieur sich schon als
junger Genieoffizier daran machte, die Grundlagen der mih'tärischen
Bautechnik auf ihre Gültigkeit zu untersuchen und sie wenn nötig zu
ändern, zu ergänzen oder neu zu schaffen, kann nicht verwundern.
Sichtbaren Ausdruck fand diese Absicht vor allem in der «Gesellschaft

für militärische Bautechnik», die der Hauptmann Stüssi
zusammen mit einigen gleichgesinnten Offizieren, vor allem mit seinem
Freunde Max Stahel, 1936 gründete. Zweck dieser Gesellschaft war
die Herausgabe eines Mitteilungsblattes für Genieoffiziere, das in aller
Bescheidenheit «Technische Mitteilungen für Sappeure, Pontoniere
und Mineure» bezeichnet wurde. Dass dieser «Versuch», wie ihn
Stüssi in seinem Vorwort zur ersten Nummer bezeichnete, einem
wirklichen Bedürfnis entsprach, beweist, dass die Zeitschrift nach bald
30 Jahren immer noch in voller Blüte steht und seit der Gründung
jährlich 4 Nummern - auch in schwierigen Zeiten wie Aktivdienst
oder Überbeschäftigung infolge Hochkonjunktur - erschienen sind.

Die «Technischen Mitteilungen» wurden zum Forum, auf dem
Fritz Stüssi seine Gedanken und Vorschläge, aber auch seine Kritik
und Belehrung bekannt geben konnte. An die 30 Aufsätze in diesem
Blatt stammen aus seiner Feder.

Es ist naheliegend, dass dem Stahlbauer und Statiker zunächst vor
allem der Brückenbau am Herzen lag. 13 Aufsätze sind diesem Thema
gewidmet. Beim Notbrückenbau hatte man sich bisher vorwiegend auf
das Reglement, die Erfahrungen des Zimmermanns oder das «Gefühl»
gestützt. Stüssi machte sich nun daran, die Einzelheiten und das Ganze
der Konstruktion ingenieurmässig zu durchdringen. Eine feldmässige
Rammformel, die statische Wirkungsweise von Sattelhölzern, die
verdübelten Balken, Zwischengelenke bei Nagelträgerbrücken, die
Konstruktion hoher Zwischenstützen, aber auch ganze Brückensysteme
vom Klappsteg bis zur schweren Notbrücke mit verdübelten oder
genagelten Balken oder zusammengesetzten Fachwerksträgern und
anderes mehr wurden untersucht und dargestellt. Er hat Wesentliches
dazu beigetragen, den Behelfsbrückenbau von der Handwerks- auf
die Ingenieur-Stufe zu heben.

Aber auch die vorbereiteten Kriegsbrücken zog er in seine
Betrachtungen ein. Äusserst kritisch würdigte er die im Ausland
entwickelten Systeme. Er machte Vorschläge für eine schweizerische
Kriegsbrücke, die er für unsere Verhältnisse als besonders geeignet
betrachtete. Über den Wert der aufgrund dieser Ideen entwickelten
und bei uns eingeführten Kriegsbrücke war die Truppe allerdings
geteilter Meinung, da das Material schwer und die Einbauzeiten lang
sind. Sie wird daher heute nur noch selten verwendet.

Ein weiteres Gebiet, das ihn fesselte und dem er eingehende
Untersuchungen widmete, war die militärische Sprengtechnik. Seit
dem Erscheinen des «Handbuchs der militärischen Sprengtechnik»

von BMschokke 1911 und des Mineurreglementes 1921 waren bei uns
keine grundlegenden Studien und Entwicklungen auf diesem Gebiet
mehr durchgeführt worden, und man lebte vom Hergebrachten.
Unterstützt von Max Stahel und Jean Pozzi unternahm es Stüssi, die
Grundlagen der Zerstörungstechnik neu zu untersuchen und zu
überdenken. Theoretische Studien, ergänzt durch praktische Sprengversuche,

führten zu vielen neuen Erkenntnissen über die Wirkung des
Sprengstoffs auf Holz, Stahl und Beton und über die richtige Form,
Lage und Zündung der Ladungen. 11 Aufsätze widmete er diesem
Thema. Ganz besonders fesselte ihn schliesslich die «Theorie der
Minen». Anknüpfend an die Theorien von Vauban, Belidor, Dam-
brun, Ricour und andern untersuchte er die Wirkung einer Sprengladung

im Boden. Sie führte ihn zu einer einfachen Formel für die
«spezifische Ladung» mit Trotyl, in welcher nur 2 Koeffizienten für
die Beschaffenheit des zu sprengenden Materials und die Ladungstiefe
einzuführen waren, um die Ladungsgrösse zu bestimmen. In systematischen

Sprengversuchen konnte er die gute Übereinstimmung
zwischen Theorie und Praxis nachweisen. Damit war die mathematische
Grundlage geschaffen für die Ermittlung der minimalen Ladungen,
der geballten und der gestreckten, die für Erdminen, aber auch für die
Sprengung von Holz, Stahl und Beton notwendig sind.

Freilich war diese Formel für den mathematisch mehr oder minder

begabten Genieoffizier oder -Unteroffizier nicht brauchbar. Das
wusste der erfahrene Truppenoffizier Stüssi und schlug daher einfache
Tabellen vor, aus denen jedermann und ohne Rechnung ersehen
konnte, welche Wirkung mit den praktisch anwendbaren Grössen und
Formen von Ladungen in verschiedenem Material zu erzielen sei.
Dies bildete die Grundlage für das 1957 erschienene Reglement
«Sprengdienst», nach welchem die Genietruppe heute mit Erfolg
arbeitet.

Auch andere militär-technische Fragen, wie die Theorie des Tragseils

bei Mihtär-Seilbahnen und die Feldbefestigung, fanden Stüssis
Interesse und wurden in den «Technischen Mitteilungen» behandelt.

Es war naheliegend, dass bei der publizistischen Tätigkeit des
Genieoffiziers Stüssi nicht nur der Ingenieur und Wissenschafter,
sondern auch der Hochschullehrer zum Worte kam. So etwa, wenn
er dem Aufsatz eines Leutnants über die statische Berechnung einer
im WK gebauten Brücke eine kritische Abhandlung «Über die statische

Wirkungsweise von Sattelhölzern» folgen lässt, in der er die
Irrtümer des Leutnants durch eine wissenschaftlich einwandfreie
Darstellung der Probleme richtig stellt. Oder wenn er dem nicht sehr
geglückten Brückenbau einer Sappeurrekrutenschule einen Nachruf widmet

unter dem Titel «Glück und Ende einer Nagelträgerbrücke».
Es kam so richtig zum Ausdruck, was Fritz Stüssi zu seinem unablässigen

Bemühen um eine seriöse Arbeit in der militärischen Bautechnik
trieb, wenn er schrieb: «Auch militärische Notbrücken sind
Ingenieurbauwerke, und sie müssen, sofern ihre Spannweite die normalen
Streckbalkenlängen überschreitet, mit der gleichen Sorgfalt und
Gründlichkeit entworfen, berechnet, durchkonstruiert und ausgeführt
werden wie zivile Ingenieurbauwerke.» Oder: «Jede Truppe muss im
Krieg eine technische Arbeit improvisieren können; mit Erfolg kann
sie das aber nur tun, wenn sie vorher mit aller Gründlichkeit und
Sorgfalt dazu ausgebildet worden ist.»

Neben der sorgfältigen Pflege des Details und der physikalisch
richtigen Erfassung der Probleme vergass Stüssi aber nicht, den Überblick

über das Ganze zu wahren. Das gilt einmal in zeitlicher
Hinsicht, indem er es liebte, den Blick in die Vergangenheit, auf die
Ursprünge der militärischen Bautechnik zu werfen. So hat er für die
Theorie der Minen, wie oben erwähnt, an die bald 300 Jahre
zurückhegenden Arbeiten von Vauban angeknüpft. Mit viel Liebe und Sorgfalt

widmete er sich aber auch der Brückenbau-Technik von Julius
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