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ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.1.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENGSSISCHEN TECHNISCHEN HOCHECHULE 6.E.P.

Der Druckstoss und seine Auswirkungen auf Bauwerke

Von Dr. sc. techn, Ernst Basler, dipl. Bauing., Zirich

DK 624.042.8

Vortrag, gehalten am 15. Oktober 1965 an der ETH anlisslich der Studientagung lber dynamische Wirkungen auf Bauwerke, durch-
gefiihrt von der S. 1. A.-Fachgruppe der Ingenieure fiir Brickenbau und Hochbau

Einleitung

Druckstoss-Beanspruchungen werden selten durch die Natur ver-
ursacht. Sie kénnen auftreten im Zusammenhang mit einer Flutwelle,
einer Lawine oder bei Steinschlédgen. Héufiger sind jene Fille, bei
denen die Technik der menschlichen Kontrolle entgleitet, z. B. wenn
eine Druckleitung zu schnell schliesst, ein Dampfkessel explodiert
oder ein Reaktor iiberkritisch wird. Fiir den Bauingenieur leider weit-
aus grosste Bedeutung erlangen jedoch die Druckstdsse im Zusammen-
hang mit kriegerischen Ereignissen, bei Explosionen von konventio-
nellem wie nuklearem Sprengstoff. Unter diesem Gesichtspunkt wird
dem Bauingenieur eine Aufgabe iibertragen, welche nichts weniger
bedeutet als die teilweise Entschirfung der gefiirchteten Atomwaffe.

Aus der Natur dieser Belastungen lésst sich schon folgern, dass es
in der Regel gerechtfertigt ist, das Plastifizierungsvermégen eines Bau-
werkes zur Aufnahme eines einmaligen Druckstosses heranzuziehen.
Dies im Gegensatz zu Schwingungsproblemen, die auch zu den dyna-
mischen Beanspruchungen zihlen, wo aber der Gebrauchszustand und
damit notwendigerweise der elastische Bereich im Vordergrund steht.

Eigenschaften eines Luft-Druckstosses

Ohne auf die Energiequelle niher eintreten zu miissen, lassen
sich die wichtigsten Eigenschaften eines in der Luft sich nahezu kugel-
férmig ausbreitenden Druckstosses beschreiben. Im Innern des sich
stdndig erweiternden Druckballes, wie in Bild 1 dargestellt, pflanzen
sich alle Druckimpulse wegen der grosseren Luftdichte sehr schnell
fort, bis sie an die Stossfront gelangen, ausserhalb welcher ungestorte,
unkomprimierte Luft liegt. Man kann sich in diesem Illustrations-
beispiel vorstellen, dass am Beobachtungsort 4 von der nahenden
Druckfront noch nichts verspiirt wird, wihrenddem am Standpunkt B,
der nur wenige Meter von A entfernt sein mag, bereits der grosst-
mogliche Uberdruck und Wind registriert werden kann. Es ist fiir das
Verstdndnis der nachfolgenden Ausfithrungen wesentlich, dass man
sich den Vollzug dieser Druckwechsel an der Stossfront als plotzliches
Ereignis vorstellt. Bei kleinen Stossintensititen, die das Trommelfell
noch nicht zerstoren, nimmt der Mensch diesen Druckunterschied als
Knall wahr, wie z. B. beim Durchgang von Flugzeugen im Uberschall-
bereich.

Wird an einem festen Ort, z. B. in Punkt A, der herrschende Uber-
druck als Funktion der Zeit aufgetragen, so ergibt sich ein Verlauf wie
dargestellt im Diagramm von Bild 1. Unmittelbar hinter dem scharfen
Drucksprung, der als Nullpunkt der Zeitmessung angesehen wird,
beginnt der Druck sofort wieder abzufallen. Dieser exponentielle Ver-
lauf wird im folgenden stets approximiert durch einen dreieckférmigen
Streckenzug und ist definiert durch die beiden Parameter Spitzen-
iiberdruck p, und ideelle Stossdauer #;. Der Spitzeniiberdruck nimmt
mit zunehmender Distanz vom Explosionszentrum aus monoton ab,
was ersichtlich ist aus den in Bild 1 eingetragenen atii-Werten.

Bild 1 (links).
P Stossfront einer 1 KT-Oberfléchenexplosion
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Bild 2 (rechts).
Belastung eines Biegetrdgers mit kontinuier- l
lich verteilter Masse y

Neben dem allseitig wirkenden Uberdruck p (t) tritt bei ober-
irdischen Bauteilen noch der sogenannte dynamische Druck q (¢) auf.
An der Stossfront vollzieht sich nimlich nicht nur ein Drucksprung,
sondern auch eine plotzliche Geschwindigkeitsinderung der Luft-
teilchen. Die Windgeschwindigkeit der ungestdrten Luft wichst un-
mittelbar hinter der Stossfront zu einem Spitzenwert » an, mit einer
Richtung senkrecht zur ungestorten Stossfront. Bei Kenntnis des
Staudruckes g = 1/2 o ¥, wie er aus Fig. 1.1 von [1] entnommen
werden kann, ldsst sich die an einer Bauwerksfliche F angreifende
Kraft K wie bei konventionellen Windlastberechnungen bestimmen.
Es ist

) K(t) = cpFq(t)

wobei die Aussendruckbeiwerte ¢ in erster Niaherung den Winddruck-
tabellen der S.ILA.-Norm 160 (Belastungsannahmen) entnommen
werden konnen. Fiir Bemessungszwecke kann der zeitliche Verlauf des
Staudruckes durch einen dreieckférmigen Streckenzug approximiert
werden, wie beim Uberdruck. Die wirksame oder ideelle Zeitdauer tig
kann zu 2/3 #;p angenommen werden und ist mit den Wirkungsdia-
grammen von [1] festgelegt.

Die Druckstossdauer # hédngt in erster Linie vom Energieinhalt
der Detonation ab. Darin liegt auch der Hauptgrund im wesentlich
anderen Verhalten von Bauwerken gegeniiber molekularen bzw.
atomaren Explosionen. Betrdgt die Stossdauer bei konventionellen
Fliegerbomben einige Millisekunden, so liegt sie im Fall der nuklearen
Waffe in der Grossenordnung von Zehntelssekunden. Es mag den Leser
iberraschen, dass dieser Unterschied in der Zeitdauer fiir Bauwerke so
bedeutungsvoll sein soll. Der Grund liegt darin, dass die Eigen-
schwingungszeiten der im Schutzbau gebriuchlichen Bauteile gerade
zwischen den genannten Gréssenordnungen von Stossdauern liegen.
Im ersten Fall handelt es sich vorwiegend um eine Impulsbelastung, im
zweiten Fall eher um eine quasistatische Beanspruchung. Nachfolgend
soll erldutert werden, wie die Wirkung dieser beiden Stossarten in der
Bemessungspraxis des Bauingenieurs in guter Ndherung beriicksichtigt
werden kann.

Unterschied zwischen dynamischer und statischer Beanspruchung

Anhand eines Beispiels soll vorerst das statische und dynamische
Widerstandsvermogen von Bauwerken illustriert werden. Die Statik,
als Lehre vom Gleichgewicht der Krifte, vermag — mit uns bekannten
Methoden — den erforderlichen innern Widerstand eines Biegetrigers
fiir eine gegebene dussere Belastung zu bestimmen. Die Gleich-
gewichtsbedingung formuliert am Balkenelement eines Biegetrigers,
wie im Bild 2 skizziert, lautet:

@ EIy'" =p®)
Die entsprechende dynamische Aufgabe ldsst sich, obwohl sich
jetzt das System in Bewegung befindet, genau gleich ansetzen wie die
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statische, denn nach dem Prinzip von d’Alembert [5] herrscht auch im
bewegten System zu jeder Zeit ein Kréiftegleichgewicht, falls die
Newton’schen Tréagheitskrafte miteingeschlossen werden. Diese neuen
Krifte wirken im ersten Moment den dusseren Lasten entgegen, und
die entsprechende Gleichgewichtsbedingung am Balkenelement lautet
nun:

3 ED"" 4+ eFy=p@)

Aus einem Vergleich der Gleichungen (2) und (3) kann bereits die
praktisch bedeutsame Folgerung gezogen werden, dass bei sehr kurz-
fristigen, dynamischen Belastungen die momentane Belastungsinten-
sitdt grosser sein kann als es das statische Widerstandsvermogen
zuliesse, denn ein Teil dieser dusseren Belastungen steht anfinglich im
Gleichgewicht mit den Massentragheitskréiften. Beispiele, wo die
dussere Belastung nur mit den Tréagheitskriften im Gleichgewicht
steht, ergeben sich iiberall, wo schnell bewegte Korper auf Fliissig-
keiten prallen. Wenn man mit der flachen Hand auf die Wasser-
oberflache schlagt, ldsst sich ein Widerstand verspiiren, obwohl dieser
Baustoff, also Wasser, keine innere Festigkeit hat. Der spiirbare
Widerstand wird umso grosser, je schneller der Stoss erfolgt, und die
Trégheitskréfte konnen selbst bei festen Korpern iiber die Material-
festigkeit hinaus anwachsen. Das erkldrt auch die beobachtete Tat-
sache, dass Korper ohne nennenswerte innere Festigkeit, z. B. Lehm,
sehr schnellfliegende Projektile fast ebenso wirksam zu bremsen ver-
mogen wie ein fester Stoff mit vergleichbarer spezifischer Dichte,
beispielsweise Beton.

Sobald diese qualitative Aussage in eine quantitative umgesetzt
wird, treten erhebliche mathematische Schwierigkeiten auf, weil die
partielle, inhomogene Differentialgleichung GIl. (3) nur noch fiir
spezielle Last-Zeitfunktionen eine geschlossene Losung zuldsst und
dariiber hinaus nur zutreffende Aussagen im elastischen Bereich zu
liefern vermag. Die nachfolgenden Bemiihungen sollen sich nun nicht
auf die moglichen Lésungsmethoden dieses formulierten mathema-
tischen Problems erstrecken, sondern auf die Entwicklung von verein-
fachten Berechnungsmethoden, die alle wichtigen Parameter in ihrer
richtigen Grossenordnung erfassen und uns ein besseres Verstdndnis
und einen Uberblick iiber den Vorgang verschaffen.

Vereinfachungen der dynamischen Aufgabe

Eine wesentliche Vereinfachung besteht im Ersetzen von konti-
nuierlich verteilten Massen durch wenige, oftmals gar eine einzige
konzentrierte Masse. In Bild 3 ist dies fiir das Beispiel des Kragarmes
skizziert. Man ist heute dank der genauen Durchrechnung vieler Félle
mittels elektronischer Rechenmaschinen [2], [3] sehr weit gekommen in
der Kunst, zutreffende Ersatzsysteme zu finden, und es ldsst sich
vielleicht sagen, dass sich mehr als 9 von 10 Anwendungsfdllen mit
geniigender Genauigkeit zuriickfiihren lassen auf Einmassen-Systeme
mit einem einzigen Bewegungsfreiheitsgrad.

Die Kiriterien, nach denen die stellvertretenden Elemente des
Ersatzsystems bestimmt werden, sind folgende: [2], [3], [4].
Der Faktor fiir die Ersatzlast

(4a) Bet— " P
ergibt sich aus der Bedingung, dass die Arbeit der dussern Lasten

Pe (1) R
7MMMI[E] TMey
g

S \@\\
e——Xm— 74 ‘

Bild 3.
Kragarmes

a) Ersatzsystem mit einer einzigen, konzentrierten Masse

Vereinfachung der dynamischen Aufgabe, gezeigt am Beispiel des

b) Zugehoriges idealisiertes Last-Deformationsdiagramm
c) Angenommene Last-Zeitfunktion
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an beiden Systemen gleich gross sein soll. Mit einer angenommenen
Durchbiegung y (x) lasst sich diese Bedingung wie folgt anschreiben:

l

fp (x)y(x)dx = Pey , woraus
0

(52)

(5b) rx)
J)

Pe.:fp(x)n(x)dx, mit 7 (x) =
0

Die dimensionslose Durchbiegung 7 (x) erhilt den Wert Eins am Ort
der Lastkonzentration. Mit Kenntnis von P. folgt aus Gl. (4a) der
Umrechnungsfaktor

[P0 (v)dx
0

(50 Ap = :
f p(x)dx
0

Der Faktor zur Bestimmung der Ersatzmasse

(4b) Me =2Am M

wird aus der Bedingung gewonnen, wonach die kinetische Energie am
kontinuierlich verteilten Massensystem in irgendeiner allgemeinen
Lage, bzw. zu beliebigem Zeitpunkt gleich derjenigen des Einmassensy-
stems sein soll. Mit einer angenommenen Durchbiegungsfunktion y (x)
und der gegebenen Massenverteilung m (x) = o F ergibt sich daraus:

1
(62) 1/2 f m(x)i2(x) = 1/2 M.j?, bzw.
0

1

M. — fm(x) n”? (x)dx ,

0

¥ (%)

(6b) mit 7 (x) =

Hierin ist die Durchbiegungsfunktion wieder so kalibriert, dass sie am
Ort der Massenkonzentration den Einheitswert erhélt, Analog zu
(5¢) ergibt sich somit der Umrechnungsfaktor A, zu:

1

f m (x) 7* (x) dx

f m(x)dx

0

Ein Vergleich der Ausdriicke (5¢) und (6¢c) zeigt, dass diese Umrech-
nungsfaktoren sich wie Gewichtsmittel darstellen lassen, wobei im
erstern Fall die «Gewichtsfunktion» 7 (x) linear und im zweiten Fall
quadratisch in die Gleichung eingeht.

Fiir diese Bestimmungsgleichungen muss eine Durchbiegungsform
y (x¥) angenommen werden. Im elastischen Bereich wird diese Kurve
mit Vorteil der statischen, elastischen Biegelinie angendhert, was im
Fall des gleichmissig belasteten Kragarmes (Bild 2) auf ein Polynom
vierter Ordnung fithren wiirde. Nachdem sich aber z. B. in Auflager-
nihe ein plastisches Gelenk mit grosser Ortlicher Drehwinkelverfor-
mung gebildet hat, wére eine mit wachsendem Abstand x vom
Auflager linear zunehmende Durchbiegung der Wirklichkeit eher
entsprechend. Zum Vergleich sind in Tabelle I die beiden Umrech-
nungsfaktoren 4, und A» zusammengestellt, wobei die Durchbiegungs-
funktion 7 (x) je zu einer Geraden, bzw. Parabel zweiter, dritter und
vierter Ordnung angenommen wurde. Die letztern zwei Kurven
wurden so gelegt, dass die grosste Kriitmmung beim Auflager liegt.

Aus dieser Zusammenstellung ist ersichtlich, dass die Resultate
nicht allzu empfindlich beeinflusst werden von der Form der angenom-
menen Durchbiegungskurve. Je nachdem, ob die zu erwartende
Bewegung sich mehrheitlich im elastischen oder plastischen Bereich
abspielt, wird man einen Koeffizienten wahlen, der dem einen oder
andern Grenzfall ndher liegt. Mit Kenntnis der A-Werte am Kragarm
und denjenigen des beidseitig freiaufliegenden, bzw. totaleingespannten
Balkens, die in Tabelle II zusammengestellt sind, kann man fiir viele
Anwendungsfille die entsprechenden Umrechnungsfaktoren mit
geniigender Genauigkeit schitzen, ohne die Gleichungen (5¢) und (6¢c)
auswerten zu miissen.
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Tabelle |. Auswertung der GI. 5¢ und 6c mit verschiedenen An-
nahmen beziglich Biegelinie. Die exakten Werte des stark plastisch
deformierten Stabes liegen naher bei der Geraden, diejenigen des
elastischen Kragarms sind identisch mit denjenigen des Polynoms
vierter Ordnung

Angenommene Biegelinie Lastfaktor Massenfaktor
1
7 (x) = 5 x Ap = 0,50 Am = 0,33
1
n (x) = IT 5z }-p = 0,33 ;nm | 0,20
1
7(x) = W(_ x3 4+ 3171x?) 2p = 0,38 Am = 0,24
n(x) = 4 (x*—41x3+ 612x?) Ap = 0,40 A = 0,26

3 14

Tabelle Il. A-Faktoren nach GI. (5¢) und (6c) ermittelt, fiir den ein-
fachen und total eingespannten Balken mit konstantem Trégheits-
moment und unter gleichméssig verteilter Belastung

frei total
aufliegend eingespannt
; ; Ap = 0,64 lp = 0,53
1 v ] D (]
elastischer Bereich m = 0.50 A — 0.41
’ : 1p =10,50 Ap = 0,50
vollplastischer Bereich 2o = 0,33 I — 0.33
Tabelle Ill. A-Faktoren ermittelt an vier verschiedenen Orten des

Kragarmes fiir die beiden Grenzfélle starr-plastische und ideal-
elastische Deformation

Ort der Massenkonzentration

= 6/6 5/6 4/6 3/6
s 0,50 0,60 0,75 1,00
- {65 s
starr-plast. Deform 1 0.33 0,48 0.75 1,33
. 2 0,40 0,51 0,71 1,13
deal-elast. Deform, ” 2 2 2 .
WacaleclastaDictorm .- 026 042 082 205

Den Ort, an dem die Massen und dussern Krifte konzentriert
werden, wihlt man mit Vorteil dort, wo die gréssten Durchbiegungen
oder Trédgheitskrafte auftreten, also ndher dem freien Ende des Krag-
armes, Bild 3. Aus Tabelle III ist ersichtlich, wie die A-Faktoren
beeinflusst werden durch die Wahl des Ortes der Massenkonzentration

Xm

/

= , der zu 3/6,4/6,5/6 und 6/6 der Stablinge gewihlt wurde.
Wie man zeigen kann, wird beispielsweise die Eigenfrequenz der
Grundschwingung durch die Ortswahl nicht beeinflusst.

Der Bauwerkswiderstand R ist eine Funktion der Durchbiegung
und ist gegeben durch das Last-Durchbiegungsdiagramm des be-
trachteten Bauteiles. Er hat in der Regel einen der in Bild 3b gestrichel-
ten Kurve entsprechenden Verlauf. Ahnlich wie vorher der gekriimmte
Streckenzug des Last-Zeitdiagrammes durch Geraden approximiert
wurde, soll im folgenden das Last-Durchbiegungs-Diagramm durch ein
ideal elastisch-plastisches Verhalten des Bauwerkes, also durch den
stark ausgezogenen Streckenzug in Bild 3b ersetzt werden. Dabei ist
dieser Streckenzug so zu wahlen, dass die von den Kurven mit der
Abszisse eingeschlossenen Flidchen, die innere Deformationsarbeiten
darstellen, gleich gross werden.

In den bis dahin getroffenen Vereinfachungen liegt eine nicht zu
unterschitzende Kraft. Damit ist es moglich, das komplizierte Ver-
halten eines Bauteiles unter Stossbelastung durch folgende sechs
Parameter zu approximieren: die beiden Parameter Spitzenlast P,
mit zugeordneter Dauer #;, welche die Belastung definieren; dann
die vier wichtigsten Eigenschaften des Bauteiles, erfasst durch die
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stellvertretende Masse M., das statische Tragvermogen R,, sowie die
zugehdrige elastische und plastische Durchbiegung y. und ymax.

Nach diesen Vorbereitungen zur Bestimmung der massgebendsten
Parameter soll die eingangs begonnene Aufgabe, nidmlich die Bestim-
mung des Tragvermdgens von dynamisch beanspruchten Bauteilen,
noch einmal in Angriff genommen werden.

Das Verhalten des Einmassensystems unter Stosslasten

Aus Bild 3a ergibt sich die d’Alembert’sche Gleichgewichtsbe-
dingung (giiltig fiir ein beliebiges bewegtes Einmassensystem, unter
Vernachlédssigung der Eigengewichte) zu: Deformationswiderstand —
der im elastischen Bereich proportional der Auslenkung, im plastischen
konstant ist — plus Trégheitskraft ist gleich der dusseren Ersatzlast:

elast. Bereich (7a) i R, e + Mey = Pe(t)
Ve

V

plast. Bereich (7b) Ro + M.y = Pe(t)

Die Losungen dieser beiden Differentialgleichungen kénnen fiir alle
einfachen Last-Zeitfunktionen mit elementaren Methoden gefunden
werden. Es ist nun die Auffassung des Verfassers, dass nach so vielen
Schritten zur Vereinfachung hier in den meisten Anwendungsfillen
noch ein weiterer getan werden darf, ndmlich die Beschrinkung auf
folgende zwei Grenzfille: der erste, bei dem die wirksame Zeitdauer
der Stossbelastung #; sehr kurz ist und der im folgenden den Namen
«Impulsbelastung» erhalten wird — und der zweite, bei dem die plotz-
lich aufgebrachte Belastung dauernd vorhanden bleibt und der als
«quasi-statischer» Belastungsfall bezeichnet wird.

Unter sehr kurzer Belastungszeit wollen wir im folgenden Belastun-
gen verstehen, die wieder verschwunden sind, bevor das Bauwerk eine
merkliche Auslenkung erfahren hat. In dieser ersten Zeit ist damit auch
kein nennenswerter innerer Widerstand vorhanden, da dieser erst mit
zunehmender Durchbiegung anwéchst. Es ist nur die Massentrigheits-
kraft im Gleichgewicht mit der Belastung P.. Da das erste Glied in
der Gleichung (7a) wegfillt, lasst sich durch eine einfache Integration y
bestimmen, also diejenige Geschwindigkeit, die der Bauteil nach dem
Stoss erhalten hat, was voraussetzungsgemdss als Anfangsgeschwindig-
keit vq der nun nachfolgenden Bewegung angesehen werden kann:

t; t'l
. 1
®) va = y(t) :Jydr — Vgong(t)dt

Das Integral rechter Hand stellt den Belastungsimpuls dar, der auf den
Bauteil ausgeiibt wird, und ist gegeben durch den Flicheninhalt des
Last-Zeitdiagrammes, also
©) = L Pyt

Sl 0Vl
Mit Kenntnis der Anfangsgeschwindigkeit ist aber auch die beim
Stoss aufgenommene kinetische Energie bekannt:

I? 12507

1
E(I:Ekiﬂ:'z_MeUZ: 2 M, T 8 M,

10

Der ganze Rest der Bewegung ist nun dadurch gekennzeichnet, dass
diese kurzfristig beschleunigte Masse wieder abgebremst wird. Dies
bedingt aber, dass die innere Deformationsenergie des Bauwerkes —
die ja gegeben ist durch die vom Last-Deformationsdiagramm einge-
schlossene Fldche — grosser ist als die aufgenommene kinetische
Energie, denn sonst haben wohl die Trigheitskrifte den Stoss am
Anfang pariert, aber der Mechanismus kommt nicht mehr zum Still-
stand, und der Bauteil stiirzt ein. Wenn dem Bauteil nur eine maximale
Durchbiegung y», zugemutet werden darf, so ergibt sich die total auf-
nehmbare Deformations-Energie als Inhalt des Trapezes (Bild 3b) zu:

1 e
L R 4L
E; 0 Ym (1 > }’m)

(€8))
Durch Gleichsetzen mit der aufgenommenen Energie folgt das Resultat

der eingangs gestellten Aufgabe, die dem Bauteil zumutbare Spitzen-
last P, als Funktion der iibrigen funf Parameter

i e
VS MeRo)/m (1 _7 ym.)

143

(12) Py =
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Bild 4. Last-Verschiebungsdiagramm und Vergleich von &usserer und
innerer Deformationsarbeit am ideal elastisch-plastischen Bauteil

Wenden wir uns nun dem anderen Extremfall zu, der quasi-
statischen Belastung, dann konnte auch dieser Bewegungsablauf aus
den beiden Differentialgleichungen, die besonders einfach zu inte-
grieren sind, weil P eine Konstante ist, gewonnen werden. Wenn man
sich wiederum nur fiir die maximal aufnehmbare Last interessiert, dann
lasst sich diese analog dem vorigen Fall aus einer Energiebilanz
ermitteln. Im Last-Deformationsdiagramm (Bild 4) ist die innere
Deformationsenergie gegeben durch den Inhalt der Trapezfliche
zwischen Koordinaten-Ursprung und Abszissenwert y». Da dussere
Belastung und inneres Tragvermogen in denselben Einheiten gemessen
werden, kann auf der Ordinate auch die dussere, quasi-statische Last
aufgetragen werden. Die dussere Arbeit ist in diesem Belastungsfall,
wo P zeitlich konstant bleibt, gegeben durch das Produkt P y., also
Last mal Verschiebung?!) und ist somit gleich dem Inhalt einer Recht-
eckfliche. Aus dem Flichenvergleich dieser Trapez- und Rechteckflache
lasst sich schon schliessen, dass die zumutbare quasi-statische Belastung
P, stets kleiner ist als die statische Traglast R, Eine quantitative
Erfassung dieser Energiebilanz — die nur eine spezielle Form des
Energiesatzes [5] darstellt, ergibt die dem Bauteil zumutbare quasi-
statische Belastung zu:

1) =R (1—52)

Sobald ein Bauteil eine einigermassen ausgepragte plastische Verform-
barkeit aufweist, liegt P, aber nicht wesentlich unter der statischen
Traglast, was auch aus Gl. (13) entnommen werden kann. Anders
verhilt es sich bei sproden Bauteilen, oder wenn aus Griinden der
Funktionsfihigkeit keine plastischen Verformungen zugelassen
werden konnen, was beispielsweise bei Tiiren der Fall sein mag. Hier
muss der rechteckformigen Energiefliche P, y. die dreieckformige
elastische Deformationsenergie gleichgesetzt werden, und aus dem Ver-
gleich der schraffierten Flidchen von Bild 4 sowie aus Gl. (13) ist er-
sichtlich, dass eine plotzlich aufgebrachte Dauerlast in einem elasti-
schen System (ym = ye) kurzfristig die doppelte Durchbiegung (und
Spannung) erzeugt wie eine langsam aufgebrachte Last vom selben
Betrag. Dieser als Stosszuschlag ¢ bezeichnete Wert kann die obere
Grenze ¢ = 2,0 nicht iiberschreiten und ndhert sich dem unteren
Grenzwert von 1,0 umso mehr, je langsamer die Belastung aufgebracht
wird.

Wenden wir uns nun wieder der Impulsbelastung zu und nehmen
an, der Bauteil sei bei einer Durchbiegung, z. B. ym, zum Stillstand
gekommen. Jetzt hat der elastische Anteil der Deformationsenergie
noch das Bestreben, das System riickwirts zu bewegen. Diese Riick-
schwingung kann in der Gegenrichtung Krifte von gleicher Grossen-
ordnung wie R, erzeugen. Tatsichlich gibt es viele ausgefiihrte
Schutzbauten, bei denen man zeigen kann, dass gewisse Komponenten,
vor allem Tiiren und Schleusen, gerade in der dem Druckstoss ent-
gegengesetzten Richtung und bei viel kleineren Beanspruchungen zu
Grunde gehen, als es sich ihr Schopfer vorgestellt hat. Man muss

1) Wir machen hier und schon bei der fritheren Formulierung des
Energiesatzes die stillschweigende Voraussetzung, dass es sich nur um
konservative Krifte handelt, also solche, deren Arbeit zwischen zwei
Punkten nur von deren Lage und weder vom Verschiebungsweg, noch yom
zeitlichen Ablauf abhéingig ist (vergl. [S]).
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Bild 5. Zerstérungskurve eines Bauteiles als Funktion der Be-

lastungszeit t; fiir ein Plastifizierungsverhéltnis ym @ ye = 10

daraus aber nicht folgern, dass das Widerstandsvermogen aller
kurzfristig dynamisch beanspruchten Bauteile in negativer Richtung
gleich gross sein muss wie in positiver, denn die verfiigbare Energie,
mit der diese Riickfederung erfolgt, ist beschrankt; sie kann den Betrag
der totalen elastischen Forméinderungsenergie nicht tiberschreiten.
Aus der notwendigen Flichengleichheit (horizontal schraffierte
Flichen in Bild 4) folgt, dass ein relativ kleiner negativer Bauwerks-
widerstand R, geniigt, wenn er gekoppelt ist mit einer grossen
Plastifizierbarkeit. Fiir den Spezialfall, wo das plastische Verformungs-
vermogen im negativen Bereich gleich gross ist wie im positiven,
ergibt sich die erforderliche Mindesttraglast R, zu
Ry - Ym

i Ry = e - 1/(%)2 &

Da die hierbei gemachte Voraussetzung bei Biegetrdgern aus Eisen-
beton im allgemeinen erfiillt ist, kann aus Gl. (14) entnommen werden,
dass schon eine bescheidene Minimalarmierung diesem Riickfede-
rungs-Effekt vollauf geniigt. Sorgféltigere Untersuchungen sind am
Platz bei stark schubbeanspruchten Bauteilen, oder bei spezieller
Lagerung, wie das bei Tiiren im allgemeinen der Fall ist [6].

Zerstorungskennlinien von Bauwerken

Um nun einen Uberblick zu gewinnen iiber die Giiltigkeits-
bereiche der beiden besprochenen Grenzfille, ist in Bild 5 das Resultat
der Berechnung, also die dem Bauwerk zumutbare Spitzenbelastung P,
als Funktion der Belastungsdauer #; aufgetragen worden. In diesem
Diagramm, das auch als Zerstorungskennlinie eines Bauwerkes
bezeichnet werden konnte, ist die exakte Losung der Differential-
gleichung (7) des Einmassensystems fiir ein Bauwerk aufgetragen,
nebst den beiden Grenzfillen Impulsbelastung und quasistatische
Belastung, G1. (12) und (13). Wie zu erwarten war, stimmen die Grenz-
fall-Losungen umso besser mit der exakten Losung tiberein, je extremer
die Zeitdauern von diesem zentralen Schnittpunkt aus liegen. Aus den
Gleichungen (12) und (13) Idsst sich der Schnittpunkt dieser Kurven
leicht ermitteln zu

2ym 1 Ye Me

% O 2

15) t; =2 (l—i yg> Ro
e 2 ym

Es ist aus Gl. (15) ersichtlich, dass, abgesehen vom Plastifizierungs-
verhiltnis ym:ye, dieselben Parameter in derselben Potenz auftreten
wie bei der Eigenschwingungszeit des elastischen Systems:

_ YyeMe
(16) T—2nV Ry

Ez zeigt sich somit, dass dieser Schnittpunkt in der Grossenordnung
der Eigenschwingungszeit liegt und fiir eine Plastifizierungszahl
Ym:ye = 4,5 sogar ganz mit ihr iibereinstimmt. Damit erhdlt die
Eigenschwingungszeit T eine ganz zentrale Bedeutung fiir die Stoss-
belastung von Bauwerken. Sie trennt den mehr quasistatischen Bereich,
in dem die innere Bauwerksfestigkeit dominiert, vom Impulsbereich,
bei dem die Trigheitskrifte grosser sind. Diese Aussage hat sehr grosse
Bedeutung fiir die Bemessungspraxis, denn die Eigenschwingungszeit
eines Bauteiles l4sst sich in der Regel leicht abschétzen, und damit
haben wir schon den Zeit-Masstab gefunden, mit dem zeitlich &ndernde
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Bild 6. Exakt ermittelte Tragkraft-Auswertung von Gl. (7) —, bezogen
auf die Grenzfall-Lésungen Impulsbelastung GIl. (12) und quasi-statische
Belastung Gl. (13) als Funktion der bezogenen Stossdauer fiir einen Bau-
teil mit einem Plastifizierungsvermégen ym ! ye = 7

Belastungen in eher statische oder dynamische klassifiziert werden
konnen.

Um diese qualitative Aussage noch etwas prézisieren zu konnen,
ist in Bild 6 der exakte Wert der Losung Gl. (7) aufgetragen als Viel-
faches der beiden approximativen, elementaren Grenzfall-Lésungen,
Gl. (12) und (13), fiir eine Plastifizierungszahl yu:y. = 7. Auf der
Abszisse ist in logarithmischem Masstab die Beanspruchungsdauer
der dreieckférmigen Belastung abgetragen, allerdings in Einheiten
der Eigenschwingungszeit 7. Bei Belastungsdauern, die rund zehnmal
kiirzer sind als diese fiir ein Bauwerk charakteristische Zeit 7', wird
der exakte Wert nur noch um rund ein Prozent unterschitzt. Eine
entsprechende Aussage gilt fiir den quasistatischen Grenzfall, sobald
die Stossdauern eine Grossenordnung hoher liegen als die Eigen-
schwingungszeit. Die Praxis zeigt denn auch, dass es in den meisten
Féllen geniigt festzustellen, wo die Stossdauern beziiglich der Eigen-
frequenz eines Bauteiles liegen, um anschliessend mit einer der elemen-
taren Grenzfall-Losungen die zumutbaren Stossintensititen zu be-
stimmen.

Schlussbemerkungen

Rekapitulierend sollen noch einige Gesichtspunkte hervorgehoben
werden:

1. Bei Decken und Wénden von Schutzbauten liegen die Eigenschwin-
gungszeiten erfahrungsgemiss in der Grossenordnung von einigen
Dutzend Millisekunden. Die Druckst&sse, herrithrend von Explosionen
konventioneller Waffen, liegen eher im Bereich der Impulsbelastung,
diejenigen von Atombomben mehrheitlich im quasistatischen Bereich.

2. Die zumutbare Spitzenlast wéchst im dynamischen Bereich rasch an
mit abnehmender Stossdauer. Diese an sich willkommene Eigenschaft
kann dann gefdhrlich werden, wenn man aufgrund von Versuchs-
sprengungen an Modellen oder Prototypen auf das Tragvermodgen bei
atomaren Explosionen schliessen will.

3. Zur Aufnahme kurzer Druckstdsse ist eine grosse Plastifizierbarkeit
eines Bauwerkes ebenso wichtig wie seine Tragfestigkeit. In erster
Nédherung kommt es sogar nur auf das Produkt dieser Grossen an.
Eine gute Plastifizierbarkeit erhoht aber auch die zuldssige quasista-
tische Belastung und féngt Riickfederungsbewegungen auf.

4. In den meisten praktischen Anwendungsfillen gelingt es, das
dynamische Verhalten von Bauwerken gegen Druckstossbelastungen
geniigend genau, d. h. auf einige 109, genau, zu analysieren durch
konsequente Elimination aller Parameter bis auf die 6 Grossen:
Spitzenlast und Stossdauer, Masse und elasto-plastischer Streckenzug
im Last-Deformationsdiagramm.

5. Dieselben Schlussfolgerungen und Konsequenzen wie bei Druck-
stossbeanspruchungen kénnen gezogen werden bei Belastungen von
Bauwerken durch Erdbeben. Es braucht lediglich die dussere Last er-
setzt zu werden durch eine fiktive Trégheitskraft, die gegeben ist durch
stellvertretende Masse M. des Bauteils, multipliziert mit der Beschleu-
nigung des Auflagers. Freilich kann die Auflagerbeschleunigung bei
Erdbeben nicht immer durch einen einzigen dreieckformigen Verlauf
approximiert werden, und daher drdngen sich leicht modifizierte
Berechnungsverfahren auf.
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ETH: ein Riicktritt und ein Ausblick
DK 378.962

Die Abschiedsvorlesung von Prof. Fritz Stiissi, am 24. Februar,
fand im Auditorium maximum statt, das fast bis auf den letzten Platz
gefiillt war von jungen und alten Schiilern und Freunden des Meisters,
die ihn mit reichem Beifall begriissten und verabschiedeten.

Gleich zu Anfang seiner Ausfithrungen zum Thema «Hinge-
briicken grosser Spannweite» kiindigte Fritz Stiissi an, dass er weit
tiber den durch den Titel gesteckten Rahmen hinauszugehen gedenke.
So wollen wir denn auch heute weder auf die Hingebriicken noch auf
O. H. Ammann, die beide im Zentrum der sorgfiltig ausgeschliffenen
Betrachtungen standen, eintreten, sondern auf die Schlussfolgerungen,
die der Redner fiir die Zukunft der ETH zog. Seines Erachtens sollte
der Studienplan nicht wesentlich verdndert werden gegeniiber dem
heutigen Stand. An der Bauingenieur-Abteilung bieten die vier
Hauptgebiete Stahlbau, Massivbau, Wasserbau und Strassenbau eine
Breite der Ausbildung, die nicht ohne Schaden fiir die Griindlichkeit
des Studiums um weitere Sparten vergrossert werden konnte. Die
Pflege der Grundlagen der Hauptgebiete muss das erste Anliegen der
Ausbildung bleiben; sie diirfen nicht zu Gunsten der Spezialficher
beschnitten werden. Die Normalstudienpline miissen systematisch
aufgebaut sein, doch diirfen sie die Freiheit des Dozenten, der allein die
Verantwortung fiir den Inhalt der Vorlesung trigt, nicht einschranken.
Wichtig ist, dass z. B. in der Abteilung II Baustatik I und Stahlbau ein
und derselben Hand anvertraut sind.

Anlésslich des Abendessens im Gesellschaftshaus zum Riiden, das
Prof. B. Thiirlimann als Vorstand der Abteilung II mit Geschick
leitete, kamen in mancher Tischrede dhnliche Gedanken mit aller
Deutlichkeit zum Ausdruck. Prof. Karl Schmid fand besonders
treffende Formulierungen; so wenn er sagte, die ETH diirfe nicht zu
einem Warenhaus werden, das immer die neuesten Modeartikel fiihrt.
Es muss scharf unterschieden werden zwischen dem fiir die Schiiler
Notwendigen und dem nur Wiinschbaren. Heute ist die Struktur der
Schule von der Forschung her gefihrdet, die ein Schlagwort ersten
Ranges geworden ist. Und doch sind es vielleicht nur /20 aller Schiiler,
die Forscher werden, wéhrend fiir die andern *°/20 die Ausbildung zum
Berufsmann das Ziel des Unterrichts bleiben muss. Pflege der schuli-
schen Zucht ist daher wichtiger als Forschung. Weil sie den auf das
Wesentliche konzentrierten Unterricht pflegt, bezeichnete Karl
Schmid die Abteilung 1T als konservativsten Fliigel der ETH und Fritz
Stiissi als ihren Eckpfeiler.

Aus den weiteren Ansprachen, von Prof. Gerold Schnitter, Prof.
O. Steinhardt (Karlsruhe), Dir. Max Birkenmaier, der fiir den S.I.A.
sprach, Dr. Charles Dubas (Vevey) und Prof. Guido Calgari ténte
ibereinstimmend die Hochschdtzung fiir die markante, nicht immer
bequeme Personlichkeit des Gefeierten heraus, sei es in ernster
Wiirdigung seines Wesens oder in der Schilderung kostlicher Erleb-
nisse freundschaftlichen Zusammenwirkens. Schulrats-Vizeprisident
Claude Seippel nahm die Gelegenheit wahr, den neu gewahlten Schul-
ratsprésidenten Minister Jakob Burckhardt warm zu empfehlen. Aus
den bewegten Schlussworten von Prof. Stiissi sprach die ehrliche
Gradheit seines Charakters, seine Dankbarkeit gegeniiber seinen
Lehrern, seine Freude iiber die ihm bevorstehende Musse zu freiem
Schaffen und seine hohe Befriedigung iiber die Wahl seines Nachfol-
gers, Prof. Pierre Dubas. w. J.
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