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0R6AN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE 6.E.P.

Der Druckstoss und seine Auswirkungen auf Bauwerke dk 624.042.8
Von Dp. sc. techn. Ernst Basler, dipl. Bauing., Zürich
Vortrag, gehalten am 15. Oktober 1965 an der ETH anlässlich der Studientagung über dynamische Wirkungen auf Bauwerke,
durchgeführt von der S. I. A.-Fachgruppe der Ingenieure für Brückenbau und Hochbau

Einleitung

Druckstoss-Beanspruchungen werden selten durch die Natur
verursacht. Sie können auftreten im Zusammenhang mit einer Flutwelle,
einer Lawine oder bei Steinschlägen. Häufiger sind jene Fälle, bei
denen die Technik der menschlichen Kontrolle entgleitet, z. B. wenn
eine Druckleitung zu schnell schliesst, ein Dampfkessel explodiert
oder ein Reaktor überkritisch wird. Für den Bauingenieur leider weitaus

grösste Bedeutung erlangen jedoch die Druckstösse im Zusammenhang

mit kriegerischen Ereignissen, bei Explosionen von konventionellem

wie nuklearem Sprengstoff. Unter diesem Gesichtspunkt wird
dem Bauingenieur eine Aufgabe übertragen, welche nichts weniger
bedeutet als die teilweise Entschärfung der gefürchteten Atomwaffe.

Aus der Natur dieser Belastungen lässt sich schon folgern, dass es
in der Regel gerechtfertigt ist, das Plastiflzierungsvermögen eines
Bauwerkes zur Aufnahme eines einmaligen Druckstosses heranzuziehen.
Dies im Gegensatz zu Schwingungsproblemen, die auch zu den
dynamischen Beanspruchungen zählen, wo aber der Gebrauchszustand und
damit notwendigerweise der elastische Bereich im Vordergrund steht.

Eigenschaften eines Luft-Druckstosses
Ohne auf die Energiequelle näher eintreten zu müssen, lassen

sich die wichtigsten Eigenschaften eines in der Luft sich nahezu
kugelförmig ausbreitenden Druckstosses beschreiben. Im Innern des sich
ständig erweiternden Druckballes, wie in Bild 1 dargestellt, pflanzen
sich alle Druckimpulse wegen der grösseren Luftdichte sehr schnell
fort, bis sie an die Stossfront gelangen, ausserhalb welcher ungestörte,
unkomprimierte Luft liegt. Man kann sich in diesem Illustrationsbeispiel

vorstellen, dass am Beobachtungsort A von der nahenden
Druckfront noch nichts verspürt wird, währenddem am Standpunkt B,
der nur wenige Meter von A entfernt sein mag, bereits der grösst-
mögliche Überdruck und Wind registriert werden kann. Es ist für das
Verständnis der nachfolgenden Ausführungen wesentlich, dass man
sich den Vollzug dieser Druckwechsel an der Stossfront als plötzliches
Ereignis vorstellt. Bei kleinen Stossintensitäten, die das Trommelfell
noch nicht zerstören, nimmt der Mensch diesen Druckunterschied als
Knall wahr, wie z. B. beim Durchgang von Flugzeugen im Überschallbereich.

Wird an einem festen Ort, z. B. in Punkt A, der herrschende Überdruck

als Funktion der Zeit aufgetragen, so ergibt sich ein Verlauf wie
dargestellt im Diagramm von Bild 1. Unmittelbar hinter dem scharfen
Drucksprung, der als Nullpunkt der Zeitmessung angesehen wird,
beginnt der Druck sofort wieder abzufallen. Dieser exponentielle Verlauf

wird im folgenden stets approximiert durch einen dreieckförmigen
^^^kenzug und ist definiert durch die beiden Parameter

Spitzenüberdruck p0 und ideelle Stossdauer U. Der Spitzenüberdruck nimmt
mit zunehmender Distanz vom Explosionszentrum aus monoton ab,
was ersichtlich ist aus den in Bild 1 eingetragenen atü-Werten.

Neben dem allseitig wirkenden Überdruck p tritt bei
oberirdischen Bauteilen noch der sogenannte dynamische Druck q(t) auf.
An der Stossfront vollzieht sich nämlich nicht nur ein Drucksprung,
sondern auch eine plötzliche Geschwindigkeitsänderung der
Luftteilchen. Die Windgeschwindigkeit der ungestörten Luft wächst
unmittelbar hinter der Stossfront zu einem Spitzenwert u an, mit einer
Richtung senkrecht zur ungestörten Stossfront. Bei Kenntnis des
Staudruckes q 1/2 g u2, wie er aus Fig. 1.1 von [1] entnommen
werden kann, lässt sich die an einer Bauwerksfläche F angreifende
Kraft K wie bei konventionellen Windlastberechnungen bestimmen.
Es ist

(1) _(.) I cPFg(t)
wobei die Aussendruckbeiwerte cv in erster Näherung den Winddrucktabellen

der S.I.A.-Norm 160 (Belastungsannahmen) entnommen
werden können. Für Bemessungszwecke kann der zeitliche Verlauf des
Staudruckes durch einen dreieckförmigen Streckenzug approximiert
werden, wie beim Überdruck. Die wirksame oder ideelle Zeitdauer ttq
kann zu 2/3 hv angenommen werden und ist mit den Wirkungsdiagrammen

von [1] festgelegt.
Die Druckstossdauer U hängt in erster Linie vom Energieinhalt

der Detonation ab. Darin liegt auch der Hauptgrund im wesentlich
anderen Verhalten von Bauwerken gegenüber molekularen bzw.
atomaren Explosionen. Beträgt die Stossdauer bei konventionellen
Fliegerbomben einige Millisekunden, so liegt sie im Fall der nuklearen
Waffe in der Grössenordnung von Zehntelssekunden. Es mag den Leser
überraschen, dass dieser Unterschied in der Zeitdauer für Bauwerke so
bedeutungsvoll sein soll. Der Grund liegt darin, dass die
Eigenschwingungszeiten der im Schutzbau gebräuchlichen Bauteile gerade
zwischen den genannten Grössenordnungen von Stossdauern liegen.
Im ersten Fall handelt es sich vorwiegend um eine Impulsbelastung, im
zweiten Fall eher um eine quasistatische Beanspruchung. Nachfolgend
soll erläutert werden, wie die Wirkung dieser beiden Stossarten in der
Bemessungspraxis des Bauingenieurs in guter Näherung berücksichtigt
werden kann.

Unterschied zwischen dynamischer und statischer Beanspruchung
Anhand eines Beispiels soll vorerst das statische und dynamische

Widerstandsvermögen von Bauwerken illustriert werden. Die Statik,
als Lehre vom Gleichgewicht der Kräfte, vermag - mit uns bekannten
Methoden - den erforderlichen innern Widerstand eines Biegeträgers
für eine gegebene äussere Belastung zu bestimmen. Die
Gleichgewichtsbedingung formuliert am Balkenelement eines Biegeträgers,
wie im Bild 2 skizziert, lautet:

(2) EIy""=p{x)
Die entsprechende dynamische Aufgabe lässt sich, obwohl sich

jetzt das System in Bewegung befindet, genau gleich ansetzen wie die

p ,i
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statische, denn nach dem Prinzip von d'Alembert [5] herrscht auch im
bewegten System zu jeder Zeit ein Kräftegleichgewicht, falls die
Newton'schen Trägheitskräfte miteingeschlossen werden. Diese neuen
Kräfte wirken im ersten Moment den äusseren Lasten entgegen, und
die entsprechende Gleichgewichtsbedingung am Balkenelement lautet
nun:
(3) Ely"" +QFy=p{t)

Aus einem Vergleich der Gleichungen (2) und (3) kann bereits die
praktisch bedeutsame Folgerung gezogen werden, dass bei sehr
kurzfristigen, dynamischen Belastungen die momentane Belastungsintensität

grösser sein kann als es das statische Widerstandsvermögen
zuliesse, denn ein Teil dieser äusseren Belastungen steht anfänglich im
Gleichgewicht mit den Massenträgheitskräften. Beispiele, wo die
äussere Belastung nur mit den Trägheitskräften im Gleichgewicht
steht, ergeben sich überall, wo schnell bewegte Körper auf Flüssigkeiten

prallen. Wenn man mit der flachen Hand auf die
Wasseroberfläche schlägt, lässt sich ein Widerstand verspüren, obwohl dieser
Baustoff, also Wasser, keine innere Festigkeit hat. Der spürbare
Widerstand wird umso grösser, je schneller der Stoss erfolgt, und die
Trägheitskräfte können selbst bei festen Körpern über die Materialfestigkeit

hinaus anwachsen. Das erklärt auch die beobachtete
Tatsache, dass Körper ohne nennenswerte innere Festigkeit, z. B. Lehm,
sehr schnellfliegende Projektile fast ebenso wirksam zu bremsen
vermögen wie ein fester Stoff mit vergleichbarer spezifischer Dichte,
beispielsweise Beton.

Sobald diese qualitative Aussage in eine quantitative umgesetzt
wird, treten erhebliche mathematische Schwierigkeiten auf, weil die
partielle, inhomogene Differentialgleichung Gl. (3) nur noch für
spezielle Last-Zeitfunktionen eine geschlossene Lösung zulässt und
darüber hinaus nur zutreffende Aussagen im elastischen Bereich zu
liefern vermag. Die nachfolgenden Bemühungen sollen sich nun nicht
auf die möglichen Lösungsmethoden dieses formulierten mathematischen

Problems erstrecken, sondern auf die Entwicklung von
vereinfachten Berechnungsmethoden, die alle wichtigen Parameter in ihrer
richtigen Grössenordnung erfassen und uns ein besseres Verständnis
und einen Überblick über den Vorgang verschaffen.

Vereinfachungen der dynamischen Aufgabe

Eine wesentliche Vereinfachung besteht im Ersetzen von
kontinuierlich verteilten Massen durch wenige, oftmals gar eine einzige
konzentrierte Masse. In Bild 3 ist dies für das Beispiel des Kragarmes
skizziert. Man ist heute dank der genauen Durchrechnung vieler Fälle
mittels elektronischer Rechenmaschinen [2], [3] sehr weit gekommen in
der Kunst, zutreffende Ersatzsysteme zu finden, und es lässt sich
vielleicht sagen, dass sich mehr als 9 von 10 Anwendungsfällen mit
genügender Genauigkeit zurückführen lassen auf Einmassen-Systeme
mit einem einzigen Bewegungsfreiheitsgrad.

Die Kriterien, nach denen die stellvertretenden Elemente des

Ersatzsystems bestimmt werden, sind folgende: [2], [3], [4].
Der Faktor für die Ersatzlast

(4a) Pe i Aj, P

ergibt sich aus der Bedingung, dass die Arbeit der äussern Lasten

-Xm

Ro

/

p»(t)

Mey
' M

P»(t)

Fall 2

Fall!

Ym y1

Bild 3. Vereinfachung der dynamischen Aufgabe, gezeigt am Beispiel des

Kragarmes

a) Ersatzsystem mit einer einzigen, konzentrierten Masse

b) Zugehöriges idealisiertes Last-Deformationsdiagramm

c) Angenommene Last-Zeitfunktion

an beiden Systemen gleich gross sein soll. Mit einer angenommenen
Durchbiegung y (x) lässt sich diese Bedingung wie folgt anschreiben:

i

(5a) \p(x)y{x)dx Pey woraus
o

(5b) Pe fp(x) v {x)dx mit n {x) -M^-
o y

Die dimensionslose Durchbiegung r\ (x) erhält den Wert Eins am Ort
der Lastkonzentration. Mit Kenntnis von Pe folgt aus Gl. (4a) der
Umrechnungsfaktor

i

fp(x) n (x)dx

(5c) hp —;
jp (x) dx
0

Der Faktor zur Bestimmung der Ersatzmasse

(4b) Me lmM
wird aus der Bedingung gewonnen, wonach die kinetische Energie am
kontinuierlich verteilten Massensystem in irgendeiner allgemeinen
Lage, bzw. zu beliebigem Zeitpunkt gleich derjenigen des Einmassensystems

sein soll. Mit einer angenommenen Durchbiegungsfunktion y (x)
und der gegebenen MassenVerteilung m (x) g F ergibt sich daraus:

i

(6a) 1 /2 /m(*). 1 /2 Af„. bzw.

(6b) Me \m(x) rj1 {x)dx mit r) (x) y(x)
y

Hierin ist die Durchbiegungsfunktion wieder so kalibriert, dass sie am
Ort der Massenkonzentration den Einheitswert erhält. Analog zu
(5c) ergibt sich somit der Umrechnungsfaktor lm zu:

6c) lm

jm (x) rj2 (x) dx

i

I m (x) dx

Ein Vergleich der Ausdrücke (5c) und (6c) zeigt, dass diese
Umrechnungsfaktoren sich wie Gewichtsmittel darstellen lassen, wobei im
erstem Fall die «Gewiäitsfunktion» rj (x) linear und im zweiten Fall
quadratisch in die Gleichung eingeht.

Für diese Bestimmungsgleichungen muss eine Durchbiegungsform

y (x) angenommen werden. Im elastischen Bereich wird diese Kurve
mit Vorteil der statischen, elastischen Biegelinie angenähert, was im
Fall des gleichmässig belasteten Kragarmes (Bild 2) auf ein Polynom
vierter Ordnung führen würde. Nachdem sich aber z. B. in Auflagernähe

ein plastisches Gelenk mit grosser örtlicher Drehwinkelverformung

gebildet hat, wäre eine mit wachsendem Abstand x vom
Auflager linear zunehmende Durchbiegung der Wirklichkeit eher

entsprechend. Zum Vergleich sind in Tabelle I die beiden
Umrechnungsfaktoren Aj, und Am zusammengestellt, wobei die Durchbiegungsfunktion

r\ (x) je zu einer Geraden, bzw. Parabel zweiter, dritter und
vierter Ordnung angenommen wurde. Die letztern zwei Kurven
wurden so gelegt, dass die grösste Krümmung beim Auflager liegt.

Aus dieser Zusammenstellung ist ersichtlich, dass die Resultate
nicht allzu empfindlich beeinflusst werden von der Form der angenommenen

Durchbiegungskurve. Je nachdem, ob die zu erwartende
Bewegung sich mehrheitlich im elastischen oder plastischen Bereich

abspielt, wird man einen Koeffizienten wählen, der dem einen oder
andern Grenzfall näher liegt. Mit Kenntnis der A-Werte am Kragarm
und denjenigen des beidseitig frei aufliegenden, bzw. total eingespannten
Balkens, die in Tabelle II zusammengestellt sind, kann man für viele

Anwendungsfälle die entsprechenden Umrechnungsfaktoren mit
genügender Genauigkeit schätzen, ohne die Gleichungen (5c) und (6c)

auswerten zu müssen.
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Tabelle I. Auswertung der Gl. 5c und 6c mit verschiedenen
Annahmen bezüglich Biegelinie. Die exakten Werte des stark plastisch
deformierteriiiStabes liegen näher bei der Geraden, diejenigen des
elastischen Kragarms sind identisch mit denjenigen des Polynoms
vierter Ordnung

Angenommene Biegelinie Lastfaktor Massenfaktor

n g -j x

nix) — x2

.(*) Yp-Mx3 + 31x2)

_. 0,50

_
0,33

Aj, 0,38

v (x) yj^ (x4 — 4 / x3 + 6 l2x2) Aj, 0,40

Aro § 0,33

Am 0,20

Am 0,24

Am 0,26

Tabelle II. X-Faktoren nach Gl. (5c) und (6c) ermittelt, für den
einfachen und total eingespannten Balken mit konstantem Trägheitsmoment

und unter gleichmässig verteilter Belastung

frei
aufliegend

total
eingespannt

elastischer Bereich

vollplastischer Bereich

Aj, 0,64
_

0,53
Am ¦ 0,50 Am 0,41

Aj, =0,50
_

0,50
Am 0,33 Am 0,33

Tabelle III. ^-Faktoren ermittelt an vier verschiedenen Orten des
Kragarmes für die beiden Grenzfälle starr-plastische und
idealelastische Deformation

Xm

m
Ort der Massenkonzentration

6/6 5/6 4/6 3/6

¦ 0,50 0,60 0,75 1,00
Am 0,33 0,48 0,75 1,33

Ap 0,40 0,51 0,71 1,13
Am 0,26 0,42 0,82 2,05

starr-plast. Deform,

ideal-elast. Deform.

Den Ort, an dem die Massen und äussern Kräfte konzentriert
werden, wählt man mit Vorteil dort, wo die grössten Durchbiegungen
oder Trägheitskräfte auftreten, also näher dem freien Ende des
Kragarmes, Bild 3. Aus Tabelle III ist ersichtlich, wie die A-Faktoren
beeinflusst werden durch die Wahl des Ortes der Massenkonzentration

Xm
der zu 3/6,4/6, 5/6 und 6/6 der Stablänge gewählt wurde.

Wie man zeigen kann, wird beispielsweise die Eigenfrequenz der
Grundschwingung durch die Ortswahl nicht beeinflusst.

Der Bauwerkswiderstand R ist eine Funktion der Durchbiegung
und ist gegeben durch das Last-Durchbiegungsdiagramm des
betrachteten Bauteiles. Er hat in der Regel einen der in Bild 3b gestrichelten

Kurve entsprechenden Verlauf. Ähnlich wie vorher der gekrümmte
Streckenzug des Last-Zeitdiagrammes durch Geraden approximiert
wurde, soll im folgenden das Last-Durchbiegungs-Diagramm durch ein
ideal elastisch-plastisches Verhalten des Bauwerkes, also durch den
stark ausgezogenen Streckenzug in Bild 3b ersetzt werden. Dabei ist
dieser Streckenzug so zu wählen, dass die von den Kurven mit der
Abszisse eingeschlossenen Flächen, die innere Deformationsarbeiten
darstellen, gleich gross werden.

In den bis dahin getroffenen Vereinfachungen liegt eine nicht zu
unterschätzende Kraft. Damit ist es möglich, das komplizierte
Verhalten eines Bauteiles unter Stossbelastung durch folgende sechs
Parameter zu approximieren: die beiden Parameter Spitzenlast P0
mit zugeordneter Dauer M welche die Belastung definieren; dann
die vier wichtigsten Eigenschaften des Bauteiles, erfasst durch die

stellvertretende Masse Me, das statische Tragvermögen R0, sowie die
zugehörige elastische und plastische Durchbiegung ye und j>max.

Nach diesen Vorbereitungen zur Bestimmung der massgebendsten
Parameter soll die eingangs begonnene Aufgabe, nämlich die Bestimmung

des Tragvermögens von dynamisch beanspruchten Bauteilen,
noch einmal in Angriff genommen werden.

Das Verhalten des Einmassensystems unter Stosslasten

Aus Bild 3a ergibt sich die d'Alembert'sche Gleichgewichtsbedingung

(gültig für ein beliebiges bewegtes Einmassensystem, unter
Vernachlässigung der Eigengewichte) zu: Deformationswiderstand -
der im elastischen Bereich proportional der Auslenkung, im plastischen
konstant ist - plus Trägheitskraft ist gleich der äusseren Ersatzlast:

elast. Bereich (7a) I R0 — + Mey (0
ye

plast. Bereich (7b) R0 Mey Peit)

Die Lösungen dieser beiden Differentialgleichungen können für alle
einfachen Last-Zeitfunktionen mit elementaren Methoden gefunden
werden. Es ist nun die Auffassung des Verfassers, dass nach so vielen
Schritten zur Vereinfachung hier in den meisten Anwendungsfällen
noch ein weiterer getan werden darf, nämlich die Beschränkung auf
folgende zwei Grenzfälle: der erste, bei dem die wirksame Zeitdauer
der Stossbelastung u sehr kurz ist und der im folgenden den Namen
«Impulsbelastung» erhalten wird - und der zweite, bei dem die plötzlich

aufgebrachte Belastung dauernd vorhanden bleibt und der als
«quasi-statischer» Belastungsfall bezeichnet wird.

Unter sehr kurzer Belastungszeit wollen wir im folgenden Belastungen

verstehen, die wieder verschwunden sind, bevor das Bauwerk eine
merkliche Auslenkung erfahren hat. In dieser ersten Zeit ist damit auch
kein nennenswerter innerer Widerstand vorhanden, da dieser erst mit
zunehmender Durchbiegung anwächst. Es ist nur die Massenträgheitskraft

im Gleichgewicht mit der Belastung Pe. Da das erste Glied in
der Gleichung (7a) wegfällt, lässt sich durch eine einfache Integration y
bestimmen, also diejenige Geschwindigkeit, die der Bauteil nach dem
Stoss erhalten hat, was vora'^Szungsgemäss als Anfangsgeschwindigkeit

va der nun nachfolgenden Bewegung angesehen werden kann:

(8) Wo

1
Hn) Jydt 1~JPe(t)dt

Das Integral rechter Hand stellt den Belastungsimpuls dar, der auf den
Bauteil ausgeübt wird, und ist gegeben durch den Flächeninhalt des
Last-Zeitdiagrammes, also

(9) 7
1

PoU

Mit Kenntnis der Anfangsgeschwindigkeit ist aber auch die beim
Stoss aufgenommene kinetische Energie bekannt:

(10) Ea Ekin -y Me V\
2Me

P2 t2"a tj
8Me

Der ganze Rest der Bewegung ist nun dadurch gekennzeichnet, dass
diese kurzfristig beschleunigte Masse wieder abgebremst wird. Dies
bedingt aber, dass die innere Deformationsenergie des Bauwerkes -
die ja gegeben ist durch die vom Last-Deformationsdiagramm
eingeschlossene Fläche - grösser ist als die aufgenommene kinetische
Energie, denn sonst haben wohl die Trägheitskräfte den Stoss am
Anfang pariert, aber der Mechanismus kommt nicht mehr zum
Stillstand, und der Bauteil stürzt ein. Wenn dem Bauteil nur eine maximale
Durchbiegung ym zugemutet werden darf, so ergibt sich die total
aufnehmbare Deformations-Energie als Inhalt des Trapezes (Bild 3b) zu:

(11) Et Ro. v1-!—)V 2 ym/

Durch Gleichsetzen mit der aufgenommenen Energie folgt das Resultat
der eingangs gestellten Aufgabe, die dem Bauteil zumutbare Spitzenlast

P0 als Funktion der übrigen fünf Parameter

(12) Po

VSMeRoyr,
\ 2 ym I
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Bild 4. Last-Verschiebungsdiagramm und Vergleich von äusserer und

innerer Deformationsarbeit am ideal elastisch-plastischen Bauteil
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exakt
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Bild 5. Zerstörungskurve eines Bauteiles als Funktion der
Belastungszeit tj für ein Plastifizierungsverhältnis ym '¦ ye 10

Wenden wir uns nun dem anderen Extremfall zu, der
quasistatischen Belastung, dann könnte auch dieser Bewegungsablauf aus
den beiden Differentialgleichungen, die besonders einfach zu
integrieren sind, weil P eine Konstante ist, gewonnen werden. Wenn man
sich wiederum nur für die maximal aufnehmbare Last interessiert, dann
lässt sich diese analog dem vorigen Fall aus einer Energiebilanz
ermitteln. Im Last-Deformationsdiagramm (Bild 4) ist die innere
Deformationsenergie gegeben durch den Inhalt der Trapezfläche
zwischen Koordinaten-Ursprung und Abszissenwert ym. Da äussere

Belastung und inneres Tragvermögen in denselben Einheiten gemessen
werden, kann auf der Ordinate auch die äussere, quasi-statische Last
aufgetragen werden. Die äussere Arbeit ist in diesem Belastungsfall,
wo P zeitlich konstant bleibt, gegeben durch das Produkt P ym, also

Last mal Verschiebung1) und ist somit gleich dem Inhalt einer
Rechteckfläche. Aus dem Flächenvergleich dieser Trapez- und Rechteckfläche
lässt sich schon schliessen, dass die zumutbare quasi-statische Belastung
P0 stets kleiner ist als die statische Traglast R0. Eine quantitative
Erfassung dieser Energiebilanz - die nur eine spezielle Form des

Energiesatzes [5] darstellt, ergibt die dem Bauteil zumutbare
quasistatische Belastung zu:

(13)
V 2 ym)

Sobald ein Bauteil eine einigermassen ausgeprägte plastische Verformbarkeit

aufweist, liegt P0 aber nicht wesentlich unter der statischen

Traglast, was auch aus Gl. (13) entnommen werden kann. Anders
verhält es sich bei spröden Bauteilen, oder wenn aus Gründen der
Funktionsfähigkeit keine plastischen Verformungen zugelassen
werden können, was beispielsweise bei Türen der Fall sein mag. Hier
muss der rechteckförmigen Energiefläche P0_ die dreieckförmige
elastische Deformationsenergie gleichgesetzt werden, und aus dem
Vergleich der schraffierten Flächen von Bild 4 sowie aus Gl. (13) ist
ersichtlich, dass eine plötzlich aufgebrachte Dauerlast in einem elastischen

System (ym kurzfristig die doppelte Durchbiegung (und
Spannung) erzeugt wie eine langsam aufgebrachte Last vom selben

Betrag. Dieser als Stosszuschlag q> bezeichnete Wert kann die obere
Grenze y 2,0 nicht überschreiten und nähert sich dem unteren
Grenzwert von 1,0 umso mehr, je langsamer die Belastung aufgebracht
wird.

Wenden wir uns nun wieder der Impulsbelastung zu und nehmen

an, der Bauteil sei bei einer Durchbiegung, z. B. ym, zum Stillstand
gekommen. Jetzt hat der elastische Anteil der Deformationsenergie
noch das Bestreben, das System rückwärts zu bewegen. Diese
Rückschwingung kann in der Gegenrichtung Kräfte von gleicher Grössenordnung

wie R0 erzeugen. Tatsächlich gibt es viele ausgeführte
Schutzbauten, bei denen man zeigen kann, dass gewisse Komponenten,
vor allem Türen und Schleusen, gerade in der dem Druckstoss
entgegengesetzten Richtung und bei viel kleineren Beanspruchungen zu
Grunde gehen, als es sich ihr I^SSpfer vorgestellt hat. Man muss

*) Wir machen hier und schon bei der früheren Formulierung des

Energiesatzes die stillschweigende Voraussetzung, dass es sich nur um
konservative Kräfte handelt, also solche, deren MFSit zwischen zwei

Punkten nur von deren Lage und weder vom Verschiebungsweg, noch vom
zeitlichen Ablauf abhängig ist (vergl. [5]).

daraus aber nicht folgern, dass das Widerstandsvermögen aller
kurzfristig dynamisch beanspruchten Bauteile in negativer Richtung
gleich gross sein muss wie in positiver, denn die verfügbare Energie,
mit der diese Rückfederung erfolgt, ist beschränkt; sie kann den Betrag
der totalen elastischen Formänderungsenergie nicht überschreiten.
Aus der notwendigen Flächengleichheit (horizontal schraffierte
Flächen in Bild 4) folgt, dass ein relativ kleiner negativer
Bauwerkswiderstand Rö genügt, wenn er gekoppelt ist mit einer grossen
Plastifizierbarkeit. Für den Spezialfall, wo das plastische Verformungsvermögen

im negativen Bereich gleich gross ist wie im positiven,

ergibt sich die erforderliche Mindesttraglast Rö zu

(14) — 1____>____ _l/(__'
R0 ¦ ye K \

Da die hierbei gemachte Voraussetzung bei Biegeträgern aus Eisenbeton

im allgemeinen erfüllt ist, kann aus Gl. (14) entnommen werden,
dass schon eine bescheidene Minimalarmierung diesem
Rückfederungs-Effekt vollauf genügt. Sorgfältigere Untersuchungen sind am
Platz bei stark schubbeanspruchten Bauteilen, oder bei spezieller

Lagerung, wie das bei Türen im allgemeinen der Fall ist [6].

Zerstörungskennlinien von Bauwerken

Um nun einen Überblick zu gewinnen über die Gültigkeitsbereiche

der beiden besprochenen Grenzfälle, ist in Bild 5 das Resultat
der Berechnung, also die dem Bauwerk zumutbare Spitzenbelastung P0

als Funktion der Belastungsdauer u aufgetragen worden. In diesem

Diagramm, das auch als Zerstörungskennlinie eines Bauwerkes

bezeichnet werden könnte, ist die exakte Lösung der Differentialgleichung

(7) des Einmassensystems für ein Bauwerk aufgetragen,
nebst den beiden Grenzfällen Impulsbelastung und quasistatische

Belastung, Gl. (12) und (13). Wie zu erwarten war, stimmen die
Grenzfall-Lösungen umso besser mit der exakten Lösung überein, je extremer
die Zeitdauern von diesem zentralen Schnittpunkt aus liegen. Aus den

Gleichungen (12) und (13) lässt sich der Schnittpunkt dieser Kurven
leicht ermitteln zu

(15)
2_,

\ 2 Vm

y Me
Ro

Es ist aus Gl. (15) ersichtlich, dass, abgesehen vom Plastifizierungsverhältnis

y-m'.ye, dieselben Parameter in derselben Potenz auftreten
wie bei der Eigenschwingungszeit des elastischen Systems:

(16) 2 n V yeMe
Ro

Ez zeigt sich somit, dass dieser Schnittpunkt in der Grössenordnung
der Eigenschwingungszeit liegt und für eine Plastifizierungszahl

ym'.ye 4,5 sogar ganz mit ihr übereinstimmt. Damit erhält die

Eigenschwingungszeit T eine ganz zentrale Bedeutung für die

Stossbelastung von Bauwerken. Sie trennt den mehr quasistatischen Bereich,

in dem die innere Bauwerksfestigkeit dominiert, vom Impulsbereich,
bei dem die Trägheitskräfte grösser sind. Diese Aussage hat sehr grosse

Bedeutung für die Bemessungspraxis, denn die Eigenschwingungszeit
eines Bauteiles lässt sich in der Regel leicht abschätzen, und damit
haben wir schon den Zeit-Masstab gefunden, mit dem zeitlich ändernde
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Bild 6. Exakt ermittelte Tragkraft-Auswertung von Gl. (7) —, bezogen
auf die Grenzfall-Lösungen Impulsbelastung Gl. (12) und quasi-statische
Belastung Gl. (13) als Funktion der bezogenen Stossdauer für einen Bauteil

mit einem Plastifizierungsvermögen ym '¦ ye — 7

Belastungen in eher statische oder dynamische klassifiziert werden
können.

Um diese qualitative Aussage noch etwas präzisieren zu können,
ist in Bild 6 der exakte Wert der Lösung Gl. (7) aufgetragen als
Vielfaches der beiden approximativen, elementaren Grenzfall-Lösungen,
Gl. (12) und (13), für eine Plastifizierungszahl ym:ye — 7. Auf der
Abszisse ist in logarithmischem Masstab die Beanspruchungsdauer
der dreieckförmigen Belastung abgetragen, allerdings in Einheiten
der Eigenschwingungszeit T. Bei Belastungsdauern, die rund zehnmal
kürzer sind als diese für ein Bauwerk charakteristische Zeit T, wird
der exakte Wert nur noch um rund ein Prozent unterschätzt. Eine
entsprechende Aussage gilt für den quasistatischen Grenzfall, sobald
die Stossdauern eine Grössenordnung höher liegen als die
Eigenschwingungszeit. Die Praxis zeigt denn auch, dass es in den meisten
Fällen genügt feststellen, wo die Stossdauern bezüglich der
Eigenfrequenz eines Bauteiles liegen, um anschliessend mit einer der elementaren

Grenzfall-Lösungen die zumutbaren Stossintensitäten zu
bestimmen.

Schlussbemerkungen

Rekapitulierend sollen noch einige Gesichtspunkte hervorgehoben
werden:
1. Bei Decken und Wänden von Schutzbauten liegen die Eigenschwingungszeiten

erfahrungsgemäss in der Grössenordnung von einigen
Dutzend Millisekunden. Die Druckstösse, herrührend von Explosionen
konventioneller Waffen, liegen eher im Bereich der Impulsbelastung,
diejenigen von Atombomben mehrheitlich im quasistatischen Bereich.
2. Die zumutbare Spitzenlast wächst im dynamischen Bereich rasch an
mit abnehmender Stossdauer. Diese an sich willkommene Eigenschaft
kann dann gefährlich werden, wenn man aufgrund von
Versuchssprengungen an Modellen oder Prototypen auf das Tragvermögen bei
atomaren Explosionen schliessen will.
3. Zur Aufnahme kurzer Druckstösse ist eine grosse Plastiflzierbarkeit
eines Bauwerkes ebenso wichtig wie seine Tragfestigkeit. In erster
Näherung kommt es sogar nur auf das Produkt dieser Grössen an.
Eine gute Plastiflzierbarkeit erhöht aber auch die zulässige quasistatische

Belastung und fängt Rückfederungsbewegungen auf.
4. In den meisten praktischen Anwendungsfällen gelingt es, das
dynamische Verhalten von Bauwerken gegen Druckstossbelastungen
genügend genau, d. h. auf einige 10% genau, zu analysieren durch
konsequente Elimination aller Parameter bis auf die 6 Grössen:
Spitzenlast und Stossdauer, Masse und elasto-plastischer Streckenzug
im Last-Deformationsdiagramm.
5. Dieselben Schlussfolgerungen und Konsequenzen wie bei Druck-
stossbeanspruchungen können gezogen werden bei Belastungen von
Bauwerken durch Erdbeben. Es braucht lediglich die äussere Last
ersetzt zu werden durch eine fiktive Trägheitskraft, die gegeben ist durch
stellvertretende Masse Me des Bauteils, multipliziert mit der Beschleunigung

des Auflagers. Freilich kann die Auflagerbeschleunigung bei
Erdbeben nicht immer durch einen einzigen dreieckförmigen Verlauf
approximiert werden, und daher drängen sich leicht modifizierte
Berechnungsverfahren auf.
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ETH: ein Rücktritt und ein Ausblick
DK 378.962

Die Abschiedsvorlesung von Prof. Fritz Stüssi, am 24. Februar,
fand im Auditorium maximum statt, das fast bis auf den letzten Platz
gefüllt war von jungen und alten Schülern und Freunden des Meisters,
die ihn mit reichem Beifall begrüssten und verabschiedeten.

Gleich zu Anfang seiner Ausführungen zum Thema «Hängebrücken

grosser Spannweite» kündigte Fritz Stüssi an, dass er weit
über den durch den Titel gesteckten Rahmen hinauszugehen gedenke.
So wollen wir denn auch heute weder auf die Hängebrücken noch auf
O. H. Ammann, die beide im Zentrum der sorgfältig ausgeschliffenen
Betrachtungen standen, eintreten, sondern auf die Schlussfolgerungen,
die der Redner für die Zukunft der ETH zog. Seines Erachtens sollte
der Studienplan nicht wesentlich verändert werden gegenüber dem
heutigen Stand. An der Bauingenieur-Abteilung bieten die vier
Hauptgebiete Stahlbau, Massivbau, Wasserbau und Strassenbau eine
Breite der Ausbildung, die nicht ohne Schaden für die Gründlichkeit
des Studiums um weitere Sparten vergrössert werden könnte. Die
Pflege der Grundlagen der Hauptgebiete muss das erste Anliegen der
Ausbildung bleiben; sie dürfen nicht zu Gunsten der Spezialfächer
beschnitten werden. Die Normalstudienpläne müssen systematisch
aufgebaut sein, doch dürfen sie die Freiheit des Dozenten, der allein die
Verantwortung für den Inhalt der Vorlesung trägt, nicht einschränken.
Wichtig ist, dass z. B. in der Abteilung II Baustatik I und Stahlbau ein
und derselben Hand anvertraut sind.

Anlässlich des Abendessens im Gesellschaftshaus zum Rüden, das
Prof. B. Thiirlimann als Vorstand der Abteilung II mit Geschick
leitete, kamen in mancher Tischrede ähnliche Gedanken mit aller
Deutlichkeit zum Ausdruck. Prof. Karl Schmid fand besonders
treffende Formulierungen; so wenn er sagte, die ETH dürfe nicht zu
einem Warenhaus werden, das immer die neuesten Modeartikel führt.
Es muss scharf unterschieden werden zwischen dem für die Schüler
Notwendigen und dem nur Wünschbaren. Heute ist die Struktur der
Schule von der Forschung her gefährdet, die ein Schlagwort ersten
Ranges geworden ist. Und doch sind es vielleicht nur 7*° aller Schüler,
die Forscher werden, während für die andern "ho die Ausbildung zum
Berufsmann das Ziel des Unterrichts bleiben muss. Pflege der schulischen

Zucht ist daher wichtiger als Forschung. Weil sie den auf das
Wesentliche konzentrierten Unterricht pflegt, bezeichnete Karl
Schmid die Abteilung II als konservativsten Flügel der ETH und Fritz
Stüssi als ihren Eckpfeiler.

Aus den weiteren Ansprachen, von Prof. Gerold Schnitter, Prof.
O. Steinhardt (Karlsruhe), Dir. Max Birkenmaier, der für den S.I.A.
sprach, Dr. Charles Dubas (Vevey) und Prof. Guido Calgari tönte
übereinstimmend die Hochschätzung für die markante, nicht immer
bequeme Persönlichkeit des Gefeierten heraus, sei es in ernster
Würdigung seines Wesens oder in der Schilderung köstlicher Erlebnisse

freundschaftlichen Zusammenwirkens. Schulrats-Vizepräsident
Claude Seippel nahm die Gelegenheit wahr, den neu gewählten Schul-
ratspräsidenten Minister Jakob Burckhardt warm zu empfehlen. Aus
den bewegten Schlussworten von Prof. Stüssi sprach die ehrliche
Gradheit seines Charakters, seine Dankbarkeit gegenüber seinen
Lehrern, seine Freude über die ihm bevorstehende Müsse zu freiem
Schaffen und seine hohe Befriedigung über die Wahl seines Nachfolgers,

Prof. Pierre Dubas. W. J.
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