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schaftlichen Entschuldungsgesetz verweigert, gilt Artikel 218 des
Obligationenrechtes, der fiir die Verdusserung landwirtschaftlicher
Grundstiicke eine Sperrfrist von sechs Jahren verfiigt.

Die luzernische Gemeinde Malters hatte sich schon mehrfach
mit den dargelegten Fragen zu befassen. Der Gemeinderat fasste nun
kiirzlich einen grundsitzlichen Entscheid, der iber die Grenzen von
Malters hinaus Beachtung verdient. Demnach werden in der Bauzone
gelegene Bauparzellen aus dem landwirtschaftlichen Entschuldungs-
gesetz entlassen, wenn die Erschliessung sichergestellt ist. Dadurch
will der Gemeinderat einen Beitrag leisten, dass ein moglichst hohes
Angebot an Bauland entsteht. Werden ausserhalb der Bauzone Par-
zellen zu einem Baulandpreis verkauft, bleibt fiir diese das landwirt-
schaftliche Entschuldungsgesetz massgebend. Gleichwohl soll das
Land dem bezahlten Preis entsprechend zum Verkehrswert besteuert

Theoretische Grundlagen der Schwingungsberechnung von Bauteilen

Von Prof. Dr. Christoph Wehrli, ETH, Ziirich

werden, sofern die Parzellen nicht mit einem landwirtschaftlichen
Betrieb vereinigt werden. Ausserhalb der Bauzone soll solches Land
nur dann aus der Unterstellung unter das landwirtschaftliche Ent-
schuldungsgesetz entlassen werden, wenn eine Baubewilligung vor-
liegt.

Allzu oft hat man den Eindruck, die Praxis in der Besteuerung
und in der Handhabung rechtlicher Massnahmen stimme mit der
Konzeption, die Hortung von Bauland und eine ungerechtfertigte
Steigerung der Bodenpreise iiberhaupt zu verhindern, nicht iiberein.
Um so erfreulicher ist der Entscheid des Gemeinderates von Malters,
der sachlich genau den Grundsitzen entspricht, die die Schweizeri-
sche Vereinigung fiir Landesplanung in ihrer im Herbst 1965 erschie-
nenen Broschiire «Gedanken zum Bodenrecht und zur Bodenpolitik»
aufgestellt hat. VLP

DK 624.042.8

Vortrag, gehalten am 15, Oktober 1965 an der ETH anl&sslich der Studientagung iiber dynamische Wirkungen auf Bauwerke, durchge-
fihrt von der S. |. A.-Fachgruppe der Ingenieure flr Brickenbau und Hochbau

1. Einleitung

Schwingungen sind mehr oder weniger regelméssige zeitliche
Schwankungen von Zustandsgrossen. In der Natur und in allen
Bereichen der Technik treten Schwingungen auf. Als mechanische
Schwingungen bezeichnet man Bewegungen eines Systems um eine
Gleichgewichtslage, wobei die Zustandsgrossen Lagekoordinaten sind.

In der Schwingungslehre unterscheidet man im wesentlichen vier
Gruppen von Schwingungen: Eigenschwingungen, erzwungene
Schwingungen, parametererregte Schwingungen und selbsterregte
Schwingungen. Von diesen Schwingungstypen, die durch ihre Ent-
stehungsart gekennzeichnet sind, werden im folgenden ausschliesslich
die ersten beiden betrachtet.

Eigenschwingungen oder freie Schwingungen sind Bewegungen
des sich selbst iiberlassenen Schwingers ohne dussere Einwirkungen.

Von erzwungenen Schwingungen spricht man bei Bewegungen
unter dem Einfluss dusserer Storungen wie Erschiitterungen, Stor-
kriften, Stoss usw.

Da schon Schwingungen mit endlichem Freiheitsgrad die wesent-
lichen Erscheinungen und Eigenschaften erkennen lassen, werden wir
uns im weiteren zunichst mit derartigen Schwingungen befassen und
anschliessend noch kurz auf Fragen bei kontinuierlichen Schwingern
iibergehen. Ferner sei darauf hingewiesen, dass abgesehen von einer
Ausnahme nur lineare Probleme zur Sprache kommen. Es scheint im
Rahmen dieser kurzen Einfithrung zweckméssig, sich vor allem anhand
von geeigneten Beispielen ein Bild iiber die wichtigsten Tatsachen zu
verschaffen.

2. Freie Schwingungen

Als Beispiel eines Schwingers mit einem Freiheitsgrad nehmen
wir einen Massenpunkt m auf einem masselos gedachten, elastischen
Stab (Bild 1). Mit der von der Gleichgewichtslage aus gemessenen
Verschiebung y ergibt der Impulssatz die Differentialgleichung

@.1)

deren Losung y = A cos (w t — &) eine harmonische Schwingung mit
der Eigenkreisfrequenz v = Vc /m darstellt. Amplitude 4 und Phasen-
verschiebung ¢ werden durch zwei Anfangsbedingungen bestimmt.

my +cy =0,

A Clytys) X4

Bild 2 zeigt ein System mit zwei Freiheitsgraden, bestehend aus
zwei Massen m an elastischen Stdben, gekoppelt durch eine Feder.
Formulieren wir den Impulssatz fiir jeden der beiden Massenpunkte
und ordnen die erhaltenen Gleichungen, so folgt

m¥ + (e, + )% —ex,=0,
22
mx, —cyx; + (e +¢) %, =0 .

Mit dem Ldsungsansatz x; = A; cos (w t —¢), (I = 1,2) entsteht ein
homogenes Gleichungssystem fiir 4; und A,, das, falls es nicht nur die
Nullosung haben soll, eine verschwindende Determinante besitzt:

23) Ad@)=mrot—2mc; +ec)o*+c¢(ea+2¢)=0.

Die Wurzeln dieser Gleichung o, = Vcl/m und w, = l/(c1 +2c¢)/m
sind die Eigenkreisfrequenzen des Schwingers, dessen allgemeinste
Bewegung durch Uberlagerung der beiden Eigenschwingungen ent-
steht: x; = Ay cos (o, t — &) + Ay, cos (v, t — &), (I = 1,2). Dabei
ist zu beachten, dass die A4i;; und A, je dem erwdhnten Gleichungs-
system geniigen miissen, sodass vier Anfangsbedingungen zur Ermitt-
lung der vorkommenden Konstanten ausreichen. Das beschriebene
Vorgehen l4sst sich ohne weiteres auf den allgemeinen Fall von beliebi-
gem Freiheitsgrad erweitern.

3. Erzwungene Schwingungen
a. Erregung durch Stoss

Unter einem Stoss versteht man eine Anderung des Bewegungs-
zustandes eines Korpers oder Systems in einem Zeitintervall, das so
kurz ist, dass sich die Lage nicht merklich dndert. Die in diesem
Zusammenhang etwa in Frage kommende Art des Stosses besteht im
Auftreffen einer Masse auf den Schwinger.

Um einen konkreten Fall zu haben, denken wir uns einen Massen-
punkt 7, der mit der Schnelligkeit v, vertikal auf die ruhende Masse
des Schwingers von Bild 1 auftrifft. Der Impulssatz, formuliert fiir das
System, bestehend aus beiden Massen wahrend des Stossvorganges,
lautet my + m, y; = m, g, oder integriert iiber die Stosszeit 4 ¢:

@B.1) moA¢t)+ mo, (At)=mva.

Gl el Sl s e 2
A £

€4

mg

Bild 1. Schwinger mit Freiheitsgrad eins;
zwel;
mg mg 3

e s e

= Stablidnge,

EJ — Biegesteifigkeit 3EJ

I3

G —
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Bild 2. Schwinger mit Freiheitsgrad

¢, = Federkonstante Bild 3. Sprungfunktion
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f Bild 4 (links). Stossfunktion, wobei

Bei einem vollkommen unelastischen Stoss ist v (4 t) = v, (4 1),
nach (3.1) also die gemeinsame Schnelligkeit beider Massen

m, Vg

o) e
(3.2 oy

v(dr) =

Wir kénnen nun die Schwingungsdifferentialgleichung in der Form
(m+m)y+cy=7@r) (Bid3)

schreiben, zu der die Anfangsbedingungen y (0) = 0,
y(©) = v (4¢) = v, gehbren. Die Mittellage der Schwingung ver-
schiebt sich sprunghaft um den Betrag m, gfc.

Beim vollkommen elastischen Stoss ergeben sich v (4¢) und
vy (4 £) aus (3.1) und der Bedingung fiir die Erhaltung der kinetischen
Energie. Abgesehen von eventuellen weiteren Stdssen der beiden
Massen lasst sich die Schwingungsaufgabe folgendermassen formulie-
ren:

(Bild 4), 7 ()i = (0) =0k

Zur Ermittlung des Hochstausschlages, der von besonderem Interesse
ist, wird zweckmaéssig der Energiesatz herangezogen, da sich diese
Methode auch fiir nichtlineare Fille eignet.

Zunéchst sei rein elastisches Verhalten des Schwingers vorausge-

setzt. Mit ymax als grosste Auslenkung (von der Ruhelage aus gemes-
sen) folgt dann (Bild 5a)

my + cy = f(t)

1 3
= (m + my) Ug = (m + my) gYmax — [(ve + rymax)* — ]

und daraus fiir unelastischen Stoss mit (3.2) und der Abkiirzung

Yo =myglec

5 N
3.3 max = V@ 1 1 L e (G
(3.3) Yma Y& ,: +]/ ol +yG]) ]

Die Wurzel wird als Stosszuschlag bezeichnet.

Nun nehmen wir einen elastisch-idealplastischen Schwinger an,
der sich infolge des Stosses auch plastisch deformiert (Bild 5b):

1
5 (m + my) v =

1 P
= (G T GJ) Ymax —T (P} — Gz) — Pf (}’max T i) )
) C

IC4]

Tt £ P
lim Jf(f) dt = m v, Formanderungsarbeif/ Formanderungsarbeit
£->0 —¢ 0y X \
Bild 5 (rechts). Zur Berechnung des Hachstaus- Al
schlages
] s = Auslenkung aus undeformierter Lage
D Wik P = Ruckstellkraft s

a)

also

Pi+ G+ cv?(m +my)
2cBr—G=G)

Ymax =

Hier ist der Stosszuschlag nicht mehr definiert, da keine statische Last
existiert, fiir welche die Auslenkung den berechneten Wert Ymax hat.

b. Harmonische Erregung

Harmonisch mit der Zeit verdnderliche Storkrifte oder Erschiit-
terungen als Ursache von Schwingungen spielen eine wichtige Rolle,
da sie hdufig auftreten. Zudem kann die Reaktion des Schwingers auf
allgemeine periodische Stérungen aus Einzelreaktionen zusammen-
gesetzt werden, die von harmonischen Anteilen herriihren.

Um an bereits besprochene Beispiele ankniipfen zu konnen,
erteilen wir zuerst den Lagern des Schwingers von Bild 1 vertikale
Bewegungen acos 2 ¢. Die Gleichung (2.1) wird jetzt inhomogen,
indem auf der rechten Seite das Glied c acos 2 ¢ hinzukommt; sie

. . . Ca
besitzt das partikulire Integral y, = s (U')zi_' .Q? cos 2. Der
! ca .
Verlauf der Amplitude C (Q) = =) dieser eigentlichen er-

zwungenen Schwingung ist in Bild 6 durch die gestrichelte Kurve
dargestellt.

Eine Storkraft Pcos ¢, die am rechten Massenpunkt des
Systems von Bild 2 angreift, hat einen Storterm in der zweiten Glei-
chung (2.2) zur Folge. Auch hier bezeichnet man die partikulire
Lésung x,» = C, cos 2 ¢, x,p = C, cos 2 ¢ als eigentliche erzwungene

Pc
Schwingung, deren Amplituden C; = T-é) ;

C, (c; + ¢ — m %) (vergl. (2.3)) in Bild 7 auch wieder ge-

2
= @)
strichelt skizziert sind. Durch Uberlagerung von Eigenschwingung
und erzwungener Schwingung gewinnt man die allgemeinste Bewe-
gung des Schwingers.

Das Verhalten eines Schwingers wird durch die Démpfung wesent-
lich beeinflusst. Fiir den Fall der geschwindigkeitsproportionalen
Dimpfung klingt die Eigenschwingung exponentiell mit der Zeit ab,
sodass praktisch nur die eigentliche erzwungene Schwingung iibrig
bleibt. Die Abhéngigkeit ihrer Amplituden von der Storfrequenz ist
den ausgezogenen Kurven in den Bildern 6 und 7 zu entnehmen. Das
Anwachsen der Amplituden in der Umgebung der Eigenkreisfrequen-
zen bedeutet Resonanz.

[Cel

Bild 6. Amplitude der erzwungenen Schwingung a)
fiir Schwinger von Bild 1
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b)

Bild 7. Amplituden der erzwungenen Schwingung fiir Schwinger von Bild 2.

Schweiz. Bauzeitung « 84. Jahrgang Heft 9 - 3. Marz 1966



e Qoo >
M
e e %ﬁ ------ P, -
P

Bild 8 (oben). Querschwingungen eines Stabes

Bild 9 (Mitte). Zur Beriicksichtigung der
Masse m bei homogenem prismatischem Stab

Bild 10 (unten). Stab mit wandernder Last;

y1=1—cos %

7

4. Schwingungen bei verteilter Masse

Bei den meisten Schwingungsproblemen ist die Masse nicht in
einzelnen Punkten konzentriert, sondern mindestens zum Teil konti-
nuierlich verteilt, was bewirkt, dass der Freiheitsgrad unendlich gross
wird. Das prinzipielle Vorgehen bei solchen Schwingern wollen wir uns
kurz am Beispiel der Querschwingungen des einseitig eingespannten
Stabes veranschaulichen (Bild 8). Zur Differentialgleichung (E J u”)”
= —o Fii (EJ = Biegesteifigkeit, ¢ = Dichte, F = Querschnitt)
gehoren die Randbedingungen u (0, ) =/ (0,¢) =u" ([, t) =u"" ([, 1)
= 0. Im Sinne einer Verallgemeinerung der Methode bei endlichem
Freiheitsgrad macht man fiir die Eigenschwingungen den Ansatz
u(x,t) = y(x)cos (wt—e). Nur fir ganz bestimmte Werte von o,
den FEigenkreisfrequenzen, gibt es Losungen y # 0 der durch Einsetzen
gewonnenen gewOhnlichen Differentialgleichung, die den Randbe-
dingungen geniigen. Mit den Eigenkreisfrequenzen 0 < w; < w, < ...
und den entsprechenden Eigenfunktionen y, y,, . . . wird die allgemeine

(00
Losung u (x, #) = Y yi (x) cos (0 t — &) gebildet.
i=1

Da die w; nur in ganz wenigen Spezialféllen exakt anzugeben sind,
wurden verschiedene N#herungsverfahren entwickelt. Ein wichtiges
stiitzt sich auf den Energiesatz und lasst sich allgemein bei elastischen
Schwingern anwenden.

Man setzt eine Eigenschwingung u = y cos w ¢ mit einer geschétz-
ten Eigenfunktion y (eine die Randbedingungen befriedigende Orts-
funktion) an. Mit der in der Ruhelage verschwindenden potentiellen

1 : :
Energie V'und der kinetischen Energie 7' = > f ow?y?sin? wtdy gilt:

1
T ¥ = Konst. = Vinax = Tmax = - aﬂfgyzczu i Gl

@? = Vmax/T*. Der Quotient Vmax/T¥ stellt eine Ndherung fiir die
Eigenkreisfrequenz der geschitzten Eigenschwingung dar. Sehr eng in
Zusammenhang mit dieser Eigenschaft steht das Rayleighsche Prinzip,
wonach w1 das Minimum des Quotienten Vmax/T * ist.

Eine einfache Anwendung moge die Methode erldautern (Bild 9):

U
Mit y = l—i(} =52} (x = ?) als Niherung fiir die erste

Eigenfunktion kommt

L)
fEJy"zdx
0 48 EJ

2 =
T

1 / M—i—im 3 i
f@ Hytdx +—= My? (—) 35
J 2 2

Wie das Beispiel deutlich zeigt, fithren diese Uberlegungen den Schwin-
ger auf einen solchen vom Freiheitsgrad eins mit geeignet vergrosserter
Masse zuriick. Daraus folgt insbesondere, dass (3.3) auch als Naherung
fiir ymax bei Beriicksichtigung der verteilten Masse angesehen werden
kann.

Schweiz, Bauzeitung + 84. Jahrgang Heft 9 - 3. Marz 1966

Auf Grund der Aussage iiber Resonanz in Abschnitt 3b, die ebenso
fiir kontinuierliche Schwinger gilt, sind schon Niherungswerte im
Hinblick auf die Resonanzstellen ausserordentlich niitzlich. Soll bei-
spielsweise beim beidseitig eingespannten Balken mit wandernder
Last (Bild 10) die kleinste kritische Geschwindigkeit untersucht
werden, so ergibt sich aus

2% xdx

13
EJ[‘cos\2
0 167 EJ
L S
20 N2
QFf(lﬁcosTx) dx

0

2
w3

2

ml3

und der Uberlegung, dass die Last in der halben Eigenschwingungs-
dauer iiber den Balken laufen muss

. B w, [ 47 EJ
U1 grit, = ey ﬁ el
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Die Villa Savoie vom Zerfall bedroht DK 72

Die Villa Savoie in Poissy (rd. 20 km nordwestlich von Paris,
an der Seine gelegen) ist 1929-31 entstanden. In diesem herrlich ge-
legenen Bau konnte Le Corbusier seine fiinf Grundsitze, mit welchen
er die Briicke zwischen einer neuen Wohnform und der Technik zu
schlagen trachtete, in besonders freier und klarer Form verwirklichen.
Es waren dies die 5 Punkte:

1. die frei durchgehenden Stiitzen (pilotis);

2. Unabhéngigkeit der tragenden Konstruktion von der raumab-
schliessenden und ihre Folge:

3. der freie Grundriss;

4. die freie Fassade, sowie (neben moglichst entlastetem Erdgeschoss)

5. die ausgebildeten Dachgirten.

Heute ist die Villa Savoie vom Zerfall bedroht. Es ist daher ein
Verdienst der Architekturstudenten an der ETH und weiterer Kreise,
die Aufmerksamkeit des franzosischen Kultusministers Malraux so-
wie der Allgemeinheit auf die Erhaltung dieses grundsétzlich wichtigen
Werkes des verstorbenen Meisters gerichtet zu haben. Die Villa
Savoie wurde im Gesamtwerk «Le Corbusier und Pierre Jeanneret»,
Vol. 2, 1929-1934, herausgegeben von W. Boesiger im Verlag Dr.
H. Girsberger, Ziirich, publiziert. Ein Vergleich der kurz nach Voll-
endung erfolgten photographischen Aufnahmen mit den hier wieder-
gegebenen Bildern aus jiingster Zeit erweist drastisch, wie berechtigt
die Sorge um dieses Baudenkmal ist. G. R.

Resolution

« Die Architekturabteilung der Eidgendssischen Technischen Hoch-
schule in Ziirich, deren Studenten, zusammengeschlossen in der < Archi-
tektura>, sowie die Teilnehmer an der Gedenkfeier fiir Le Corbusier

Villa Savoie von Westen gesehen (heutiger Zustand)

173



	Theoretische Grundlage der Schwingungsberechnung von Bauteilen

