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schaftlichen Entschuldungsgesetz verweigert, gilt Artikel 218 des

Obligationenrechtes, der für die Veräusserung landwirtschaftlicher
Grundstücke eine Sperrfrist von sechs Jahren verfügt.

Die luzernische Gemeinde Malters hatte sich schon mehrfach
mit den dargelegten Fragen zu befassen. Der Gemeinderat fasste nun
kürzHch einen grundsätzHchen Entscheid, der über die Grenzen von
Malters hinaus Beachtung verdient. Demnach werden in der Bauzone
gelegene Bauparzellen aus dem landwirtschaftlichen Entschuldungsgesetz

entlassen, wenn die Erschliessung sichergestellt ist. Dadurch
will der Gemeinderat einen Beitrag leisten, dass ein möglichst hohes
Angebot an Bauland entsteht. Werden ausserhalb der Bauzone Par-
zeHen zu einem Baulandpreis verkauft, bleibt für diese das
landwirtschaftliche Entschuldungsgesetz massgebend. Gleichwohl soU das
Land dem bezahlten Preis entsprechend zum Verkehrswert besteuert

werden, sofern die Parzellen nicht mit einem landwirtschaftlichen
Betrieb vereinigt werden. Ausserhalb der Bauzone soll solches Land
nur dann aus der UntersteUung unter das landwirtschafüiche
Entschuldungsgesetz entlassen werden, wenn eine BaubewilHgung vor-
Hegt.

Allzu oft hat man den Eindruck, die Praxis in der Besteuerung
und in der Handhabung rechtlicher Massnahmen stimme mit der
Konzeption, die Hortung von Bauland und eine ungerechtfertigte
Steigerung der Bodenpreise überhaupt zu verhindern, nicht überein.
Um so erfreuHcher ist der Entscheid des Gemeinderates von Malters,
der sachHch genau den Grundsätzen entspricht, die die Schweizerische

Vereinigung für Landesplanung in ihrer im Herbst 1965 erschienenen

Broschüre «Gedanken zum Bodenrecht und zur Bodenpolitik»
aufgestellt hat. VLP

DK 624.042.8Theoretische Grundlagen der Schwingungsberechnung von Bauteilen
Von Prof. Dr. Christoph Wehrli, ETH, Zürich

Vortrag, gehalten am 15. Oktober 1965 an der ETH anlässlich der Studientagung über dynamische Wirkungen auf Bauwerke, durchgeführt

von der S. I. A.-Fachgruppe der Ingenieure für Brückenbau und Hochbau

1. Einleitung
Schwingungen sind mehr oder weniger regelmässige zeitHche

Schwankungen von Zustandsgrössen. In der Natur und in aUen

Bereichen der Technik treten Schwingungen auf. Als mechanische
Schwingungen bezeichnet man Bewegungen eines Systems um eine
Gleichgewichtslage, wobei die Zustandsgrössen Lagekoordinaten sind.

In der Schwingungslehre unterscheidet man im wesentlichen vier
Gruppen von Schwingungen: Eigenschwingungen, erzwungene
Schwingungen, parametererregte Schwingungen und selbsterregte
Schwingungen. Von diesen Schwingungstypen, die durch ihre
Entstehungsart gekennzeichnet sind, werden im folgenden ausschliessHch

die ersten beiden betrachtet.
Eigenschwingungen oder freie Schwingungen sind Bewegungen

des sich selbst überlassenen Schwingers ohne äussere Einwirkungen.
Von erzwungenen Schwingungen spricht man bei Bewegungen

unter dem Einfluss äusserer Störungen wie Erschütterungen,
Störkräften, Stoss usw.

Da schon Schwingungen mit endHchem Freiheitsgrad die wesent-
Hchen Erscheinungen und Eigenschaften erkennen lassen, werden wir
uns im weiteren zunächst mit derartigen Schwingungen befassen und
anschliessend noch kurz auf Fragen bei kontinuierHchen Schwingern
übergehen. Ferner sei darauf hingewiesen, dass abgesehen von einer
Ausnahme nur Hneare Probleme zur Sprache kommen. Es scheint im
Rahmen dieser kurzen Einführung zweckmässig, sich vor allem anhand

von geeigneten Beispielen ein Bild über die wichtigsten Tatsachen zu
verschaffen.

2. Freie Schwingungen
Als Beispiel eines Schwingers mit einem Freiheitsgrad nehmen

wir einen Massenpunkt m auf einem masselos gedachten, elastischen
Stab (Bild 1). Mit der von der Gleichgewichtslage aus gemessenen
Verschiebung y ergibt der Impulssatz die Differentialgleichung

(2.1) my + cy 0

deren Lösung y A cos (cot — e) eine harmonische Schwingung mit
der Eigenkreisfrequenz a> ]jc\m darstellt. AmpHtude A und

Phasenverschiebung e werden durch zwei Anfangsbedingungen bestimmt.

Bild 2 zeigt ein System mit zwei Freiheitsgraden, bestehend aus
zwei Massen m an elastischen Stäben, gekoppelt durch eine Feder.
Formulieren wir den Impulssatz für jeden der beiden Massenpunkte
und ordnen die erhaltenen Gleichungen, so folgt

(2.2)

m'xx + (c± + c2) x1 — c2 x2 0

mx2 — c2x1 + fa + c2) x2 0

Mit dem Lösungsansatz xt At cos (cot — s), (i 1,2) entsteht ein
homogenes Gleichungssystem für Ax und A2, das, falls es nicht nur die
NuHösung haben soll, eine verschwindende Determinante besitzt:

(2.3) A (w) m2 co4 — 2 m P + c2) <

DieWurzeln dieser Gleichung a>1 YcJ~m und

+ _! (cj + 2 c2) 0

: JAa + 2 c2)/m

sind die Eigenkreisfrequenzen des Schwingers, dessen aHgemeinste
Bewegung durch Überlagerung der beiden Eigenschwingungen
entsteht: xt A^ cos (<_! t — e,) + Ai2 cos (co2 t — e2), (i 1,2). Dabei
ist zu beachten, dass die Aix und Ai2 je dem erwähnten Gleichungssystem

genügen müssen, sodass vier Anfangsbedingungen zur Ermittlung

der vorkommenden Konstanten ausreichen. Das beschriebene

Vorgehen lässt sich ohne weiteres auf den aUgemeinen Fall von beliebigem

Freiheitsgrad erweitern.

3. Erzwungene Schwingungen
a. Erregung durch Stoss

Unter einem Stoss versteht man eine Änderung des Bewegungszustandes

eines Körpers oder Systems in einem ZeitintervaH, das so
kurz ist, dass sich die Lage nicht merkHch ändert. Die in diesem

Zusammenhang etwa in Frage kommende Art des Stosses besteht im
Auftreffen einer Masse auf den Schwinger.

Um einen konkreten Fall zu haben, denken wir uns einen Massenpunkt

m, der mit der SchnelHgkeit va vertikal auf die ruhende Masse
des Schwingers von Bild 1 auftrifft. Der Impulssatz, formuHert für das

System, bestehend aus beiden Massen während des Stossvorganges,

lautet my + m1 'yx mxg, oder integriert über die Stosszeit At:
(3.1) mv (A i) + m\ vx (A t) mt va

*c|y+ys !-H

*.

mq

rr^g

Bild 1. Schwinger mit Freiheitsgrad eins

mg
ya

mgl3
48 EJ

l Stablänge,

EJ Biegesteifigkeit
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Bild 2. Schwinger mit Freiheitsgrad
zwei;
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-! —pr- c2 Federkonstante
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Bild 3. Sprungfunktion
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Bild 4 (links). Stossfunktion, wobei

+ F

lim j f(t) dt m v0

Bild 5 (rechts). Zur Berechnung des Höchstausschlages

_ Auslenkung aus undeformierter Lage
P Rückstellkraft

Formänderungsarbeit-ormanderungsarbe

ymax

Bei einem vollkommen unelastischen Stoss ist v (A t)
nach (3.1) also die gemeinsame SchneUigkeit beider Massen

_! (A t), also

(3.2) v(At)
m, Va

Wir können nun die Schwingungsdifferentialgleichung in der Form

(m + mi)y + cy=f(t) (Bild 3)

schreiben, zu der die Anfangsbedingungen y (0) 0,
y (0) v (A t) v0 gehören. Die Mittellage der Schwingung
verschiebt sich sprunghaft um den Betrag m\ g\c.

Beim vollkommen elastischen Stoss ergeben sich v (A t) und
z>x (A t) aus (3.1) und der Bedingung für die Erhaltung der kinetischen
Energie. Abgesehen von eventueHen weiteren Stössen der beiden
Massen lässt sich die Schwingungsaufgabe folgendermassen formuHe-
ren:

my + cy f(t) (Bild 4), y (0) y (0) 0

Zur Ermittlung des Höchstausschlages, der von besonderem Interesse
ist, wird zweckmässig der Energiesatz herangezogen, da sich diese
Methode auch für nichüineare FäHe eignet.

Zunächst sei rein elastisches Verhalten des Schwingers vorausgesetzt.

Mit ymax als grösste Auslenkung (von der Ruhelage aus gemessen)

folgt dann (Bild 5a)

1

(m + mx) gymzx — y [(ya + ym&x)2 —yf}]

und daraus für unelastischen Stoss mit (3.2) und der Abkürzung

7-i «i_7c

— y (m + «O v0

(3.3) yma.x yat 1 1 +¦ ' (ya + ycti)

Die Wurzel wird als Stosszuschlag bezeichnet.

Nun nehmen wir einen elastisch-idealplastischen Schwinger an,
der sich infolge des Stosses auch plastisch deformiert (Bild 5b):

1

—y (m mdvl

ymax
P2f+G2 + cv2(m +wt)

2c(Pf~G — G1)

Hier ist der Stosszuschlag nicht mehr definiert, da keine statische Last
existiert, für welche die Auslenkung den berechneten Wert ymstx hat.
b. Harmonische Erregung

Harmonisch mit der Zeit veränderfiche Störkräfte oder
Erschütterungen als Ursache von Schwingungen spielen eine wichtige RoUe,
da sie häufig auftreten. Zudem kann die Reaktion des Schwingers auf
allgemeine periodische Störungen aus Einzeheaktionen zusammengesetzt

werden, die von harmonischen Anteilen herrühren.
Um an bereits besprochene Beispiele anknüpfen zu können,

erteilen wir zuerst den Lagern des Schwingers von Bild 1 vertikale
Bewegungen a cos ü t. Die Gleichung (2.1) wird jetzt inhomogen,
indem auf der rechten Seite das Glied cacosO t hinzukommt; sie

besitzt das partikuläre Integral yp

Verlauf der Amplitude C (O) H

m (cu2 — ü2)
cos ü t. Der

m (ai2 — ü2)
dieser eigentlichen er¬

zwungenen Schwingung ist in Bild 6 durch die gestrichelte Kurve
dargestellt.

Eine Störkraft P cos Q t, die am rechten Massenpunkt des
Systems von Bild 2 angreift, hat einen Störterm in der zweiten
Gleichung (2.2) zur Folge. Auch hier bezeichnet man die partikuläre
Lösung xtp Q cos Q t, x2P C2 cos Ü t als eigentliche erzwungene

Schwingung, deren AmpHtuden Cx

P

Pc2

mm
A(Q)

(Cl + c2

A(Q) '

m O2) (vergl. (2.3)) in Bild 7 auch wieder ge-

(G + C,) J>max
Pf

(P2 G2) Pf2c

R

strichelt skizziert sind. Durch Überlagerung von Eigenschwingung
und erzwungener Schwingung gewinnt man die aHgemeinste Bewegung

des Schwingers.
Das Verhalten eines Schwingers wird durch die Dämpfung wesent-

Hch beeinflusst. Für den Fall der geschwindigkeitsproportionalen
Dämpfung klingt die Eigenschwingung exponentieH mit der Zeit ab,
sodass praktisch nur die eigentliche erzwungene Schwingung übrig
bleibt. Die Abhängigkeit ihrer Amplituden von der Störfrequenz ist
den ausgezogenen Kurven in den Bildern 6 und 7 zu entnehmen. Das
Anwachsen der AmpHtuden in der Umgebung der Eigenkreisfrequenzen

bedeutet Resonanz.

m

LD.1 U)2

Bild 6. Amplitude der erzwungenen Schwingung
für Schwinger von Bild 1

a) b)
Bild 7. AmpHtuden der erzwungenen Schwingung für Schwinger von Bild 2.
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Bild 8 (oben). Querschwingungen eines Stabes

Bild 9 (Mitte). Zur Berücksichtigung der
Masse m bei homogenem prismatischem Stab

Bild 10 (unten). Stab mit wandernder Last;

yi~i In
- cos —— x

4. Schwingungen bei verteilter Masse
Bei den meisten Schwingungsproblemen ist die Masse nicht in

einzelnen Punkten konzentriert, sondern mindestens zum Teil
kontinuierlich verteilt, was bewirkt, dass der Freiheitsgrad unendlich gross
wird. Das prinzipielle Vorgehen bei solchen Schwingern woUen wir uns
kurz am Beispiel der Querschwingungen des einseitig eingespannten
Stabes veranschauUchen (Bild 8). Zur Differentialgleichung (EJu")"

— q Fü (E J Biegesteifigkeit, g Dichte, F Querschnitt)
gehören die Randbedingungen u (0, t) «' (0, r) u" (l, t) u'" (l, t)

0. Im Sinne einer Verallgemeinerung der Methode bei endHchem
Freiheitsgrad macht man für die Eigenschwingungen den Ansatz
u(x,t)=y(x) cos (a> t — e). Nur für ganz bestimmte Werte von co,

den Eigenkreisfrequenzen, gibt es Lösungen y # 0 der durch Einsetzen

gewonnenen gewöhnUchen Differentialgleichung, die den
Randbedingungen genügen. Mit den Eigenkreisfrequenzen 0 < co^ < cu2 <
und den entsprechenden Eigenfunktionen yx y2, wird die allgemeine

Lösung u(x,t)
CO

J^yi (x) cos 0cot t- ¦ et) gebildet.

Da die cot nur in ganz wenigen Spezialfällen exakt anzugeben sind,
wurden verschiedene Näherungsverfahren entwickelt. Ein wichtiges
stützt sich auf den Energiesatz und lässt sich aUgemein bei elastischen
Schwingern anwenden.

Man setzt eine Eigenschwingung u y cos m t mit einer geschätzten

Eigenfunktion y (eine die Randbedingungen befriedigende
Ortsfunktion) an. Mit der in der Ruhelage verschwindenden potentieUen

Energie Fund der kinetischen Energie T ¦¦ mQoP-y2 sin2 cotdv gilt:

: konst. 2

/ Qy2dv ¦- ¦co2T*, d.h.

cu2 Vm.2.xjT*. Der Quotient Vm&xIT* stellt eine Näherung für die
Eigenkreisfrequenz der geschätzten Eigenschwingung dar. Sehr eng in
Zusammenhang mit dieser Eigenschaft steht das Rayleighsche Prinzip,
wonach cui das Minimum des Quotienten Pmax/7"* ist.

Eine einfache Anwendung möge die Methode erläutern (Bild 9):

Mit y -(3/2 ¦x2), (*^y)
Eigenfunktion kommt

§EJy"2d>

als Näherung für die erste

48 EJ
v2

joFf-dx-r—My2
17

M+ — m

Wie das Beispiel deutlich zeigt, führen diese Überlegungen den Schwinger

auf einen solchen vom Freiheitsgrad eins mit geeignet vergrösserter
Masse zurück. Daraus folgt insbesondere, dass (3.3) auch als Näherung
für 7max bei Berücksichtigung der verteilten Masse angesehen werden
kann.

Auf Grund der Aussage über Resonanz in Abschnitt 3b, die ebenso
für kontinuieriiche Schwinger gilt, sind schon Näherungswerte im
Hinblick auf die Resonanzstellen ausserordentlich nützlich. Soll
beispielsweise beim beidseitig eingespannten Balken mit wandernder
Last (Bild 10) die kleinste kritische Geschwindigkeit untersucht
werden, so ergibt sich aus

r 2n
EJ Icosi2 ——xdx

s In
1 — cos —j~ x I dx

167t4 EJ
3 MF7

und der Überlegung, dass die Last in der halben Eigenschwingungsdauer
über den Balken laufen muss

vl krlt.
CUj/ An

W
EJ
ml
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Die Villa Savoie vom Zerfall bedroht DK 72

Die Villa Savoie in Poissy (rd. 20 km nordwestlich von Paris,
an der Seine gelegen) ist 1929-31 entstanden. In diesem herrlich
gelegenen Bau konnte Le Corbusier seine fünf Grundsätze, mit welchen
er die Brücke zwischen einer neuen Wohnform und der Technik zu
schlagen trachtete, in besonders freier und klarer Form verwirklichen.
Es waren dies die 5 Punkte:
1. die frei durchgehenden Stützen (pilotis);
2. Unabhängigkeit der tragenden Konstruktion von der raumab-

schliessenden und ihre Folge:
3. der freie Grundriss;
4. die freie Fassade, sowie (neben möglichst entlastetem Erdgeschoss)
5. die ausgebildeten Dachgärten.

Heute ist die Villa Savoie vom Zerfall bedroht. Es ist daher ein
Verdienst der Architekturstudenten an der ETH und weiterer Kreise,
die Aufmerksamkeit des französischen Kultusministers Malraux
sowie der Allgemeinheit auf die Erhaltung dieses grundsätzlich wichtigen
Werkes des verstorbenen Meisters gerichtet zu haben. Die Villa
Savoie wurde im Gesamtwerk «Le Corbusier und Pierre Jeanneret»,
Vol. 2, 1929-1934, herausgegeben von W. Boesiger im Verlag Dr.
H. Girsberger, Zürich, publiziert. Ein Vergleich der kurz nach
Vollendung erfolgten photographischen Aufnahmen mit den hier
wiedergegebenen Bildern aus jüngster Zeit erweist drastisch, wie berechtigt
die Sorge um dieses Baudenkmal ist. G. R.

Resolution
«Die Architekturabteilung der Eidgenössischen Technischen Hochschule

In Zürich, deren Studenten, zusammengeschlossen in der (Archi-
tektura>, sowie die Teilnehmer an der Gedenkfeier für Le Corbusier

Villa Savoie von Westen gesehen (heutiger Zustand)
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