Zeitschrift:	Schweizerische Bauzeitung
Herausgeber:	Verlags-AG der akademischen technischen Vereine
Band:	83 (1965)
Heft:	6
Artikel:	Die "Regime-Theorie", eine Methode zur Bemessung stabiler Flussgerinne
Autor:	Zeller, Jürg
DOI:	https://doi.org/10.5169/seals-68086

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 26.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZERISCHE BAUZEITUNG

11. Februar 1965

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P.

Die «Regime-Theorie», eine Methode zur Bemessung stabiler Flussgerinne

Von Jürg Zeller, dipl. Bau-Ing., Versuchsanstalt für Wasserbau und Erdbau an der ETH, Zürich

(Schluss von Seite 72)

1 . 1

DK 627.15.001

III. Die Verwendung der Regime-Gleichungen für die Dimensionierung stabiler Gerinne

1. Anwendungs- und Gültigkeitsbereich

Die Regime-Theorie ist anwendbar für alle Gewässer, die Regime-Charakter aufweisen und in den Bereich der bis heute vorhandenen Naturbeobachtungen fallen. Gute Resultate sind zu erwarten, wenn in Ergänzung zu den Angaben im Kapitel II folgende Verhältnisse vorliegen:

- Geradlinige oder nahezu geradlinige Gerinne (flache Kurven sind zulässig).
- Regelmässige Gerinnewandungen.
- Gerinnebreite $b \ge 3h$ (für Werte b < 3h fehlen Beobachtungen).
- Böschungsneigung der Ufer steil, d.h. 1:1 oder steiler. Brauchbare Resultate sind zu erwarten für 1:2 oder 1:3, annehmbare für flachere Ufer. Im letzten Fall sollten anstelle der Gleichungen für *b* und *h* solche für *P* und *R* verwendet werden¹⁸).
- Uferböschungen erodierbar oder nicht erodierbar z. B. künstliche Uferbefestigungen (keine Einschränkung der Regime-Theorie, vorausgesetzt, dass die Gerinnegeometrie nach Regime-Prinzipien gewählt wurde [11]).
- Abfluss strömend (kritischer oder gar schiessender Abfluss sind Extrapolationen).
- Wasser- und Sedimentf
 ührung möglichst station
 är¹⁹).
- Korndurchmesser des Geschiebes im Verhältnis zur Wassertiefe

¹⁸) Hochwasserprofile mit breiten Vorländern sind nicht natürliche Profilformen und wurden deshalb nicht untersucht.

¹⁹) Dennoch haben Variationen, wie sie bei stark geschiebeführenden Flüssen auftreten (bei Hochwasser sehr starke und bei Niederwasser sehr schwache oder gar keine Sedimentführung), auf sehr lange Sicht und bei langen Flusstrecken nur einen geringen Einfluss auf die Gerinnegeometrie, auch wenn momentan und lokal ganz erhebliche Sohlenänderungen auftreten. klein und Gerinnesohle aufgebaut aus Dünen (d. h. dem strömenden Abfluss entsprechend).

2. Für praktische Zwecke empfehlenswerte Regime-Gleichungen

Diese Regime-Gleichungen wurden von D.B. Simons und M.L. Albertson (1960) [20] aufgestellt, um besonders dem praktisch tätigen Wasserbauingenieur ausreichende Berechnungshilfen zur Verfügung zu stellen. Es wurden deshalb nicht nur diese Gleichungen, sondern auch eine grosse Zahl von Diagrammen wiedergegeben, die erlauben, mit geringstem Arbeitsaufwand die Gerinnedimensionen zu bestimmen.

Die Autoren bemühten sich, sämtliche bis 1959 greifbaren und verwertbaren Daten zu verarbeiten (Tabelle 5). Sie fanden die Regime-Gleichungen von G. Lacey und von T. Blench bestätigt und es gelang ihnen, noch umfassendere Mittelwerte für Koeffizienten bzw. Exponenten aufzustellen. Auch versuchten sie, näheren Aufschluss über den Einfluss der Materialart von Gerinnesohle und -ufer zu erhalten und eine Brücke zum Schleppkraft-Prinzip zu schlagen.

In den Regime-Gleichungen wurden folgende vier Materialgruppen unterschieden:

- Gerinne in grobkörnigen, nichtkohärenten Materialien (c < 0.5 g/l) - Gerinne in sandigen Materialien (c < 0.5 g/l)
- Gerinne mit Sandsohlen und leicht bis «stark» kohärenten Ufern (gute Resultate für c < 0.5 g/l, qualitative für c > 0.5 g/l)
- Gerinne für leicht kohärente Materialien (c < 0.5 g/l)

Die aus den Messdaten der Tabelle 5 ermittelten Gleichungen für die «*Flussstrecke*» lauten im englischen Massystem²⁰):

(23) E Benetzter Umfang (Bild 7):

	für Sandsohle und kohärente	
	Ufer	$P = 2,5 \cdot Q^{0,512}$
(24a) E	Hydraulischer Radius (Bild 8):	
	für Sandsohle und natürliche	
	Ufer	$R = 0,43 \cdot Q^{0,361}$

²⁰) Die selben Gleichungen, jedoch im metrischen Massystem, sind in den Bildern 7 bis 13 zu finden. Die dazugehörigen Diagramme sind im metrischen Massystem dargestellt.

Tabelle 5. Von D. B. Simons und M. L. Albertson [20] berücksichtigte Fluss- und Kanalstrecken

					verschiedene von
	Punjab-Kanäle Indien ²)	Sind-Kanäle Indien ³)	San Louis Valley Colorado, USA ⁴)	Imperial Valley California, USA ⁵)	D. B. Simons und D. L. Bender USA ⁶
Anzahl der untersuchten Flusstrecken	42	28	15	4	24
Bereich der Abflussmengen Q in cfs.	5 ÷ 9000	311 ÷ 9057	17 ÷ 1500		43 ÷ 1039
Sohlengefälle J_s in $^{0}/_{00}$	0,12 ÷ 0,34	0,059 ÷ 0,100	$0,97 \div 9,7$		0,058 ÷ 3,87
Mittl. Sedimentkonzentration in g/l ¹)	0,238	0,156 ÷ 3,590		2,50 ÷ 8,00	Berline (2000)
Mittl. Korndurchmesser der Sohle in mm	~ 0,43	0,035 ÷ 0,164	20,0 ÷ 80,0		0,028 ÷ 7,60
Bereich der Schleppkräfte $\tau = \gamma R J_s$ in lbs/ft ²	\sim 0,02 \div 0,10	\sim 0,02 \div 0,10	0,10 ÷ 0,6		0,02 ÷ 0,09

¹) Mit Ausnahme von vier Kanälen mit Konzentrationen 2,5 bis 8 g/l (vorwiegend wash load) bewegt sich die Konzentration zwischen 0,05 und 0,50 g/l.

²) Punjab Irrigation Research Institute. Report for the year ending April 1941. Lahore, Punjab, Superintendant of Government, Printing 1943 p. 234 (Messdaten S. 60/64).

³) *M.G. Hiranandani* (1942): Remarks on note C-295/CEE, dated July 1941. India Central Board of Irrigation. Annual report (Technical) 1942, S. 68-76, Publication No. 29 (Messdaten auf S. 70/71 und 74/5).

⁴) E. W. Lane (1953): Progress report on studies on the design of stable channels by the Bureau of Reclamation. Proc. ASCE, Separate

Schweiz, Bauzeitung · 83, Jahrgang Heft 6 · 11, Februar 1965

No. 280, p. 31 (einzelne Abweichungen sind vorhanden, da es sich um Gerinne mit z. T. abgepflästerter Sohle ohne nennenswerten Geschiebetrieb handelt).

⁵) S. Fortier und H.F. Blaney (1928): Silt in the Colorado river and its relation to irrigation. U.S. Department of Agriculture, Techn. Bulletin 57, p. 94.

B. C. Raju (1955): Correlation of regime theory and tractive force theories of stable channels design. Master's Report, Colorado A and M College, p. 66.

⁶) D.B. Simons und M.L. Albertson (1960): Uniform water conveyance channels in alluvial material, Proc. ASCE, HY 5, Paper No. 2484, p. 33/71.

(24b) E für grobkörniges,
nichtkohärentes Material
$$R = 0,247 \cdot Q^{0,361}$$

Strömungsgeschwindigkeit in Anlehnung an G. Lacey (Bild 10):

(25a) E	für Sandsohle und Sandufer	$v = 13,86 \cdot R^{2/3} \cdot J_s^{1/3}$
(25b) E	für Sandsohle und	
	kohärente Ufer	$v = 16,0 \cdot R^{2/3} \cdot J_s^{1/3}$
(25c) E	für grobkörniges, nichtkohärentes Material	$v = 17.9 \cdot (R^2 \cdot J_s)^{0,286}$

Strömungswiderstand in Anlehnung an T. Blench (Bild 11): (nur für $Re < 8 \cdot 10^6$ bezogen auf das Gerinne; für grössere Werte ist eine andere Gleichung zu benutzen)

(26) E
$$\frac{C^2}{g} = \frac{v^2}{g \cdot h \cdot J_s} = 0,525 \left(\frac{v \cdot b}{v}\right) 0,37$$
für Sandsohle und kohärente Ufer mit
 $C = \text{Koeffizient nach Chézy } (L^1/2 \cdot T)$ $v = \text{kinematische Viskosität } (L^2/T)$

Abhängigkeit der Schleppkraft der Regime-Gerinne vom Sohlenmaterial, Gerinnetyp und Abflusswassermenge (Bild 13):

(27) E mittlere Korndurchmesser
der Sohle
$$d_m = f(\gamma \cdot R \cdot J_s)$$

Es stehen demnach 5 Gleichungen für die Dimensionierung eines Gerinnes zur Verfügung. Zwei davon sind überzählig und für Kontrollen bestimmt. Um ohne Schwierigkeiten auch auf Breite und Tiefe des Gerinnes sowie die Fliessgeschwindigkeit zu schliessen, bediene man sich der nachfolgenden Gleichungen:

- Durchflussquerschnitt (Bild 12):
- Für Sandsohle und (28a) E $F = R \cdot P = b \cdot h = 1,076 \cdot Q^{0,873}$ kohärente Ufer
- (28b) E Für grobkörniges, nichtkohärentes $F = 0,45 \cdot Q^{0,873}$ Material
- Zusammenhang zwischen mittlerer Gerinnebreite b und (29) E Wasserspiegelbreite b_{W.Sp.} für trapezförmige Gerinne $b = 0.92 \ b_{\text{W. Sp.}} - 2.0$ $b_{\text{W. Sp.}} \leq 300 \ \text{ft}; \ \text{für grössere Breiten ist}$ (Bild 9):
- (gültig für die Gleichung mit nur wenig Messdaten belegt).

Ergänzend sei noch vermerkt, dass die in den Diagrammen (Bilder 7 bis 14) eingetragenen schraffierten Flächen den Bereich der von den Autoren berücksichtigten Messdaten wiedergeben.

Als bekannt vorausgesetzt werden muss die der Berechnung zugrunde zu legende massgebende Abflusswassermenge²¹), der geotechnische Aufbau von Gerinnesohle und -ufer, damit das Gerinne in eine der vier Materialgruppen eingereiht werden kann, und die zu Q_G gehörende Sedimentkonzentration (c kleiner oder grösser 0,5 g/l). Hierauf bestimmt man mit Hilfe der Bilder 7 bis 9 die Gerinnegeometrie, mit Bild 10 oder 11 das Sohlengefälle, mit Bild 12 die Fliessgeschwindigkeit und endlich prüft man, ob sich die vorhandene Schleppkraft für den mittleren Sohlen-Korndurchmesser im tolerierbaren Bereich befinde (Bild 13). Zu grosse Schleppkraft führt zu Sohlenerosionen, zu kleine hat Auflandungen zur Folge.

Wie schon mehrmals erwähnt, ist es zweckmässig und für unsere Verhältnisse notwendig, die Regime-Gleichungen speziell für das betreffende Einzugsgebiet zu überprüfen, falls exaktere Gerinnedimensionen gewünscht werden. Man verwende hierfür Flussstrecken (Musterstrecken im Sinne der Regime-Theorie) von ober- und unterstrom und eventuell Seitenflüsse des Einzugsgebietes, gleicher Flusscharakter vorausgesetzt. Dieses Vorgehen ist empfehlenswert, da es sich gezeigt hat, dass bei Flüssen des selben Einzugsgebietes und Charakters die Koeffizienten und Exponenten der Regime-Gleichungen praktisch übereinstimmen.

Als weitere Erleichterung der Berechnung kann Bild 14 dienen, welches erlaubt, für den Fall nichtkohärenter Materialien die geeignetste, standsichere Uferböschung zu wählen, trapezförmiger Querschnitt vorausgesetzt. Sind jedoch kohärente Materialien vorhanden, so sind die Böschungsneigungen nach den bekannten Grundsätzen der Bodenmechanik zu ermitteln.

²¹) Unter der massgebenden Abflusswassermenge ist in diesem Zusammenhang dasjenige Q_G zu verstehen, auf das das Gerinne dimensioniert werden soll, entsprechend dem Risiko, das man gegen Überfluten der Ufer in Kauf nehmen will (Abflussmengen-Häufigkeit von einigen Prozenten).

Benetzter Umfang P in Abhängigkeit von Q_G Bild 7.

Bild 8. Hydraulischer Radius R in Abhängigkeit von Q_G

Bild 9. Mittlere Gerinnebreite b in Abhängigkeit des benetzten Umfanges P; Gerinnebreite auf Wasserspiegelhöhe bw.sp. in Abhängigkeit der mittleren Gerinnebreite b; (fällt mit Kurve für P zusammen). Hydraulischer Radius R in Abhängigkeit der mittleren Wassertiefe h

Bild 10. Abhängigkeit der Fliessgeschwindigkeit v von $R^2 \cdot J_8$ (Regime-Gleichung vom Lacey-Typ)

Schweiz, Bauzeitung · 83, Jahrgang Heft 6 · 11, Februar 1965

Bild 14. Standsichere Böschungsneigungen der Ufer in Abhängigkeit des mittleren Korndurchmessers für Kiessand fluvialer Ablagerungen von Regime-Gerinnen

Schweiz, Bauzeitung · 83. Jahrgang Heft 6 · 11. Februar 1965

3. Zusammenstellung von Erfahrungen und Einzelbeobachtungen an Regime-Gerinnen

Als Ergänzung und Abrundung der Regime-Theorie sollen nachfolgend einige Beobachtungen an stabilen Kanälen und Flüssen (gültig für die «Flussstrecke») aufgeführt werden²²). Diese lauten in zwangloser Folge:

- Mit flussabwärts wachsendem Q (bei gleicher Häufigkeit) nehmen b, h und häufig auch v zu.
- Als grobe Vereinfachung kann gelten, dass das Mass der Zunahme von b, h und evtl. v im Verhältnis zu Q flussabwärts von der selben Grössenordnung ist, sowohl für Flüsse von verschiedenster Grösse des Einzugsgebietes, als auch für solche verschiedenster Topographie.
- Gerinne mit kohärenten Ufern, aber frei veränderlichen Sandsohlen sind im allgemeinen schmaler und rascher fliessend als solche mit Sandufern.
- Unter Voraussetzung von Sand als Gerinnematerial haben bei gleichem Q breite Gerinne grosse, schmale dagegen kleine Strömungsgeschwindigkeiten.
- $-J_s$ nimmt flussabwärts ab, wobei h und öfters auch v zunehmen.
- Es besteht ein enger Zusammenhang zwischen h und v einerseits bzw. k und J_s anderseits.
 - $\delta/\alpha > 2/3$: mit wachsendem Q nimmt $k \cdot J_s^{1/2} zu$
 - $\delta/\alpha = 2/3$: mit wachsendem Q ist $k \cdot J_s^{1/2} = konstant$
 - $\delta/\alpha < 2/3$: mit wachsendem Q nimmt $k \cdot J_s^{1/2} ab$
- Bei Regime-Gerinnen ist $R^{1/2} \cdot J_{s} = \text{konstant}.$
- Bei Gerinnen, die nach dem Prinzip der Grenzschleppkraft dimensioniert wurden (kein oder nicht voll ausgebildeter Geschiebetrieb), ist dagegen $R \cdot J_s = \text{konst.}$ [33].
- Flüsse mit Mäandern oder Verzweigungen, die stabil sind, zeigen gegenüber geradlinigen Flüssen andere Sedimenttransportkapazität und Energieverluste (Die Beurteilung von J_s derartiger Flüsse hat mit grosser Vorsicht zu erfolgen).
- k ist auf der ganzen Länge eines Flusses praktisch konstant, wenn die Häufigkeitsverteilung von Q flussabwärts unverändert ist und das Gerinnematerial aus Kiessand oder feinerem Material besteht. Dagegen hat in Flüssen mit sehr grobem Gerinnematerial (Blöcke bis Steine), bei denen der k-Wert vorwiegend von individuellen «Einzelkörnern» bestimmt wird, der k-Wert flussabwärts in der Regel die Tendenz, als Folge der Korndurchmesserabnahme zuzunehmen.
- Im allgemeinen nimmt flussabwärts die Schwebstoffkonzentration ab, da Q rascher zunimmt als G_s . Diese Konzentrationsabnahme kann jedoch gering sein und hängt vom Charakter des Einzugsgebietes ab (Ausnahmen sind bekannt).
- Für die Gerinnegeometrie sind in erster Linie Q, G_g und G_s massgebend, d. h. die Wasser- und Sedimentführung sind die wirklichen, unabhängigen Variablen eines Flusses. Q und G sind ihrerseits abhängig von der Natur des Einzugsgebietes und nicht vom Gerinne. Letzteres ist vielmehr eine Folge von Q und G.
- Stark geschiebeführende Gerinne sind breit und wenig tief, wogegen stark schwebstofführende verhältnismässig schmal und tief sind (mit Ausnahme der Flussmündungen).
- Langfristige Änderungen im Wasser- und Sedimenthaushalt sind von Einfluss auf die Gerinnegeometrie (Änderung des Beharrungszustandes).
- Wichtig sind eine regelmässige Geschwindigkeits- resp. Schleppkraftverteilung über das ganze Gerinne, ansonst in einzelnen Teilstrecken Erosionen, in anderen dagegen Auflandungen erfolgen können. Besonders unglückliche Verhältnisse können auftreten, wenn Hochwasser Grobmaterial liegen lassen, das den Durchflussquerschnitt örtlich über Gebühr vermindert und die Niederwasser veranlasst, die Ufer zu erodieren.
- Pflanzenbewuchs ändert die Fliesseigenschaften im Gerinne und dadurch auch die Regime-Koeffizienten und evtl. -Exponenten. Diese Änderungen können allmählich auftreten.

IV. Schlussbetrachtungen

1. Untersuchungen der letzten Jahre

Mit allen heute zur Verfügung stehenden Mitteln wird versucht, weiter in Charakter und Eigenart der Regime-Gerinne einzudringen.

²²) entnommen aus [11, 14, 15, 19, 24, 26, 31, 33, 34]

So sucht z.B. F.M. Henderson [33] Gemeinsames und Trennendes zwischen Regime-Theorie und Schleppkraft-Theorie. Er weist auch nach, dass mit Hilfe von Geschiebetriebgleichungen, kombiniert mit der Gleichung von A. Strickler, Lacey-ähnliche Regime-Gleichungen gefunden werden können. P. Ackers [31] versucht, mit Hilfe von dreidimensionalen Modellversuchen (Gerinnelänge rd. 100 m) Regime-Gleichungen aufzustellen. Für seinen gleichkörnigen Modellsand fand er ähnliche Gleichungen wie D.B. Simons und M.L. Albertson. Auch machte er den Versuch, auf theoretischem Wege die selben Regime-Gleichungen zu erhalten unter Berücksichtigung der Geschiebetriebgleichungen von H.A. Einstein [7] und der Gleichung über die logarithmische Geschwindigkeitsverteilung rauher Gerinne. Beide Gleichungen brachte er vorerst mit seinen Versuchen in Übereinstimmung. Das Resultat ist ermutigend, gelang es ihm doch derart, sämtliche Sedimentcharakteristiken von etwelcher Bedeutung und die Sohlenbeschaffenheit des Gerinnes zu berücksichtigen. Seine Gleichungen lauten²³):

(30) E
$$h_m = A_1^{+0,03} \cdot A_2^{-0,47} \cdot A_3^{+0,43} \cdot Q^{+0,43}$$

(31) E
$$b_{W, Sp.} = A_1^{+0,03} \cdot A_2^{-0,47} \cdot A_3^{-0,57} \cdot Q^{+0,43}$$

(32) E
$$v = A_1^{-0.06} \cdot A_2^{+0.94} \cdot A_3^{+0.14} \cdot Q^{+0.14}$$

Die nachfolgend erläuterten Koeffizienten A charakterisieren die verschiedenen Einflüsse von Sedimentart, -Konzentration, Sohlenbeschaffenheit und Querprofilform.

- Sedimenttransport-Koeffizient:

E
$$A_{1} = \frac{2400 \cdot w \cdot d_{m}^{\prime}}{c \left(\frac{\gamma_{s}}{\gamma_{w}} - 1\right)^{8} \cdot \frac{\gamma_{w}}{\gamma_{s}}}$$

w = Sinkgeschwindigkeit des Sandes (entsprechend d_m) - Energieverlust-Koeffizient:

$$E \qquad A_2 = \frac{7.13 \cdot g^{1/2}}{k_R^{1/4}}$$

 k_R = mittl. Riffelhöhe der Sohle (absolute Rauhigkeitshöhe) A_2 wurde hergeleitet aus der Beziehung für die Energieverluste:

²³) Diese Gleichungen sind noch nicht endgültig, da die Versuche weitergeführt werden, wodurch mehr Messresultate berücksichtigt werden können.

v	$7.12 (R)^{1/4}$	
$(g \cdot R \cdot J_s)^{1/2}$	$= 7,13\left(\frac{k_R}{k_R}\right)$	
	R	

für den Bereich $3 < \frac{R}{k_R} < 13$

- Querprofil-Koeffizient: $A_3 = b/h_{W,Sp}$.

Über die Querprofilform wird nichts ausgesagt. Es fehlt hier, wie in der Einleitung erwähnt, eine weitere Bestimmungsgleichung.

Der grosse Vorteil dieser Darstellung ist vor allem in der Abschätzung des Gewichtes der verschiedenen Einflüsse auf die Regime-Gleichungen zu suchen. Auch ist damit dem Einwand von E.A. Samarin [38] gegen die Regime-Theorie Genüge getan, da die nach Samarin's Untersuchungen wichtige Sinkgeschwindigkeit der Sedimentkörner berücksichtigt ist (Flüsse mit z.T. sehr grossen Schwebstoffkonzentrationen). Dennoch scheint auch diese Lösung nicht einwandfrei, ist es doch eigenartig, dass in den Gleichungen (30) und (31) für h und b dem Sedimenttransport (Koeffizient A_1) eine derart geringe Bedeutung zukommt. Ein Versuch, auf analoge Weise mit der Geschiebetriebgleichung von E. Meyer-Peter und der Gleichung von A. Strickler Regime-Gleichungen aufzusuchen, bringt ähnliche Resultate, doch verschiebt sich das Gewicht der verschiedenen Koeffizienten A, so dass dem Geschiebetrieb nunmehr grössere und der Sohlenbeschaffenheit (Rauhigkeit) wesentlich grössere Bedeutung (siehe Anhang) zukommen.

Auch mit anderen Hilfsmitteln lassen sich Regime-Gleichungen ableiten. Man kann zeigen, dass die durch die Wasser- und Sedimentführung verursachten Gerinneänderungen einer statistischen Normalverteilung folgen. W.B. Langbein [18] [21] fand mit Hilfe der Wahrscheinlichkeitsrechnung und der Annahme, dass die totale, von einem Flusse geleistete Arbeit zu einem Minimum hintendiere, folgende Gleichungen²⁴):

(33)
$$h = A_h \cdot Q^{0,3}$$

(34) $b_{W,Sp} = A_b \cdot Q^{0,53}$

35)
$$v = A_v \cdot Q^{0,10}$$

Die Übereinstimmung mit den Regime-Gleichungen ist überraschend gut. Allerdings ist eine gewisse Schwäche dieses Vorgehens darin zu suchen, dass die statistische Verteilung eng verknüpft ist mit der statistischen Ableitung des wahrscheinlichsten Zustandes.

²⁴) Für den Spezialfall von Laboratoriumsrinnen mit eigenem Kreislauf (Q, b, J_s = gegeben) gibt er folgende Gleichungen: $h = A_h$. $Q^{0,5}$ und $v = A_v \cdot Q^{0,5}$.

Autor	Lacey Inglis Blench Nixon	Leopold Maddock (1953) ¹)	Simons Albert- son (1960)	Rybkin (1947)	Levi[39] Mostkov [40] (1959)	Ackers (1962)	Leopold Miller (1956) ²) für kurz- fristig was- serführende Flüsse	Ackers (1962)		Langbein (1964)	$^{1})G_{s} \approx Q^{0,8}$ $^{2})G_{s} \approx Q^{1,3}$
bw.sp. h v	$Q^{0,5}$ $Q^{0,33}$ $Q^{0,17}$	$Q^{0,5}$ $Q^{0,4}$ $Q^{0,1}$	$Q^{0,51}$ $Q^{0,361}$ $Q^{0,127}$	$Q^{0,57}$ $Q^{0,22}$ $Q^{0,21}$	$Q^{0,5}$ $Q^{0,25}$	$Q^{0,43}$ $Q^{0,43}$ $Q^{0,15}$	$Q^{0,5}$ $Q^{0,3}$ $Q^{0,2}$	$Q^{0,43}$ $Q^{0,43}$ $Q^{0,15}$	$Q^{0,46}$ $Q^{0,46}$ $Q^{0,08}$	$Q^{0,53}$ $Q^{0,37}$ $Q^{0,10}$	
Methode	Messun- gen in Natur	Messun- gen in Natur	Messun- gen in Natur	Messun- gen in Natur	Messun- gen in Natur	Messun- gen im Modell	Messungen in Natur	Theoretisch	Theoretisch	Theoretisch	
Anzahl Mess- daten	Total über 1000 Einzelbe- obach- tungen (Kanäle u. Flüsse)	Über 100 Wasser- mess- stationen an über 50 Flüssen	Über 120 Flüsse und Kanäle	?	?	32 Ver- suche	67 Mess- stationen	Geschiebe- triebglei- chung nach Einstein (an Modell- versuche angepasst)	Geschiebe- triebglei- chung nach Meyer- Peter (siehe Anhang)	Wahr- scheinlich- keits- rechnung	
Unter- suchungs- gebiete	Gross- britannien und Common- wealth	USA (Geo- logical Survey)	USA Gross- britannien Common- wealth	USSR (obere Wolga und Oka)	USSR	Gross- britannien	USA (Geological Survey)	Gross- britannien	(Schweiz)	USA	

Tabelle 6. Die Exponenten der Regime-Gleichungen für die «Flusstrecke»

Schweiz. Bauzeitung · 83. Jahrgang Heft 6 · 11. Februar 1965

Wie bei allen neuen Untersuchungen fällt es schwer, deren Wert und Bedeutung realistisch abzuschätzen. Erst wenn ergänzende Messdaten auch von unseren Flüssen vorliegen, dürfte dies wirklich möglich sein.

Um den Überblick über die verschiedenen Regime-Gleichungen zu erleichtern, wurden in Tabelle 6 die Exponenten, geordnet nach Autoren, zusammengefasst. Sämtliche Gleichungen wurden soweit notwendig derart umgeformt, dass sie den Aufbau der Gleichungen (14) bis (17) aufweisen. Für Bedürfnisse der Praxis sei nochmals auf die in Kapitel III.2. angegebenen Gleichungen von D.B. Simons und M.L. Albertson verwiesen.

2. Zusammenfassung

Die vorangegangene Zusammenstellung über den heutigen Stand der Kenntnisse stabiler, geschiebeführender Gerinne sollte dem projektierenden Ingenieur die Möglichkeit geben, sich mit Hilfe der Regimetheorie über den Charakter eines Flusses bzw. über dessen geeignetste Gerinneform Rechenschaft abzulegen. Vor allem ist es möglich, die vom betr. Fluss (Kanal) im Beharrungszustand auf lange Sicht angestrebte Gerinnegeometrie (Sohlengefälle, Querprofilform) abzuschätzen. Diese Theorie ist nicht exakt, gibt jedoch gute Resultate, wenn mit Hilfe von Naturmessungen an Beharrungsstrecken («Musterstrecken») des betr. Flusses oder der Gewässer seines bzw. ihres engeren Einzugsgebietes, vor allem die Regime-Koeffizienten und unter Umständen einzelne Exponenten den vorhandenen Verhältnissen angepasst werden können. Keine brauchbaren Resultate sind zu erwarten, wenn sich der Fluss nicht in eigener Alluvion befindet oder wesentliche Strecken durch Menschenhand stark verändert wurden (Kunstbauten, Veränderung des Wasser- und Sedimenthaushaltes usw.).

Bei Flusskorrektionen ist es nicht immer möglich, die aus der Regime-Theorie hervorgegangenen «Idealmasse» einzuhalten. In diesem Falle kann die geplante Gerinneform auf lange Sicht nur durch Sicherungen und evtl. Verbauungen erhalten bleiben oder sie muss in kleineren oder grösseren Zeitabständen den sich ständig ändernden Verhältnissen angepasst werden. Die Berechnung hat in solchen Fällen nach der Schleppkraft-Theorie zu erfolgen, da nur derart ein genügender Einblick in die Sedimentführung (Geschiebehaushalt) möglich ist.

V. Anhang

1. Zusammenstellung der Bezeichnungen

$ \left.\begin{array}{c} A_{h} \\ A_{J} \end{array}\right\} $	-	Regime-Koeffizienten zugehörig zu b, h, J usw.
usw.		
а	_	Koeffizient nach T. Blench
Ь	-	Gerinnebreite $b \cdot h = F$ (allgemein)
$b_{W.Sp}$	=	Wasserspiegelbreite (Gerinnebreite auf Wasserspiegelhöhe)
с	-	Sedimentkonzentration $= G/Q$
Cg	-	Geschiebekonzentration (nach T. Blench in ppm, d.h. in hundertstel Gewichts- $^{0/00}$, nach D.B. Simons und anderen in g/l).
d	=	Sedimentkorndurchmesser
d_m		mittlerer Sediment-Korndurchmesser (Gewichtsmittel)
F		Durchflussquarsahnitt

- = Durchflussquerschnitt
- F_b Sohlen-Sedimentfaktor nach C. King, C.C. Inglis und T. Blench
- F_s = Ufer-Sedimentfaktor nach C. King, C. C. Inglis und T. Blench
- = Sedimentfaktor nach G. Lacey
- G = Sedimentführung (Geschiebe + Schwebstoffe)
- = Geschiebeführung G_g
- G_s = Schwebstofführung
- g = Erdbeschleunigung
- h = mittlere Wassertiefe, bestimmt aus einer gemittelten Sohlenlage (hinsichtlich Zeit und Sedimentwellen) entsprechend F/b
- = Gefälle 1
- J_e = Energielinien-Gefälle
- J_s = Sohlen-Gefälle
- = Wasserspiegel-Gefälle J_w

Schweiz, Bauzeitung · 83. Jahrgang Heft 6 · 11. Februar 1965

- = «indischer» Energieverlustkoeffizient (siehe Anhang: G. Lacey)
 - Koeffizient nach T. Blench (siehe Anhang)
- = Energieverlustkoeffizient nach Strickler
- = mittlere Riffelhöhe der Sohle nach P. Ackers
- = benetzter Umfang

K

k

 k_R

P

Q

R

12 w

α

α

β

Y

Yw

- = Abflusswassermenge Q_G
 - = Gerinnefüllende Abflusswassermenge
 - = Hydraulischer Radius
 - = Fliessgeschwindigkeit
 - = Sinkgeschwindigkeit eines Einzelkornes
 - = Sedimentkonzentrationsfaktor nach C. King oder T. Blench (siehe Anhang)
- Exponenten von Q in den Regime-Gleichungen (siehe Gleichungen 14 bis 20) usw.
- = Spezifisches Gewicht der Sedimente 28
 - Spezifisches Gewicht von Wasser
 - = Kinematische Zähigkeit

2. Nachtrag zur Regime-Theorie von G. Lacey

Der Sedimentfaktor f wurde von N. Chien [22] näher untersucht. Er fand, dass f von der transportierten Sedimentmenge bzw. der Sedimentkonzentration c abhängt und verschieden ist für die Gleichungen (7) bzw. (9).

Unter Voraussetzung

- voll ausgebildeten Geschiebetriebes (stabile Gerinne)
- Uferreibung = 0 (für c ist nur der Sohlenanteil von G und Q zu verwenden)
- Sohlenmaterial $d_m = 0,25 \text{ mm}$
- Hydraulischer Radius $2 \le R \le 25$ ft
- Sohlengefälle $0,0001 \leq J_s \leq 0,0004$
- gibt er den Sedimentfaktor wie folgt an:

(7*) E zu Gleichung (7): $f^7 = 0,061 \cdot c^{0,715}$

(9*) E zu Gleichung (9): $f^{9} = 2, 2 \cdot d_m^{0,45} \cdot c^{0,052}$

Gleichung (7*) ist demnach stark abhängig von c, während Gleichung (9*) kaum vom Sedimenttransport beeinflusst wird. Gleichung (9*) kann deshalb in einem wesentlich grösseren Geltungsbereich verwendet werden, welcher von N. Chien wie folgt angegeben wird:

- Uferreibung = 0
- Sohlenmaterial $0,25 \leq d_m \leq 25,0 \text{ mm}$
- Hydraulischer Radius $2 \le R \le 30$ ft
- Sohlengefälle: für $d_m = 0,25 \text{ mm} \rightarrow 0,0001 \leq J_s \leq 0,0005$

für $d_m = 25,0 \text{ mm} \rightarrow 0,001 \leq J_s \leq 0,01$

Die Ergebnisse von N. Chien, die auf eingehende Untersuchungen auf der Grundlage der Sedimenttransportgleichungen (nach H.A. Einstein [7]) gefunden wurden, sind in der Zwischenzeit von G. Lacey übernommen worden.

Zu den Gleichungen (7) bis (9) ist folgendes zu bemerken:

- Gleichung (7) beruht nicht auf direkter Messung von v, sondern auf der für indische Kanäle bewährten Gleichung $v = K \cdot R^{4/3} \cdot J_s^{1/2}$, mit K als Konstante $[23]^{25}$).
- Gleichung (9) stellt einen Ersatz der Kutter'schen Strömungsgleichung für offene Gerinne dar und gibt deshalb indirekt Auskunft über die Energieverluste.
- Der Sedimentfaktor ist keine universelle Konstante (wie ursprünglich angenommen wurde), sondern hängt ab von der Form von Sohle und Ufer, der Kornverteilung der Sedimente und der Sedimentkonzentration.
- Die Lacey-Gleichungen sind nicht für alle stabilen Gerinne anwendbar, wie die Erfahrung aus der Praxis zeigt.
- Für die Dimensionierung von Kanälen ist der Gerinnequerschnitt derart zu wählen, dass bei Qmax das Gerinne vollständig gefüllt ist [24]. G. Lacey benennt dieses Qmax mit Regime-Abfluss oder massgebendem Abfluss («dominant discharge»).

Wie aus einem Diskussionsbeitrag von G. Lacey26) zu entnehmen

²⁵) Diese Gleichung ist nicht identisch mit derjenigen von A. Strickler, welche lautet v = k. $R^{-2/3}$. $J_s^{-1/2}$ (für Normalabfluss).

²⁶) siehe F. M. Henderson [33], Diskussionsbeitrag in Proc. ASCE, HY 3, 1962.

ist, hat er in der Zwischenzeit (beruhend auf Untersuchungen von N. Chien) seine Regime-Gleichungen durch die Geschiebekonzentration c_q ergänzt. Diese Gleichungen lauten:

 $v = \text{konst.} \cdot c_g^{1/6} \cdot (h \cdot R \cdot J_s)^{1/3}$

 $b_{\rm W.Sp.} = {\rm konst.} \cdot c_g^{1/4} / Q^{1/2}$

Er nimmt an, dass es eine Funktion von Q, g, Sedimentart und physikalischen Eigenschaften des Wassers sei.

3. Nachtrag zur Regime-Theorie von T. Blench

Wie erwähnt, unterscheidet T. Blench zwei Bereiche, nämlich schwache bzw. starke Geschiebeführung, welche sich ausschliesslich in den verschiedenen Koeffizienten auswirken.

- Sohlensedimentfaktor F_b : Definition: $F_b = v^2/h$

Diese Definition beruht auf der Beobachtung, dass für ein und dasselbe Kanalsystem, das im Beharrungszustand ist und auf dessen ganzer Länge ein konstantes Verhältnis von Wasser- zu Sedimentführung besteht, $v^2/h =$ konstant ist.

 F_b kann mit etwas Übung geschätzt werden. Als Richtlinien können gelten:

1. schwache Geschiebeführung ($c_g < 2,0$)²⁷):

- Sand als Sohlenmaterial $F_b = 1,9 \cdot d_m^{1/2}$
- $(d_m = \text{Gewichtsmittel der Korngrössen in mm})$

– Kies als Sohlenmaterial $F_b \sim d_m^{1/3}$

- 2. starke Geschiebeführung ($c_g > 2,0$):
 - Gerinnesohle aus Sand bis Feinkies mit Dünen: $F_b = 1.9 \cdot d_m^{1/2} (1+0.12 \cdot c_g)$
 - dito, aber schiessender Abfluss (Sedimenttransport in Form einer bewegten Schicht)

 $F_b = 32,2 + 0,06 (c_g - c_g^*)$

 $c_g^* =$ krit. Konzentration, stellt sich ein, wenn

 $F_b = 32,2 \text{ ft/s} (d.h. 9,81 \text{ m/s})$

$$=\frac{32,2-1,9\,d_m^{1/2}}{0,12-1,9\cdot d_m^{1/2}}$$

– Seiten- oder Ufersedimentfaktor F_s :

Definition: $F_s = v^3/b$

 F_s kann nach T. Blench durch Multiplikation mit v und ϱ als das Quadrat der «Schleppspannungsintensität» entlang der Ufer angesehen werden. Wenn diese Schleppspannungsintensität einen gewissen Betrag übersteigt, so beginnt die Erosion der Ufer, d.h. das Gerinne weitet sich aus. Unterschreitet sie dagegen diesen Betrag, so entstehen Auflandungen, d.h. das Gerinne engt sich ein. Es gibt demnach einen bestimmten Bereich, in dem sich die Gerinnebreite nicht ändert. Die untenstehenden Werte für F_s entsprechen diesem bestimmten Bereich.

Fs ist unabhängig von der Geschiebeführung.

Als Richtwerte für F_8 können gelten:

- Ufer aus tonigem Silt bis Lehm verschiedenster Kohäsion

 $F_{s} = 0,1; 0,2; 0,3$

Mit zunehmender Materialfestigkeit, d.h. zunehmender Steilheit der Ufer nimmt F_s zu. Der Wert kann wesentlich überschritten werden. Bei Berücksichtigung langer Zeiträume flacht aber die Verwitterung die Ufer ab, so dass häufig $F_s = 0,3$ erreicht wird.

– Ufer aus Kiessand, leicht kohärent $F_s = 1/8 F_b^2$

- vorausgesetzt, dass Sohlen und Ufer aus dem selben Material aufgebaut sind.
- Temperature influss auf F_b und F_s :

Die Wassertemperatur (spezifisches Gewicht, Viskosität usw.) hat einen spürbaren Einfluss. Will man Messungen verschiedener Temperaturen untereinander vergleichen, so kann näherungsweise folgender Ansatz verwendet werden:

 $v_1 \cdot F_1 = v_2 \cdot F_2$

- Sedimentkonzentrationsfaktor a:

Über *a* ist noch sehr wenig bekannt. Bei künstlichen, geradlinigen Kanälen mit schwacher Geschiebeführung ist $a \cdot c_q$ vernachlässigbar. Für gleichkörnige Sande wird $a = \frac{1}{400}$ empfohlen, und für natürliche Flussande bis -kiese mit grosser Ungleichkörnigkeit ist $a \sim \frac{1}{233}$. Der selbe Wert ist anzunehmen für Flüsse mit starker Geschiebeführung.

²⁷) c_q in hundertstel Gewichts-⁰/00

Untersucht man die Verfälschung von h (Gl. 11) als Folge einer Falschbewertung von F_b , so findet man, dass der Einfluss auf h erträglich bleibt. Fehlt jede Möglichkeit einer Abschätzung von F_b , so soll F_b unbedingt an Nebenflüsschen oder Bächen bestimmt werden, und zwar unter Verwendung *aller* drei Regime-Gleichungen (b, h, J_s) . Treten dabei grosse Unterschiede in F_b auf, so weist dies auf sehr starke Geschiebeführung hin, und die, Gültigkeit der Regime-Gleichungen kann in Frage gestellt sein.

Starke Änderungen im Schwebstoffgehalt sollten wenn möglich erfasst werden, doch sind bei Nichtberücksichtigung die Fehler nicht krass, da die Viskosität nur in der Form $v^{1/4}$ auftritt.

In Ergänzung zu Gleichung (13) empfiehlt T. Blench, um eine raschere Rechnung zu ermöglichen, am Beispiel starker Geschiebeführung die Näherungsgleichung zu benützen:

(13a) E
$$J_s = \frac{Fb_0^{-11/12}}{K \cdot b^{1/6} \cdot Q^{1/12}} \cdot f(c_g)$$

 $Fb_0 = 1,9 \cdot d_m^{1/2-28}$
 $K = 3,63 \cdot g/v^{1/4}$
 $f(c_g) = (1+0,12 c_g)^{11/12} \cdot (1+c_g/233)^{-1}$

Je nach den Randbedingungen hinsichtlich des Wasser-Sediment-Komplexes und der Erodierbarkeit der Ufer ist J_s eine Funktion von $Q^{-1/6}$ bis $Q^{-1/12}$. Die Exponenten ^{1/6} bzw. ^{1/12} dürften im Vergleich zu Untersuchungen anderer Autoren als Grenzwerte zu betrachten sein (siehe [25]).

Für die Berechnung von Kanälen nach der Regime-Theorie, Gleichungen (11) bis (13), diene folgendes Beispiel von T. Blench [11]: Zu projektieren sei ein Kanalsystem für geringe Geschiebeführung, gleichkörnigen Sand mit d = 0,25 mm und $F_b = 1,0$, $F_s = 0,2$, $v = 10^{-5}$ (Jahresmittel). Die Ergebnisse (Tabelle 7) wurden nachträglich ins metrische Massystem umgerechnet.

Tabelle 7. Berechnungs-Beispiel nach T. Blench

Tabelle 7. Del	connunge	Joiopioi	naon no.			
	Q m³/s	b m	J s 0/00	h m'	v m/s	b/h
Hauptkanal	300	69	0,09	3,8	1,08	18,0
Nebenkanäle > 15 m ³ /s	30	22	0,13	1,8	0,74	12,2
Nebenkanäle < 15 m ³ /s	3	6,9	0,19	0,81	0,50	8,4
Kleinkanäle	0.3	2,2	0,28	0,38	0,38	5,7

4. Herleitung von Regime-Gleichungen mit Hilfe der Geschiebetriebgleichung von E. Meyer-Peter und R. Müller

Die Geschiebetriebgleichung wird als bekannt vorausgesetzt und nicht näher erläutert (Bezeichnungen siehe [7]). Sie lautet näherungsweise für breite Gerinne

$$\gamma_w \cdot h \cdot J = A'' \cdot \gamma_s'' \cdot d_m + B'' (\gamma_w/g)^{1/3} \cdot g_G'^{2/3}$$

und mit $B_1 = A^{\prime\prime} \cdot \gamma^{\prime\prime} s / \gamma_w$ und $B_2 = B^{\prime\prime} \cdot (1/\gamma_w^2 \cdot g)^{1/3}$

findet man

 $h \cdot J = B_1 \cdot d_m + B_2 \cdot g_G''^{2/3}$

das heisst $h \cdot J$ ist eine Funktion des mittleren Geschiebe-Korndurchmessers und der Geschiebeführung. Die mittlere Wassertiefe kann deshalb bei gegebenem d_m und g_G '' als Funktion von J dargestellt werden.

(I) M $h = [B_1 \cdot d_m + B_2 \cdot g_G^{\prime \prime 2/3}] \cdot J^{-1} = A_1 \cdot J^{-1}$

Das Fliessgesetz nach A. Strickler lautet $v = k \cdot R^{2/3} \cdot J^{1/2}$ oder näherungsweise für Normalabflussverhältnisse und breite Gerinne (II) M $v = A_2 \cdot h^{2/3} \cdot J^{1/2}$

Die Querprofilform sei gegeben durch das Verhältnis:

(III) M $h/b_{W.Sp.} = A_3$

Durch geeignete Kombination der Gleichungen I bis III und unter Berücksichtigung, dass $Q = v \cdot F = v \cdot b \cdot h$ ist, findet man folgende Regime-Gleichungen

(30a) M
$$h = A_1^{-0,23} \cdot A_2^{-0,46} \cdot A_3^{+0,46} \cdot Q^{+0,46}$$

(31a) M
$$b_{\text{W.Sp.}} = A_1^{-0,23} \cdot A_2^{-0,46} \cdot A_3^{-0,54} \cdot Q^{+0,46}$$

(32a) M
$$v = A_1^{+0,46} \cdot A_2^{+0,92} \cdot A_3^{+0,08} \cdot Q^{+0,08}$$

²⁸) «Exakt» gültig für grosse Flüsse und $d_m \leq 0,3$ mm. Für diesen Fall kann d_m auch durch die Sinkgeschwindigkeit von d_m ersetzt werden, d. h. $Fb_0 = 0.58$. w ^{11/24} (siehe [25])

Schweiz, Bauzeitung · 83. Jahrgang Heft 6 · 11. Februar 1965

- mit *A*¹ abhängig vom mittleren Korndurchmesser und Geschiebeführung
 - A2 abhängig von der Sohlenrauhigkeit
 - A₃ abhängig von der Querprofilform.

Obige Regime-Gleichungen gelten nur für breite Gerinne. Für den allgemeinen Fall, d.h. beliebige Querschnittsform, sind die Gleichungen unter Berücksichtigung von R und P herzuleiten.

5. Literaturverzeichnis

- W.N. Davis (1924): Die erklärende Beschreibung der Landformen. Teubner, Leipzig, 2. Aufl.
- [2] A. Holmes (1944): Prinziples of physical geology. Nelson & Sons, London.
- [3] J. V. Samoilav (1954): Die Flussmündungen. Übersetzt aus dem Russischen von F. Tutenberg, Hermann Haack Verlag, Gotha.
- [4] L. C. Gottschalk u. V. H. Jones (1955): Valleys and hills, erosion and sedimentation. (U.S.) Yearbook of Agriculture, pp. 135-143 (Separate No. 2579).
- [5] E. Gerber (1959): Form und Bildung alpiner Talböden. «Geographica Helvetica», Bd. XIV, pp. 117-237.
- [6] A.E. Scheidegger (1961): Theoretical geomorphology. Springer-Verlag, Berlin.
- [7] siehe nähere Angaben in J. Zeller (1963): Einführung in den Sedimenttransport offener Gerinne. «Schweiz. Bauzeitung», 81. Jahrg., Hefte 34 bis 36.
- [8] E. W. Lane (1937): Stable channels in erodible material. «Trans. ASCE», vol. 102, pp. 127.
 E. W. Lane (1955): Design of stable channels. «Trans. ASCE», vol.
- 120, pp. 1234.
- [9] Ning Chien (1954): The present status of research on sediment transport. «Proc. ASCE», Sep. No. 565, p. 19/20.
- [10] Nations Unies, Commission Economique pour l'Asie et l'Extrème Orient: Le problème de la sédimentation. Publ. des Nations Unies, No. 1953, II.F.7., p. 37/38.
- [11] T. Blench (1957): Regime behaviour of canals and rivers. Butterworths Scientific Publications.
- [12] R.G. Kennedy (1895): The prevention of silting in irrigation canals. «Min. Proc. Inst. Civ. Eng.», Vol. CXIX.
- [13] E.S. Lindley (1919): Regime-channels. «Proc. Punjab Engineering congress», Vol. 7, pp. 63-74.
- [14] G. Lacey (1948): A general theory of flow in alluvium. «Journal Inst. Civ. Engineering», Vol. 27.
- [15] G. Lacey (1930): Stable channels in alluvium. «Minutes Proc. Inst. Civ. Engineering», Vol. 229, pp. 259-384.
- [16] C. King (1943): Practical design formulas for stable irrigation channels. Techn. Rep. Bd. Irrig., India.
- [17] C.C. Inglis (1949): The behaviour and control of rivers and canals. Central Water Power, Irrigation and Navigation Research Station, Res. Publ. No. 13, Poona/India.
- [18] L.B. Leopold u. W.B. Langbein (1962): The concept of entropy in landscape evolution. U.S. Geological Survey, Professional Paper No. 500-A.
- [19] L.B. Leopold u. T. Maddock (1953): The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey, Professional Paper No. 252.
- [20] D.B. Simons u. M.L. Albertson (1960): Uniform water conveyance channels in alluvial material. «Proc. ASCE», HY 5, paper 2484.
- [21] W. B. Langbein (1964): Geometrie of river channels. «Proc. ASCE», HY 2, paper 3846, pp. 301/312.
- [22] Ning Chien (1955): A concept of Lacey's regime theory. «Proc. ASCE», Sept. No. 620.
- [23] H.E. Hurst (1930): siehe Diskussionsbeitrag zu [15].
- [24] R. W. Abbett (1956): American civil engineering practice. John Wiley & Sons, Inc., Vol. II, section 15, pp. 21/23: River Engineering, bearbeitet von G. H. Matthes u. J. H. Stratton.
- [25] T. Blench u. M. A. Qureshi (1964): Practical regime analysis of river slopes. «Proc. ASCE», HY 2, paper 3826, pp. 81-98.
 T. Blench (1964): Dynamical statements of regime formulas. «Proc. ASCE», HY, Vicksburg Meeting, 18-21 Aug., pp. 9.
- [26] L.B. Leopold u. M.G. Wolman (1957): River channel patterns: Braided, meandering and straight. U.S. Geological Survey, Professional Paper 282-B.
- [27] C.R. Miller u. W.M. Borland (1963): Stabilisation of Fivemile and Muddy Creeks. «Proc. ASCE», HY 1, paper 3392.
- [28] M. Nixon (1959): A study of the bankfull discharges of rivers in England and Wales. «Proc. Inst. of Civil Engineers», London.

Schweiz, Bauzeitung · 83, Jahrgang Heft 6 · 11, Februar 1965

- [29] P. W. Terrell u. W. M. Borland (1956): Design of stable canals and channels in erodible material. «Proc. ASCE», HY 1, paper 880.
- [30] S.A. Schumm (1960): The shape of alluvial channels in relation to sediment type. U.S. Geological Survey, Professional Paper 352-B.
- [31] P. Ackers (1962): Experiments on small streams in alluvions. Hydraulic Research Station, Wallingford/England. Report No. Int. 28. P. Ackers (1964): nahezu unverändert erschienen in «Proc. ASCE» HY 4, paper 3959, pp. 1-37.
- [32] R.A. Bagnold (1956): The flow of cohesionless grains in fluids «Phil. Trans. Roy. Soc.», Series A, Vol. 249, No. 964, pp 235-297
- [33] F. M. Henderson (1961): Stability of alluvial channels. «Proc. ASCE», HY 6, paper 2984.
- [34] S. Leliavsky (1959): An introduction to fluvial hydraulics. Constable & Co., Ltd., London, pp. 193-257.
- [35] M.G. Wolman u. L.M. Brush (1961): Factors controlling the size and shape of stream channels in coarse, noncohesive sands. U.S. Geological Survey, Professional Paper 282-G.
- [36] L. M. Brush (1961): Drainage basins, channels, and flow characteristics of selected streams in Central Pennsylvania. U.S. Geological Survey, Prof. Paper 282-F.
- [37] L.B. Leopold u. J.P. Miller (1956): Ephemeral streams—hydraulic factors and their relation to the drainage net. U.S. Geological Survey, Professional Paper 282-A.
- [38] E.A. Samarin (1952): Strömungsuntersuchungen in Kanälen. Verlag Technik, Berlin (übersetzt aus dem Russischen von W. Hoessel).
- [39] J.J. Levi (195?): Dynamics of rivers. State Publishers (Dept. of Engineering), Moscow. (russisch). — Angaben über die Arbeiten [39] und [40] sind zu finden in E.V. Blitznyak u. K.J. Rossinskii (1956): Basic methods for computing channel processes in rivers caused by artificial modification of the river regime. Academy of Sciences of the U.S.S.R., Vol. 6, der Reihe: Problems of river runoff control (ins Englische übersetzt 1961, Herausgeber: The National Science Foundation, Washington D.C.).
- [40] M.A. Mostkov (1959): Elements of a theory of river channels. Academy of Science, Moscow (russisch).
- [41] L. B. Leopold u. M.G. Wolman u. J. P. Miller (1964): Fluvial processes in geomorphology. H.W. Freeman & Co., London.

Adresse des Verfassers: J. Zeller, dipl. Ing., Leiter der Abteilung Wasserbau der VAWE, 8006 Zürich, Gloriastrasse 39.

Zweckverbände für die Regionalplanung

DK 711.3:333

Ein Zweckverband ist eine Verbindung von Gemeinden zur gemeinsamen Bewältigung einer Aufgabe (Abwasserbehandlung, Spital usw.). Die Gemeinden können einen solchen Verband in der Regel aber nur schaffen, wenn sie vom kantonalen Recht dazu ermächtigt werden. Nicht selten kommt es vor, dass in der Region eine Gemeinde ausser der Reihe tanzen will. Praktisch können dadurch die Bemühungen der anderen Gemeinden vereitelt werden, wenn nicht das kantonale Recht auch für diesen Fall Vorsorge getroffen hat. Im einen und anderen Kanton kann der Regierungs- oder Kantonsrat Gemeinden zum Beitritt zu einem Zweckverband verpflichten.

Wichtig ist ferner, dass allen Zweckverbänden eine eigene Finanzkompetenz zusteht. Jede Verbandsgemeinde bezeichnet einen oder zwei Delegierte, in der Regel den Gemeindepräsidenten oder den Bauvorstand. Die Delegiertenversammlung genehmigt die Verbandsrechnung mit einfacher oder qualifizierter Mehrheit. Damit wird jede Verbandsgemeinde zur Bezahlung des auf sie entfallenden Anteils an den Zweckverband verpflichtet. Die grösste Gemeinde des Zweckverbandes bevorschusst die Ausgaben, die nach der Genehmigung der Rechnung auf die Gemeinden verteilt werden.

Bisher waren es in fast allen Kantonen Vereine und nicht Zweckverbände, denen die Gemeinden als Mitglieder beigetreten sind, um die Aufgaben der Regionalplanung zu besorgen. In jüngster Zeit hat sich im Kanton Zürich ein bemerkenswerter Wandel eingestellt, wie die VLP mitteilt. Die Planungsgruppe Knonaueramt, sowie die Regionalplanung Winterthur und Umgebung haben Zweckverbände mit einer erweiterten Zweckbestimmung gegründet. Diese lautet für die Region Winterthur und Umgebung: «Dem Verband obliegt die Aufstellung und die Nachführung des vom Regierungsrat zu genehmigenden Gesamtplans nach § 8 b des Baugesetzes über das Gebiet der Verbandsgemeinden sowie deren Beratung und Vertretung gegenüber kantonalen Behörden in Fragen der Regionalplanung. Der Verband kann, unter Vorbehalt der Zustimmung aller Verbandsgemeinden, weitere Aufgaben der Orts- und Landesplanung übernehmen.»