Zeitschrift:	Schweizerische Bauzeitung
Herausgeber:	Verlags-AG der akademischen technischen Vereine
Band:	83 (1965)
Heft:	30
Artikel:	Klimatechnische Probleme bei Hallenschwimmbädern. 2. Teil: Heiz- und bautechnische Probleme
Autor:	Pfiffner, Heinz
DOI:	https://doi.org/10.5169/seals-68215

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 26.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

2. Teil: Heiz- und bautechnische Probleme

Von Heinz Pfiffner, Stäfa

I. Die Deckung des Wärmeabflusses durch die Raumumgrenzungen

In Hallenbädern sollen die innern Oberflächen, mit denen die Badegäste im Wärmeaustausch durch Strahlung stehen, möglichst warm gehalten werden. Das gilt besonders für die Böden, die Sitzstufen, die Aussenwände und Fensterbrüstungen. Wie bereits im Aufsatz von E. Wild erwähnt, soll die innere Oberflächentemperatur dieser Teile im Mittel 24 °C betragen. Dabei ist eine Raumtemperatur von 27 °C vorausgesetzt.

Um den Wärmeabfluss durch die Raumumgrenzungen zu decken, ist eine Heizung nötig. Besondere Vorteile bietet in Hallenbädern eine Strahlungsheizung, die in den Fussboden, in die Fensterbänke sowie wenn nötig in gewisse Teile der Wände eingebaut ist. Bei dieser Heizart sind die Heizeinrichtungen in der Halle unsichtbar; es besteht weder eine Verletzungs- noch eine Korrosionsgefahr; die beheizten Oberflächen sind gross, ihre Temperatur ist verhältnismässig niedrig und gleichmässig, so dass sich ein sehr günstiger Strahlungsaustausch mit den nackten Körpern der Badegäste ergibt und jegliche Gefährdung durch Brandwunden ausgeschlossen ist. Nachteilig ist allerdings die grosse Trägheit dieser Heizart sowie die Schwierigkeiten und Kosten, die sich bei allfälligen nachträglichen Änderungen der Heizflächen ergeben.

Weit verbreitet ist die nach ihrem Erfinder benannte Crittal-Strahlungsheizung, bei der die Heizröhren einbetoniert sind und mit Heizwasser von niedriger Temperatur durchströmt werden. Bei der grössten Heizleistung arbeitet man mit 50 °C im Vorlauf und 35 °C im Rücklauf. Im Falle der Bodenheizung werden die Heizrohre (vorwiegend 1/2") über den rohen Betonboden auf Distanzstücken verlegt und anschliessend mit Überbeton eingegossen. Soll ein Wärmeabfluss nach unten verhindert werden, so ist unter den Rohrschlangen eine Isolierung vorzusehen.

Als Beispiel für die Durchführung der Wärmebedarfsberechnung sei eine Bodenkonstruktion nach Bild 1 gewählt. Die Wärme fliesst sowohl nach oben als auch nach unten ab. Die beiden Wärmeströme Q_o und Q_u müssen getrennt berechnet werden. Dazu muss die Temperatur des Betons in der Heizrohrebene bekannt sein. Bei der grössten Heizleistung beträgt die mittlere Heizwassertemperatur (Mittelwert zwischen Vor- und Rücklauf) $t_m = 42,5$ °C. Die Betontemperatur ist in unmittelbarer Nähe der Rohre nur wenig niedriger, sinkt aber mit grösserer Entfernung von den Rohren, so dass sich in der Rohrebene ein Mittelwert te ergibt, der mit zunehmendem Rohrabstand abnimmt. Bild 2 zeigt den Verlauf von te in Abhängigkeit vom Rohrabstand. Dort ist auch der in bekannter Weise berechnete Verlauf der Temperatur to an der Fussbodenoberfläche eingezeichnet, und zwar unter Annahme einer Lufttemperatur t_R im Raum von 27 °C und einer Bodenkonstruktion entsprechend Bild 1. Bei einem Rohr-

Bild 1. Querschnitt durch einen Betonboden mit einbetonierter Bodenheizung System Crittal

Bild 3. Temperaturverlauf innerhalb des Fissbodens bei einer einbetonierten Heizung nach Bild

Bekanntlich ist der Wärmestrom q pro Flächeneinheit, der bei einer Temperaturdifferenz riangle t durch eine Wand strömt

$$q = k \cdot \bigtriangleup t$$
 kcal/m²h

wobei: $1/k = \Sigma 1/\alpha + \Sigma d/\lambda$

k = Wärmedurchgangszahl in kcal/m² h °C

 $\alpha = W$ ärmeübergangszahl in kcal/m² h °C

d = Wandstärke in m

 λ = Wärmeleitzahl des Wandmaterials in kcal/m h °C

Für die Wärmeströmung nach oben gilt

$$a_0 = k_0 (t_e - t_{R_0}) \text{ mit } 1/k_0 = \delta_1/\lambda_1 + 1/\alpha$$

Mit den Zahlenwerten

folgt

 $t_e = 35,5 \,^{\circ}\mathrm{C}$ $\lambda_1 = 0.8 \text{ kcal/m h }^\circ\text{C}$ $\alpha_o = 10 \text{ kcal/m}^2 \text{ h} \,^\circ\text{C}$, gemäss $t_{Ro} = 27,0 \,^{\circ}\mathrm{C}$ [2], Tafel 243-1, S. 548 $d_1 = 0.04 \text{ m}$

 $k_o = 6,7 \text{ kcal/m}^2 \text{ h} \,^\circ\text{C}$

 $q_o = 57 \text{ kcal/m}^2 \text{ h}$ Der Verlauf von q_0 ist in Bild 4 als Kurve q_2 in Abhängigkeit vom Rohrabstand eingezeichnet. Die Kurve q1 zeigt die Wärmeabgabe pro m Rohr.

Die Wärmeströmung nach unten durchdringt drei Schichten, nämlich 0,02 m Überbeton ($\lambda = 0,8$ kcal/m h °C), 0,05 m Kork $(\lambda = 0.05 \text{ kcal/m h}^{\circ}\text{C})$ und 0.25 m Eisenbeton ($\lambda = 1.3 \text{ kcal/m h}^{\circ}\text{C}$). Mit den Zahlenwerten

with doin Examplify of con	
$t_e = 35,5 \ ^{\circ}\mathrm{C}$	$\alpha_u = 5 \text{ kcal/m}^2 \text{ h} ^\circ\text{C}$ [2], Tafel 243–1
$t_{Ru} = 12,0 \ ^{\circ}\mathrm{C}$	entspr. etwa 18 °C Oberflächentemp.
folgt	

 $k_u = 0,71 \text{ kcal/m}^2 \text{ h}^{\circ}\text{C}$ $q_u = 16,7 \text{ kcal/m}^2 \text{ h}^{\circ}$

Die gesamte Wärmeströmung ist somit

 $q = q_o + q_u = 73,7 \text{ kcal/m}^2 \text{ h}$

Sie ist für die erforderliche Heizleistung massgebend.

Ein anderes System ist die Deriaz-Fussbodenheizung nach Bild 5. Bei ihr sind die Heizröhren von ebenfalls 1/2" in Hohlsteinen freiliegend angeordnet und mit breiten Lamellen verbunden, welche die Zwischenräume zwischen den Röhren teilweise ausfüllen. Dadurch verteilt sich die Wärmeabgabe von den Röhren auf die ganze Bodenfläche, so dass sich die Bodentemperaturen weitgehend ausgleichen. Bei voller Heizleistung betragen bei diesem System die Heizwassertemperaturen 80 °C im Vorlauf und 60 °C im Rücklauf.

II. Die Verhinderung verborgener Kondensation

Eine Wasserausscheidung innerhalb der Baukonstruktion muss vermieden werden, weil sie verschiedene Nachteile mit sich bringen

Bild 2. Mittlere Temperatur te in der Heizrohrebene und mittlere Temperatur t_{o} der Fussbodenoberfläche in Abhängigkeit vom Rohrabstand einer einbetonierten Heizung nach Bild 1

Querschnitt durch einen Betonboden mit in Hohl-Bild 5. steinen eingebauter Heizung, System Dériaz

Tabelle 1. Temperaturverlauf und Sättigungsdrücke in der Aussenwand eines Hallenbades bei 27 $^\circ$ C, 60 % innen und —20 $^\circ$, 90 % aussen

	d	α bzw.	1/a bzy	w. ∆t	t	p_s
Schicht	m	λ^2)	d/λ^3)	°C	°C	Torr
())		20	0.05	1.44		0,77
Ubergang		20	0,05	1,44	-18.56	0.90
Aussenputz	0,02	0,70	0,03	0,86	17 70	0.06
Backstein	0.12	0.55	0.22	6 34	-17,70	0,90
IZ a ala	0.05	0,05	1,00	20.00	—11,36	1,75
KOIK	0,05	0,05	1,00	28,80	+17.50	15.00
Beton	0,18	1,10	0,16	4,61	1 22 11	10.94
Innenputz	0.02	0,70	0,03	0,86	+22,11	19,04
Übergang	_	7	0.14	4 03	+22,97	21,00
obergang		1			+27,00	26,74
			1,63	47,00		

Tabelle 2. Dampfdruckverlauf ohne und mit Sperre

				ohne Sperre		mit Sperre	
	d	δ	d/δ	$\triangle p_d$	p_{do}	$\triangle p_d$	p_{dm}
Schicht	m	-4)	5)	Torr	Torr	Torr	Torr
Aussenputz	z 0,02	0,0085	2,35	0,53	0,69	0,192	0,690
Backstein	0,12	0,012	10,00	2,27	1,22	0,818	0,002
Kork	0,05	0,005	10,00	2,27	5,49	0,818	1,700
Beton	0,18	0,0042	43,00	9,75	5,76	3,516	2,518
Sperre			(120,00)		15,51	9,814	6,034
Innenputz	0,02	0,0085	2,35	0,53		0,192	15,848
-			67,70	15,35	16,04	15,350	16,040
			(187,70)				

würde. So erhöht sich die Wärmeleitzahl von Baustoffen mit zunehmendem Feuchtigkeitsgehalt; weiter kann der Verputz abbröckeln oder der Anstrich abblättern oder es können Metalle oxydieren.

Eine sichtbare Kondensation auf der Innenoberfläche der Aussenwände tritt auf, wenn die Oberflächentemperatur unter den Taupunkt der umgebenden Luft absinkt. Gefährdet sind vor allem die Ecken und Nischen, weil dort die Oberflächentemperaturen aus verschiedenen Gründen wesentlich tiefer liegen als an den glatten Wänden. Tiefe Taupunkte, also niedrige relative Feuchtigkeiten der Raumluft, lassen sich durch richtig bemessene Frischluftzuteilung erzielen, wie im vorhergehenden Aufsatz gezeigt wurde.

Eine verborgene Kondensation tritt auf, wenn der Dampfdruck innerhalb der Wandkonstruktion grösser ist als der Sättigungsdruck, der der Temperatur an der betreffenden Stelle entspricht. Das Problem der Dampfdiffusion durch Wandkonstruktionen ist von H. Glaser eingehend untersucht worden. Darauf aufbauend hat A. Ostertag in [3] dessen Anwendung an Hand von Zahlenbeispielen aus der Kältetechnik erläutert. Die dort gezeigte Berechnungsmethode lässt sich ohne weiteres auch auf die Aussenwände von Hallenbädern anwenden. Danach bestimmt man zunächst den Temperaturverlauf t der meist aus mehreren Schichten aufgebauten Wand. Aus ihm ergibt sich auf Grund der bekannten Wasserdampftabellen, z. B. [1], S. 475, der Verlauf der Sättigungsdrücke ps. Diese Berechnung ist für das vorliegende Beispiel, das heisst für eine Wandkonstruktion nach Bild 6 in Tabelle 1 durchgeführt. Der Verlauf des wirklichen Dampfdruckes p_d lässt sich mittels der bekannten Diffusionswiderstände δ der einzelnen Wandbaustoffe in analoger Weise ermitteln wie der Temperaturverlauf. Tabelle 2 gibt die entsprechenden Zahlen ohne und mit Dampfsperre.

Der Berechnung liegen folgende Zahlenwerte zugrunde: Luftzustand aussen $t_a = -20$ °C $\varphi = 0.9$ $p_{da} = 0.69$ Torr

¹) Der Zusammenhang zwischen der Dampfleitzahl δ und dem sonst üblichen Diffusionswiderstandsfaktor μ ist durch die Gleichung $\delta = 1/160 \mu$ mg/h kp gegeben. Werden die Drücke in Torr statt in kp/m² eingesetzt, so ist $\delta = 0.085 \mu$ g/m h Torr. So erhält man beispielsweise für Ziegelmauerwerk mit $\mu = 7 \ \delta = 0.012$ g/m h Torr. Ausführliche Angaben für μ findet man in [4], S. 188 bis 194. Dort ist auch die Theorie der Dampfdiffusion durch Wände eingehend erörtert (S. 59 bis 87).

²) kcal/m² h °C bzw. kcal/m h °C

3) m² h °C/kcal

- ⁴) g/h m Torr
- ⁵) m² h Torr/g

Bild 6. Verlauf von Temperatur t, Sättigungsdruck p_s und Dampfdruck ohne Dampfsperre p_{do} bzw. mit Serre p_{dm} bei einer isolierten Aussenmauer und den Luftzuständen + 27 °C, 60 % innen und -20°, 90 % aussen; hiezu Tabellen 1 und 2

Luftzustand innen $t_i = 27 \ ^\circ C \ \varphi = 0,6$ $p_{di} = 16,04 \ Torr$

Die angenommenen Wärme- und Dampfleitzahlen (λ bzw. δ) sowie die Wärmeübergangszahlen α findet man in den Tabellen 1 und 2¹). Der Diffusionswiderstand der Dampfsperre (Vaporex der Bad. Anilin- und Sodafabrik, Ludwigshafen, BASF) wird zu 120 m² h Torr/g angenommen. Der Wärmestrom beträgt bei der angenommenen Temperaturdifferenz von $t_i - t_a = 47$ °C

 $q = 47/1,63 = 29 \text{ kcal/m}^2 \text{ h},$

der Dampfstrom ohne Sperre bei $p_{di}-p_{da} = 15,35$ Torr g = 15,35/67,7 = 0,227 g/m² h

mit Sperre

 $g = 15,35/187,7 = 0,082 \text{ g/m}^2 \text{ h}$

Wie aus Bild 6 ersichtlich, überschneidet der Sättigungsdruck p_s den Dampfdruck p_{do} im Falle einer Mauer ohne Sperre, und zwar im Bereich der Backsteinmauer (schraffierte Fläche). Es würde sich also dort eine verborgene Kondensation einstellen. Um das zu vermeiden, wird zwischen Innenputz und Betonmauer eine Dampfsperre eingebaut. Diese ist so dünn, dass sie den Temperaturverlauf nicht zu beeinflussen vermag. Sie drosselt jedoch die Dampfströmung so stark ab, dass der Dampfdruck p_{dm} an keiner Stelle den Sättigungsdruck p_s erreicht. Beim angenommenen Wert $d/\delta = 120 \text{ m}^2 \text{ h Torr/g}$ der Sperre verläuft allerdings die p_{dm} -Linie im Bereiche der Backsteinmauer nur knapp unter der p_s -Linie. Bei der Unsicherheit der δ -Werte wäre eine stärkere Sperrwirkung empfehlenswert.

Die Oberflächentemperatur auf der Innenseite liegt mit rd. 23 °C (Tabelle 1) etwas unter dem gewünschten Wert von 24 °C. Dies dürfte im Hinblick auf die beträchtlich wärmeren Flächen der geheizten Teile sehr wohl zulässig sein.

Literaturverzeichnis

[1] Hütte I, 28. Aufl., Berlin 1955, Wilh. Ernst.

[2] Recknagel-Sprenger, Taschenbuch für Heizung, Lüftung und Klimatechnik, 53. Aufl., München-Wien 1964, R. Oldenbourg.

[3] Ostertag, A.: Über die Dampfdiffusion in Kühlraumwänden. SBZ 82 (1964), H. 17, S. 292 bis 299.

[4] Cammerer, J.S.: Der Wärme- und Kälteschutz in der Industrie. 4. Aufl. 1962 Berlin, Göttingen, Heidelberg, Springer-Verlag.

Adresse des Verfassers: Ing. H. Pfiffner, Ventilator AG, 8712 Stäfa.