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Definition und Theorien der Steifeziffer DK 624.131.439

Von L^Bng. Karl Friedrich Henke, Leiter der Abteilung für Erd- und Grundbau des Otto-Grä^^^Bes der TH Stuttgart
Vortrag, gehalten an der Frühjfjjg|tagung der Schweiz. Gesellschaft für Bodenmechanik und FundationBehnik am 24. April 1964 in der
Aula der U^Mersität Freiburg i. 0.

Einleitung

Die in der Fundationstechnik bestehende Aufgabe, die
Verformungen eines Gründungskörpers zu berechnen, wird mit Hilfe der
mathematischen Ansätze der Elastizitätstheorie gelöst. Es ist daher
zweckmässig, sicraHlt den Voraussetzungen der Elastizitätstheorie im
Hmbli||| auf den Boden auseinanderzusetzen.

X. Grundlagen

Die elastischen Grundgleichungen [1] werden aus der Betrachtung
des Verformungszustandes eines Parallelepipeds gewonnen, das einem
räumli^Ki Spannungszustand unterworfen ist. Es gelten die
Beziehungen:

1 + M i"
• -=r (Cx + Oy + Oz)

(1)

E
1 +M

0*ic -

(ax + ay + oz)

(ox + Ca + Oz)

^H|^^g®hungen^Kswerden häufig auch als das erweiterte Hookesche

Gesetz bezeichnefjßis für den Fall der einaxialen Beanspruchung
(ax oy 0)

(la)
Cz

E

wird und also definitionsgemäss die Bestimmung der darin vorkommenden

Konstante E zulässt, wenn az und ez als Messgrössen vorliegen.

Mit n 1/m wird die Querkontraktionszahl (Poissonsche
Konstante) bezeichnet. Die Querkontraktionszahl /i lässt. sich aus einem
einaxialen Kompressionsversuch, bei dem z.B. die axiale Belastung
in der z-Richtung erfolgte, aus der zweiten der Gleichungen (1)
bestimmen. Mit (la) ergibt sich

db) ^

Das negative Vorzeichen rührt von der Konvention her, die
Kontraktion als positiv einzusetzen.

Die Dehnungen in den Koordinatenrichtungen x, y, z sind durch
die Differentialquotienten

8u dv
_

8w
8)X 8y dz

(2) ex

charakterisiert. Diese Kennzeichnung ist also an die Bedingung
geknüpft, dass die Verschiebungen du, 8v, 8w klein sind gegenüber den
Bezugslängen. Ist das nicht der Fall, dann können die Glieder höherer
Ordnung, die beim zu behandelnden Problem auftreten, nicht mehr
vernachlässigt werden. Ist jedoch die Belastung im Verhältnis zum
£-Modul so, dass die Verformungen klein bleiben, dann lässt sich diese

Theorie mit Erfolg anwenden.
Weiterhin treten unter der Einwirkung von Scherspannungen

Gestaltänderungen
8u

(3) yyz m

dv
yxy —

8y + dx g

Jyz
dv
H7 ;.-

dw r„z
G

yzx
dw
~dx +

du
8z

?zx

Hl
ein, bei denen die Proportionalität zu den Schubspannungen m durch
den Schubmodul G gegeben ist, der bekanntlich mit E und p. in der
Beziehung

(4) G W
steht. Die räumliche Dehnung e, die sich aus den drei Komponenten

(5) ex + % + «z

zusammensetzt, ergibt sich mit Gleichung (1) zu

(5 a)
1 ¦ 2 i«

(ox + Oy + Oz)

und tritt dann nicht auf, wenn p 0,5 und E > 0 ist oder es sich um
^Bk starren Körper (p, 0, E oo) handelt. In diesem Falle hat man
es alsqBtweder mit volumenkonstanten, inkompressiblen Stoffen zu
tun, die weich oder flüssig sein können, aber einen endlichen is-Modul
besitzen, oder mit starren Medien. Der für diese Betrachtung triviale
Fall der reinen Schubbeanspruchung, bei dem sich ebenfalls keine
Dehnung ergibt, braucht nicht weiter behandelt zu werden.

Ein anderer Fall, der häufig auftritt, i^Eer einaxiale
Formänderungszustand, bei dem z.B. eine Belastung az vorhanden ist und in den
Richtungen x und y keine Deformation ex und % auftritt. Aus den
Gleichungen (1) lässt SBBH wiederum direkt ableiten, dass

(6)
1 ü -2 p?

\—p E
ist. Vergleicht man Gleichung (la) mit (lb), so besteht der Unterschied

in einem Propc^Bnalitätsfaktor, und es könnte Gleichung (6)
nach Einführung einer Grösse

1
(7) E

in der Form

ü
1 ¦p- ¦2ß2

(6 a)
E*

geschrieben werden. Eaet daraus zu ersehen, dass bei einem Zusam-
mendrückungsversuch mit behinderter Seitendehnung die
Querkontraktionszahl ß überlagernd auftritt. Eine Bestimmungsmethode für
die Querkontraktionszahl p, wäre z.B. durch Messung der Dehnungen
ez in einem Versuch mit unbehinderter und einem mit behinderter
Seitendehnung gegeben. Unter entsprechenden Laststufen wären dann
E und E* bekannt, und p Hesse sich aus der quadratischen Gleichung
(7) berechnen. E* ist ein Kennwert für das Zusammendrückungsver-
halten unter behinderter Seitenausdehnung und soll im folgenden unter

weiteren Festlegungen Steifeziffer genannt werden.
Unter Ausschluss von Zugspannungen, die ein Boden nicht

übertragen kann, ist die Elastizitätstheorie unter gewissen Einschränkungen

auf Böden anwendbar.

2. Die Verformungsberechnung im Halbraum
Die eigentliche Verformungsberechnung oder speziell die Berechnung

der vertikalen Baugrundverformung, der Setzung s, geschieht
nach dem allgemeinen Ansatz

(8)

*3

/ cr„
dz

Die mit oz bezeichneten vertikalen Normalspannungen können
mit Hilfe einer Spannungsverteilungsfunktion berechnet werden. Dem
Verfasser sind für die Verteilung von Normalspannungen, die an der
Halbraumoberfläche angreifen, folgende Ortsfunktionen bekannt:

(9)

(10)

(11)

P
2 71

vP

1 + 1
1 + lj.

2"](2 + »)/2

J

Boussinesq [2]

Fröhlich [3]

In
1 +2 m

Westergaard [4]

Ohde [5] hat eine Erweiterung bzw. Spezifizierung der Fröhlich-
schen Ortsfunktion angegeben, auf die hier nicht weiter eingegangen
werden soll. Die in diesen Ortsfunktionen F (z, r) (jeweils in
Zylinderkoordinaten z, r mit r2 y2 + x2) in Verbindung mit Gleichung (8)
vorkommende Konstante ist jeweils identisch mit dem f-Modul.

Nach dem Superpositionsprinzip kann jede Flächenlast in kleine
Elementarbelastungen aufgelöst werden, die innerhalb des Lastbereichs

B integrierbar sind.

(12) o-z ffp (I, rj) ¦ F11 • d( dn
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Dieser Integralausdruck liegt allen Spannungsverteilungsgesetzen
zugrunde. Für die BoussBsqsche Ortsfunktion sind z.B. Kreisflächenbelastungen,

Rechteck, Streifen und andere Lastflächen untersucht
worden. AbgHunabhängig von der Art der Verteilung kommt für die

IgMungsermittlung immer wieder der £-Modul in die Berechnung
hinein. Die Ergebnisse sind auch grösstenteils tabuliert oder in Form
von dimensionslosen Einflusswerten aufgetragen.

Die Vertikalverformung w im Halbraum unter der Wirkung einer
Einzellast hat Boi^miesq mit (R2 r2 + z2) zu

(13) P(l + p) 1/2(1— p)
7.71 E R

angegeben. Die Einsenkung s der Oberifflße unter einer kreisförmigen,
biegesteifen Last vom Radius r hat ScIWÜther [6] mit

(14) .s
1 — p ti r a

E 2

angegeben. Führt man eine weitere Grösse

(15) E** E
l—p2

ein, so ergibt Gleichung (14)

(14a) E** ti r o

Der Faktor 1 —p2 tritt übrigens bei allen Verformungsberechnungen
auf, die sich auf den Ansatz nach Gleichung (13) gründen.

Demgegenüber ist natürlich der heute für Setzungsberechnungen übliche
Ansatz nach Gleichung (8) eine Vereinfachung, die durch Vernachlässigen

der Grösse p? entsteht. Der mögliche Grössenbereich 0 > p >
0,5 lässt erkennen, dass E** maximal das l,33fache von E betragen
kann, also die nach E** berechneten Setzungen das 0,75fache der
nach E berechneten ausmachen könnten.

3. Konsolidation und Zeitsetzungsverhalten

Nicht nur zur Lösung der Verformungsberechnung wird der E-
Modul herangezogen, sondern auch in der Konsolidationstheorie. Die
von Terzaghi aufgestellte Differentialgleichung der eindimensionalen
Konsolidation [7] lautet

(16)
8pu
dt

o*Pu
ym mVc 8 z2

Hierin bedeuten

t Zeitveränderliche

z Ortsveränderliche

pu Porenwasser-
Überdruck

k spezifische
Durchlässigkeit

yw — spezifisches
Gewicht
des Wassers

mVc Verdichtungsziffer

SPANNUNG [kg/cm2]
40 3,0 2P

Der Reziprokwert der Verdichtungsziffer ist mit der Steifeziffer E*
identisch, weswegen diese Gleichung auch in der Form

(16 a)
8pu
8t

E*k 82pu

ym dz2

geschrieben werden kann. Aus diesem Zusammenhang heraus ist
vielleicht der Gebrauch der Bezeichnung «Steifeziffer» eher verständlich.
Nach den Voraussetzungen der Konsolidationstheorie müssen mVc
und mithin auch E* im Konsolidationsbereich konstant sein, also

| Zier
~ A'Ah/h)

gelten.

Von Biot [8] wurde an der Terzaghischen Theorie bemängelt, dass
die darin eingeführte Steifeziffer E* lediglich in den Sonderfällen der
tatsäclllA eindimensionalen Konsolidation angewandt werden kann,
während sie für alle Arten von endlichen Belastungen, also bei allen
Grundbauwerken, streng genommen, nicht anwendbar ist. Biot führt
in seiner «Generellen Theorie der dreidimensionalen Konsolidation»
wieder den i'-Modul ein, kommt aber zum Ergebnis, neben p und G
vier weitere physikalische Konstanten einführen zu müssen. Er geht
allerdings in seinen neueren Arbeiten gänzlich von der Einführung des
jE-Moduls ab, was aber über das hier zur Frage stehende Problem weit
hinausgeht.

Generell gesehen setzt sich das Zeitsetzungsverhalten der Böden
aus drei Phasen zusammen, die im Oedometerversuch zeitlich
nacheinander ablaufen (siehe Bild 1). Wir unterscheiden

a) Kurzzeitsetzung

b) Konsolidationssetzung
c) Langzeitsetzung

Die einzelnen Anteile sind in ihrem Einfluss auf den Gesamtbetrag

der Setzung bei den einzelnen Bodenarten verschieden gross. Zum
Beispiel resultiert bei einem Kiessand die Setzung im wesentlichen aus
dem Anteil a), während ein wassergesättigter, hochplastischer Ton
fast ausschliesslich Konsolidationssetzung aufweist. Bei organischen
Böden tritt im Versuch zeitlich nach der Konsolidation die Sekundärsetzung,

die Langzeitsetzung, ein. Der zeitabhängige Modellfaktor füi
diesen Setzungsanteil ist nicht bekannt, so dass bezüglich des zeitlichen
Ablaufs der Langzeitsetzungen aus dem Versuch keine Aussagen
gemacht werden können. Diese drei Anteile treten bei jeder Laststufe mit
unterschiedlicher Grösse auf und können im zeitunabhängigen Last-
Setzungs-Diagramm (linke Bildhälfte von Bild 1) als «Zwischen- oder
Endpunkt» der Setzung übernommen werden. Diese Punkte können
dann zwischen den dort eingezeichneten Linienbereichen liegen. Die
Anzahl der Geraden, die man in diesen Bereich hineinpassen könnte,
ist ziemlich gross und, wie man am Neigungsmassstab erkennen kann,

ZEIT [Tage]
3 4

Bild 1. Einfluss der verschiedenen,
zeitlich aufeinanderfolgenden
Setzungsanteile («Zeiteiniluss»)

I I

;-
KURZZEITSETZUNG

KONSOLIDATIONSSETZUNG

LANGZEITSETZUNG
mm

3g 500
E^AOO

lh
ET-300

»100 E-50 E=10

NEIGUNGSMASSTAB FUR DIE
STEIFEZIFFER E*
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auch der entsprechende Schwankungsbereich. Die Ermittlung der
Steifeziffer als Sehnenmodul einer dieser möglichen Kurven ist
wahrscheinlich im Hinblick auf die Genauigkeit mit der Angabe der
Grössenordnung e^&öpft.

Einigt man sich darauf, das EndSer Konsolidationssetzung als
Kriterium für die LastjBpngskurve zu übernehmen, so entsteht eine
definiertere Kurve (Bild 2), deren Genauigkeit allerdings mit einer
Konvention erkauft worden ist, die nicht für alle Fälle zutrifft. Will
man andere Zwischenzustände erfassen, so müssen andere
Lastsetzungskurven danach konstruiert werden. Der so beschriebene
Einfluss sei «Zeiteinfluss» genannt.

4. Das Lastsetzungsverhalten

(17)

In der Form des Druck-Porenzifferdiagramms
1

eP eo — In (p + pc)

hat zuerst Terzaghi [7] das Lastsetzungsverhalten der Böden
charakterisiert. Darin bedeuten ev in Anlehnung an den internationalen
Brauch die Porenziffer unter der Belastung p, pc den Vorbelastungspunkt,

e0 die Ausgangsporenziffer und A eine Konstante. Für die
praktische Setzungsberechnung muss das Druck-Porenzifferdiagramm
in ein Druck-Setzt^^^wramm umgerechnet werden, was z.B. durch
Änderung der Ordinateneinteilung geschehen kann, die dann jedoch
nicht mehr äquidistant ist. In der halblogarithmischen Auftragung hat
das Lastsetzungsverhalten die Form von Bild 3.

Ohde [5] hat auf Grund seiner Untersuchungen für das Zusam-
mendrückungsverhalten der Böden zwei Gesetze aufgestellt.

(18 a)

(18 b)

V vpu

j_ y^
v Vip V2 \/p

Er bezeichnet das Gesetz (18 b) als das genauere, zieht aber wegen
der mathematischen Einfachheit bei ausreichender Genauigkeit das
Gesetz (18 a) vor. Mit den hier verwendeten Bezeichnungen wird
Gleichung (18 a)

(18aa) E* v ow

In diesem Gesetz sind v und w experimentell zu bestimmende
Parameter. In Bild 3 besitzt z.B. die ausgezogene Lastsetzungskurve die
Parameterwerte v 64 und w 0,66. Nach Ohde kann w noch mit
guter Näherung für die meisten Böden als 1 gesetzt werden. Eine Variation

des Kurvenverlaufs für die Parameterwerte v 50 und w 0,6;
0,8; 1,0 ist gestrichelt eingetragen. Konvexe Formen von Kurven mit
w > 1 kommen praktisch nicht vor. Zum Vergleich ist auch die Kurve
von Bild 3 nach der Terzaghischen Gleichung (17) analysiert worden.

Die Parameter lauten

e0 0,822

A I 19,5

Pc 0,875 kg/cm2

M^BzeA: [9] hat die Frage des Unterschieds beider Ansätze eingehend

untersucht und kommt zum Ergebnis, dass die Ohdeschen
Gleichungen (18 a) und (18 b) dasselbe beinhalten wie die von Terzaghi
aufgestellte Gleichung (17).

Etwa ein Jahr vor der Ohdeschen Veröffentlichung wurde die von
Haefeli entwickelte graphische Setzungsanalyse mitgeteilt [10]. Als
Grundlage für diarapr praktische, graphische Methode dient der Ms-
Wert, der Verdichtungs- oder Zusammendrückungsmodul genannt
wird. Er ist definiert als

(19) Mb at
Ae

Mit Ae wird die auf die Höhe bei Belastung mit 1 kg/cm2 bezogene
Setzungsdifferenz zwisSin 1 kg/cm2 und 2,71828 kg/cm2 bezeichnet.
Unter den ^»en Verst^febedingungen im Oedometerversuch und im
Lastbereicb^ffischen oi 1 kg/cm2 und ae 2,71828 kg/cm2 mussten
1/Ae und v einander gleich sein, mithin sich die Grössen Mb und E*
entsprechen.

Das L^ßetzungsverhalten stellt sich also als nichtlinear heraus.
Die Progression der Steifeziffer mit der Spannung kann auf diese Art
verfeinerter analysiert werden als es mit der Annahme der konstanten
Steifeziffer möglich ist.

Streng genommen musste jede im Oedometerversuch ermittelte
Steifeziffer E* gemäss Gleichung (7) reduziert werden, um damit eine
Setzungsberechnung ausführen zu können. Die Reduktion ist jedoch
nicht ohne Kenntnis der Querdehnungszahl p möglich, die zu
bestimmen auch nicht einfach ist. In Anbetracht der statistischen,
objektiven und subjektiven Fehler bei der Bestimmung der Steifeziffer
kann auch auf diese Reduktion mit Recht verzichtet werden.

Wird der is-Modul in situ bestimmt, so geschieht dies durch Messung

der vertikalen Verformungen unter einer aufgebrachten Spannung

und Auswertung nach Gleichung (14a). Die aus der Messung
hervorgehende Grösse ist E**.

Ein besonderes Problem stellen darüber hinaus Messungen unter
der Halbraumoberfläche dar, insbesondere solche, bei denen
Lastplatten kleine Durchmesser haben. Es sei hierzu auf neuere Arbeiten
von Haefeli [11] verwiesen. Auch bei dieser Messung ist ein
«Zeiteinfluss» bei bindigen Böden und der Einfluss der Nichtlinearität zu
berücksichtigen. Über den Einfluss der Querdehnung gilt das oben

Gesagte.

o i 2 3 4 5 6 7 s 9 10 11 12 kg/cm* Bild 3 (rechts). Oedometerver¬

such; Lastsetzungs-Diagramm
halblogarithmisch verzerrt

E=2000

EVIOOO

500

E*400

E=300

f-Y> E»50 p E=250

NEIGUNGSMASSTAB FUR DIE

STEIFEZIFFER E*

au. ,i

Bild 2. Oedometerversuch; Lastsetzungs-Diagramm unverzerrt

612

SETZUNG SRANNUNG <r IN kgicm2

Q05 4125 0,25 0.5 1.0 V 4,0 8,0

h„

0.825 0/10

0,807 0,01

0,789 0,02

0,771 0,03

0,753 0,04

0,735 0,05

0,717 0,06

0,699 0,07

0,681 qoe

0,663 0,09

sls3
m\\ S\r-tp =0,822-sjL ln(p+0,875)

V=50^-
W=t0 Vo \o"ÜR ERSTBELASTUNG) 1

r
1

'

V¦ V-^640-0-66
\l/=50—' \mR 0,6S (TSBkfl/cm2)

\1=0,6 K \ V V=50
^Tw=0.>6

—9H \is¦¦ A j

1 \gl \
JSSMm \iü,\\

SB\\V
\
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5. Zusammenfassung

Aus der Elastizitätstheorie, auf der die Arbeiten von Boussinesq
u. a. aufbauen und die heute noch die Grundlage für alle
Setzungsberechnungen bildet, sind die Grössen E und p definiert. Aus der
Verkuppelung von E und p lässt sich eine Grösse E* ableiten, die aus
einemVerformungsversuch mit behinderter Seitendehnung ohne Kenntnis

von p berechnet werden kann. Ebenfalls ohne KennBgvon p kann
durch Messung der Setzung einer Lastplatte an der Halbiwnober-
fläche eine Grösse E** eingeführt werden. Nach der Boussinesqschen
Theorie wäre diese Grösse den Setzungsberechnungen zugrunde zu
legen. Die mit E** berechneten Setzungen können auf das 0,75fache
der mit E berechneten absinken. Wegen der vielen Fehlerquellen und
Ungenauigkeiten ist es sicherlich nicht zweckmässig, die Korrektur
mit p auszuführen. Die im Oedometerversuch bestimmbare Grösse E*
wird vielfach Steifeziffer genannt. Sie spielt bei Setzungsberechnungen
und Konsolidationsvorgängen eine grosse Rolle und ist als Sehnenmodul

definiert. Alle den Spannungseinfluss (Progression) darstellenden

Steifezifferansätze lassen sich auf das von Terzaghi aufgestellte
Gesetz zurückführen.

Schlussbemerkung

Dieser Beitrag stellt die umgearbeitete Wiedergabe des vor der
Schweizerischen Gesellschaft für Bodenmechanik und Fundations-
technik in Fribourg am 24. April 1964 gehaltenen Vortrags dar. Dem
Präsidenten der Gesellschaft, Dipl.-Ing. Ch. Schaerer, sei an dieser
Stelle für die Vortragseinladung und die Zustimmung gedankt, den
Vortrag in etwas erweiterter Form darlegen zu dürfen. Professor Dr.
Haefeli und Professor Dr. Jelinek ist der Verfasser für die konstruktiven

Diskussionsbeiträge dankbar.
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Der Verkehrsplaner und sein Haus.
Ein (leider) nicht ganz wahres Märchen

Es war einmal ein Planer städtischer Verkehrsanlagen. Der hatte
eine Frau, die hatte er^& lieb, und zwei Kinder. Aber er zählte noch
nicht viele Jahre und dachte an die Zukunft und ans Alter und dass

man Vorsorgen müsse. So wollte er sich ein Haus bauen, und zwar
eines, das auch in späteren Jahren ihm und seinen Lieben noch recht
sein würde. Darum ging er zu einem Architekten, und zu diesem sagte
er:

«Lieber Freund, du sollst mir ein Haus bauen! Aber schau, ich
komme nicht unvorbereitet zu dir. Ich will dir zeigen, was ich brauche.»
Und der Verkehrsplaner nahm etliche Tabellen und graphische
Aufzeichnungen hervor. «Betrachte zuerst diese Zeichnung! Hier habe ich
auf der einen Seite dieser ersten Koordinate Jahreszahlen fortlaufend
aufgetragen, beginnend mit dem Jahr meiner Heirat; die andere
Koordinate gibt die Zahl der Kinder, die ich habe, an - heute, nach sechs

glücklichen Jahren, sind es zwei. Wenn ich nunmehr die Linie vom
Nullpunkt meiner Koordinaten durch den Punkt 1964/2 Kinder
gleichmässig verlängere, so siehst du, dass ich im Jahr 1980 7 Kinder
haben werde. Dann aber wird auch meine liebe Mutter alt geworden
sein, und wir werden sie zu uns nehmen. Auch sind wir gastliche Leute
und freuen uns gerne der Freunde - zwei bis drei haben wir immer um
uns! Zähl' jetzt zusammen und denk dir noch einen oder zwei
Bediente dazu: so kommst du auf 15 Menschen, die in meinem Hause
wohnen werden, 20 Räume wird es darum wohl haben müssen.

«Aber ich habe auch noch ans Übrige gedacht», setzte der
Verkehrsplaner seinen Vortrag fort und breitete neue Zusammenstellungen

vor dem staunenden Architekten aus. «Hier habe ich errechnet,
wieviel an Bädern, Duschen, Aborten für meine zahlreichen Lieben
nötig sein wird. Ich habe Zählapparate an den Türen meiner jetzigen
Wohnung angebracht und nach fünf Wochen herausgefunden, dass

die Spitzenzeiten der Benützung dieser Örtlichkeiten jeden Morgen
zwischen 7.30 h und 7.45 h und an Samstagen zwischen 18 h und 19 h

liegen. Extrapoliere ich die Benützungsdichte, welche zu diesen Stunden

sich ergeben hat, auf das Jahr 1980, so komme ich auf den folgenden

Bedarf: 5 Toiletten, 3 Bäder und 2 Vi Duschen, allenfalls, wenn ich
alle Zu- und Weggänge kreuzungsfrei anordne, je eine halbe Einheit
weniger. Übrigens: Organisatorisch kann ich mir das Haus nicht gut
anders als auf vier Ebenen vorstellen. Hier auch dazu ein kleines Schema.

«Und ebenso, das siehst du jetzt auf dieser Darstellung, habe ich
die Küche nach den Stosszeiten berechnet: 7 Kochplatten und ein
Kühlschrank von 378 Litern.»

«Ich hoffe, ich ermüde dich nicht zu sehr, lieber Freund Architekt,

aber jetzt kommt noch das wichtige Problem der Garagierung!
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Der Kopfzahl meiner Familie entsprechen nach den heute als zuverlässig

geltenden Prognosen im Stichjahr 1980 5V2 Wagen, welche Zahl
wohl zweckmässig - um auch noch ein bisschen Reserve zu haben -
auf 6 aufgerundet wird. Also: 6 Garagen und ein Parkplatz mit 6

Abstellplätzen, getrennte Zu- und Wegfahrt mit Einbahnverkehr je auf
5 m dimensioniert, plus Abstellstreifen, plus Trottoir - das versteht
sich ja von selbst.»

«Nun, du siehst», schloss der Verkehrsplaner seine kleine
Ansprache, «ich habe mir Mühe gegeben, gründliche Vorarbeit zu leisten.
Ich lasse dir jetzt diese Prognosen und Pläne da und hoffe, dass du mir
bald ein Projekt machen wirst.»

«Du wunderst mich!», sagte jetzt der Architekt, und er machte
grosse Augen - vielleicht sah er in seinem Innern einen Palast mit vielen

Zinnen, Türmen und Erkern prächtig schimmern -, «und es freut
mich natürlich, dass du zu mir gekommen bist! Aber du musst mir
noch ein paar einfachere Sachen sagen: Ich möchte noch dein Grundstück

sehen - ich meine deinen Park, deine Wiesen, dein Tal. Und
vielleicht wäre es doch auch gut, wenn du mir angeben würdest, was im
Ganzen etwa du dein Haus dir kosten lassen willst.»

«Ach, ja! Bald hätt' ich das vergessen!» versetzte der Planer und
griff noch einmal in die Mappe: «Auf diesem Plänchen ist mein
Grundstück eingetragen. Es liegt hübsch am Fusse eines Kirchhügels,
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