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Definition und Theorien der Steifeziffer

DK 624.131.439

Von Dr.-Ing. Karl Friedrich Henke, Leiter der Abteilung fiir Erd- und Grundbau des Otto-Graf-Institutes der TH Stuttgart
Vortrag, gehalten an der Friihjahrstagung der Schweiz. Gesellschaft fiir Bodenmechanik und Fundationstechnik am 24. April 1964 in der

Aula der Universitat Freiburg i. U.
Einleitung

Die in der Fundationstechnik bestehende Aufgabe, die Verfor-
mungen eines Griindungskorpers zu berechnen, wird mit Hilfe der
mathematischen Ansitze der Elastizitdtstheorie gelost. Es ist daher
zweckmdssig, sich mit den Voraussetzungen der Elastizititstheorie im
Hinblick auf den Boden auseinanderzusetzen.

1. Grundlagen

Die elastischen Grundgleichungen [1] werden aus der Betrachtung
des Verformungszustandes eines Parallelepipeds gewonnen, das einem
rdumlichen Spannungszustand unterworfen ist. Es gelten die Bezie-
hungen:
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Die Gleichungen (1) werden hiufig auch als das erweiterte Hooke-
sche Gesetz bezeichnet, das fiir den Fall der einaxialen Beanspruchung
(062 = 0y = 0)
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E

wird und also definitionsgemdss die Bestimmung der darin vorkom-
menden Konstante E zuldsst, wenn o, und &, als Messgrossen vorlie-
gen. Mit u = 1/m wird die Querkontraktionszahl (Poissonsche Kon-
stante) bezeichnet. Die Querkontraktionszahl u 14sst sich aus einem
einaxialen Kompressionsversuch, bei dem z.B. die axiale Belastung
in der z-Richtung erfolgte, aus der zweiten der Gleichungen (1) be-
stimmen. Mit (1a) ergibt sich

(1a) &z —
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Das negative Vorzeichen riihrt von der Konvention her, die Kon-
traktion als positiv einzusetzen.
Die Dehnungen in den Koordinatenrichtungen x, y, z sind durch
die Differentialquotienten
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charakterisiert. Diese Kennzeichnung ist also an die Bedingung ge-
kntipft, dass die Verschiebungen &u, dv, dw klein sind gegeniiber den
Bezugsldngen. Ist das nicht der Fall, dann konnen die Glieder hoherer
Ordnung, die beim zu behandelnden Problem auftreten, nicht mehr
vernachléssigt werden. Ist jedoch die Belastung im Verhiltnis zum
E-Modul so, dass die Verformungen klein bleiben, dann ldsst sich die-
se Theorie mit Erfolg anwenden.

Weiterhin treten unter der Einwirkung von Scherspannungen
Gestaltdnderungen
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ein, bei denen die Proportionalitit zu den Schubspannungen = durch
den Schubmodul G gegeben ist, der bekanntlich mit £ und x in der Be-
ziehung

I
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steht. Die rdumliche Dehnung e, die sich aus den drei Komponenten
(5) e=c¢ez+ &y + &

zusammensetzt, ergibt sich mit Gleichung (1) zu

1—2
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und tritt dann nicht auf, wenn ¢ = 0,5 und E > 0 ist oder es sich um
einen starren Korper (v = 0, E = o) handelt. In diesem Falle hat man
es also entweder mit volumenkonstanten, inkompressiblen Stoffen zu
tun, die weich oder fliissig sein konnen, aber einen endlichen E-Modul
besitzen, oder mit starren Medien. Der fiir diese Betrachtung triviale
Fall der reinen Schubbeanspruchung, bei dem sich ebenfalls keine
Dehnung ergibt, braucht nicht weiter behandelt zu werden.

Ein anderer Fall, der hdufig auftritt, ist der einaxiale Forménde-
rungszustand, bei dem z. B. eine Belastung ¢, vorhanden ist und in den
Richtungen x und y keine Deformation e, und e, auftritt. Aus den
Gleichungen (1) lasst sich wiederum direkt ableiten, dass

l—p—2 w2 o,
1 —u E
ist. Vergleicht man Gleichung (1a) mit (I1b), so besteht der Unter-

schied in einem Proportionalititsfaktor, und es kdnnte Gleichung (6)
nach Einfiihrung einer Grosse
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in der Form
(6a) &= fgf;

geschrieben werden. Es ist daraus zu ersehen, dass bei einem Zusam-
mendriickungsversuch mit behinderter Seitendehnung die Querkon-
traktionszahl u iiberlagernd auftritt. Eine Bestimmungsmethode fiir
die Querkontraktionszahl x wire z. B. durch Messung der Dehnungen
e in einem Versuch mit unbehinderter und einem mit behinderter
Seitendehnung gegeben. Unter entsprechenden Laststufen wiren dann
E und E* bekannt, und p liesse sich aus der quadratischen Gleichung
(7) berechnen. E* ist ein Kennwert fiir das Zusammendriickungsver-
halten unter behinderter Seitenausdehnung und soll im folgenden un-
ter weiteren Festlegungen Steifeziffer genannt werden.

Unter Ausschluss von Zugspannungen, die ein Boden nicht iiber-
tragen kann, ist die Elastizitdtstheorie unter gewissen Einschriankun-
gen auf Boden anwendbar.

2. Die Verformungsberechnung im Halbraum

Die eigentliche Verformungsberechnung oder speziell die Berech-
nung der vertikalen Baugrundverformung, der Setzung s, geschieht
nach dem allgemeinen Ansatz

21
(8) Si= - / % dz
29

Die mit o, bezeichneten vertikalen Normalspannungen kénnen
mit Hilfe einer Spannungsverteilungsfunktion berechnet werden. Dem
Verfasser sind fiir die Verteilung von Normalspannungen, die an der
Halbraumoberfliche angreifen, folgende Ortsfunktionen bekannt:
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Ohde [5] hat eine Erweiterung bzw. Spezifizierung der Frohlich-
schen Ortsfunktion angegeben, auf die hier nicht weiter eingegangen
werden soll. Die in diesen Ortsfunktionen F (z, r) (jeweils in Zylinder-
koordinaten z, r mit r?> = y*> 4+ x?) in Verbindung mit Gleichung (8)
vorkommende Konstante ist jeweils identisch mit dem E-Modul.

Nach dem Superpositionsprinzip kann jede Fldchenlast in kleine
Elementarbelastungen aufgelost werden, die innerhalb des Lastbe-
reichs B integrierbar sind.

(12) o= [[pEm) Fr)-dédy
B
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Dieser Integralausdruck liegt allen Spannungsverteilungsgesetzen zu-
grunde. Fiir die Boussinesgsche Ortsfunktion sind z.B. Kreisflichen-
belastungen, Rechteck, Streifen und andere Lastflichen untersucht
worden. Aber unabhéngig von der Art der Verteilung kommt fiir die
Setzungsermittlung immer wieder der E-Modul in die Berechnung
hinein. Die Ergebnisse sind auch grosstenteils tabuliert oder in Form
von dimensionslosen Einflusswerten aufgetragen.

Die Vertikalverformung w im Halbraum unter der Wirkung einer
Einzellast hat Boussinesq mit (R2 = r2 - z2) zu

PA+mw [Z(I—H) z?

2n E +

13 w= = =

angegeben. Die Einsenkung s der Oberfliche unter einer kreisférmigen,
biegesteifen Last vom Radius r hat Schleicher [6] mit
1—uw? = ra

W s=—=

angegeben. Fiihrt man eine weitere Grosse

E

ok
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ein, so ergibt Gleichung (14)
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Der Faktor 1 — g tritt iibrigens bei allen Verformungsberechnun-
gen auf, die sich auf den Ansatz nach Gleichung (13) griinden. Dem-
gegeniiber ist natiirlich der heute fiir Setzungsberechnungen iibliche
Ansatz nach Gleichung (8) eine Vereinfachung, die durch Vernach-
lassigen der Grosse p? entsteht. Der mogliche Gréssenbereich 0 > p >
0,5 ldsst erkennen, dass E** maximal das 1,33 fache von E betragen
kann, also die nach E** berechneten Setzungen das 0,75fache der
nach E berechneten ausmachen konnten.

3. Konsolidation und Zeitsetzungsverhalten

Nicht nur zur Losung der Verformungsberechnung wird der E-
Modul herangezogen, sondern auck in der Konsolidationstheorie. Die
von Terzaghi aufgestellte Differentialgleichung der eindimensionalen
Konsolidation [7] lautet

Der Reziprokwert der Verdichtungsziffer ist mit der Steifeziffer E*
identisch, weswegen diese Gleichung auch in der Form
3pu o E;*k azpu

ot Ve a2

(16a)

geschrieben werden kann. Aus diesem Zusammenhang heraus ist viel-
leicht der Gebrauch der Bezeichnung «Steifeziffer» eher verstiandlich.
Nach den Voraussetzungen der Konsolidationstheorie miissen e
und mithin auch E* im Konsolidationsbereich konstant sein, also

s+ 4o
T A(dh/h)
gelten.

Von Biot [8] wurde an der Terzaghischen Theorie bemédngelt, dass
die darin eingefiihrte Steifeziffer E* lediglich in den Sonderfillen der
tatsdchlich eindimensionalen Konsolidation angewandt werden kann,
wiahrend sie fiir alle Arten von endlichen Belastungen, also bei allen
Grundbauwerken, streng genommen, nicht anwendbar ist. Biot fiihrt
in seiner «Generellen Theorie der dreidimensionalen Konsolidation»
wieder den £-Modul ein, kommt aber zum Ergebnis, neben x und G
vier weitere physikalische Konstanten einfiihren zu miissen. Er geht
allerdings in seinen neueren Arbeiten ginzlich von der Einfiihrung des
E-Moduls ab, was aber iiber das hier zur Frage stehende Problem weit
hinausgeht.

Generell gesehen setzt sich das Zeitsetzungsverhalten der Boden
aus drei Phasen zusammen, die im Oedometerversuch zeitlich nach-
einander ablaufen (siehe Bild 1). Wir unterscheiden

a) Kurzzeitsetzung
b) Konsolidationssetzung
¢) Langzeitsetzung

Die einzelnen Anteile sind in ihrem Einfluss auf den Gesamtbe-
trag der Setzung bei den einzelnen Bodenarten verschieden gross. Zum
Beispiel resultiert bei einem Kiessand die Setzung im wesentlichen aus
dem Anteil a), wihrend ein wassergesittigter, hochplastischer Ton
fast ausschliesslich Konsolidationssetzung aufweist. Bei organischen
Boden tritt im Versuch zeitlich nach der Konsolidation die Sekundér-
setzung, die Langzeitsetzung, ein. Der zeitabhdngige Modellfaktor fiit
diesen Setzungsanteil ist nicht bekannt, so dass beziiglich des zeitlichen
Ablaufs der Langzeitsetzungen aus dem Versuch keine Aussagen ge-
macht werden konnen. Diese drei Anteile treten bei jeder Laststufe mit
unterschiedlicher Grosse auf und konnen im zeitunabhédngigen Last-
Setzungs-Diagramm (linke Bildhélfte von Bild 1) als « Zwischen- oder

opu k % pu Endpunkt» der Setzung iibernommen werden. Diese Punkte konnen
(16) o | Vo Mye 022 dann zwischen den dort eingezeichneten Linienbereichen liegen. Die
Anzahl der Geraden, die man in diesen Bereich hineinpassen konnte,
Hierin bedeuten ist ziemlich gross und, wie man am Neigungsmassstab erkennen kann,
t = Zeitverdnderliche SPANNUNG [kg /cm 2] ZEIT [Tage]
7 . 40 30 20 10 0 1 2 3 b o
z = Ortsverdnderliche - L —
pu = Porenwasser-
tberdruck

k = spezifische
Durchléssigkeit
yw = spezifisches
Gewicht
des Wassers

mye = VYerdichtungsziffer

Bild 1. Einfluss der verschiedenen,
zeitlich aufeinanderfolgenden Set-
zungsanteile («Zeiteinfluss»)
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auch der entsprechende Schwankungsbereich. Die Ermittlung der
Steifeziffer als Sehnenmodul einer dieser moglichen Kurven ist wahr-
scheinlich im Hinblick auf die Genauigkeit mit der Angabe der Gros-
senordnung erschopft.

Einigt man sich darauf, das Ende der Konsolidationssetzung als
Kriterium fiir die Lastsetzungskurve zu iibernehmen, so entsteht eine
definiertere Kurve (Bild 2), deren Genauigkeit allerdings mit einer
Konvention erkauft worden ist, die nicht fiir alle Félle zutrifft. Will
man andere Zwischenzustinde erfassen, so miissen andere Lastset-
zungskurven danach konstruiert werden. Der so beschriebene Ein-
fluss sei «Zeiteinfluss» genannt.

4. Das Lastsetzungsverhalten

In der Form des Druck-Porenzifferdiagramms

A7) ep=a——In(p + pd

hat zuerst Terzaghi [7] das Lastsetzungsverhalten der Boden charak-
terisiert. Darin bedeuten ¢p in Anlehnung an den internationalen
Brauch die Porenziffer unter der Belastung p, p. den Vorbelastungs-
punkt, & die Ausgangsporenziffer und A4 eine Konstante. Fiir die
praktische Setzungsberechnung muss das Druck-Porenzifferdiagramm
in ein Druck-Setzungsdiagramm umgerechnet werden, was z.B. durch
Anderung der Ordinateneinteilung geschehen kann, die dann jedoch
nicht mehr dquidistant ist. In der halblogarithmischen Auftragung hat
das Lastsetzungsverhalten die Form von Bild 3.

Ohde [5] hat auf Grund seiner Untersuchungen fiir das Zusam-
mendriickungsverhalten der Boden zwei Gesetze aufgestellt.

(18a) V=wvpv
Bty =l
v wp wlp

Er bezeichnet das Gesetz (18b) als das genauere, zieht aber wegen
der mathematischen Einfachheit bei ausreichender Genauigkeit das
Gesetz (18a) vor. Mit den hier verwendeten Bezeichnungen wird
Gleichung (18a)

(18aa) E* =vgv

In diesem Gesetz sind v und w experimentell zu bestimmende Para-
meter. In Bild 3 besitzt z.B. die ausgezogene Lastsetzungskurve die
Parameterwerte v = 64 und w = 0,66. Nach Ohde kann w noch mit
guter Niherung fiir die meisten Boden als 1 gesetzt werden. Eine Varia-
tion des Kurvenverlaufs fiir die Parameterwerte v = 50 und w = 0,6;
0,8; 1,0 ist gestrichelt eingetragen. Konvexe Formen von Kurven mit
w > 1 kommen praktisch nicht vor. Zum Vergleich ist auch die Kurve
von Bild 3 nach der Terzaghischen Gleichung (17) analysiert worden.

0 1 2 3 4 5 6 7 8 9 10 11 12 kglem?

such;

0,01
\—\_] *
\ E=2000
002 \ ££1000
\
\ \ < 500
E% 400

\ %300

\
£f0 50 E:i00 P250

NEIGUNGSMASSTAB FUR DIE
STEIFEZIFFER E*

0,05 Q

0,06 \
0,07 \\
~

0,08

h\\\
0,09
Ah
i \

Bild 2. Oedometerversuch; Lastsetzungs-Diagramm unverzerrt
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Bild 3 (rechts). Oedometerver-

halblogarithmisch verzerrt
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Lastsetzungs-Diagramm a0s 0175 L 025 05 % o 40 o
Ah
e
0825 000
\R
NN
0807 001 \\\ NS .
O\ §p=o,522,—53 In(p+0,875)
V=50 P \_ FUR ERSTBELASTUNG)|
0789 002 w=10 \\\\ N |
g S \(Eﬁe“-@“
Ui = ¢S 2
V=50 /\/\\\\ \(FUR 0,8 f_;lku/cm)
0771 003 e S I
N N V=50
NN (w:o,ss
AN IEAN
0753 004 N
Y SEANAN \
3 \
0,735 005 N
NN
NN
\
0717 006 N \
\
MW
0,699 007 %
' NN
0,681 008 \
0663 009

Die Parameter lauten

&g = 0,822
A =19,5
pe = 0,875 kg/cm?

Jelinek [9] hat die Frage des Unterschieds beider Ansdtze einge-
hend untersucht und kommt zum Ergebnis, dass die Ohdeschen Glei-
chungen (18a) und (18b) dasselbe beinhalten wie die von Terzaghi
aufgestellte Gleichung (17).

Etwa ein Jahr vor der Ohdeschen Veroffentlichung wurde die von
Haefeli entwickelte graphische Setzungsanalyse mitgeteilt [10]. Als
Grundlage fiir die sehr praktische, graphische Methode dient der M z-
Wert, der Verdichtungs- oder Zusammendriickungsmodul genannt
wird. Er ist definiert als

a;

(19) s

Mg =

Mit 4, wird die auf die Hohe bei Belastung mit 1 kg/cm? bezogene
Setzungsdifferenz zwischen 1 kg/cm? und 2,71828 kg/cm? bezeichnet.
Unter den selben Versuchsbedingungen im Oedometerversuch und im
Lastbereich zwischen o1 = 1 kg/cm? und o, = 2,71828 kg/cm? miissten
1/4. und v einander gleich sein, mithin sich die Grossen Mz und E*
entsprechen.

Das Lastsetzungsverhalten stellt sich also als nichtlinear heraus.
Die Progression der Steifeziffer mit der Spannung kann auf diese Art
verfeinerter analysiert werden als es mit der Annahme der konstanten
Steifeziffer moglich ist.

Streng genommen miisste jede im Oedometerversuch ermittelte
Steifeziffer E* geméiss Gleichung (7) reduziert werden, um damit eine
Setzungsberechnung ausfiihren zu kénnen. Die Reduktion ist jedoch
nicht ohne Kenntnis der Querdehnungszahl x moglich, die zu be-
stimmen auch nicht einfach ist. In Anbetracht der statistischen, ob-
jektiven und subjektiven Fehler bei der Bestimmung der Steifeziffer
kann auch auf diese Reduktion mit Recht verzichtet werden.

Wird der E-Modul in situ bestimmt, so geschieht dies durch Mes-
sung der vertikalen Verformungen unter einer aufgebrachten Span-
nung und Auswertung nach Gleichung (14a). Die aus der Messung
hervorgehende Grosse ist E**.

Ein besonderes Problem stellen dariiber hinaus Messungen unter
der Halbraumoberfliche dar, insbesondere solche, bei denen Last-
platten kleine Durchmesser haben. Es sei hierzu auf neuere Arbeiten
von Haefeli [11] verwiesen. Auch bei dieser Messung ist ein «Zeit-
einfluss» bei bindigen Bdden und der Einfluss der Nichtlinearitat zu
beriicksichtigen. Uber den Einfluss der Querdehnung gilt das oben
Gesagte.
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5. Zusammenfassung

Aus der Elastizitdtstheorie, auf der die Arbeiten von Boussinesq
u. a. aufbauen und die heute noch die Grundlage fiir alle Setzungs-
berechnungen bildet, sind die Grossen E und u definiert. Aus der Ver-
koppelung von E und p ldsst sich eine Grosse E* ableiten, die aus
einem Verformungsversuch mit behinderter Seitendehnung ohne Kennt-
nis von x berechnet werden kann. Ebenfalls ohne Kenntnis von x kann
durch Messung der Setzung einer Lastplatte an der Halbraumober-
fliche eine Grosse E** eingefiihrt werden. Nach der Boussinesqschen
Theorie wire diese Grosse den Setzungsberechnungen zugrunde zu
legen. Die mit E** berechneten Setzungen konnen auf das 0,75fache
der mit E berechneten absinken. Wegen der vielen Fehlerquellen und
Ungenauigkeiten ist es sicherlich nicht zweckmissig, die Korrektur
mit u auszufithren. Die im Oedometerversuch bestimmbare Grosse E*
wird vielfach Steifeziffer genannt. Sie spielt bei Setzungsberechnungen
und Konsolidationsvorgédngen eine grosse Rolle und ist als Sehnen-
modul definiert. Alle den Spannungseinfluss (Progression) darstellen-
den Steifezifferansédtze lassen sich auf das von Terzaghi aufgestellte
Gesetz zurtickfiihren.

Schlussbemerkung

Dieser Beitrag stellt die umgearbeitete Wiedergabe des vor der
Schweizerischen Gesellschaft fiir Bodenmechanik und Fundations-
technik in Fribourg am 24. April 1964 gehaltenen Vortrags dar. Dem
Présidenten der Gesellschaft, Dipl.-Ing. Ch. Schaerer, sei an dieser
Stelle fiir die Vortragseinladung und die Zustimmung gedankt, den
Vortrag in etwas erweiterter Form darlegen zu diirfen. Professor Dr.
Haefeli und Professor Dr. Jelinek ist der Verfasser fiir die konstruk-
tiven Diskussionsbeitrdge dankbar.

Der Verkehrsplaner und sein Haus
Ein (leider) nicht ganz wahres Marchen

Es war einmal ein Planer stddtischer Verkehrsanlagen. Der hatte
eine Frau, die hatte er sehr lieb, und zwei Kinder. Aber er zédhlte noch
nicht viele Jahre und dachte an die Zukunft und ans Alter und dass
man vorsorgen miisse. So wollte er sich ein Haus bauen, und zwar
eines, das auch in spéteren Jahren ihm und seinen Lieben noch recht
sein wiirde. Darum ging er zu einem Architekten, und zu diesem sagte
ers

«Lieber Freund, du sollst mir ein Haus bauen! Aber schau, ich
komme nicht unvorbereitet zu dir. Ich will dir zeigen, was ich brauche.»
Und der Verkehrsplaner nahm etliche Tabellen und graphische Auf-
zeichnungen hervor. «Betrachte zuerst diese Zeichnung! Hier habe ich
auf der einen Seite dieser ersten Koordinate Jahreszahlen fortlaufend
aufgetragen, beginnend mit dem Jahr meiner Heirat; die andere Ko-
ordinate gibt die Zahl der Kinder, die ich habe, an — heute, nach sechs
gliicklichen Jahren, sind es zwei, Wenn ich nunmehr die Linie yom
Nullpunkt meiner Koordinaten durch den Punkt 1964/2 Kinder
gleichmissig verldngere, so siehst du, dass ich im Jahr 1980 7 Kinder
haben werde. Dann aber wird auch meine liebe Mutter alt geworden
sein, und wir werden sie zu uns nehmen. Auch sind wir gastliche Leute
und freuen uns gerne der Freunde — zwei bis drei haben wir immer um
uns! Zihl’ jetzt zusammen und denk dir noch einen oder zwei Be-
diente dazu: so kommst du auf 15 Menschen, die in meinem Hause
wohnen werden, 20 Rdume wird es darum wohl haben miissen.

«Aber ich habe auch noch ans Ubrige gedacht», setzte der Ver-
kehrsplaner seinen Vortrag fort und breitete neue Zusammenstellun-
gen vor dem staunenden Architekten aus. «Hier habe ich errechnet,
wieviel an Biddern, Duschen, Aborten fiir meine zahlreichen Lieben
ndtig sein wird. Ich habe Zéhlapparate an den Tiiren meiner jetzigen
Wohnung angebracht und nach fiinf Wochen herausgefunden, dass
die Spitzenzeiten der Beniitzung dieser Ortlichkeiten jeden Morgen
zwischen 7.30 h und 7.45 h und an Samstagen zwischen 18 h und 19 h
liegen. Extrapoliere ich die Beniitzungsdichte, welche zu diesen Stun-
den sich ergeben hat, auf das Jahr 1980, so komme ich auf den folgen-
den Bedarf: 5 Toiletten, 3 Bider und 214 Duschen, allenfalls, wenn ich
alle Zu- und Weggiinge kreuzungsfrei anordne, je eine halbe Einheit
weniger. Ubrigens: Organisatorisch kann ich mir das Haus nicht gut
anders als auf vier Ebenen vorstellen. Hier auch dazu ein kleines Sche-
ma. «Und ebenso, das sichst du jetzt auf dieser Darstellung, habe ich
die Kiiche nach den Stosszeiten berechnet: 7 Kochplatten und ein
Kiihlschrank von 378 Litern.»

«Ich hoffe, ich ermiide dich nicht zu sehr, lieber Freund Archi-
tekt, aber jetzt kommt noch das wichtige Problem der Garagierung!
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Der Kopfzahl meiner Familie entsprechen nach den heute als zuver-
ldssig geltenden Prognosen im Stichjahr 1980 514 Wagen, welche Zahl
wohl zweckmaissig — um auch noch ein bisschen Reserve zu haben —
auf 6 aufgerundet wird. Also: 6 Garagen und ein Parkplatz mit 6 Ab-
stellplidtzen, getrennte Zu- und Wegfahrt mit Einbahnverkehr je auf
5 m dimensioniert, plus Abstellstreifen, plus Trottoir — das versteht
sich ja von selbst.»

«Nun, du siehst», schloss der Verkehrsplaner seine kleine An-
sprache, «ich habe mir Miihe gegeben, griindliche Vorarbeit zu leisten.
Ich lasse dir jetzt diese Prognosen und Pline da und hoffe, dass du mir
bald ein Projekt machen wirst.»

«Du wunderst mich!», sagte jetzt der Architekt, und er machte
grosse Augen — vielleicht sah er in seinem Innern einen Palast mit vie-
len Zinnen, Tiirmen und Erkern préchtig schimmern —, «und es freut
mich natiirlich, dass du zu mir gekommen bist! Aber du musst mir
noch ein paar einfachere Sachen sagen: Ich mochte noch dein Grund-
stiick sehen — ich meine deinen Park, deine Wiesen, dein Tal. Und viel-
leicht wire es doch auch gut, wenn du mir angeben wiirdest, was im
Ganzen etwa du dein Haus dir kosten lassen willst.»

«Ach, ja! Bald hitt’ ich das vergessen!» versetzte der Planer und
griff noch einmal in die Mappe: «Auf diesem Plidnchen ist mein
Grundstiick eingetragen. Es liegt hiibsch am Fusse eines Kirchhiigels,
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