| Zeitschrift: | Schweizerische Bauzeitung                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------|
| Herausgeber: | Verlags-AG der akademischen technischen Vereine                                                          |
| Band:        | 82 (1964)                                                                                                |
| Heft:        | 26                                                                                                       |
|              |                                                                                                          |
| Artikel:     | Abschätzung der Spannungsverteilung in Brückentafeln infolge zentrischer, konzentrierter Quervorspannung |
| Autor:       | Sutter, Peter / Gaszner, Rolf                                                                            |
| DOI:         | https://doi.org/10.5169/seals-67531                                                                      |

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

# Download PDF: 26.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

#### SCHWEIZERISCHE BAUZEITUNG

25. Juni 1964

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P.

# Abschätzung der Spannungsverteilung in Brückentafeln infolge zentrischer, konzentrierter Quervorspannung

Von Peter Sutter, dipl. Ing. ETH, und Rolf Gaszner, Ing., Zürich

#### 1. Einleitung und Problemstellung

Eine genaue rechnerische Ermittlung des Spannungszustandes in breiten Brückentafeln infolge konzentrierter Quervorspannung ist wegen der Diskontinuität der Querschnitte auch bei Verwendung einer grossen, elektronischen Rechenanlage (z. B. IBM 7090) schwierig und sehr zeitaufwendig. Eine wesentliche Vereinfachung wird dadurch erreicht, dass die Brückentafel zwischen den Hauptquerträgern durch orthotrope Platten approximiert wird. Aber auch dann bereiten die Querträger, sofern schief zur Brückenaxe verlaufend, infolge der Uebergangsbedingungen zwischen orthotroper Platte und Querträger noch immer umständliche und zeitaufwendige Programmierungsarbeiten. Aus diesen Gründen ist bei komplizierten Brückenobjekten der experimentelle Lösungsweg zurzeit immer noch einfacher und wirtschaftlicher.

Beim Modellversuch wird der Belastungsfall «Quervorspannung» zweckmässig in die drei Teilbelastungen a) Umlenkungskräfte, b) konzentrierte Rand- und Innenmomente, c) Normalkräfte zerlegt. Teilbelastungen a) und b) lassen sich einfach durch Vertikalkräfte realisieren, für c) hingegen sind Horizontalkräfte erforderlich, sofern das Modell nicht entsprechend umgebaut wird, was bei grösseren Modellen meist nicht möglich ist.

Da eine einwandfreie Durchführung des Belastungsfalles c) im Vergleich zu a) und b) bedeutend schwieriger ist (Stabilisierung des Modells, Modellverkrümmungen, Elimination von störenden Nebeneinflüssen usw.) wird er oft gar nicht ausgeführt. Der Normalkraftverlauf wird dann einfach «geschätzt». Um nun eine solche Schätzung möglichst schnell und zutreffend auszuführen, sollen in der vorliegenden Arbeit einige «Richtwerte» angegeben werden, die die Variation der mitwirkenden Breite in Abhängigkeit von «Kabelschiefe» und Geometrie der Brückentafel (Längsrippen von Hohlkasten, Querträger) veranschaulichen.

Der parallelrandige, orthotrope Plattenstreifen (bezüglich Mittelebene symmetrisch) unter schiefen, konzentrierten, periodischen Randlasten soll als stark idealisiertes Ersatzsystem dienen. Im Falle massiver Querträger wird nur der Spezialfall «Querträger senkrecht zur Brückenaxe» diskutiert. Mit der Wahl dieses Ersatzsystems sind die folgenden Einschränkungen verbunden: Brückentafel bezüglich Mittelebene symmetrisch, Vernachlässigung der Reibungsverluste, keine inneren Abspannungen, nur generelle Erfassung der effektiven Querschnittsgestaltung.

Eine direkte Anwendung ist somit nur für symmetrische oder quasisymmetrische Querschnitte gemäss Bild 1a möglich, stark asymmetrische Querschnitte (Bild 1b) sind nicht mehr zulässig. Durch eine Querschnittsorthotropie kann die



Längsträgerwirkung (Längsträgerquerschnitt wird gleichmässig über Trägerabstand «verschmiert») naturgemäss nur summarisch erfasst werden, für eine gute Abschätzung ist sie jedoch ausreichend.

2. Der durch Längsrippen ausgesteifte Plattenstreifen unter schiefen periodischen Randkräften [1]

2.1 Theoretische Grundlagen

Mit den ideellen Plattendicken

$$h_x = lpha_x \, h = \left(1 + rac{F_{Rx}}{e_y}
ight) h \quad ext{ und } \quad h_y = lpha_y \, \, h = \left(1 + rac{F_{Ry}}{e_x}
ight) h$$

lautet das Elastizitätsgesetz im Falle der Querschnittsorthotropie (Rippen in x- und y-Richtung gemäss Bild 4)

$$\varepsilon_x = \frac{1}{E h \alpha_x} \quad (N_x - \mu_y N_y)$$
(1) 
$$\varepsilon_y = \frac{1}{E h \alpha_y} \quad (N_y - \mu_x N_x)$$

$$\gamma_{xy} = \frac{2 (1 + \mu)}{E h} \quad N_{xy}$$

(Rippeneinfluss für Schubverformung vernachlässigt) Nach dem Reziprozitätsgesetz gilt:

(2) 
$$\frac{\mu_x}{\alpha_y} = \frac{\mu_y}{\alpha_x}$$

Mit (1) ergibt sich dann die Differentialgleichung der Schnittkraftfunktion  $\Theta(x, y)$  unter Berücksichtigung veränderlicher Plattendicke  $h(x, y) = \frac{1}{\eta(x, y)}$ 

$$\begin{split} \eta & \left[ \frac{1}{\alpha_y} \frac{\partial^4 \Theta}{\partial x^4} + 2 \left( 1 + \mu - \frac{\mu_y}{\alpha_x} \right) \frac{\partial^4 \Theta}{\partial x^{2\cdot \partial} y^2} + \frac{1}{\alpha_y} \frac{\partial^4 \Theta}{\partial y^4} \right] + \\ & + 2 \frac{\partial \eta}{\partial x} \left[ \frac{1}{\alpha_y} \frac{\partial^3 \Theta}{\partial x^3} + \left( 1 + \mu - \frac{\mu_y}{\alpha_x} \right) \frac{\partial^3 \Theta}{\partial x \partial y^2} \right] + \\ & + 2 \frac{\partial \eta}{\partial y} \left[ \frac{1}{\alpha_x} \frac{\partial^3 \Theta}{\partial y^3} + \left( 1 + \mu - \frac{\mu_y}{\alpha_x} \right) \frac{\partial^3 \Theta}{\partial x^2 \partial y} \right] + \\ & + \frac{\partial^2 \eta}{\partial x^2} \left[ \frac{1}{\alpha_y} \frac{\partial^2 \Theta}{\partial x^2} - \frac{\mu_y}{\alpha_x} \frac{\partial^2 \Theta}{\partial y^2} \right] + \\ & + \frac{\partial^2 \eta}{\partial y^2} \left[ - \frac{\mu_y}{\alpha_x} \frac{\partial^2 \Theta}{\partial x^2} + \frac{1}{\alpha_y} \frac{\partial^2 \Theta}{\partial y^2} \right] + \\ & + 2 \left( 1 + \mu \right) \frac{\partial^2 \Theta}{\partial x \partial y} \frac{\partial^2 \eta}{\partial x \partial y} = 0 \end{split}$$

2.2 Schnittkräfte für gleichbleibende Plattendicke h [2]Gleichung (3) reduziert sich auf den ersten Term. Mit

$$=rac{1}{lpha_y} \qquad e_2=2\left(1+\mu-rac{\mu_y}{lpha_x}
ight) \qquad e_3=rac{1}{lpha_y}$$

lautet dann die Differentialgleichung

(4) 
$$e_1 \frac{\partial^4 \Theta}{\partial x^4} + e_2 \frac{\partial^4 \Theta}{\partial x^2 \partial y^2} + e_3 \frac{\partial^4 \Theta}{\partial y^4} = 0$$

und die dazugehörige charakteristische Gleichung

(5) 
$$e_3 \varphi^4 = e_2 \varphi^2 + e_1 \equiv 0$$

e1

Bei Isotropie ( $\alpha_x = \alpha_y = 1$ ) reduziert sich (4) auf die bekannte Bipotentialgleichung:  $\Delta\Delta\Theta(x, y) = 0$ .

DK 624.21:539.4.014.12



Für die Schnittkraftfunktion  $\Theta(x, y)$  gelten dann — wenn die Symmetrieverhältnisse bezüglich Belastung gemäss Bild 2 direkt berücksichtigt werden — die Ansätze: Fall 1 (Orthotropie)

$$\Theta_{1}(x, y) = g(x, y) + \sum_{n=1}^{\infty} \frac{1}{\gamma^{2}} \left\{ \sum_{i=1}^{2} \left[ C_{i} \operatorname{Sinh}(\varphi_{i} \gamma y) \sin(\gamma x) + D_{i} \operatorname{Cosh}(\varphi_{i} \gamma y) \cos(\gamma x) \right] \right\}$$

$$\left( \varphi_{i} \text{ sind die pos. Lösungen von (5)} \right)$$

(6)

Fall 2 (Isotropie)

 $\Theta_{2}(x, y) = g(x, y) + \sum_{n=1}^{\infty} \frac{1}{\gamma^{2}} \left\{ \left[ C_{1} \sinh(\gamma y) + C_{2} \gamma y \cosh(\gamma y) \right] \sin(\gamma x) + \left[ D_{1} \cosh(\gamma y) + D_{2} \gamma y \sinh(\gamma y) \right] \cos(\gamma x) \right\}$ 

Die vier Festwerte  $C_1, C_2, D_1, D_2$  bestimmen sich aus den beiden statischen Randbedingungen:

(7) 
$$y = +b$$
  $N_y = -\frac{\partial^2 \Theta}{\partial x^2} = p(x) \sin \omega$   
 $N_{xy} = -\frac{\partial^2 \Theta}{\partial x \partial y} = p(x) \cos \omega$ 

mit der Randbelastung gemäss Bild 2

$$p(x) = \frac{2P}{l} \left\{ \frac{1}{2} + \sum_{n=1}^{\infty} \cos(\gamma x) \cos(\gamma d) + \sin(\gamma x) \sin(\gamma d) \right\}$$
  
und  $\gamma = \frac{2n\pi}{l}$  (Periode ist  $l$ )

Sie lauten in Determinantenform:

Fall 1 (1. Gleichung (6))

$$C_{1,2} = \pm \frac{2P}{l\Delta_1} \begin{vmatrix} \sin\omega\sin\psi & \operatorname{Sinh}(\varepsilon_{2,1}) \\ \cos\omega\cos\psi & \varphi_{2,1}\operatorname{Cosh}(\varepsilon_{2,1}) \end{vmatrix}$$

$$D_{1,2} = \pm \frac{2P}{l\Delta_2} \begin{vmatrix} -\sin\omega\cos\psi & \operatorname{Cosh}(\varepsilon_{2,1}) \\ \cos\omega\sin\psi & \varphi_{2,1}\operatorname{Sinh}(\varepsilon_{2,1}) \\ \cos\omega\sin\psi & \varphi_{2,1}\operatorname{Sinh}(\varepsilon_{2,1}) \end{vmatrix}$$

Fall 2 (2. Gleichung (6))  

$$C_{1} = -\frac{2P}{lp_{1}} \begin{vmatrix} \sin \omega \sin \psi & \varepsilon \cosh \varepsilon \\ \cos \omega \cos \psi & \cosh \varepsilon \\ \cosh \varepsilon + \varepsilon \sinh \varepsilon \end{vmatrix} \\$$
9)  

$$C_{2} = +\frac{2P}{lp_{1}} \begin{vmatrix} \sin \omega \sin \psi & \sinh \varepsilon \\ \cos \omega \cos \psi & \cosh \varepsilon \\ D_{1} = \frac{2P}{lp_{2}} \end{vmatrix} - \frac{\sin \omega \cos \psi}{\cos \omega \sin \psi} \qquad \frac{\varepsilon \sinh \varepsilon}{\sinh \varepsilon} \\ D_{1} = \frac{2P}{lp_{2}} \begin{vmatrix} -\sin \omega \cos \psi & \varepsilon \sinh \varepsilon \\ \cos \omega \sin \psi & \sinh \varepsilon \\ \sin h \varepsilon + \varepsilon \cosh \varepsilon \end{vmatrix} \\$$

$$D_{2} = -\frac{2P}{lp_{2}} \begin{vmatrix} -\sin \omega \cos \psi & \cosh \varepsilon \\ \cos \varepsilon \sin \psi & \sinh \varepsilon \\ \sin h \varepsilon \end{vmatrix}$$
Die in (8) und (9) verwendeten Abkürzungen bedeuten:

$$\mu_{1,2} = \varphi_{1,2} \gamma b$$
  $\epsilon = \gamma b$   $\psi = \gamma d = \gamma b \operatorname{ctg} \omega$ 

 $\Delta_1 = \varphi_2 \sinh \varepsilon_1 \cosh \varepsilon_2 - \varphi_1 \sinh \varepsilon_2 \cosh \varepsilon_1$ (10)

 $\Delta_2 = \varphi_2 \sinh \varepsilon_2 \cosh \varepsilon_1 - \varphi_1 \sinh \varepsilon_1 \cosh \varepsilon_2$ 

 $p_{1,2} = \mathrm{Sinh} \ arepsilon \ \mathrm{Cosh} \ arepsilon \ \pm \ arepsilon$ 

D

Für g(x, y) (siehe Gleichungen (6)) ergibt sich aus den beiden Randbedingungen (7)

(11) 
$$g(x, y) = \frac{1}{2l} x (x \sin \omega - y \cos \omega) + m y^2$$

Wird freie Längsverschieblichkeit parallel zur x-Axe (Bild 2) vorausgesetzt, so wird in (11) m = 0.



Tabelle 1. Schnittkräfte und Haupttrajektorienrichtungen in Abhängigkeit von  $\alpha_x$  und  $\omega$  (Lage der Punkte Pkt. siehe Bild 5)

|               |      | $\alpha_x = 1$ (isotrop) |          |               |          |          | $\alpha_x = 1,5$ (orthotrop) |          |          |          |          |          |               |
|---------------|------|--------------------------|----------|---------------|----------|----------|------------------------------|----------|----------|----------|----------|----------|---------------|
|               | Pkt. | Nx                       | Ny       | Nxy           | Nı       | N2       | $\varphi^g$                  | $N_x$    | $N_y$    | $N_{xy}$ | $N_1$    | N2       | $\varphi^{g}$ |
| 00%           | 12   | - 0,2487                 | + 0,9195 | 0             | + 0,9195 | - 0,2487 | 100                          | — 0,2616 | + 0,8828 | 0        | + 0,8828 | - 0,2616 | 100           |
|               | 72   | - 0,2585                 | + 0,9975 | 0             | + 0,9975 | - 0,2585 | 100                          | — 0,2730 | + 0,9567 | 0        | + 0,9567 | - 0,2730 | 100           |
| 211           | 132  | - 0,2905                 | + 1,3020 | 0             | + 1,3020 | - 0,2905 | 100                          | — 0,3106 | + 1,2450 | 0        | + 1,2450 | - 0,3106 | 100           |
| 8             | 192  | - 0,3471                 | + 2,2910 | 0             | + 2,2910 | - 0,3471 | 100                          | — 0,3807 | +2,1830  | 0        | + 2,1830 | - 0,3807 | 100           |
|               | 252  | + 2,4540                 | + 7,5960 | 0             | + 7,5960 | + 2,4540 | 100                          | + 2,5600 | + 7,1850 | 0        | + 7,1850 | + 2,5600 | 100           |
|               | 12   | - 0,0253                 | + 0,5951 | + 0,4860      | + 0,8615 | - 0,2916 | 68,1                         | - 0,0555 | + 0,5559 | + 0,4613 | + 0,8036 | - 0,3032 | 68,6          |
|               | 72   | - 0,0146                 | +0,5778  | + 0,5105      | +0,8793  | 0,2867   | 66,0                         | — 0,0187 | + 0,5433 | + 0,4865 | +0,8241  | - 0,2996 | 66,6          |
| .03           | 74   | - 0,0557                 | +0,7260  | +0,4564       | + 0,9361 | - 0,2657 | 72,5                         | - 0.0857 | + 0,6784 | +0,4351  | +0,8754  | - 0,2826 | 72,9          |
| 211           | 134  | + 0 0265                 | +0,8910  | + 0,5998      | + 1,1980 | - 0,2805 | 69,9                         | — 0,0158 | +0,8300  | +0,5679  | +1,1150  | - 0,3010 | 70,3          |
| 3             | 194  | + 0,4937                 | +0,8602  | + 0,8942      | + 1,5890 | - 0,2358 | 56.4                         | + 0,4337 | + 0,8318 | + 0,8692 | + 1,5240 | - 0,2589 | 57,2          |
|               | 196  | - 0,1634                 | +2,0730  | +0,2488       | +2,1000  | - 0,1907 | 93,0                         | — 0,2008 | + 1,9610 | + 0,2424 | + 1,9880 | - 0,2277 | 93,0          |
|               | 256  | + 3,0260                 | + 6,5750 | + 1,9030      | + 7,4030 | + 2,1970 | 73,9                         | + 3,1180 | + 6,4400 | + 1.7920 | + 7,2220 | + 2,3350 | 73,8          |
|               | 12   | + 0,1769                 | + 0,2097 | +0,5136       | +0,7032  | - 0,3205 | 51,0                         | + 0,1345 | + 0,2067 | + 0,4917 | + 0,6637 | - 0,3224 | 52,3          |
| 60            | 74   | + 0.2137                 | + 0.2517 | +0,5274       | + 0.7605 | - 0,2950 | 51,1                         | +0,1671  | +0,2447  | +0,5057  | +0,7131  | -0,3012  | 52,4          |
|               | 136  | +0,3553                  | +0,3962  | +0,5952       | + 0,9713 | - 0,2197 | 51,1                         | + 0,2955 | +0,3778  | +0,5713  | +0,9094  | - 0,2361 | 52,3          |
| 0             | 198  | +0,7818                  | +0,7868  | +0,8834       | +1,6670  | - 0,0991 | 50,1                         | + 0,6950 | +0,7445  | + 0,8421 | +1,5620  | -0,1227  | 50,9          |
| 9             | 260  | + 4,0240                 | + 5,2510 | + 2,8290      | + 7,5330 | + 1,7420 | 56,8                         | + 4,0790 | + 5,0970 | + 2.6830 | + 7,3190 | + 1,8570 | 55,9          |
| ج 30 <i>9</i> | 12   | + 0.1021                 | + 0 0048 | + 0.3362      | + 0,3932 | - 0,2862 | 45,4                         | + 0,0949 | + 0,0122 | +0,3344  | + 0,3905 | - 0,2833 | 46,1          |
|               | 76   | + 0.1746                 | + 0.0198 | +0.3231       | +0,4295  | - 0,2350 | 42,5                         | + 0,7629 | +0,0267  | +0,3237  | +0,4256  | - 0,2360 | 43,4          |
|               | 140  | + 0.4021                 | +0.0688  | +0,3099       | +0,5874  | -0,1164  | 34,3                         | + 0,3801 | +0,0752  | +0,3163  | +0,5788  | -0,1234  | 35,7          |
| 0             | 204  | + 0.9037                 | +0.1871  | +0,4140       | +1,0930  | - 0,0021 | 27,3                         | +0,8796  | +0,1955  | +0,4304  | +1,0870  | -0,0122  | 28,6          |
| 8             | 268  | + 5,3110                 | + 3,1790 | + 2,8350      | + 7,2740 | + 1,2160 | 38,6                         | + 5,3380 | + 3,0150 | + 2,7770 | + 7,1870 | + 1,1660 | 37,4          |
|               | 1    |                          |          | $\vee P/_{P}$ |          |          |                              | -        |          | × P/b    |          | 1        |               |



F<sub>R</sub> = Querschnitt der Längsträger (zwischen den

Platten gemessen)



(ho ~hu)

*Bemerkung:* Aus Raumgründen konnten in Tabelle 1 nur die Punkte längs der Kraftwirkungslinie aufgenommen werden. Eine erweiterte Tabelle mit allen Punkten gemäss Bild 7 kann beim Verlag der Schweizerischen Bauzeitung nachbezogen werden.

Mit den Ausdrücken (5), (6), (8), (9), (10) und (11)sind die Schnittkraftfunktion  $\Theta(x, y)$  und damit die Schnittkräfte als 2. partielle Ableitungen von  $\Theta(x, y)$  bestimmt (Bild 3). Aus den drei Schnittkräften lassen sich dann mittelst der Transformationsformeln die Haupttrajektorien und Hauptkräfte sofort angeben.

 $h = h_0 + h_U$ 

#### 2.3 Numerische Auswertungen und Schlussfolgerungen

Die numerischen Auswertungen der unter 2.2 zusammengestellten algebraischen Ausdrücke für die Schnittkräfte erfolgten mit einer elektronischen Rechenanlage IBM 1620, die Programmierung mit Fortran 1. Die Rechnung wurde für vier Schiefen  $\omega$  und die jeweils massgebenden Plattenpunkte gemäss Bild 5 durchgeführt. Als Parameter dienten: Längsrippenfaktor  $\alpha_x$  ( $\alpha_y$  wurde = 1 gesetzt, d. h. keine Querrippen), Verhältniswert v = b/l, Querkontraktionszahl  $\mu$ .

Wie zu erwarten war, schwankte die Güte der Reihenkonvergenz sehr stark mit dem Verhältnis b/l. So konnten z. B. mit v = 0.35 bereits keine brauchbaren Resultate mehr im kritischen Gebiet  $x \ge l/2$  erzielt werden. Da nun aber erst bei v = 0.2 die Einflussbereiche benachbarter Randkräfte sich nicht mehr überschneiden — dieser Fall ist von praktischem Interesse, da daraus durch Superposition jeder beliebige Fall sofort angebbar ist — muss für den kritischen Bereich mit einem modifizierten mathematischen Ansatz gerechnet werden. Mit der Annahme antimetrischer Randkräfte gemäss Bild 6 ist eine bedeutend bessere Erfassung der Schnittkräfte im erwähnten kritischen Gebiet zwischen benachbarten Randkräften erreichbar. Die Randkraftfunktion (Periode 21) lautet dann

ufgenommen werden. Eine erweiterte Tabelle mit allen Punkten  
eim Verlag der Schweizerischen Bauzeitung nachbezogen werden.
$$p(x) = \frac{2 P}{l} \sum_{i=1}^{\infty} \sin \frac{n \pi}{2} \left[ \sin \left( \overline{\gamma} x \right) \cos \overline{\psi} + \cos \left( \overline{\gamma} x \right) \sin \overline{\psi} \right]$$

 $1/(N_x - N_y)^2 + 4N_x^2$ 

Druckkrafi Zugkraft

$$\text{mit} \ \overline{\gamma} = \frac{n \, \pi}{l} \qquad \overline{\psi} = \overline{\gamma} \left( \frac{l}{2} - b \, \operatorname{ctg} \omega \right)$$

Bild 6

Es verschwindet damit im Ansatz für die Schnittkraftfunktion (6) der erste Term g(x,y), und die Schnittkräfte bauen sich allein aus den Reihensummanden auf. Aus Raumgründen muss auf die Wiedergabe der entsprechenden Ansätze und Formeln der Festwerte verzichtet werden.

Es darf vielleicht in diesem Zusammenhang wiederholt auf die bekannte Tatsache hingewiesen werden, dass eine eingehende Abklärung der Konvergenzgüte vor der Programmierung und Maschinenrechnung viel Kosten und Aerger sparen hilft. Natürlich ist eine rein theoretische Konvergenzuntersuchung in vielen Fällen gar nicht möglich, besonders bei Doppelreihen. Es sei noch darauf aufmerksam gemacht, dass einige in der Literatur zu findende mathematische Lösungen von speziellen Problemen der Elastizitätstheorie einer numerischen Auswertung gar nicht zugänglich sind, da die verwendeten Reihenansätze nicht konvergieren.





Bezüglich Genauigkeit wurde programmiert: entweder  $1 \%_0$  Genauigkeit, d. h. der nächste Reihensummand wird nicht mehr gerechnet, wenn gleich oder kleiner  $1 \%_0$  der bereits vorhandenen Reihensumme, oder maximal 25 Reihenglieder. Damit konnte in dem vornehmlich interessierenden Mittelbereich die Genauigkeit von  $1 \%_0$  eingehalten werden.

Die folgenden Tabellen und Diagramme sind mit v = b/l = 0.2 gerechnet, sie entsprechen somit mit guter Genauigkeit dem Spezialfall einer einzigen Randkraft.

Es können etwa folgende Gesetzmässigkeiten abgelesen werden:

a) Der Einfluss der Längsrippen auf den Verlauf der Haupttrajektorien ist für die praktisch vorkommenden Rippenfaktoren ( $\alpha_x \leq 2$ ) vernachlässigbar klein (siehe Tabelle 1). In Bild 7 sind die Haupttrajektorienrichtungen in den massgebenden Punkten des jeweiligen Krafteinflussbereiches für den Fall Isotropie aufgetragen.

b) Der Kraftabfall der Hauptschnittkräfte längs der Kraftwirkungslinie ist für alle Schiefen  $\omega$  im Mittelbereich des Plattenstreifens relativ gering. Es kann deshalb mit guter Näherung mit einer konstanten mitwirkenden Breite in der Mittelzone gerechnet werden (mitwirkende Breite des Mittelpunktes O). Mit ansteigendem Rippenfaktor  $\alpha_x$  werden die Hauptdruckkräfte im Mittelbereich verkleinert, die Hauptzugkräfte vergrössert; in der Randzone ist ein Anwachsen der Ablenkungskräfte erkennbar (Nullpunkt der Hauptzugkräfte verschiebt sich gegen den Rand, siehe Bilder 8 und 9).

c) Mit zunehmender Querkontraktionszahl ist eine Vergrösserung der Hauptdruckkräfte und eine Verkleinerung der Hauptzugkräfte feststellbar. Die Verhältnisse für den Mittelpunk O zeigt Tabelle 2. d) Die Veränderlichkeit der Hauptschnittkräfte im Mittelpunkt O infolge Längsrippen und Schiefe ist aus den Bildern 10 und 11 ersichtlich.

e) Während sich die Maxima der Hauptschnittkräfte bei allen Schiefen in der Nähe der Kraftwirkungslinie vorfinden, ist bei den übrigen Schnittkräften mit zunehmender Schiefe (d. h. mit abnehmendem  $\omega$ ) eine Verschiebung von der Wirkungslinie weg feststellbar. In Bild 12 sind die Verhältnisse für  $N_u$  aufgetragen.

Es soll noch einmal gesagt sein, dass sich die obigen Feststellungen auf die Schnittkräfte und nicht auf die Spannungen beziehen. Diese sind abhängig von der jeweiligen Querschnittsausbildung.

# 3. Der durch Längsrippen ausgesteifte Plattenstreifen mit massiven Querträgern senkrecht zur Längsaxe

3.1 Scheibenschnittkräfte und Normalkraft im Querträger [2]

Da vornehmlich der Normalkraftverlauf im Mittelteil des Querträgers interessiert, darf mit dem vereinfachten Ansatz für die Schnittkraftfunktion, der die Randbedingungen nicht streng erfüllt, gerechnet werden (in Abschnitt 3.2 soll der

| labelle 2 (Bezeichnungen siehe labelle | 1, |
|----------------------------------------|----|
|----------------------------------------|----|

|              | $\alpha_x = 1$ | $\mu = 0$ |              | $\alpha_x =$ | 3, $\mu = 0$ | $\alpha_x = 3, \ \mu = 0$ |        |        |          |
|--------------|----------------|-----------|--------------|--------------|--------------|---------------------------|--------|--------|----------|
| $\omega^{g}$ | $N_1$          | $N_2$     | tg $\varphi$ | $N_1$        | $N_2$        | tg $\varphi$              | $N_1$  | $N_2$  | tgφ      |
| 100          | 0,9195         | 0,2487    | $\infty$     | 0,9085       | 0,2545       | $\infty$                  | 0,8043 | 0,2872 | $\infty$ |
| ~70          | 0,8615         | 0,2915    | 1,825        | 0,6924       | 0,3226       | 1,817                     | 0,6834 | 0,3280 | 1,940    |
| 50           | 0,7072         | 0,3205    | 1,032        | 0,5070       | 0,3407       | 1,148                     | 0,5363 | 0,3342 | 1,179    |
| ~30          | 0,3932         | 0,2862    | 0,866        | 0,3264       | 0,2707       | 0,959                     | 0,3470 | 0,2722 | 0,941    |



Bilder 7a bis 7d. Verlauf und Grösse der Hauptschnittkräfte  $N_{1,2}$  für den Fall Isotropie. Die Zahlen sind mit P/b zu multiplizieren.



a) Hauptdruckkräfte  $N_d = \overline{N}_d \cdot P/b$ 



b) Hauptzugkräfte  $N_z = \overline{N_z} \cdot P/b$ 



Bild 8 (rechts). Verlauf der Hauptschnittkräfte längs Randkraft-Wirkungslinie für Isotropie und Orthotropie.



Bild 12. Verlauf der Scheibenschnittkraft  $N_y$  in Abhängigkeit der Randkraftschiefe  $\omega$  ( $\alpha_x = 1, \mu = 0$ ).

Fall1 (Orthotropie)

$$\Theta_1(x,y) = \sum_{n=1}^{\infty} \frac{1}{\gamma^2} \sum_{i=1}^{2} C_i \operatorname{Cosh}(\varphi_i \gamma x) \cos(\gamma y)$$
(12)

Fall 2 (Isotropie)

$$\Theta_2(x, y) = \sum_{n=1}^{\infty} \frac{1}{\gamma^2} \left[ C_1 \operatorname{Cosh}(\gamma x) + C_2 \gamma x \operatorname{Sinh}(\gamma x) \right] \cos(\gamma y)$$

Die Festwerte  $C_1$  und  $C_2$  von (12) bestimmen sich aus den beiden Uebergangsbedingungen Scheibe — Querträger: a) Längs Querträgerrand stimmt die Scheibendehnung

mit der mittleren Querträgerdehnung näherungsweise überein. b) Infolge Symmetrie bleibt der Querträger gerade (Quer-

kontraktion wird wie üblich vernachlässigt). Wird mit u (x, y) die Verschiebung in der Scheibe parallel zur x-Axe bezeichnet, so lautet die mathematische Formulie-(16)rung

$$\frac{\partial u}{\partial y}(x=a,y)=0$$

Die Formelwerte für die Konstanten  $C_1$  und  $C_2$  sind dann:

Fall 1

(13)  

$$C_{1} = -\frac{a_{2} b_{0}}{\begin{vmatrix} a_{1} a_{2} \\ b_{1} b_{2} \end{vmatrix}} \quad C_{2} = +\frac{a_{1} b_{0}}{\begin{vmatrix} a_{1} a_{2} \\ b_{1} b_{2} \end{vmatrix}}$$

darin bedeuten

$$a_{1,2} = \left(\mu \varphi_{1,2} + \frac{1}{\varphi_{1,2}}\right) \operatorname{Sinh} (\varepsilon_{1,2})$$

$$b_{1,2} = \left(\varphi_{1,2}^{2} + \frac{\mu}{\alpha_{x}}\right) \operatorname{Cosh} \varepsilon_{1,2} + \frac{1}{14}$$

$$14) + \frac{4 \varphi_{1,2}}{n \pi} \delta \operatorname{Sinh} \varepsilon_{1,2} + \frac{1}{14}$$

$$b_{0} = \left(\frac{P}{b}\right) \frac{4 \delta}{n \pi} \sin\left(\frac{n \pi}{2}\right) + \frac{1}{14}$$

$$\varepsilon_{1,2} = \varphi_{1,2} \gamma a \qquad \delta = \frac{b h}{F_{Q}} + \frac{1}{14}$$

B/b 2,0 1,5 1,0 0,5 wg 100 60 80 Bild 9. Mitwirkende Breite Р  $B = \frac{1}{N_d (x \equiv y \equiv 0)}$ m Mittelpunkt O (x = y = 0) in Abhängigkeit der Randkraftschiefe  $\omega$  und des Längsrippenfaktors

$$\alpha_x = 1 + \frac{e^{-h}}{F_R}$$
(Querkontraktionszahl  $\mu = 0$ ).

$$C_1 = \frac{4}{n \pi} \left(\frac{P}{b}\right) \delta \frac{\sin\left(\frac{n \pi}{2}\right)}{\Delta} \left[ (1 - \mu) \operatorname{Sinh} \varepsilon - (1 + \mu) \varepsilon \operatorname{Cosh} \varepsilon \right]$$

$$C_2 = rac{4}{n \, \pi} \left( rac{P}{b} 
ight) \delta \; rac{\sin \left( rac{n \, \pi}{2} 
ight)}{\Delta} \; (1 + \mu) \; {
m Sinh} \; \epsilon$$

mit

(15)

$$\Delta = (1+\mu) (3-\mu) \frac{\sinh (2\varepsilon)}{2} + 8 \frac{\delta}{n\pi} \sinh^2 \varepsilon - (1+\mu)^2 \varepsilon$$

$$\varepsilon \equiv \gamma a$$

IN.

Bild 10. Hauptdruckkraft  $N_d = \overline{N}_d \quad \frac{P}{b}$  im Mittelpunkt  $O \ (x = y = 0)$  in Abhängigkeit der Randkraftschiefe  $\omega$  (Querkontraktionszahl  $\mu = 0$ ).

$$\delta = {b h \over F_Q}$$



Bild 11. Hauptdruckkraft  $N_d = \overline{N}_d \frac{P}{b}$ im Mittelpunkt  $O \ (x = y = 0)$  in Abhängigkeit des Längsrippenfaktors  $\alpha_x$  $(\mu = 0).$ 



AIN(y)

ĨΡ

 $a = 1 + \frac{F_R}{e h}$ 

Aus (5), (12), (13), (14), (15) und (16) lassen sich nun die Funktionen  $\Theta_1(x, y)$  und  $\Theta_2(x, y)$  eindeutig berechnen. Damit sind auch die Scheibenschnittkräfte als zweite Ableitungen von  $\Theta(x, y)$  bestimmt.

Für die Normalkraft im Querträger gilt (Bild 14):

Fall 1 
$$N_1(y) = P - 2 \sum_{n=1}^{\infty} \frac{1}{\gamma} \left[ \sum_{i=1}^{2} C_i \varphi_i \sinh \varepsilon_i \cos (\gamma y) \right] \Delta_{(n)}$$
  
Fall 2  $N_2(y) = P - 2 \sum_{n=1}^{\infty} \frac{1}{\gamma} \left[ C_1 \sinh (\gamma a) + C_2 \gamma a \cosh (\gamma a) \right] \cos (\gamma y)$ 

3.2 Einfluss der nicht verschwindenden Randschubkräfte auf  $die \ Querträgernormalkraft \ N(y)$ 

Die durch den vereinfachten Ansatz (12) am Scheibenrand verbleibenden Randschubkräfte bilden an jedem Rand eine Gleichgewichtsgruppe. Es kann deshalb der Störeinfluss nur in der Randzone von Bedeutung sein. Es sollen im folgenden die Verhältnisse für den ungünstigsten Fall eines einzigen Querträgers untersucht werden. Da die Orthotropie auf die Randstörung praktisch keinen Einfluss hat, beschränken wir uns auf den Fall 2 (Isotropie). Die Randschubkraft lautet dann (Bild 15):

(18) 
$$N_{xyr} = \sum_{n=1,3,5,\dots}^{\infty} \left\{ \left[ C_n - D_n \right] + \gamma_n x D_n \right\} e^{-\gamma_n x}$$



darin bedeuten

$$C_n = -\frac{(1-\mu) 4 \delta}{(1+\mu) n \pi \Delta} \left(\frac{P}{b}\right) \qquad \qquad \gamma_n = \frac{n \pi}{2 b}$$
(19) 
$$D_n = -\frac{4 \delta}{n \pi \Delta} \left(\frac{P}{b}\right)$$

$$_{(n)} = -\left\{3 + \frac{8\delta}{n\pi} - \mu\left(1 + \frac{4\delta}{n\pi}\right)\right\} \qquad \delta = \frac{\delta n}{F_Q}$$

Mit (18) und (19) ergibt sich für die Resultierende der Randschubkräfte rechts vom Querträger

(20) 
$$T = \int_{0}^{\infty} N_{xyr} dx =$$
$$= \frac{8 (1-\mu) \delta P}{\pi^2 (1+\mu)} \sum_{n=1,3,\dots}^{\infty} \frac{1}{n^2 \left\{3 + \frac{8 \delta}{n \pi} - \mu \left(1 + \frac{4 \delta}{n \pi}\right)\right\}}$$

daraus folgt als oberer Schrankenwert für die Resultierende T

(21) 
$$T \leq \frac{8(1-\mu)\delta P}{3\pi^2(1+\mu)} \sum_{n=1,3,...}^{\infty} \frac{1}{n^2} = \frac{(1-\mu)\delta}{(1+\mu)3} F$$



Schweiz. Bauzeitung · 82. Jahrgang Heft 26 · 25. Juni 1964

(1





Bild 17. Einfluss der Querkontraktionszahl  $\mu$  auf die Querträgernormalkraft  $N_m$  in Streifenmitte (y = b).

Bild 18. Einfluss des Längsrippenfaktors  $\alpha_s$  auf die Querträgernormalkraft  $N_m$  in Streifenmitte (y = b).

Ausdruck (21) stimmt für kleine  $\mu$  und  $\delta$  mit dem genauen Wert (20) praktisch überein.

Mit 
$$\int_{0}^{\infty} x N_{xyr} dx = \frac{32 \ \delta \ b \ \mu \ P}{\pi^3 \ (1+\mu)} \sum_{n=1,3,...}^{\infty} \frac{1}{\Delta(n)}$$

folgt in Verbindung mit (20) für die Lage des Angriffspunktes der Resultierenden T (siehe Bild 15)

(22) 
$$x_0 = \frac{4 \ \mu \ b}{\pi \ (1 - \mu)}$$

Mit  $\mu = 0$  wird somit  $x_0 = 0$ .

Der Nullpunkt der Randschubkräfte liegt je nach dem numerischen Wert von  $\delta$  und  $\mu$  im Bereich

### (23) 0,6 $b < \overline{x} < 1,2 b$

Aus (21), (22) und (23) und dem exponentiellen Abfall der Randschubkräfte darf nun gefolgert werden, dass für die praktisch üblichen  $\delta$ -Werte die Randstörung sich auf einen relativ schmalen Randstreifen beschränkt und somit die Beeinflussung in der Mittelpartie des Querträgers auch bei grossen Querträgerabständen nur sehr klein sein kann.

#### 3.3 Numerische Auswertung und Schlussfolgerungen

Betreffend numerische Auswertung gelten auch hier die unter 2.3 gemachten Bemerkungen.

Im folgenden sollen die numerischen Resultate der Querträgernormalkraft für den Parameterwert v = b/a = 0.4(Bild 13) in Diagrammform wiedergegeben werden (Ueberschneidung der Einflussbereiche benachbarter Randkräfte in den Scheibenmittelzonen nicht mehr vorhanden).

Aus den Bildern 16 und 17 ist der Einfluss der Längsrippen sofort ablesbar. Mit ansteigendem Rippenfaktor  $\alpha_x$ wird die Kraftabwanderung vom Querträger in die angrenzenden Scheibenpartien geschwächt und damit eine Erhöhung der Querträgernormalkraft erzeugt. Die Vergrösserung der Querkontraktionszahl bewirkt eine geringfügige Erhöhung von N(y), wie aus Bild 18 ersichtlich ist.

Erreicht der Querträger eine gewisse Breite, so ist die Behandlung als Balkenelement nicht mehr zulässig (variable Spannungsverteilung über die Breite). Es kann dann mit ausreichender Genauigkeit das zusammengesetzte System Scheibe - Querträger als Scheibe veränderlicher Stärke betrachtet werden (entsprechende Ausrundung im Uebergangsbereich). Damit gilt die Gleichung (3) im ganzen Gebiet. Die Programmierung gestaltet sich dann insofern einfach, als im ganzen Bereich (exklusive Rand) nur ein Operator zu bestimmen ist. Die die Programmierung sehr erschwerenden Uebergangsbedingungen entfallen, es sind nur die statischen Randbedingungen an den freien Rändern zu formulieren. Diese Methode kann auch im Falle schiefer Querträger ohne allzu grosse Erschwernisse angewendet werden.

## 4. Zusammenfassung

Es wird das Kräftespiel in orthotropen und isotropen Plattenstreifen infolge schiefer, zentrischer Quervorspannung untersucht. Die Einflussfaktoren «Längsrippen» von Hohlkasten» und «Schiefe der Quervorspannung» werden als Parameter verwendet. Die numerischen Resultate werden in Form von Tabellen und Diagrammen wiedergegeben. Im weitern werden Diagramme gegeben, die den Normalkraftverlauf in zentrisch vorgespannten Querträgern senkrecht zur Brückenaxe veranschaulichen. Als Parameter dienen Längsträgerfaktor, Querträgerfaktor sowie die Querkontraktionszahl.

Die an diesen stark idealisierten Ersatzsystemen abgeleiteten Abhängigkeitsverhältnisse sollen dem konstruierenden Ingenieur als Grundlage dienen, um bei komplizierteren Brückentafeln eine Abschätzung des Normalkraftverlaufs (mitwirkende Breite) schnell zu gewährleisten.

Zum Schluss soll der IBM Zürich für den Forschungskredit, der uns in Form von Maschinenstunden der elektronischen Rechenanlage IBM 1620 entgegenkommenderweise gewährt wurde, gedankt werden. Dieser Forschungskredit erlaubte uns unter anderem, die numerischen Auswertungen der vorliegenden Arbeit durchzuführen.

#### Literaturangaben

- [1] Beton-Kalender 1964, Kapitel «Elastische Platten», insbesondere Abschnitt III.
- [2] K. Girkmann: Flächentragwerke, 1956, Kapitel «Scheiben».

Adresse der Verfasser: Ingenieurbureau Sutter & Gaszner, Universitätsstrasse 45, Zürich 6.