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82. Jahrgang Heft 3 SCHWEIZERISCHE BAUZEITUNQ 16. Januar 1964

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE 6.E.P.

Die Dreimomentengleichung für den horizontal belasteten zweistieligen Stockwerk-
Rahmen und ihre Anwendung auf die Berechnung von Fassaden mit Windlasten
Von Sebastian Steckner, Ingenieur, Basel

DK 624.072.333

Einleitung
Bei höheren Gebäuden stellt sich dem Ingenieur das

Problem ider Aufnahme der Windkräfte. In der Regel sieht er
sich dabei gezwungen, die Fässaden des Gebäudes zur
Aussteifung mit heranzuziehen. Die statische Berechnung der in
ihrer Ebene horizontal belasteten Fassade ist recht kompliziert

und umfangreich, wenn es sich —¦ wie in den meisten
Fällen — um ein stockwerkrahmenartiges System handelt
und die Schnittkräfte mit Hilfe eines allgemeinen
Rahmenberechnungsverfahrens ermittelt werden. Sehr oft trifft man
jedoch Fassadensysteme an, welche die Anwendung von
einfacheren, speziellen Bereehnungsmethoden zulassen. Zwei
solche sehr häufig vorkommende Fassadentypen sollen hier
behandelt werden: Der symmetrische zweistielige .Stockwerk¬
rahmen und der symmetrische mehrstielige Stockwerkrahmen

mit betont breiten Aussenstielen. Die Berechnung beider
Rahmenarten beruht auf der Dreimomentengleichung für den
horizontal belasteten, symmetrischen zweistieligen
Stockwerkrahmen, die daher im folgenden Abschnitt zunächst
abgeleitet werden soll.

Ableitung der Dreimomentengleichung und Berechnung der
Schnittkräfte des zweistieligen Stackwerkrahmens

Die im folgenden abgeleiteten Beziehungen gelten für
den in Bild 1 dargestellten symmetrischen zweistieligen
Stockwerkrahmen, der durch horizontale, an den Rahmenknoten
angreifende Kräfte Pj belastet Ist. Es wird vorausgesetzt,
dass die Querschnitte stabweise konstant sind und der
Elastizitätsmodul für den ganzen Rahmen gleich ist. Der Einfluss
sowohl der Querkräfte als auch der Normalkräfte in den
Riegeln auf die <gpsjff!|.chen Formänderungen bleibt 'unberücksichtigt;

hingegen werden die Längenänderungen der Stiele
infolge der Normalkräfte in Rechnung gestellt.

Die Systemabmessungen sowie die Numerierung der
Rahmenknoten und Stockwerke gehen aus Bild 1 hervor. Die
Kräfte werden nach dem Rahmenknoten bezeichnet, an dem
sie angreifen. Es bedeuten:
Fm bzw. Jm die Fläche bzw. das Trägheitsmoment des

Stielquerschnitts,
Km das TräghEitsmoment des Riegelquerschnitts,
Jc ein beliebig gewähltes Vergleichsträgheitsmo¬

ment.

Wir führen die folgenden «reduzierten Stablängen» ein:

li rn — "T P ft m Ihr, l*F„ *> m — *>

Je

Km

Als «.Belastungsglieder» definieren wir:

m—1

—-«m. — 2_i ' mm= £Pi(ej— em)

£im stellt die Querkraft und 3JJm das Biegemoment des
stellvertretenden Kragträgers dar.

Die Schnittkräfte sind in Bild 2 in ihrer Wirkung auf
den Rahmenknoten dargestellt; sie sind alle in positiver
Richtung eingezeichnet. Es bedeuten:
Nm bzw. Qm die Normalkraft bzw. die Querkraft des

Stieles,
Xm bzw. Ym das Fuss- bzw. Kopfmoment des Stieles,
Vm bzw. Zm die Querkraft bzw. das Knotenmoment des

Riegels.

Die Schnittkräfte der Stiele werden nach dem. betr. Stockwerk,

diejenigen der Riegel nach dem betr. Knotenpunkt
bezeichnet.

Die einseitige Belastung des symmetrischen Stockwerkrahmens

(P > kann in einen symmetrischen Anteil
(%P 1 < %P) und in einen antimetrischen Anteil
CVzP > YzP >¦) zerlegt werden. Ersterer erzeugt keine
Biegemomente und braucht deshalb nicht in Betracht gezogen
zu werden. Für den antimetrischen Lastanteil verschwinden
die symmetrischen Schnittkräfte Biegemomente und Normalkraft

in Riegelmitte; ebenso äst dort die vertikale Verschiebung

gleich Null. Aue dem Gleichgewicht und dem anti-
metrischen Verlauf der Schnittkräfte folgt:
(1) 2Qm Om

(2) Nm l + 2 Xm - %
und

Wir betrachten nun den in Bild 3 dargestellten, aus dem
antimetrisch belasteten deformierten Stockwerkrahmen
herausgeschnittenen einhüftigen Rahmen. Die Schnittkräfe und
die Kraft %Pm-i stehen miteinander im Gleichgewicht. Der
Rahmenknoten m bzw. m-1 hat sich um das Mass Am fazw.
Am-i vertikal verschoben und gleichzeitig um den Winkel
q>m bzw. <pm.± verdreht. Um ein statisch bestimmtes System
zu erhalten, denken wir uns im Punkt m ein festes und im
Punkt I ein horizontal bewegliches Lager. Wir fassen jetzt
die Kräfte %Pm-i, Qm-i> Nm-x, -Xm_i und Xm als «Belastung»
und die Kräfte Qm, Nm 'und Vm-i als «Reaktionen» auf und
erklären die vertikale Verschiebung Am_! als «Senkung» des
Auflagers I. Die Gleichgewichtsibedingung liefert hier in
Verbindung mit Gleichung (1):
(3) m VaQ,

Die Bilder 4 und 5 zeigen zum einhüftigen Rahmen von
Bild 3 den Verlauf der Biegemomente M infolge der
«Belastung» und der «virtuellen» Biegemomente ~Mm-i bzw. Wm
infolge eines am Knotenpunkt m — 1 bzw. m angreifenden
virtuellen Momentes 1.

Wir finden die Knotendrehwmkel:

1
2-

2.

2-

ft^g

4^

s.

*2-

m

Fm,3m

Nm

Sm

Jmt1|

m

IM3

m+1

Bild 1. Symmetrischer zweistieliger
Stockwerkrahmen

Bild 2. Schnittkräfte am
Rahmenknoten
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EJC <Pm II Mm M ds'
2AT

EJC

(4) EJcVm=—Q,mhm{ — h',

mmJ*-m 1 *
"TT" *" rix — 1 ¦

D ¦^mj^ml TT l m — 1
2A, BJ,

EJC
— 2 ATn_i
A^m-i M ds' -\ j E Jc

1 1
(5) E Jc <pm_i yOm Äm •

-g- Z'm_i

1
+ ^m-1 ' ~g" l'vi-

2A„
1

Wir transponieren die Gleichung (5) von <pm_i nach <pm:

(5') fiJ,?
1 ff

Z771 * c
Z

i ¦ Xm + x

Nach Gleichsetzen der beiden Ausdrücke
für EJC ¦ <pm nach Gfeichung (4) und (5')
erhalten wir geordnet:

^m —1 ' ''rra — 1 — Xm (6 A'm + Z'm—1 + Z'm) +
12(Am_x— Am)EJc j

TP„-,+0„.,
.lam->>.

¦^m + 1 * * z

wobei

Am_i-

also

1
— "2~ ^m +1 ^m +1 ^'m 0

tfm hm Wim —
- Am -pj—^- und Nm - —j
12 (Am_i-Am)BJ(

fffl-J

Nm.A\
Xm-i

Q„.i Vm-1

i/L,

¦«

JC)
F„. J

®

Nm

L\

r—6L_J

Bild 3. Einhüftiger Rahmen

*a. -

2Z„
nach Gl. (2)

1
l 12 (Wim- 2 Xm) hm l2R

24 Xm ä"„

damit lautet die Dreimomentengleichung:

(6) Xm-1 ¦ l'm-l—Xm (6h'm + 24 7l"m + i'm-1 + Z'm) +

+ ^m + l • 2', ¦^m i^m \& H m \ * rn — 1) T~

Bild 4. Biegemomente M infolge der «Belastung»

I,:

"T" o -*-^m + l ""Tn+l * m — 1^ -wCm "¦ 7n

i. Für die praktische Anwendung interessieren uns noch die
folgenden Spezialfälle der Dreimomentengleichung:
1. Für m 1 ist Xm.t X0 — 0:

(6a) — Zt (6h'! + 24 Ä"t + Z'o + Z'i) + X2 zj

Bild 5. «Virtuelle» Biegemomente

2. Für m — n ist

Die Berechnung der Fussmomente Xi der
Stiele erfolgt nun im Prinzip in gleicher
Weise wjfe die Berechnung der Stützenmomente

eines durchlaufenden Balkens mit
ffi Oi hx (3 h\ + 1'0) + -K- C2 ^2 l'i — 12 SJli A"i Hilfe der Clapeyronschen Dreimomenten¬

gleichung. Wir stellen die Gleichung (6)
nacheinander für m 1, 2, 3,... n auf, —
für m 1 und m w gelten die Gleichungen

(6a) und (6b) —¦ und erhalten nach
Auflösung des Gleichungssystems die
Knotenmomente Xlt X2, Xs, Xn.

Für die Querkraft Qm und die Normal¬

ip

worin Qx P0, d2 Po + Pi und 9Jh 1 P0Ai

0 und X„ '¦ Xn+x — 0:

(6b) Z„_iZ'„_i — Xn (6 h'n + 24 fc"n + r„__i-f Z'n)

1
M Qn An (3 /i'n + l'n-t) —12 Wn h"n kraft Nm des Stiels benützen wir die Glei- Bnd 6 Schnitt

chungen (1) und (2):

worin On £ P, und Wtn £ P; e;
0 0

Sind die beiden untersten Rahmenstiiele am Fuss voll
eingespannt, oder ist der unterste Riegel unendlich steif,
dann wird mit l'n 0:

(6c) Z„_i Z'„_i — X„(6fc'„ + 24 h"n + Z'n_i) I
— Y&nhn(3 Ä'„ + Z'n_i) - 12 TO« A"„

d') 6».
1

(2') J^m

kräfte des Stiels

9Km - 2 Zt«
z

Für das Kopfmoment Ym finden wir, vgl. Bild 6:

Ym Qm • hm — Xm> wobei Qm %dm
nach Gleichung (1)

(7) rm =-g-am fc„
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Die Gleichungen für das Knotenmoment Zm und die Querkraft

Vm des Riegels können an Hand der Bilder 2 und 3
abgelesen werden:

(8) zm xm + mm (9)
2Zm

Z

Der zweistielige Fassadenrahmen mit kurzen Biegein
Wir betrachten den in Bild 7 dargestellten, symmetrischen

zweistieligen Fassadenrahmen. Die lichte Weite der
Riegel ist im Verhältnis zur Breite der beiden Stiele
gesehen sehr klein, zudem sind die Riegel sehr gedrungen. Die
der Dreimomentengleichung (6) zugrundeliegenden
Voraussetzungen sind hier zum Teil nicht erfüllt:

1. Der Riegelquerschnitt kann wegen der gegenseitigen
Durchdringung von Stiel und Riegel nicht als unveränderlich
angesehen werden.

2. Der Einfluss der Querkräfte auf die elastische Verformung

der Riegel ist wegen deren Gedrungenheit nicht ver-
niachlässigbar.

Neben den weiterhin geltenden Bezeichnungen des
zweistieligen Stockwerkrahmens von Bild 1 bedeuten:
Am die Fläche des Riegelquersehndtts,
dm die Riegelhöhe bei rechteckigem Querschnitt,
Km die Schubverteilungszahl des Riegelquerschnitts,
a die lichte Weite des Riegels,
b die halbe Stielbreite.

In Bild 8 ist ein durch die Schnittkräfte V und Z
antimetrisch belasteter Riegel dargestellt mit den dazugehörigen
Atabildungen der Querkraft Q, des Biegemoimentes M und
der elastischen Linie mit dem. Endtangentenwinkel t. Der
Einfachheit halber sind die Indizes m weggelassen. Der Riegel
ist auf der Strecke b, wo er den Stiel durchdringt, unendlich
steif; zwischen den Stielen, auf der Strecke a,, hat sein
Querschnitt die Fläche A, das Trägheitsmoment K und die
Schutavertei'lungszahl k.

Wir berechnen den Endtangentenwinkel t:

2Zt

worin E Elastizitätsmodul und G m iSchubmodul,

Zu«
6EKP (•

12.SK/c
GAa?

Für die Elastizität des Riegels ist das Verhältnis t : Z
charakteristisch:

p°
1

1

§ij
j

~
]

—

1

4lfp "

-c"

Fm-1

—1 —'*s

\

E

P"
E

CS

m -c
Am,K„

^mn — 'ts

r t
1

l_J T
-

1
y \—

T —ts

c

S/S/////////

b

W//,

iJ ,b_._

c

Bild 7. Zweistieliger Fassadenrahmen

C

__^_ A,K,X

Belastung

cQ

m
_i QuerkraFt

<Z3

6EKP 1 +
12EKk
GAcP

Setzt man für Eisenbeton G sh E, so erhält man als Mass
für die Elastizität des Fassadenriegels:

(10)
a3

6EKP
I 28Kk\

Wir bestimmen nun das Trägheitsmoment K' des
Ersatzriegels, dessen Querschnitt auf die ganze Länge Z

konstant ist und welcher ibei Ausschluss der Querkraftverfor-
mung die gleiche Elastizität t : Z besitzt wie der vorhandene

Riegel. Wir setzen in Gleichung (10) a l, K — K' und
den zweiten Ausdruck in der Klammer, der den Einfluss der
Querkraftverformung darstellt, gleich Null:

(11)
Z

6EK'
Nach Gleichsetzen der rechten Seiten der Gleichungen

(10) und (11) finden wir:

(12)
1

W ±(t)'(' 28Kk^
~A~äFI

Wir können nun den Ersatzriegel an Stelle des vorhandenen

Fassadenriegels in den Stockwerkraihmen einbauen,
ohne etwas an dem elastischen Verhalten des Rahmens zu
ändern. Bei Zugrundelegung des konstanten Trägheitsmo-

M
I

Biegemoment

Bild 8. Antimetrisch belasteter Fassadenriegel

¦Blcvsl.ische Linie

mentes K' des Ersatzriegels gelten die für den zweistieligen
Stockwerkrahmen entwickelten Gleichungen. Für die
reduzierte Riegelstützweite V ist jetzt zu setzen:

(13) Z'„
Je Je

K'm K,m 28 Km Km

Ama2

t Km dm2
Bei rechteckigem Riegelquerschnitt ist mit -^— -j^- und

k 1,2:

dm2Je fa\3{(13') IHi (1 + 2,8 ft2
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Der mehrstielige Fassadenrahmen mit breiten Aussenstielen

Auch die Berechnung des symmetrischen mehrstieligen
I jssadenrahmens nach Bild 9 kann mit Hilfe der
Dreimomentengleichung für den zweistieligen Stockwerkrahmen
durchgeführt werden, wanrn die Innenstiele (Fensterrpfeiler)
im Vergleich zu den Aussenstielen und den Riegeln (Brüstungen)

so schlank sind dass ihre Biegesteifigkeit gemessen an
der Gesamtsteifigkedt das Passadenrahmens vernachlässig-
taar klein ist. Die Innenstiele haben dann die Funktion von
Pendelstützen. Wie bei der Berechnung von Eisenbetonrahmen
im allgemeinen üblich, wird der Einfluss der Normal- und
Querkräfte auf die elastischen Formänderungen der
Einfachheit halber nicht berücksichtigt. Das Verfahren ist also
als eine Näherungslösung anzusehen und eignet sich nur für
massig hohe Passaden, wo der Einfluss der Längenänderungen

der Stiele gering ist.
Die Systematamessungen sind in Bild 9 festgelegt; im

übrigen gelten die bisher verwendeten Bezeichnungen sinn-

iSÖs a
gemäss. Wir benützen den Verhältniswert a —si

Da wie vorausgesetzt die Biegesteifigkedt der Innenstiele
vernachlässigbar ist, kann der Riegel als gewöhnlicher
durchlaufender Balken aufgefasst werden, der durch die an seinen
beiden Enden angreifenden, von den Aussenstielen eingeleiteten

Knotenmornente antimetrisch belastet wird. In Bild 10
ist die linke, durch das Knotenmoment Z belastete Symme-
triehälrfte des Riegels dargestellt mit den dazugehörigen
Abbildungen des Biegemomentes M und der Biegelinde mit
den Tangentenwinkeln t und m im ersten und zweiten Auf-
lagerpunkt. Der Riegel ist auf der Strecke b, wo er den
Aussenstiel durchdringt, unendlich steif; auf seiner Restlänge
besitzt er das Trägheitsmoment K. Biegemoment und
Durchbiegung verschwinden in der Symmetrieaxe, also können
wir dort ein momentenfreies Auflager 'annehmen; dabei spielt
es keine Rolle, ob die Symmetrale wie in Bild 9 'ein Riegelfeld

oder einen Innenstiel schneidet.

Wir bezeichnen die Abstände der Momentennullpunkte,
gemessen vom rechten Auflager des betreffenden Riegelfeldes,

die sagenannten «Festpunktatastände», mit S cn usw.
und die Momentenweiterleitungszahlen, die sogenannten

«Festpunktzahlen», mit yt, yn usw. Zwischen Festpunktzahl

und Festpunktabstand besteht die Beziehung:

Yj
Cl

Si—Ci M
ClI

Such

Das Biegemoment an der Innenkante des Aussenstiels
hat dio Grösse:

(14)
a
Si -y7Z—=Z{a.

b

Sl Y/d m
Die Endtangentenwinkel des ersten Riegelfeldes können

nach Mohr berechnet werden; wir erhalten mit Z' nach

Gleichung (14) und a

(15) EKt

a
si

(16) EKt'

CK2 Si Z
6

a2 Si Z

{2a-y, (3-2a)\ und

:3-2«) liaS,Z
(6 — 6a + 2 a2)

Für den Endtangentenwinkel des zweiten Riegelfeldes,
ebenfalls nach Mohr, finden wir:

(17) EKt'= Y; Sil z
(2 —y;;)

Indem wir die rechten Seiten der Gleichungen (16) und
(17) gleichsetzen, bekommen wir die Bestimmungsgleichung
für die Festpunkt^ahl yi:

(18) Yz
S/a2 (3 — 2a)

S! a (6 - 6 a + 2 a2) + s„ (2 - yn)

H
_ ¦ r I

j?
:rf"r i 1 ¦1 1ff

Li_
r 11

fm-1 1 i
;

\ j

H
E

-C

Pm
i 6 — j

Rn., I I •
i

Pn-1 I

i __ _

r i T T

~1
T

i |

1 lf 1

c

'////////

.b

/////////),>///////, //WZ/}-WM/W/////r/r//////)

a B

////)/// i

Sj % SjTJ Sje sx Si

l

Die übrigen Festpunktzahlen des Riegels yn, ym usw.
können in bekannter Weise nach den RechenVorschriften für
den durchlaufenden Träger mit konstantem Trägheitsmoment
ermittelt werden (vgl. Literatur über Festpunktverfahren).
Pur das an die Symmetrale angrenzende Riegelfeld ist stets
y g 0. Im Beispiel der Bilder 9 und 10 ist ym 0,

lu S/7 /2 H -f- sHI) y/ nach Gleichung (18).

Das für die Elastizität des Riegels charakteristische

Verhältnis t:Z ist bestimmt durch die
Gleichung (15):

(15')
S/ a2

ITeTc 2 a-7,(3-2 a)

Wir können nun die gleichen Ueberlegungen
anstellen wie bei der Behandlung des zweistieligen

Fassadenrahmens mit kurzen Riegeln. Für
den Ersatzriegel gilt unverändert die Gleichung
(11):

K

Si Se S]q

lll
Belastung

m

rftz
es

Biegemomenl

m
Biegelinie

Bild 9. Mehrstieliger Fassadenrahmen

38

ild 10. Belastete linke Riegelhälfte
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(11) Z - 6EK'
Nach Gleichsetzen der rechten Seiten der Gleichungen

(15') und (11) finden wir:

(19)
1 Si a-1

IK \ 2a — y, (3 — 2 a)}

Bei Verwendung des Ersatzriegels anstelle des vorhandenen

Riegels können wir die für den zweistieligen Stock-
werkrahmen entwickelte Dreimomentengleichung für dde
Berechnung der Fussmomente der Aussenstiele verwenden. Für
die reduzierte Riegelstützweite V ist jetzt zu setzen:

(20) l'm I l K'. s, K~ a*{2a — Y/(3 — 2 a)}

Da wir den Einfluss der Normalkräfte vernachlässigen,
müssen wir in der Dreimomentengleichung

Je

PFm
(6), (6a) und (6c):

(6') -Xm-l ' l'm-1 — -Xm (6 h'm + l'm-X + l'm) + %m + l ' Vi
1 1

M "o" Gm ^771 (3 h'm + l'm — l) + ~2~ C,.™' + 1 ^771 + 1 l'm

Für die Querkräfte und Kopfmomente der Aussenstiele
gelten unverändert die Gleichungen (1') und (7), für das am
Riegelende angreifende Knotenmoment Z die Gleichung (8).
Der weitere Momentenverlauf im Riegel ist gegeben durch
die Festpunktzahlen yr, yn usw., und aus diesem lassen sich
sowohl die Querkräfte im Riegel als auch die Normalkräfte
in den Innen- und Aussenstielen bestimmen.

Zahlenbeispiel
Wir berechnen die Schndttkräfte des in Bild 11

dargestellte^ achtstöckigen zweistieligen Fassadenrahmens.

Querschnittswerte:

Fi F2 F3 F4 1 0,20 • 6,00 1,20 m2 ;

Fs F<s Fi Fs 0,30 • 6,00 1,80 m2 ;

Ao Ai Ä2 A3 0,15 ¦ 1,60 0,24 m2 ;

At As A6 Ai 0,25 • 1,60 0,40 m2 ;

1

/i Jz /3 /* — 0,20
12

6,003 4 3,60 m4

/5 — /ö Jl J8
1

0,30
12

6,003 5,40 m4

Ko Ki Ki Ki iy°'15 1,603 0,0512 in

Ki Ks Kö Ki
i

0,25
12

1,603 0,0853 m

Je Js § 5,40 m4 (gewählt)

(6'a) — Xx (6 h\ + Z'0 + Z'x) + X2 Z'i
1 1

— -g-QiZii (3fe'! + Z'0) +"2-Q-2?l2Zi fürm 1

Reduzierte Stablängen:

(6'c) X„.i *'„_,. — X„ (6 Zi'n + Z'n_i)

OnÄ„ (3/Vn + Z'„_i)

für m g n bei voller Einspannung der Aussenstiele.
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Bild 11. Achtstöckiger zweistieliger Fassadenrahmen
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5,40hi' hi h3' M 4,00 gSS 6,00 m
3,60

5,40
ht,' 1 hi' 4,00 -1—- 4,00 m

5,40
hs'

5,40Mi m 3,20 -^— 3,20 m
5,40 '

Ai" fe" „ „ „ 5,40
0,281 m7,3 | 4'°°

8,002- lj20 j
As" „ „ 5,40

0,188 m|H 8,002- 1,80

5,40
0,150 mH| 8,002- 1,80

/o' 1 h' 1 /3' i
„ ™ 5,40
8,00 —

0,0512

U Is'

/ 2,00 \3 / 1,602 \M—1 1 + 2,8^—r) 36,8 m\ 8,00 \ 2,002 ;

W /?'

nach
Gleichung
(13')

„ „„ 5,40
8,00 —'

0,0853

/ 2,00 \3 / 1,602\
—-— 1 + 2,8 -L—T- 22,1 m\ 8,00 / V 2,002 /

Behistungsglieder:

Qi 14? SKj | 14 • 4,00 § 56 tm
Qz 14 + 14 28 t 5Kz 56 + 28 ¦ 4,00 168 tm
&3 28 + 14 42 t 2% 168 + 42 • 4,00 336 tm
Q4 42 + 14 56 t 2«4 336 + 56 • 4,00 i 560 tm
Q5 56 + 12 68 t K5 560 + 68 • 4,00 832 tm
Q6 68 + 12 80 t W6= 832 + 80 • 4,00 i 1152 tm
a7 80 + 12 921 »17=1152 + 92 • 4,00 1520 tm
Q8 92 + 10 102 t 2«s 1520 + 102 3,20 1846 tm

Dreimomentengleichungen:

Berechnung des Klammerausdrucks (6 h'm + 24 h"m + l'm-i + l'm) in
Gleichung (6),

fürm=l, 2,3 : 6-6,00 + 24-0,281+36,8 + 36,8 116,4

für m 4 : 6 ¦ 6,00 + 24 • 0,281 + 36,8 + 22,1 101,7

fürm 5, 6,7 : 6-4,00 + 24-0,188+22,1+22,1= 72,7

fürm 8 : 6-3,20 + 24-0,150 + 22,1+ 0 44,9

Berechnung des Klammerausdrucks (3 h'm + Z'm-i)in Gleichung (6),
für m 1, 2, 3, 4

für m 5, 6, 7

für m 8

3 ¦ 6,00 + 36,8 54,8
3 • 4,00 + 22,1 34,1

3 • 3,20 + 22,1 I 31,7
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Aufstellung der Dreimomentengleichungen (6) bzw. (6a) bzw. (6c):

1. -Xi- 116,4 + Xi- 36,8

-—14 -4,00-54,8 + — 28-4,00-36,8-12- 56-0,281= +338

2. Xi ¦ 36,8 - Xz ¦ 116,4 + Xz ¦ 36,8

-—28 -4,00-54,8 + — 42-4,00-36,8-12- 168-0,281= -545

3. Xi ¦ 36,8 - Xz ¦ 116,4 + Xt ¦ 36,8

42 -4,00- 54,8 -| 56-4,00-36,8-12- 336 • 0,281 -1613
2 2

4. Xz ¦ 36,8 -Xt j 101,7 + Xs ¦ 22,1

¦ 4,00 • 22,1 - 12 • 560 • 0,281 -5015— 56 • 4,00 • 54,8 H
2 2

5. Xt ¦ 22,1 - Xs ¦ 72,7 + X6 • 22,1

- — 68 -4,00-34,1 + — 80-4,00-22,1-12- 832 • 0,188 -2980
2 2

6. Xs • 22,1 - X6 ¦ 72,7 + Xn ¦ 22,1

-—80 -4,00-34,1+— 92-4,00-22,1-12-1152-0,188 -3987

7. Xä ¦ 22,1 - X7 • 72,7 + Xs ¦ 22,1

- — 92 • 4,00 • 34,1 + — 102 • 3,20 • 22,1 - 12 • 1520 • 0,188 -6090
2 2

8. Xt22,1-Xs- 44,9

102-3,20-31,7
2

-12- 1846-0,150 -8495

Nach Auflösung des vorstehenden Gleichungssystems erhalten wir die
Fussmomente der Stiele:

Xi + 3,99 tm

Xi +21,81 tm

Xs + 117,40 tm

X& + 158,30 tm

®

Z*t,to

L®
7-

19M ;>=*

¥ m

©
7

1 ^
s Ä

m.
135,10 F="

Ä«

Xz +50,13 ||
X4 + 92,97 tm

Xn + 222,70 rm

*s + 298,90 tm

Kopfmomente und Normalkräfte der Stiele nach Gleichung (7) und (2'):

m — 14-4,00- 3,99
2

24,01 /m

72=— 28-4,00- 21,81 + 34,19 rm

Yz — 42-4,00- 50,13
2

33,87 /m

Normalkpäfte des
linken Rahmenstiels

Biegemomente der linken Rahmenhälfte,

auf der Zugseite aufgetragen

Bild 12. Schnittkräfte des achtstöckigen zweistieligen Fassadenrahmens

Yt — 56 • 4,00- 92,97 + 19,03 tm

Ys — 68-4,00-117,40=+ 18,60 tm

Ye — 80 • 4,00 - 158,30 + 1,70 tm

Yn — 92 • 4,00 - 222,70 - 38,70 tm
2

Ys — 102 • 3,20 - 298,90 - 135,70 tm
2

Ni

m

56 - 2 • 3,99

Ns

168

8,00

-2- 21,81

336

8,00

-2- 50,13

560

8,00

- 2 ¦ 92,97

832

8,00

-2- 117,40

1152

8,00

-2- 158,30

1520

8,00

- 2 ¦ 222,70

1846-

8,00

- 2 • 298,90

+ 6,00 t

29A6 t

i,00
+ 156,10 t

Knotenmomente und Querkräfte der Riegel nach Gleichung (8) und (9):
2 • 24,01

Zo= 0 + 24,01 + 24,01 tm Va —„ J, =+ 6,00?

Zi + 3,99 + 34,19 + 38,18 tm Vi

Zz + 21,81 + 33,87 I + 55,68 tm Vi

Z3 + 50,13 + 19,03 + 69,16 tm Vz

Zt + 92,97 + 18,60 + 111,57 tm Vt

Zs + 117,40 + 1,70 + 119,10 tm Vs

Ze + 158,30 - 38,70 + 119,60 im Fi

Z7 + 222,70 - 135,70 + 87,00 tm Vn

2

8,00
• 38,18

2

8,00
• 55,68

2

8,00
• 69,16

2

8,00

•111,57

2

8,00
• 119,10

2

8,00

119,60

2

8,00

87,00

8,00

+ 9,551

+ 13,92t

+ 17,301

+ 27,901

+ 29,801

+ 29,90 t

+2i,15t

In Bild 12 ist der Verlauf der Biegemomente und
nebenstehend der Verlauf der Nonmalkräfte im Stiel dargestellt für
die linke SymmetriehäMte des Rahmens; für die rechte
Symmetriehälfte verlaufen 'die Schnittkräfte antimetrisch. dazu.

Für die Dimensdonierung des Riegels ist natürlich das Biege-'
moment im Schnitt auf Innenkante Stiel massgebend; der
Verlauf der Riegelmometite im Bereich des Stiels ist deshalb

gestrichelt gezeichnet.

Adresse des Verfassers: Ing. Sebastian Steckner, Neu-Ällschwil
BL, Dürrenmattweg 66.
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	Die Dreimomentengleichung für den horizontal belasteten zweistieligen Stockwerk-Rahmen und ihre Anwendung auf die Berechnung von Fassaden mit Windlasten

