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82. Jahrgang Heft 3

SCHWEIZERISCHE BAUZEITUNG

16. Januar 1964

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.1.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENGSSISCHEN TECHNISCHEN HOCHSCHULE 6.E.P.

Die Dreimomentengleichung fiir den horizontal belasteten zweistieligen Stockwerk-

Rahmen und ihre Anwendung auf die Berechnung von Fassaden mit Windlasten

Von Sebastian Steckner, Ingenieur, Basel

Einleitung

Bei hoheren Geb&uden stellt sich dem Ingenieur das
Problem [der Aufnahme der Windkréfte. In der Regel sieht er
sich dabei gezwungen, die Fassaden des Gebdudes zur Aus-
steifung mit heranzuziehen. Die statische Berechnung der in
ihrer Ebene horizontal belasteten Fassade ist recht kompli-
ziert und umfangreich, wenn es sich — wie in den meisten
Féllen — um ein stockwerkrahmenartiges System handelt
und die Schnittkrédfte mit Hilfe eines allgemeinen Rahmen-
berechnungsverfahrens ermittelt werden. Sehr oft trifft man
jedoch Fassadensysteme an, welche die Anwendung von ein-
facheren, speziellen Berechnungsmethoden zulassen. Zwei
solche sehr h&dufig vorkommende Fassadentypen sollen hier
behandelt werden: Der symmetrische zweistielige Stockwerk-
rahmen und der symmetrische mehrstielige Stockwerkrah-
men mit betont breiten Aussenstielen. Die Berechnung beider
Rahmenarten beruht auf der Dreimomentengleichung fiir den
horizontal belasteten, symmetrischen zweistieligen Stock-
werkrahmen, die daher im folgenden Abschnitt zundchst ab-
geleitet werden soll.

Ableitung der Dreimomentengleichung und Berechnung der
Schnittkrifte des zweistieligen Stockwerkrahmens

Die im folgenden abgeleiteten Beziehungen gelten fir
den in Bild 1 dargestellten symmetrischen zweistieligen Stock-
werkrahmen, der durch horizontale, an den Rahmenknoten
angreifende Krédfte P; belastet ist. Es wird vorausgesetzt,
dass die Querschnitte stabweise konstant sind und der Elasti-
zitdtsmodul fiir den ganzen Rahmen gleich ist. Der Einfluss
sowohl der Querkridfte als auch der Normalkrafte in den
Riegeln auf die elastischen Forménderungen bleibt unberiick-
sichtigt; hingegen werden die Lingendnderungen der Stiele
infolge der Normalkrifte in Rechnung gestellt.

Die Systemabmessungen sowie die Numerierung der
Rahmenknoten und Stockwerke gehen aus Bild 1 hervor. Die
Krifte werden nach dem Rahmenknoten bezeichnet, an dem
sie angreifen. Hs bedeuten:

F,, bzw. J,, die Fldche bzw. das Tridgheitsmoment des
Stielquerschnitts,

Kin das Tragheitsmoment des Riegelquerschnitts,

JIe ein beliebig gew#hltes Vergleichstrigheitsmo-

ment.

Wir fiihren die folgenden «reduzierten Stablingen» ein:

Je 1 Je Je
h'm = hm ﬂ ’ h m — hmm

Als «Belastungsgliedery definieren wir:

m—1 m—1

Qm:ZPi ’ 932m:ZPi(ei_em)
0 0

Qm stellt die Querkraft und ), das Biegemoment des stell-
vertretenden Kragtrigers dar.

Die Schmittkrifte sind in Bild 2 in ihrer Wirkung auf
den Rahmenknoten dargestellt; sie sind alle in positiver
Richtung eingezeichnet. Es hedeuten:

Ny, bzw. @,, die Normalkraft bzw. die Querkraft des
Stieles,

das Fuss- bzw. Kopfmoment des Stieles,

die Querkraft bzw. das Knotenmoment des
Riegels.

X,, bzw. Y,
Vi bzw. Z,,

Schweiz. Bauzeitung - 82, Jahrgang Heft 8 « 16. Januar 1964

DK 624.072.333

Die Schnittkréfte der Stiele werden nach dem betr, Stock-
werk, diejenigen der Riegel nach dem betr. Knotenpunkt be-
zeichnet.

Die einseitige Belastung des symmetrischen Stockwerk-
rahmens (P——»> ) kann in einen symmetrischen Anteil
(%P—> < 1% P) und in einen antimetrischen Anteil
(YeP——» %P ) zerlegt werden. Ersterer erzeugt keine
Biegemomente und braucht deshalb nicht in Betracht gezogen
zu werden. Fiir den antimetrischen Lastanteil verschwinden
die symmetrischen Schnittkridfte Biegemomente und Normal-
kraft in Riegelmitte; ebenso ist dort die vertikale Verschie-
bung gleich Null. Aus dem Gleichgewicht und dem anti-
metrischen Verlauf der Schnittkrédfte folgt:

(1) 2Qm = D-m und
(2) Np 14 -+ 2 Xm = S)ﬁm

Wir betrachten nun den in Bild 3 dargestellten, aus dem
antimetrisch belasteten deformierten Stockwerkrahmen her-
ausgeschnittenen einhiiftigen Rahmen. Die Schnittkrife und
die Kraft 1%P,,.; stehen miteinander im Gleichgewicht. Der
Rahmenknoten m bzw. m-1 hat sich um das Mass A,, bzw.
A4 vertikal verschoben und gleichzeitig um den Winkel
@m bzZW. @4 verdreht. Um ein statisch bestimmtes System
zu erhalten, denken wir uns im Punkt m ein festes und im
Punkt I ein horizontal bewegliches Lager. Wir fassen jetzt
die Kréfte %P1, @m-1, Np-1, X1 und X, als «Belastung»
und die Kréifte @,,, N,,, und V,,y als «Reaktioneny auf und
erkldren die vertikale Verschiebung A, als «Senkung» des
Auflagers I. Die Gleichgewichtsbedingung liefert hier in Ver-
bindung mit Gleichung (1):

(3) Yo Ppn—1+ @m-1=@n :1/22171

Die Bilder 4 und 5 zeigen zum einhiiftigen Rahmen von
Bild 3 den Verlauf der Biegemomente M infolge der «Be-
lastung» und der «virtuellen» Biegemomente IM,,.« bzw. I,
infolge eines am Knotenpunkt m — 1 bzw. m angreifenden
virtuellen Momentes = 1.

Wir finden die Knotendrehwinkel:

B 0
<
] 1
o
19
B 2
“"’ En/‘.‘rm _:E
3 |, B B Ky
~
M) Npn
Xm
g K < Gm
v <
B I 1P 7
Z'm 5 Vi
|
S
n Qmﬂ
< el
N 2N E
ER e
l Nm+1
Bild 1. Symmetrischer zweistieliger Bild 2, Schnittkrafte am
Stockwerkrahmen Rahmenknoten
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— 28m 1
EJ, o = | My, M ds'+ T . EJ,

1 1 al
(4) EJ, Pm = o D'm hm (7 W 4+ — l’mfl) -+

6
1 1 A, 7 S— &
+ Xm, I —6" l'mfl - Xm (hlm + ? l/m —1) + +1 EJ, Za" @ Ky T“—\i‘
2 % e 7
P m—1 - U 1
EJ, (mel:anzflMdsl‘f‘fEJr {E i (%[nm) /l
1. 1 = / Fim, Im /'/
6) EJc g 1 = o Db Yo . /
2 6 l /
1 2Am71 L= am @\ + 4+ & |
+ Xm 1° E llm == Xm ' f Z/m 1 + —ZE‘I(' ”%5 ~~~~~~ —+__—_~—~Li\ Jl
X i e
Wir transponieren die Gleichung (5) von ¢,,.1 hach g¢,,: I | Ny ‘
, Ao 1 L—l
(5) EJr (P711:7L~m+1 hm+1‘€lm+ ﬁ'
ik 1 2A ? B ke
+ Xy 5 Vn—Xms1" g oy A T’" EJ, Bild 8. Einhiiftiger Rahmen
Nach Gleichsetzen der beiden Ausdriicke 10 A Xm-1 :
fiir BJ, ¢, nach Gleichung (4) und (5') 2Rt Qmy 5T g X
erhalten wir geordnet: =280, ;:
Xm—l = l/m—l === Xm (6 hlrn. + l,m—l + l,m) +
12 (A1 — Ap) EJ
+ Xm+1 = l’m ‘I— " 1 = .
1
== 2 S B (3 + Vm_1) —
_?D""l'fl hm+1 l,m = 0: K//\{
m
wobei Bild 4. Biegemomente M infolge der «Belastung»
N'"l thl S)nm =i 2 XTI'L
Am_1—Ap = Fo, E und Ny = = K nach GL (2) , /‘\\1 :
12 (A 1 — An) E J, Je
also ] —SI2ABIR e 2 ) TE, = Ty b S
=12 \Jﬁm h'm —24 X b s
damit lautet die Dreimomentengleichung:
(6) Xm41 ‘ l"m—l _Xm (6 h/m + 24 h”m + Z’m—l + l’m) +’
1 L_
+ Xm+1 : l,m = —7 Qm hm (3 h'm + l’m»l) + \¥/
1 1
e O e e — 12N R Bild 5. «Virtuelle» Biegemomente
2
N
Fiir die praktische Anwendung interessieren uns noch die o /_\m
iolg(.e.nden _Spefwlfalle ile;{ D_rezv‘n,onze'nt‘e'nglezchung: Die Berechnung der Fussmomente X; der
o B G = L SR A == Stiele erfolgt nun im Prinzip in gleicher @n
(62N — X (Bha - 2A B e ) I X T Weise wie die Berechnung der Stiitzenmo-
1 1 mente eines durchlaufenden Balkens mit
=—5 Q1 hy BR'y + Vo) + 5 Doholy —12 M4 h”y Hilfe der Clapeyronschen Dreimomenten- g
gleichung. Wir stellen die Gleichung (6) =
worin 1 = Py, Qs = Po + Py und Ny = Pohy nacheinander fiir m =1, 2, 3,...n auf, —
fiir m =1 und m = n gelten die Gleichun-
2. Fiir m = n ist By = hper = 0 und Xy = Xpyq = 0: gen (6a) und (6b) — und erhalten nach Qm
Auflésung des Gleichungssystems die Kno-
(6b) X, 1V, 1—X,(6h,+24n", + 1y 1+ 1) = tenmomente Xy, Xo, X3, ...X,. \\-~/){m
14 , , . ., Fiir die Querkraft @, und die Normal- N,,
=— 5 Onhn BWn+Tn 1) —12Mnh"s  praft N, des Stiels beniitzen wir die Glei-  gigs.  Schnitt-

n-1 n—1
worin Q, =) P; und M, =), Pie;
0 0

Sind die beiden untersten Rahmenstiele am Fuss voll
eingespannt, oder ist der unterste Riegel unendlich steif,
dann wird mit 7, = 0:

(6e) X, (Vi 91— Xn(6h'y 424 0" +U'p 1) =

1
=—5 Dy (3R A=V 1) — 120, B,

36

chungen (1) und (2): krafte des Stiels

1 Dim — 2 Xy
1) Qm= 5 On @), "M== =

Fiir das Kopfmoment Y, finden wir, vgl. Bild 6:
Ym = Qm 5 hm — Xm: wobei Qm == l/z-Qm
nach Gleichung (1)

1
(7) Y = 2 Q-m B — Xon
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Die Gleichungen fiir das Knotenmoment Z,, und die Quer-
kraft V,, des Riegels konnen an Hand der Bilder 2 und 3 ab-
gelesen werden:

2 ZHI

Vi = i

(8) Zym =X+ Yt (9) 1

Der zweistielige Fassadenrahmen mit kurzen Riegeln

Wir betrachten den in Bild 7 dargestellten, symmetri-
schen zweistieligen Fassadenrahmen. Die lichte Weite der
Riegel ist im Verh&ltnis zur Breite der beiden Stiele ge-
sehen sehr klein, zudem sind die Riegel sehr gedrungen. Die
der Dreimomentengleichung (6) zugrundeliegenden Voraus-
setzungen sind hier zum Tei] nicht erfiillt:

1. Der Riegelquerschnitt kann wegen der gegenseitigen
Durchdringung von Stiel und Riegel nicht als unverinderlich
angesehen werden.

2. Der Einfluss der Querkréfte auf die elastische Verfor-
mung der Riegel ist wegen deren Gedrungenheit nicht ver-
nachléssigbar.

Neben den weiterhin geltenden Bezeichnungen des zwei-
stieligen Stockwerkrahmens von Bild 1 hedeuten:

4,, die Flache des Riegelquerschnitts,

d,, die RiegelhShe bei rechteckigem Querschnitt,

Kk, die Schubverteilungszah] des Riegelquerschnitts,
a die lichte Weite des Riegels,

b die halbe Stielbreite.

In Bild 8 ist ein durch die Schnittkrifte V und Z anti-
metrisch belasteter Riegel dargestellt mit den dazugehérigen
Abbildungen der Querkraft @, des Biegemomentes M und
der elastischen Linie mit dem Endtangentenwinkel 7, Der
Hinfachheit halber sind die Indizes m weggelassen. Der Riegel
ist auf der Strecke b, wo er den Stiel durchdringt, unendlich
steif; zwischen den Stielen, auf der Strecke a, hat sein
Querschnitt die Fldche 4, das Trédgheitsmoment K und die
Schubverteilungszahl .

Wir berechnen den Endtangentenwinkel r:

al K
ZZ'J—:*EK\/‘MQ(ZS—*—*GA fQ2dS,

worin F = Elastizititsmodul und G = Schubmodul,

12E K «
GAa2)

Za3
T=GEER (1 i
Fur die Elastizitdt des Riegels ist das Verhiltnis 7 : Z
charakteristisch:
T a3 12E K «
= el =
Z 6 EK 12 ( G A a2 )
Setzt man fiir Eisenbeton G = 3/; B, so erhdlt man als Mass
fur die Elastizitit des Fassadenriegels:

(10) 28ch)

T a3

Z = 6EERD (1+ Aa?
Wir bestimmen nun das Trdagheitsmoment K' des Er-
satzriegels, dessen Querschnitt auf die ganze Lénge I kon-
stant ist und welcher bei Ausschluss der Querkraftverfor-
mung die gleiche Hlastizitit r:Z besitzt wie der vorhan-
dene Riegel. Wir setzen in Gleichung (10) @ =1, K = K’ und
den zweiten Ausdruck in der Klammer, der den Einfluss der
Querkraftverformung darstellt, gleich Null;

T I

D 7 = 65x

Nach Gleichsetzen der rechten Seiten der Gleichungen
(10) und (11) finden wir:

1 1 /a\3

i f(T) (1
Wir konnen nun den Ersatzriegel an Stelle des vorhan-
denen Fassadenriegels in den Stockwerkrahmen einbauen,
ohne etwas an dem elastischen Verhalten des Rahmens zu
andern. Bei Zugrundelegung des konstanten Trigheitsmo-

28 K i
(12) \)

Adaz
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Bild 7. Zweistieliger Fassadenrahmen
_2Z
o
T A K, x
Z
b x ' b \
|
4 L Belasiung
Q
=3 — = F : =
_ZZ| |
A I
= | Querkraft
L)
- |—Z
T = /l—z?— l| Biegernoment
L A
| =
[
=

==l e —5

Elastische Linie

Bild 8. Antimetrisch belasteter Fassadenriegel

mentes K’ des Ersatzriegels gelten die flir den zweistieligen
Stockwerkrahmen entwickelten Gleichungen. Filir die redu-
zierte Riegelstutzweite I ist jetzt zu setzen:

) Je I, a\3 1 28 Ky K
a9 ra=tg=tg-(7) (1+ g
. . . o K”L d7)12
Bei rechteckigem Riegelquerschnitt ist mit A= 19 und
n
m= L2
S Jeo (a3 a2
RN (T) (1—}—2,8 =
37



Der mehrstielige Fassadenrahmen mit breiten Aussenstielen

Auch die Berechnung des symmetrischen mehrstieligen
I ussadenrahmens nach Bild 9 kann mit Hilfe der Dreimo-
mentengleichung fiir den zweistieligen Stockwerkrahmen
durchgefiihrt werden, wenn die Innenstiele (Fensterpfeiler)
im Vergleich zu den Aussenstielen und den Riegeln (Briistun-
gen) so schlank sind dass ihre Biegesteifigkeit gemessen an
der Gesamtsteifigkeit des Fassadenrahmens vernachléssig-
bar klein ist. Die Innenstiele haben dann die Funktion von
Pendelstiitzen. Wie bei der Berechnung von Eisenbetonrahmen
im allgemeinen iiblich, wird der Einfluss der Normal- nnd
Querkrifte auf die elastischen Forminderungen der Ein-
fachheit halber nicht beriicksichtigt. Das Verfahren ist also
als eine Naherungslosung anzusehen und eignet sich nur fiir
missig hohe Fassaden, wo der Einfluss der Léngendnderun-
gen der Stiele gering ist,

Die Systemabmessungen sind in Bild 9 festgelegt; im
iibrigen gelten die bisher verwendeten Bezeichnungen sinn-

a
gemdiss, Wir beniitzen den Verhéltniswert « = E

Da wie vorausgesetzt die Biegesteifigkeit der Innenstiele
vernachlidssigbar ist, kann der Riegel als gewohnlicher durch-
laufender Balken aufgefasst werden, der durch die an seinen
beiden Enden angreifenden, von den Aussenstielen eingelei-
teten Knotenmomente antimetrisch belastet wird. In Bild 10
ist die linke, durch das Knotenmoment Z belastete Symme-
triehdlfte des Riegels dargestellt mit den dazugehtrigen
Abbildungen des Biegemomentes M und der Biegelinie mit
den Tangentenwinkeln r und 7' im ersten und zweiten Auf-
lagerpunkt. Der Riegel ist auf der Strecke b, wo er den
Aussenstiel durchdringt, unendlich steif; auf seiner Restldnge
besitzt er das Tragheitsmoment K. Biegemoment und Durch-
biegung verschwinden in der Symmetrieaxe, also koénnen
wir dort ein momentenfreies Auflager annehmen; dabei spielt
es keine Rolle, ob die Symmetrale wie in Bild 9 ein Riegel-
feld oder einen Innenstiel schneidet.

Wir bezeichnen die Abstinde der Momentennullpunkte,
gemessen vom rechten Awuflager des betreffenden Riegel-
feldes, die sogenannten «Festpunktabstdnde», mit ¢, ¢rr usw.

«Festpunktzahlen», mit vy;, 7y usw. Zwischen Festpunkt-
zahl und Festpunktabstand besteht die Beziehung:

Ccr Cr
) Y =

e Usw.

Yir= 3
Si1 —Cii

8§ —Cy

Das Biegemoment an der Innenkante des Aussenstiels
hat dic Grosse:

i e a b \
(14) _Z;—y,ZS—I—;Z{a—yr(l—a)J

Die Endtangentenwinkel des ersten Riegelfeldes konnen
nach Mohr berechnet werden; wir erhalten mit Z' nach Glei-

a
chung (14) und a = T 2

28, Z
(15) EKT:iG’—.{za_y, (3—2a)) und
O:QSIZ 'Y/aS[Z
(16) EEr =5 —(3—2a)— L7 (6 —6a 4 262)

6

Fiir den Endtangentenwinkel des zweiten Riegelfeldes,
ebenfalls nach Mohr, finden wir:

., VilnZ :
(17) EKn~t :T(2~Vu)
Indem wir die rechten Seiten der Gleichungen (16) und
(17) gleichsetzen, bekommen wir die Bestimmungsgleichung

fiir die Festpunktzahl yy:

- L) S; a2 (3 — 2a)
"1'="5,a(6— 6a+2a2) +su (2 — vn1)

(18)

Die iibrigen Festpunktzahlen des Riegels yir, Y USW.
koénnen in bekannter Weise nach den Rechenvorschriften fiir
den durchlaufenden Trager mit konstantem Tréagheitsmoment
ermittelt werden (vgl. Literatur iiber Festpunktverfahren).
Fiir das an die Symmetrale angrenzende Riegelfeld ist stets
y = 0. Im Beispiel der Bilder 9 und 10 ist y;;y =0,

Yir =81 /2 (s + sir),  vr nach Gleichung (18).

und die Momentenweiterleitungszahlen, die sogenannten
Das fiir die Hlastizitit des Riegels charakte-
ristische Verhiltnis 7:Z ist bestimmt durch die
Gleichung (15):
R i e | ,
7 Sy a2
! / T s il
‘ ﬂ d ' m LL L | (15") Z_6EK120‘ Y (3 2a)‘
B[ ] ] 1 id =
p oty S = = Wir konnen nun die gleichen Ueberlegungen
p T J“ | m TJ anstellen wie bei der Behandlung des zweistieli-
m-t —4»—1—f~—|— b gen Fassadenrahmens mit kurzen Riegeln. Fir
- ‘ T den Ersatzriegel gilt unverdndert die Gleichung
I | ‘ & (e
°
Kum | I 1 z
B 0 S| ]1 . e e K '
| - | | = T‘
! l | } {E b ‘ a
1 | ' } Sr S Sm
Rﬂﬁ i _] |l I =1 = [/Z
l ; h ﬂ | L Belastung
L S _
T T [ T ] "N
e | ——
‘ ‘ ‘ J ZI Z,L/ i
‘ : ‘ < | - M b lex
] | \ ‘ “/// Biege moment
/7777, 777777777 7777477 77777777777 (7 =
b a a b = //(rr,\
Si Sm Sm | Sm st S1 T T‘L
L == Biegelinie
Bild 9. Mehrstieliger Fassadenrahmen Bild 10. Belastete linke Riegelhalfte

38

Schweiz. Bauzeitung * 82, Jahrgang Heft 3 « 16. Januar 1964



T )
% ~ 6EBE

Nach Gleichsetzen der rechten Seiten der Gleichungen
(15') und (11) finden wir:

(11)

S a?
W:W{za_y, (3—2a)}

(19)

Bei Verwendung des Ersatzriegels anstelle des vorhan-
denen Riegels konnen wir die flir den zweistieligen Stock-
werkrahmen entwickelte Dreimomentengleichung fiir die Be-
rechnung der Fussmomente der Aussenstiele verwenden. Fiir
die reduzierte Riegelstiitzweite 1’ ist jetzt zu setzen:

J J.
c ,aalza;y,(3ﬁ2a)}

20 =ty
(200 By R, 2

Zlm =1

Da wir den Einfluss der Normalkréifte vernachlidssigen,
miissen wir in der Dreimomentengleichung

R = N 1271;,“ = 0 setzen; damit lauten die Gleichungen

(6), (6a) und (6¢):

(6") X1~ Z'm_l—Xm (61w +Vineq + Vi) + Xnga1 o Uiy =
1 1

= — 2 Qom A (3 W'y, +Vm_1) + 2 Qmie1 1 lnm

(6'a) — Xy (6h'y + Vo4 11) + Xol'h =

1 1
_—7 D] h1 (3 h'1—|—l’0) —i—“Z* Q<2h2ll fiirm =1

(6'c¢) Xp_1Vp_1— X, (610 + i) =

1
= — 5 Quhn B W + Va1)

fiir m = n bei voller Einspannung der Aussenstiele.

14t @
T @
o
o
J{£
14 t 2
Q 20|
2 218
<
74 t QI: a
N 7 £
N 075
I L.
14 1
T @ .
o
Q
¥
721
S @_._....__ — L
Q
AN
N
721 |
S 430
<
Wb i | %[ ’
i8]
Q
I
10t
—_—— .®_
] :
i U
oy
|
Z 77
300 3,00 200 | 300 3,00
8,00 MaBe in m
Bild 11. Achtstockiger zweistieliger Fassadenrahmen
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Fir die Querkrifte und Kopfmomente der Aussenstiele
gelten unverédndert die Gleichungen (1’) und (7), fiir das am
Riegelende angreifende Knotenmoment Z die Gleichung (8).
Der weitere Momentenverlauf im Riegel ist gegeben durch
die Festpunktzahlen y, y;r usw., und aus diesem lassen sich
sowohl die Querkrifte im Riegel als auch die Normalkrifte
in den Innen- und Aussenstielen bestimmen.

Zahlenbeispiel]

Wir berechnen die Schnittkréfte des in Bild 11 darge-
stellten achtstdckigen zweistieligen Fassadenrahmens,

Querschnittswerte:

Fi1 = F2 = Fis = Fs= 0,20 6,00 = 1,20 m? ;
Fs = Fs = F7= Fs = 0,30 6,00 = 1,80 m? ;
Ao = A1 = A2 = A3 = 0,15+ 1,60 = 0,24 m? ;

Aa = As = A = A7 = 0,25+ 1,60 = 0,40 m? ;

1
Je = do. =B = Js = 7 0,20 - 6,00° = 3,60 m*

1
Js =Jo =J1 = Js = ETH 0,30 - 6,00° = 5,40 m*

Ko=Ki= K2 = K3

I

1
EO,I& 1,603 = 0,0512 m*

1
Ks = Ks = Ko = K71 = 12 0,25+ 1,60% = 0,0853 m*

Je=Js = 5,40 m* (gewihlt)

Reduzierte Stablingen:
5,40

h' = h' = hs' = ha' = 4,00 3.60 = 6,00 m ;
s’ = he’ = hr' = 4,00 Gl = 4,00 m ;
15" =" = hy" = 4, sdn - m;
5,40
hs’ = 3,20 75,746 =320 m ;
5,40
h” = " = h3” = ha’ = 4,00 m = 0,281 m
5,40
hs” = he” = h1” = 4,00 = 0,1
It he 1 4,01 8,002 1.80 88 m
5,40
hs” = 3,20 2 = 0,150
= 8002- 1,80 "
lof =i = B =k =
5,40 2,00 \3 1,602
=800 —— |—— 14 2,8 = 36,8
0,0512 ( 8,00 ) ( ' 2,002) "I nach
Gleichung
L = =1l =l = (13%)
5,40 2,00 \3 1,602
= 8,00 — ( = 12,82 =22.1.m
0,0853 \'8,00 ) ( % 2,002) '
Belastungsglieder:
Qj = 14+ My = 144,00 = 56 tm
Qo= 14+ 14 = 28¢ M = 56 + 28:4,00= 168 tm
Q3=128 + 14 = 42¢ MWy = 168 - 42-4,00 = 336 tm
Qy=42-+14= 56¢ Py = 336 + 564,00 = 560 tm
Qs =561+ 12= 68¢ Ms = 560 + 684,00 = 832 tm
Q=68 +12= 80¢ MWs = 832 + 80-4,00 = 1152 rm
D7=280+12= 92¢ My = 1152 - 92 - 4,00 = 1520 tm

Qg =92 + 10 = 102 ¢ Mg = 1520 4 102 * 3,20 = 1846 tm

Dreimomentengleichungen:

Berechnung des Klammerausdrucks (6 #'m + 24 &'m + Um-1 + I'm) in
Gleichung (6),

firim = 152,33 66,00 + 24 - 0,281 + 36,8 + 36,8 = 116,4
fir m = 4 66,00 + 24 - 0,281 + 36,8 - 22,1 = 101,7
filitimy = 51,6, 7 6:4,00 24 -0,188 + 22,1 4 22,1 = 72,7
fiir m = 8 63,20 + 240,150 + 22,1 + 0 = 449

Berechnung des Klammerausdrucks (3 4'm + ['m-1) in Gleichung (6),
firm=1,2,3,4 36,00 + 36,8 = 54,8
firm = 5,16, 7 3:4,00 + 22,1 = 34,1
fur m = 8 33,20 -+ 22,1 = 31,7

39



756,70 e

Aufstellung der Dreimomentengleichungen (6) bzw. (6a) bzw. (6¢):

1. — X1+ 1164 + Xz
1 1
—— 14 -4,00-54,8 + —
2 054,84 -

2. X1°36,8—X2-116,4 + X3

1 1
=_—— 28 -4,00-54,8+ —
2 i 2
3. X2-36,8—-X3-116,4 + X4
=- L 42 - 4,00 - 54,8 + —1—
2 2

4. X3-36,8 - Xa-101,7 + X5

1

1
— 56 4,00+ 548+
2 2

5. Xa-22,1-Xs- 72,7 + Xo

1 1
=—— 68 -4,00-34,1 + —
68 - 4,00 34,1 + —

6. X5+22,1 — Xo» 72,7 -+ Xq
1 1
— o 80 400~ 34,1 4 —
2 l 2
7. X6-22,1 - X7+ 72,7 + Xs

1
=l oo A e
2 2

8. X7:22,1- Xz 44,9
1

=-—102- 3,20 31,7
> ;2003

+ 36,8 =
28 +4,00- 36,8 -12+ 56-0,281
36,8 =
42 -4,00-36,8-12- 168 - 0,281
36,8 =
56 +4,00-36,8-12- 336- 0,281
+22,1 =
68 -4,00-22,1-12+ 560 0,281
©22,1 =
80 -4,00-22,1-12- 832-0,188
$22,1 =
92:4,00-22,1 -12-1152-0,188
©22,1 =
102 - 3,20-22,1 — 12 -1520 - 0,188
—12-1846- 0,150

I

=388

—545

-1613

-5015

-2980

-3987

-6090

—-8495

Nach Auflésung des vorstehenden Gleichungssystems erhalten wir die

Fussmomente der Stiele:
X1= -+ 3,99 tm
X2 = -+ 21,81 tm

298,90

Normalkrafte des
linken Rahmenstiels

Bild 12.
rahmens
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Xs = -+ 117,40 tm
Xe = + 158,30 tm
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Biegemomente der linken Rahmenhélfte,
auf der Zugseite aufgetragen

Schnittkrafte des achtstockigen

zweistieligen

Fassaden-

Xz =
Xy =

+ 50,13 tm
+ 92,97 tm

X7
Xs

= + 222,70 trm
= -+ 298,90 rm

Kopfmomente und Normalkréifte der Stiele nach Gleichung (7) und (2):

Yz =

Ys =

Wi —

Ys =

N1 =

Nz —

Ns =

No =

N7 =

Ns =

o 14-4,00— 3,99 = + 2401 tm
1
7 28 -4,00— 21,81 = + 34,19 im
1
> 42 -4,00-— 50,13 = + 33,87 1m
1
> 56+4,00— 92,97 = + 19,03 im
1
5 68 -4,00-117,40 = + 18,60 rm
1
o 80 -4,00- 158,30 = + 1,70 tm
1
5 92 - 4,00 -—222,70 = — 38,70 tm
1
= 102 - 3,20 — 298,90 = - 135,70 7mn
56 -2+ 3,99
=+ 6,00¢
8,00
168 —2- 21,81
e 15,56 ¢
8,00 * ’
336—-2- 50,13
2 =+ 29,461t
8,00
560—2- 92,97
o0 =+ 46,751
8,00
832-2-117,40
— = 74,65 t
8,00 -
1152 -2+ 158,30
_— = 104,40
8,00 i
1520 — 2 - 222,70
== B era U 134,40 ¢
8,00 -
1846 — 2 - 298,90
— = 4 156,10 ¢
8,00

Knotenmomente und Querkrifte der Riegel nach Gleichung (8) und (9):

Zo— 0 4+ 24,01 = + 24,0l tm Vo=
Zi=+ 399+ 3419= 4 38,18tm Vi=
Zr = + 21,81 + 33,87 =+ 5568tm V2=
Zz = + 50,13 + 19,03 = + 69,16 tm Vs =
Zs = + 92,97 + 18,60 = 4 111,57 tm  Va =
Zs = -+ 117,40 + 1,70 = + 119,10 tm Vs =
Zs = + 158,30 — 38,70 = + 119,60 tm Ve =
Z7 = + 222,70 135,70 = + 87,00tm V1=

224,01

=+ 6,00¢

8,00 '
- 38,1

25518 Tgissy
8,00

2 55,68

Sins s N (B9
8,00 .

269,16

S B 7,30
8,00 i

2-111,57

= L)
8,00 i

2-119,10

e LHIEN)
8,00 e

2- 119,60 _ 55907
8,00

2- 8100 _ | 51750
8,00 g

In Bild 12 ist der Verlauf der Biegemomente und neben-
stehend der Verlauf der Normalkréfte im Stiel dargestellt fir
die linke Symmetriehélfte des Rahmens; fiir die rechte Sym-
metriehdlfte verlaufen die Schnittkrdfte antimetrisch dazu.
Fiir die Dimensionierung des Riegels ist natlirlich das Biege-
moment im Schnitt auf Innenkante Stiel massgebend; der
Verlauf der Riegelmomente im Bereich des Stiels ist deshalb

gestrichelt

gezeichnet.

Adresse des Verfassers: Ing. Sebastian Steckner, Neu-Allschwil
BL, Diirrenmattweg 66.
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