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82. Jahrgang Heft 16 SCHWEIZERISCHE BAUZEITUNG 16. April 19B4

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE S.E.P.

Zur Statik schief gelagerter Träger
Von Dr. Konrad Basler, Egg bei Zürich

DK 624.074.11

Erweiterte Fassung des Vortrages, gehalten am 8. November 1963 vor der S. I. A.-Fachgruppe für Brückenbau und Hochbau (TGBH) im
Auditorium maximum der ETH in Zürich

Vorwort
Bei zunehmendem Verkehr und dichterer Besiedlung

wird zur niveaufreien Kreuzung von Verkehrswegen die
Brücke mit schiefer Lagerung die Regel darstellen. Der
wesentliche. Unterschied zwischen rechtwinkliger und schiefer

Lagerung liegt 'darin, dass bei der letztgenannten selbst
unter zentrischer Lastanordnung eine Torsionsbeanspruchung
erzeugt wird.

Dass dadurch die Berechnung schief gelagerter
Durchlaufträger schwieriger wird, ist schon daraus ersichtlich,
dass sich der Grad der statischen Unbestimmtheit durch
Schiefstellung der Lager auf mehr als das Doppelte erhöht:
eine über drei Felder durchlaufende normale Brücke ist zweifach

statisch unbestimmt gelagert. Werden ihre acht
Lagerkörper aber schief zur Stabaxe angeordnet, so wird sie fünffach

statisch unbestimmt, wobei als überzählige Grössen
z. B. fünf Auflagerreaktionen eingeführt werden können,
oder deren drei mit zwei Stützmomenten usw.

Gegenüber allen Veröffentlichungen auf diesem Gebiet *)
unterscheidet sich (diese Arbeit dadurch, dass ein
Berechnungsverfahren entwickelt wird, das so wenig überzählige
Grössen in einem dreigliedrigen Qfeichungssystem verkettet
wie der normal gelagerte Stab; ja, dass die Berechnung
überhaupt zurückgeführt werden kann auf die dem
Bauingenieur geläufigen Dreimomentengleichungen das
durchlaufenden Balkens, s. Gl. (12). Die strenge Lösung des
Problems gestattet auch die bei SSSefStellung auftretenden
Parameter zu erkennen, ihren Einfluss zu diskutieren und
Näherungsverfahren zu entwickeln. Da die Berechnung bis
zu den Schnittgrössen und ihren Vorzeichen mathematisch
formuliert wird, sind damit auch ideale Voraussetzungen
zum programmgesteuerten Rechnen geschaffen.

Voraussetzungen und Inhaltsübersicht
Es werden die beiden üblichen Voraussetzungen gemacht,

dass erstens die Stabstatik Gültigkeit habe, d. h. die Spannweiten

gegenüber den Querschnittsabmessungen gross seien,
und zweitens, dass der Wölbkraftanteil zur Aufnahme der
Torsion vernacMässigbar klein sei. In Rechnung wird also
nur die sog. St. Venantsche Torsifonssteifigkeit GK gesetzt,

i) Die wichtigsten sind:
W. Wansleben: Beitrag zur Berechnung schiefer, drillsteifer Brücken,
«Der Stahlbau», Jg. 24, 1955, S. 224.

H. Homberg und W. B. Marx: Schiefe Stäbe und Platten, Werner-
Verlag, Düsseldorf, 1958.

t.G

I

U

GK - -§- bt3
GK -

m

was für Plattenbalken und einzellige Hohlquerschnitte in
Bild 1 definiert ist.

Die Berechnung wird für gerade Stäbe mit variablem,
aber bezüglich der Vertikalaxe symmetrischem Stabquerschnitt

und beliebiger, von Auflager zu Auflager verschiedener

ßchiefstelung entwickelt. Die>zu verwendende
Bezeichnungsweise ist dabei wesentlich und wird daher vorangestellt.

Bezeichnungen und Abkürzungen
Am durchlaufenden Balken werden die Felder mit i

bezeichnet und in numerischen Berechnungen dafür die geraden
Zahlen 2, 4, 6, verwendet. Die Auflager seien mit

k bezeichnet und werden in numerischen Beispielen mit den
ungeraden Zahlen durchnumeriert (Bild 2).

Die Lage des Koordinatensystems geht auch aus dieser
Abbildung hervor, ebenso die als positiv definierten
Stabdrehwinkel und Torsionsmomente. Eine vom rechten Stabende

zurücklaufende Abszisse, z', wird mit Strich
gekennzeichnet. Das selbe gilt für die Abkürzungen J z/l, f z'/l,
welche zur Fixierung der Lage einer Schnittstelle verwendet

werden.
Als Bezeichnungen für Auflagerdrehwinkel und

Auflagerdrücke am linken Auflager, sowie Entfernungen von
diesem, sind die Buchstaben a, A bzw. a vorgesehen; die
korrespondierenden zum rechten Lager mit ß, 3 bzw. b.

Werden für Einflussgrössen Doppelindizes benötigt, so
fixiert der erste seine Lage, der zweite die Ursache. Der
Ursachenzeiger o bedeutet immer «infolge äusserer
Belastung».

Liste der Abkürzungen
a Abstand vom linken Auflager
A Auflagerdruck links am einfachen Balken
& Abstand vom rechten Auflager
B Auflagerdruck rechts am einfachen Balken

GK tga 3
O

d

D
e

.Stabkonstante SSgj—1|— mit Indizes: s. Tab. 2

Stabbreite
Determinante, definiert in Tab. 2

Gegenseitige Verschiebung der Lagerkörper

*<zk+

Ja* +T

m
«1

^v1-11

Bild 1. Torsionssteifigkeit GK bei Plattenbalken und Hohlquerschnitten Bild 2. Bezeichnungen der Felder und Lager am Durchlaufträger
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E Elastizitätsmodul
F Resultierende Auflagerkraft
G Schubmodul B/2(l + v)

I Flächenträgheitsmoment (bezügl. der a;-Axe)
K Torsionskonstante (Drillwert), s. Bild 1

l Spannweite
M Biegemoment
MD Drehmoment bezügl. der Stabaxe
V Verteilte Belastung
P Einzellast
Q Querkraft
T Torsionsmoment
x Koordinate (Bild 2), Exzentrizität einer Last
y Koordinate (Bild 2), lotrechte Durchbiegung
z Koordinate (Bild 2), Distanz vom linken Auflager
z' Rückläufige Koordinate, Distanz vom rechten Auf¬

lager
a Auflagerdrehwinkel am linken Auflager, s. Tab. 1

ß Auflagerdrehwinkel am rechten Auflager, s. Tab. 1

r dz
y Verschiebungsgrösse: / g „ s. Tab. 1

3 Dagersehiefstellung Abweichung von recht¬
winkliger Lagerung)

f z/l, Normierte Lagekoordinate vom linken Auflager
ausgehend

f z'ß, Normierte Lagekoordinate vom rechten Auf¬
lager ausgehend

X Verhältnis von Endfeldlänge zu Mittelfeldlänge
v Poissonsche Zahl (1/3 für Stahl, i/e für Beton)
£ x/l, Normierte Lagekoordinate
o- Normalspannung

t Schubspannung

f Stabdrehwinkel

Indizes:
i Gerade Zahl, den Feldern zugeordnet, s. Bild 2

k Ungerade Zahl, den Lagern zugeordnet, s. Bild 2

o «infolge äusserer Belastung»
D \.#ihfolge eines Drehmomentes MD als äussere Be¬

lastung»
(/) «am Grundsystem des beidseitig fest eingesp. Sta¬

bes» (Kopfzeiger)

Torsionsmomente und Nebenwirkungen
Durch Schiefstellung der Lager werden in den Stabfeldern

auch unter lotrechter, zentrischer Belastung Torsionsmomente

verursacht, die ihrerseits wieder Einfluss auf die
Biegemomente haben. Zur Anschrift dieser Verknüpfung

k+1

-°r-\~- —-*k*ip-

£ Bk+I

f\
—z

.rV, k+l1
Z^P-

oTe 3 1 1

Bild 3. Verkettung von Durchbiegung und Verdrehung

270

Tabelle 1. Verschiebungsgrössen und Belastungsglieder am ein¬
fachen Balken des Feldes i

Verschie-
bungsgrösse

«ifc

«ifc + l ßik '¦

bei variablem
Querschnitt

1

prismatischer
Stab

ßi k + l '¦

1 CZ'Z'
mjmm

0

h
1 r zz'
W JlsT

0

u
1 r ZZ

0

1

/

dz'

dz

dz

d z
GK

3 EU

1

6 EIt

|
3 Bit

g

Belastungsglieder für Einzellast P
U

am '¦

ßto'-

j_ r M0Z'
li J EI

0

h
l r M0z
T J~eT

dz'

dz

GK

PI?mBMmm\

pi?
~6E~Ti Mm ?i3)

Belastungsglieder für verteilte Belastung p

«10 2 1

P
21

r z s'2

0

1
Cz' z2

J^rdz

Pk3
2411

Pk3
2iEIi

wird das Feld i, zwischen den Auflagern k und k + l gelegen,
hierausgegriffen (Bild 3a).

Der Stab sei sowohl durch äussere Lasten p und P als
auch durch je ein Stützmoment Mk und Mk 11 belastet, die
alle in der Vertikalebene durch die Stabaxe wirken.
Vorübergehend denke man sieb den Stab auch nur durch zwei
Lager unter seiner Axe gestützt. Da keine Ursache zur
Verdrehung des Stabes vorliegt, zeigt sich die Ansicht der
Neutralebene wie in- Bild 3b skizziert, mit Stabecken, die
beim Auflager k einie Höhendifferenz von a; ek, beim Lager
k + 1 eine solche von ßteki.% aufweisen.

Wie aus der Blickrichtung in Stabaxe ersichtlich ist,
Bild 3c, beträgt die erforderlich© Stabverdrehung <pm, um die
Ecken auf die Höhe der Lagerkanteni zu zwingen-:

«i6fc ßi ek+
w + L)d

Mit ek/d tgSfc und ek+i/d tgSfc+i wird daher die
Verträglichkeitsbedingung, die bei schiefer Lagerung horizontale
Lagerkanten verlangt:

(1) «itgSk iö;tgSk+i 0

Diese Bedingung muss für jedes Feld des Durchlaufträgers
erfüllt sein.

Um einen Stab von der Länge li mit der Torsionssteifdg-
keit GK um den Winkel <pi zu verdrehen, braucht es edn Tor-

k+

U
4M

m
Bild 4. Statisch unbestimmtes Grundsystem
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Tabelle 2. Liste der Stabkonstanten C und D

Querschnitt variabel EI und GK feldweise konstant

Schiefstellung
der Auflager: verschieden von Auflager zu Auflager bei allen Auflagern

Giak

Gia fc + 1

Cißk

Giß k + 1

tg 8k («ifc tg Sk + af k + 1 tg Sfe + i)
li

tgSfc+i(a fctgSfc + a:ifc+itg3te+i)
Yi

tg Sk (ßik tg Sfc + ßi fc+i tg 8k+i)

li
tgSk+1(/3 ktgSk + ß, fc+1 tgSfc+i)

GKt tgSk-^jr-V" (2tgSk + tg3fe+i)

GKt tg5fc+i

-^ g (2tgSfc + tg3k+i)

GKi tgSk

-^ e— (tgSk + 2tgSfc+1)

GKi tgSfc+1

-^ g— (tg8fe + 2tg Sfc+l)

ggj tg2 5

Eli 2

Di 1 + G{ak + Cjßfc + j 1 +
GK, tg2Sfc+tg3ktg3fc+1-t-tg2Sfc+1
B/i

1 + 20; 1 +
GKt

~ETi tg2S

sionsmoment von der Grösse Ti gj Pi/yi, wobei die Verschie-
bungsgrösse y; in Tabelle 1 definiert ist. Somit folgt aus (1):

(2)
a,tgSk-r-/?itgSfc+i

Man kann sich dieses Torsionsmoment durch ein in den
Ecken des Lagers k lotrecht wirkendes Kräftepaar Xt
aufgebaut denken. Am Stabende k + 1 wird es Wieder durch ein

entgegengesetzt drehendes Kräftepaar Xt abgebaut. Dass der
Hebelarm der beiden Kräftepaare gleich der Stabbreite d sei,
ist eine für die nachfolgende Betrachung bequeme, aber
keinesfalls notwendige Annahme.

Aus der letzten Skizze von Bild 3 ist ersichtlich, dass die
Kräfte Xt auch Nebenwirkungen auf die Biegemomente des

Stabes haben. Die Aenderung im linken Stützmoment
beträgt:

Ti
(3) ts.Mki Xiek -rek TjtgSk

im rechten
T-

(4) 6.Mk+ii Xi ek+i ¦ —- ek+x - TjtgSk+1

Bei positiven, also nach unten gerichteten, Enddrehwinkeln

a; und ßi, positiven Winkeln Sk und Sfc+i ist T{ stets
negativ. Die Aenderungen (3) und (4) dn den Stützmomenten
sind dann auch negativ, was dn Bild 4 zum Ausdruck kommt.
Wäre die Schiefstellung der Auflager negativ, so würde
zwar Tt positiv, aber die Ausdrücke (3) und (4) wiederum
negativ, infolge negativer Tangenswerte. Schiefstellung der
Auflager wirkt sich daher stets wie eine erhöhte Einspan-
nung des Stabes aus. Die Feldmomente werden auf Kosten
der Stützmomente abgebaut.

Auflagerdrehwinkel bei schiefer Lagerung

Beim Anschreiben der Drehwinkel nach dem
Superpositionsgesetz müssen die Zusatzmomente mitberücksichtigt
werden:

«t — «iO + Mk a;fc -f-

+ Mk+i on te+i + &Mki aik + AMk+i i a; k+i
(5)

ßi ßi0 + Mk ßik +
+ Mk+i ßi M -I- iMK ßik + AMfc+i i ßi SH

nach (3) und (4):
ai mo + Mk atik +

+ Mk+1 a{ k+i + T{ (a(k tgSfc + a; k+1 tgSk+i)

ßi ßl0 + Mk ßik +
+ Mk+1 ßi M + Ti (ßik tgSk + ßt k+i tgSfc+1)

Wird Ti gemäss (2) eingesetzt, so ergibt dies mit den in
Tabellg; ^«definierten Abkürzungen:

a, ajo + Mk ctik + Mk+i a; fc+i — a{ C{ ak — ßi Cia k+1

ßi ßi0 + Mk ßik + Mk+i ßi k+i — cti Ci ßk — ßi Ciß M
oder, geordnet:

di (1 + Oiak) + ßi Cia k+l
ai0 + Mk a;jt + Mk+1 ai k+i

(6)
<*i Cißk + ßi (1 + C(ß k+1)¦ ßm + Mk ßik + Mk+i ßi fc+i

Da Ciak Ciß fc+i Cißk Cia k+i, lautet die Determinante der

Matrixkoeffizienten sehr einfach:

Di — 1 + Ciak + Giß fc+1

Damit sind die Lösungen des Gleichungssystems (6):

1

(7)

Di Mk (.ctik + otik Ciß k+i — ßiic Ci„ k+l) +

+ Mk+1 (ffj k+1 + cti k+1 Giß k+i — ßi fc+i Cia fc+l)

+ <*i0 + ctio Ciß k+1 — ßio Gia fc+1

ßi Dt Mk (ßit + ßik Ciak

+ Mk+1 (ßik+1 + ßi k+1 Ciak

+ ßtO + ßiO Ciak

¦ «ifc Oißk) +
- <*i fc+1 Gißk) +
- «iO Gißk

Dreimomentengleichungen

Die bis anhin untersuchten Balkenfelder sind insofern
verträglich mit den Auflagerbeddingungen, als ihre schiefen
Ränder horizontal liegen. Für einen durchlaufenden Träger
muss dazu noch Kontinuität in Stablängsrichtung formuliert
werden. Diese zweite Verträglichkeitsbedingung verlangt,
dass die Summe der Enddrehwinkel bei jedem Auflager
verschwindet.

(8) ßi-l + a; 0

Der Auflagerdrehwinkel a, ist bereits im ersten
Ausdruck von (7) gegeben; /8m wird aus dem zweiten erhalten
durch Reduktion der Indizes i und k um eins, jgTie bei den
Dreimomentengleichungen des Durchlaufträgers auf frei
drehbaren Stützen können die einzelnen Koeffizienten als
Faktoren der unbekannten Stützmomente Mk.lt Mk und Mk+1
auftreten, oder aber als «Belastungsglieder» auf die rechte
Seite des Gleichheitszeichens geschlagen werden. In dieser

geordneten Anschrift sind nachstehend die Verträglichkeits-
b-edingungen (8) wiedergegeben; es sind die Dreimomentengleichungen

des schief gelagerten durchlaufenden Stabes.

Direkt anschliessend sind die vereinfachten Gleichungen auf-
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geführt für den Fall, dass Biege- und Torsionssteifigkeit selbe bleibt (Spezialfall 2), und schliesslich, dasis für den
feldweise konstant sind (Spezialfall 1), dass dazu noch die ganzen Stab sich weder der Querschnitt noch die Lager-AuflagerschiefStellung über den ganzen Durchlaufträger die- Schiefstellung ändert (Spezialfall 3).

I Stabquerschnitt: variabel, EI(z), GK(z)
Allgemeiner Fall l Lagerschiefe: verschieden, Sk_t =£ Sk ^=

I Sk+i

Mk-l (ßi-l k-l + ßi-lk-l Cl-iak-l—«i-1 fc-1 Ci.± ß k.i) Di +
+ Mk [(ßi-ik + ßi-ik Gi^ak-i—cti.th Ci.ißk.^Di +

+ (onk +OLik Cißk+1 —ßik Ciait+i A-l]+
+ Mk+i (m k+l + on k+1 Ciß k+1 — ßi k+1 da fc+i A-l

—[(ßi-i o +iß;-io Ci+i a fc-i — aj_i o Ci-xßk-i) Di +
+ (a;o + «io Ciß k+x —ßi0 Ciak+i A'-i]

(9) J

Clapeyronsche
Dreimomentengl.

Ergänzung infolge Dagerschiefstellung

mit: —Verschiebungsgrössen a, ß: s. Tab. 1, erste Kolonne
— Stabkonstanten C, D: s. Tab. 2, erste Kolonne

/ k 1, 3, 5,
— Indizes k, i: s. Bild 2 I

^ __ 2 4 6

j Stabquerschnitt: feldweise konstant, EIiy GKiSpezialfall 1 <
T_,ag-erschiefe: verschieden, 3fc.i =£ Sk =£ Sk + 1

Berechnung wie in (9), jedoch mit den zweiten Kolonnenwerten von Tab. 1 und 2, oder:

(10)

Mk-i GKi-i tgSfc.i tgSfc'

Mk

Mk+i

| | I GKi tg2Sfc+i\ 1
6E

li
Ii \ Eli

2 I l U 6 EIl
GKi tgSktgSfc+i'

+
r g^
lßi0 ~Eh

6 Eli \ Eli 2

tg S;c-i + 2 tg Sk

1 A-i

tgSfc-x - ft.io (l
2 tg Sk + tg 3,£+1

¦tgjt-i «10 (l
wobei:

ggj-i 2tg3fe.! + tg8fc
Eh.! '

6

<?gj tgSfc + 2tg3,I+1
EI, 6

tgSfc-iH A +

tg8Ä+i) A-i

A-i l +

Di l +

GKi-t tg2 Sk.! + tg Sfc.i tg Sic + tg2 Sk

Eh-i
GK,

3

tg2 Sk + tg Sk tg Sfc + 1 + tg2 Sfc + 1

-SA

I (k 1,3,5, \mlt: [i 2,4,6,. I
Die Quotienten GKi/EIi sind oft unvariant, d. h.

unabhängig von der Stabstärke, s. Abschnitt «Die Stabkonstante
C». Daher wird

I Stabquerschnitt: EI — feldweise konstant,
Spezialfall 2 l GK/EI — invariant

{ Lagerschiefe: überall gleich, Sk Sfc+i S

(11)

Mk
h-i

6 E U.i
h-i

a — c)+Mk-
li

6E 7^ + ^77)(2 + 0)+M^T¥77(1-G)

wobei: C

¦ - [(ßi-i o + <*,o) (1 + C) — g| o + ßio) C]

CK tg2S /t, =1,3,5,
EI 2 ' \i 2,4, 6,

f Stabquerschnitt: konstant über alle Felder
Spezialfall S < Lagerschiefe: gleich über allen Stützen

iMh.ih.iO- — C) +
(12) | + Mk (h-i + \) (2 + C) + Mfc+1 Zä (1 — 0)

l — 6 E I [— on-i o C + |H o + ajo) (1 + C) -- /8j0 G]

wobei: C S GK tg2S /fc =1,3,5,..
J57/

/7c =1,3,5, |
V* 2,4,6,.../

(14) fflgl

6S/,
(ai0 tg 8k + ßm tg 8ft+i) + Mk (2 tg 3fc + tg Sk+1) + ikffc+i (tg Sfc + 2 tg 8k+1)

6 lll + 2 (tg2 Sk + tg Sfc tg S,£+i + m Sfc+i)
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Schnittgrössen und Deformationen
Das durch Auflagerschiefstellung induzierte Torsionsmoment

ist mit Gl. (2) gegeben, wobei die Auflagerdreh-
winkel gemäss (7) einzusetzen sind. Unter Beachtung, dass

Giß k+i tg Sfc Cißk tg Sfc+1

und Ciak tg Sfc+i Cia fc+1 tg Sfc

wird das Torsionsmoment im Feld i dm allgemeinsten Fall
(Querschnitt variabel, Schiefe von Lager zu Lager verschieden)

(13)

Ti ^07 [a,0 tg S7£ + ßm tg Sfc+1

+ Mk (ajfctgSfc + ßik tg Sk+i

+ Mk+1 (ai fc+1 tg Sfc + ßt fc+1 tg S,[+i)]

wobei Di der ersten Kolonne von Tabelle 2 zu entnehmen ist.
Im Spezialfall 1 (Eli, GK-, feldweise konstant, Sfc ^ S;t+i)
gilt Formel (14).

Sind neben feldweise konstanter Biege- und Torsions-
steifigkeit auch die Lagerschiefstellungen über den ganzen
Stab gleich (S;t Sfc+i S), so wird für die Spezialfälle 2
und 3:

(15a) Ti - — -
tgS

EIj
GKi tg2S

Eli (ai0 +ßi0) \ Mk + Mk+t
li

GKi tg2 8
oder mit der Abkürzung d „ 5—J2, li A

(15b) Ti - 2d
tg S 1 + 2 d

EIj (ct,o + ßm) Mk + Mk+1
7. + 9

Hier lässt sich der Klammerausdruck folgendermassen deuten:

EI, SSI ist nach der Mohrschen Analo,gie der linke Auf-
lagerdruck infolge der als Bielastung eingeführten
Momentenfläche Mm; Eli ßm der entsprechende rechte des Feldes i.
Die Summe dieser beiden Ausdrücke stellt somit den Inhalt
der Momenenfläche dar, und es ist

(16)
EIi(am + ßm)

fMmdi

k

Für den ersten Summanden im Klammerausdruck kann
daher das durchschnittliche Moment 'aus äusserer Belastung
am Balkenfeld i gesetzt werden, was für eine konzentrierte
Einzellast P

,-,,. ^ EIi(aio+ßm) 1 U aibi(16a)- T_ y Mmax =-£jr P

oder für gleichmässig- verteilte Belastung p

MM E Ij (a,0 + ßi0) 2 pl?(16b) j ig Mrnax -jj-
ergibt.

Zum Anschreiben der Biegemomente sind die Stütz-
momente am linken und rechten Ende des Feldes i von
besonderem Interesse. Diese seien mit Mki und Mk+i j bezeichnet

und werden durch Einsetzen von (3) und (4)

(17)
J Mm ~ Mk + AMfci £fc_ Ti tg Sfc

:^fc+i Mk+1 + &Mk+1,- Mk+1 + Ti tg Sfc+i

Superposition der Einflüsse ergibt den vertrauten Ausdruck
für das Biegemoment an der Stelle f; Zi/lt bzw.
Si Zi /li

(18) Mi Ml0 + Mki t'i + Mk+1 i tf

Zum Aufzeichnen der Momenteniflächen wird man die beiden
Stützmomentwerte für jedes Feld bestimmen, und dann

die Momentenfläche Mi0 (ermittelt am Grundsystem des
einfachen Balkens i infolge äusserer Belastung) überlagern.

Mit diesen Stützmoimenten (17) können auch die
Querkräfte Q und die Auflagerdrücke F wie üblich ausgedrückt
werden:

(19)

(20)

Qi Qm

Fk Bi

Mk+u—Mki
h

Mk+i -Mki Mki_i — Mk-n.
r -MO t^ 7 —'7H H-i

Die Wirkungislinie dieses Auflagerdruckes geht nicht
mehr durch die Stabaxe, auch wenn die äussere Belastung
nur durch diese angreifen darf. Ihre Verschiebung aus der
Stabaxe kann ausgedrückt werden durch die «-Koordinate
zu

(21)
T:

%Fl
Ti-i

Als zweiter geometrischer Ort für die (vertikale) Wirkungslinie
des Auflagerdruckes bleibt natürlich die Gerade längs

der schiefen Dagerkante 7c.

Die lotrechte Durchbiegung der Stabaxe, y, kann wiederum
durch Ueberlagerung der Einflüsse am Grundsystem des

einfachen Balkens folgendermassen angeschrieben werden:

(22)

wobei

Vi yi0 + Mik 2/;;£ -f- Mt fc+t yt k+1

yl0 Biegelinie infolge äusserer Belastung
yik Biegelinie infolge Mki 1

2/i fc+i S Biegelinie infolge Mk+i 1 1

Die letzteren beiden Werte lassen sich direkt der Tabelle 1
(Fall Einzellast mit P 1) entnehmen, denn nach dem
Maxwell-Mohrschen Gesetz über die Gegenseitigkeit der
Verschiebungen ist ytk a;0 und
Vi fc+1 M ßio-

Zur Beschreibung der Durchbiegung all jener Stabfasern,
die nicht in der Stabaxe liegen, wird auch die Stabverdrehung

95 benötigt. Der Drehwinkel <p wird von der
Horizontalen au® gemessen. Der positive Drehsinn ist in Bild 2
definiert. Allgemein gilt:

(23) f> (Zi) <p (Zi 0) + Jy' dz

Da bei schiefen Brücken q>(zi 0) aj tg Sfc ist (s. Bild 3),
und bei St. Venantscher Torsion <p' T/GK, so folgt mit aj
aus Gl. (7):

(24) («i) ajtgS,c + 1 GK

Beispiel: Durchlaufträger über drei Felder
Der in Bild 5 skizzierte durchlaufende Balken mit

konstanter Biegesteifigkeit EI, konstanter Torsionssteifigkeit
GK und gleicher Lagerschiefstellung S wird durch eine
gleichmässig verteilte Belastung p im Mittelfeld belastet.

Infolge der Symmetrie in Tragwerk und Belastung ist
das Uebertragungsmoment Ms gleich demjenigen bei 5,
Ms M5, und die einzige erforderliche Gleichung lautet
nach (12):

M3l(\ + 1) (2 + 0) +M3KI — C) I

mit G

— <6EI

GK tg2S
TbT 2~~

<pls

24 EI (1
>Z3

2i EI

3\ "ST
iwimwwwwiw

- U=M- wm

a 2^

SR
Bild 5. Dreifeldriger Durchlaufträger
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woraus folgt:

Ms
pP Xpi — a?FT

3 + 2 X + X O 12 (25k)

Die Schnittgrössen entsprechend den Formeln (15) bis (21)
lauten:

T2 TR
M3

(25a) tgS 1 + 20 2

1 30

XF3 ¦XF5

pP
tgS (1 + 20) (3 + 2X + XO) 12

(251)

T2
Q2

1 XO
tgS 1 + 2C

T4 — T2
Fs
XO

3tg,
4X + 2XC

(25b)

oP \12-+*»)
(1 + 2 C) (l + 6\+4\2-f-2\2G) l

tgS 1 + 20 \
1 2X0(2 + 0) pP

¦ tgS (1 + 2C) (3+ 2X+ X0) 12

M12 M7e T2tgS
(25c) 3C pP

Ma.
(25d)

(1 + 20) (3 + 2X + X0) 12

pP
M5e Ms + T2 tg S

3(1 + C)
(1+2 0) (3 + 2X + XO) 12

M34 MM Ms + T4tgS
(25e) 3 + 6C+4XO + 2X02pZ2

~~~ (l + 20)(3 + 2X + XC) 32"

Q2 — Qe 0 +
(25f)

^32 — ^12
XZ

_ 4X(3 + 2X + XO)

(25g) Q4 (1/2 — U)PI

Fi F7 Qa

(25h) 1

Die angeschriebenen Formeln für die Momente und zum
Teil auch für die Querkräfte, Auflagerdrücke und ihre
Wirkungslinie lassen sich für folgende Grenzfälle überprüfen:

— Keine Schiefstellung der Auflager. Durch Nullsetzen von
O und tgS, aber auch O/tgS, ergibt sich M3 M32 M34

—pP/(12 + 8X), was tatsächlich gleich dem Stützmoment
des entsprechenden gewöhnlichen durchlaufenden Balkens
unter Mittelfeldbelastung ist. Die Torsionsmomente T2 -und
Ti verschwinden, ebenso die Exzentrizität der Auflagerkraft.

— Totale Entspannung des Mittelfeldes. Diese wird erreicht
durch vollständiges Zusammenrücken der Auflager in den
Endfeldern. Für X 0 ist, den Erwartungen entsprechend,
T4 0 und Ms M34 — pP/12.

— Mittelfeld als einfacher Balken. Für den Grenzwert
X —y co wird

(26)

F3 -F5
(25i)

¦ 4X (3 + 2X + XO) pl

Plmm
2X(3 + 2X + XO)+:

^ 4X (3 + 2X + XO)

T4
1 2 0 p P

tgS 1+2 0 12

M34
2 0 pP

1 + 20 12 - M'

xF3 --XF5
l O

3tgS 1 + 20 _ "

pl

,-l

M„.=

,_J_

M„ + ^ Pl
B 72

m

.X

+ipl

XF

Ein für das numerische Rechnen bequemer, und wie sich
später zeigen wird, nicht unrealistischer Näherungswert für
einen schmalen, rechteckigen Voll- oder Hohlquerschnitt ist
GK/EI 2. Dann wird C - tg^S oder tgS 1/cT.

Mit diesen Annahmen sind für gleiche
Feldweite und eine Lagerschiefe von 45°,
die Werte aus den Formeln (25) in Bild 6

aufgezeichnet. Es zeigt zuoberst den
Grundriss, wobei die angenommene Stab-
breite willkürlich ist. Die Lagen der
resultierenden Auflagerkräfte sind darin
eingezeichnet. I|owohi bei positiver (Lager

3 und 5) als auch bei negativer Auf-
lagerkraft (Lager 1 und 7) befindet sich
die Resultierende stets auf der dem
belastenden Mittelfeld näher gelegenen
Auflagerseite.

Die Resultierende kann nun,
nachträglich, zerlegt werden in Auflagerkräfte

mit den effektiv benutzten
Wirkungslinien (s. Abschnitt «Verhältnisse
bei den Auflagern»), was zu entsprechenden

Ergänzungen der Schnittkraftdiagramme

über den Stützen ;führt. Die
Diagramme, Bild 6, sind unter der
Annahme gezeichnet worden, dass zwei
Lagerkörper pro Stütze; unter den
Stablängsrändern vorhanden seien. Es ist
deutlich ersichtlich, dass mit zunehmendem

C-Wert eine erhöhte Ednspannung
des belasteten Feldes erzeugt wird.

Die Zunahme der Veränderung gegenüber

dem gewöhnlichen durchlaufenden

Bild 6. Biegemomente-, Torsionsmomente- und Querkraft-Flächen für Mittelfeldbelastung
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+ 0,2

J2MJ
Pl2

Ml2 H32 M34

0.173

10° 20° 30° 40° 50° 60° 70°

H R 1 2 is

Bild 7. Biegemomente als Füj^Ein der Lagerschiefe S

90 S

00 c

386

+0.66+ 02

10° 20° 30° 40° 50° 60 70 80° 90 8

Vt 1I2T 53 C

Bild 8. Tors^^Knomente als Funktion der Lagerschiefe S

(28)
aw B «ifc tg Sfc + Tfc^' i ai k+i tg Sfc+i

ßw TI ß,k tg Sfc + Tkfi i ßi k+i tg Sfc+1

Balken ist für die Biegemomente ganz verschieden von den
Torsionsmomenten. UmHs zu illustrieren, sind die
Abbildungen 7 und 8 -angefertigt. Während sich die Biegemomente
bis zu einer Dagerschiefe von 10° noch unwesentlich
verändern, sind die Torsiomsmomente schon beinahe auf der
Hälfte ihres Höchstwertes.

Die Biegemomente variieren im Mittelfeld nahezu
gleichförmig vom Ausgangsfall des gewöhnlichen Durchlaufträgers

bis zum Grenzfall des voll eingespannten. Dagegen
nimmt das Torsionsmoment bei grösserer Lagerschdefe wieder

ab. Dieses interessante Verhalten erklärt sich aus
Gl. (2). Daraus ist ersichtlich, dass das Torsionsmoment
nicht nur mit der Lagerschiefe, sondern auch mit der Summe
der Auflagerdrehwinkel wächst. Da sich das System bei
hohen S-Werten dem Fall totaler Einspannung nähert, nehmen

die Auflagerdrehwinkel ab. Im Grenzfall verschwinden
sie, und mit ihnen das induzierte Torsionsmoment.

Allgemeine exzentrische Belastung
In diesem Abschnitt werden die bis anhin gewonnenen

Erkenntnisse auf den Fall von lotrechter, aber nicht mehr
in der Symmetrie-Ebene liegender Belastung erweitert.

Als die wesentliche neue Aufgabe stellt sich daher, die
Wirkung eines angreifenden Drehmomentes MD auf den
schief gelagerten, durchlaufenden Balken mit St. Venant-
scher Torsionssteifigkeit zu studieren. Es wird sich zeigen,
dass auch dieser Lastfall mit den hergeleiteten
Dreimomentengleichungen berechnet werden kann.

Am beiderseits gegen Verdrehung fest eingespannten
Stab (Kopfzeiger /) werde die aus äusserer Drehbelastung

hervorgerufene Torsionsmomentenf lache mit T(ß und seine

Stabendmomente mit T'-Q nnä. Tk^\l bezeichnet. In Bild 9

sind solche Flächen und ihre bei den Einspannstellen auftretenden

Werte eingetragen für den Fall eines gleichmässig
über die Stablänge verteilt angreifenden und eines nur strek-
kenweis,e wirkenden, verteilten Drehmomentes mD2).

Die Torsionsmomente bei den Lagern k und fc + 1 sind
gleich ihren Werten bei fester Einspannung plus die durch
Auflagerdrehwinkel verursachten Aenderungen. An Stelle
von Gl. (2) treten nun zwei Ausdrücke:

(27)
Tki:

^fc+li

m</>
¦ J- ki

.rp (/)
• ¦» fc+1 i

at tg Sfc + /3;tg Sfc+i

ai tg Sfc + ßj tg Sfc+

i
Führt man noch einmal dieselben Gedankengänge durch,
die vömmGI. (3) auf Gl. (6) führen, so folgt, dass die in den
Dreimomentengleichungen (9) einzusetzenden Belastungsglieder

infolge Drehmomente in allgemeinster Form lauten:

2) C. F. Kollbrunner und K. Basler: Torsionsmomente und
Stabverdrehung bei St. Venantscher Torsion, «Mitt. d. TK», Heft 27,

Verlag Schweizer Stahlbau-Vereinigung, Zürich, 1963.

Wird z. B. angenommen, das Stabfeld i werde durch
ein auf ganze Länge gleichmässig verteiltes Drehmoment
mD (Kraft mal Länge/Länge) belastet und habe konstante
Biege- und Torsionssteifigkeit, aber verschiedene
Lagerschiefe, so werden die Belastungsglieder nach Einsetzen der
in Bild 9a gegebenen Werte dn (28):

(29)
ctW

ßiD

mol?
jg-ßTr (2tgSfc — tgSfc+1)

mDli*
12 E I{ (tgSfc —2tgSfc+1)

Sind auch die Lager noch parallel (Sfc Sfc+i S), so
vereinfachen sich diese Werte auf

(30)
mD lp

Hat man beliebige exzentrische Belastung, so wird diese
zunächst in den zentrischen und den verdrehenden Anteil
zerlegt, um die Belastungsglieder a,-0 + aw und ßt0 + ßw zu
bestimmen. Diese werden in die Dreimomentengleichungen
(9) bis (12) eingeführt und die überzähligen Grössen Mk
durch Auflösen des Systems erhalten. Damit kann nach (13),
(14) oder (15) die Verschiebung der Schlusslinie der Tor-
sionsmomentenfläohen angegeben werden, d. h. es entsteht

,(f). _ mDlj
'k+1,i 9—

'ki ~*^T~

m

-
+

Tj0 -mD l I1
—-zi

1;

k+1

Za: + c

k+J

_Jr_

F) 2b:+c
Tki + mDc

k+1

Bild 9. Torsionsmomentenfläche Ti? am Grundsystem des fest einge¬

spannten prismatischen Stabes unter gleichmässig verteiltem

Drehmoment m.o über a) die ganze Stablänge, b) die Teilstrecke ci
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die folgende Anschrift für die Torsionsmomente im Stabfeld

i aus Ueberlagerung der am Grundsystern -bestimmten T (X> -

Fläche mit diesem Schlusslinienzug (allgemeinste Formulierung

entsprechend (13)):

(31)

Ti .mit)¦x m JiDi (ai0 + aiD) tg Sfc + (ßi0 + ßw)

- tg 8fc+1 + Mk (aik tg Sfc + ßik tg Sfc+1) -f

+ Mfc+1 (a{ fc+i tg Sfc + ßt k+1 tg Sfc+i)

Aus diesen Stabendwerten Tki und Tk+1 t lassen sich die
Stützmomente für die Biegemomentenflächen berechnen,
sodass auch diese Schlusslinien gezogen werden können:

MM Mk + Tfci tg Sfc

\Mk+1 i Mk+i + Tfc+1 ä tg Sfc+1

Die Ausdrücke (18), (19) und (20) für die
Biegemomente, Querkräfte und Auflagerdrücke bleiben damit
erhalten. Die Lage der Wirkungslinie des Auflagerdruckes wird
aber präziser formuliert

Tki - Tk ;„!

<32>{i

(33) XFk Fk
Wie bei den Gl. (13) bis (21) werden auch aus diesen

Formeln die Schnittgrössen am sohief gelagerten Einfeldträger

erhalten durch nullsetzen der Uebertragungsmomente
Mk und Mk+i.

Beispiel: Einflussflächen

Die Einflusslinie für eine Schnittgrösse an einer
bestimmten Stabstelle wird erhalten durch Auftragen der
Einflussgrösse unter der Lastsbellung. Da die Lage der
konzentrierten, lotrechten Einzellast P 1 bei exzentrischer
Lastanordnung durch zwei Koordinaten beschrieben werden
muss (z{ und x, s. Bild 2), entsteht notwendigerweise eine
Einflussfläche für die Schnittkraft, auch wenn zur Berechnung

die Stabstatik zugezogen wird.
Die Lasteinheit P — 1 wird zunächst auf die Stabaxe

reduziert. Dann werden die Schnittgrössen für die beiden
Lastfälle «zentrdsche Belastung unter P 1» und
«Drehmoment als Belastung infolge MD x» berechnet und super-
poniert. Da die Berechnung der beiden Lastfälle bereits
besprochen worden ist, bietet das Bestimmen solcher
Einflussflächen keine neuen Probleme mehr.

Zur Illustration sollen die Einflussflächen für das
Torsions- und Biegemoment des Einfeldbalkens mit gleicher
Lagerschiefe berechnet und für die konkreten Werte

I-
Schnitt in a 2 1/3 resp. b 1/3

- GK/EI=2
C 11/2 resp. tg S l/]/2~

gezeichnet werden.
Infolge zentrischer Belastung durch die Einheitslast in

a bzw. b l—a wird aus der Gleichung (15b) mit (16a)
das Torsionsmoment

T
ab

tgS 1 + 20
erhalten. Infolge des Drehmomentes MD x ergeben sich
nach dem vorangehenden Abschnitt folgende Ausdrücke für
das Torsionsmoment zu beiden Seiten der Schnittstelle:

TA Mn-^- — M 2C

TB-—Mn MD
1 + 2C

KOS 306 -004 -Ü02 0

0 rtt02 -004 -0.06 -0,08

Bild 10. Einflussfläche für das Torsionsmoment im Schnitt £ V3,
V V3 (Werte mit PI multiplizieren)

Die Ueberlagerung der beiden Dastfälle ergibt mit
MD x

Ta - 1 + 2G

i O ab
\ tgS P

Tb
l

~ 1+20
I O ab

(1

tg; p -d

BHEHS

^t-°(t-,)]
Für die Beschreibung der Lage des Lastangriffspunktes werden

noch die Abkürzungen a/l f, b/l J' und x/l £

eingeführt und die Summanden in den eckigen Klammern
verrechnet. Damit werden für -die Torsionsmomente bei den
Auflagern A und B folgende Einflussfunktionen erhalten:

(35)
TA

Tb

l
1 + 20

20

tg
C

j-u' + nc + n]

tgS rr —no + n
Da der Wert TA auch das Torsionsmoment an jeder

Stabstelle zwischen Lager A und dem Angriffspunkt des
Drehmomentes MD x 'darstellt, ist die Lösung TA auch der
Einflussflächenteil, der sich von der Schnittstelle bis zum
Lager B erstreckt. Andererseits stellt TB in (35) auch den
zwischen Lager A und betrachteter Schnittstelle gelegenen
Einflussflächenteil für das Torsionsmoment dar.

Für die Annahmen (34) sind die beiden Flächenteile
in Bild 10 in Relief- und in Bild 11 in Älodiametrischer
Darstellung gezeichnet. Die numerischen Werte für diesen
konkreten Fall lauten

T
~¥l

T
P~l

- 0,354 ff + |(0,25 +0,5r)

-pf =— 0,354 fr — « (0,25 + 0,5?)

/ f > 2/3

\1 < 1/3

\ t, < 2/3
\ 1 > 1/3

Als letztes Beispiel soll noch die Greensche Punktion,
d. h. die Einflussfunktion, für das Biegemoment des einfel-
digen Stabes hergeleitet werden. Da bei diesem keine
überzähligen Grössen Mk und .Mfc+i errechnet werden müssen,
ergeben sich die Biegemomente an der Schnittstelle a bzw.
b l — a aus Gl. (18) unter Einsetzen von (32) zu

M M0 + Ta
b
~r-tgSA TE tgSf

Wird die Einflussordinate mit -q bezeichnet, so ist entsprechend

^

\l
Bild 11. Räumliche Darstellung der Torsionsmomenten-Einflussfläche
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(36) Vit tgsA- VTB^ftgSß
E

In diesem Ausdruck bedeutet -qMo die Einflußsfläche am
Grundsystem des einfachen Balkens, die sich im Aufriss
als das vertraute Dreieck mit der Ordinate ab/l projiziert.

(37) r,MQ

b
wenn J <

l -j f wenn |üf^
Die Faktoren i\TA und vtb sind die Einflussflächen für

die Torsionsmomente in den Lagern A und B. Für gleiche
Lagerschiefe, SA Ss 8, sind die Ausdrücke bereits in
(35) gegeben. Werden sie in (36) eingesetzt, so ergibt dies
folgende Greensche Funktion für das Bdegemoment im
Schnitt a, bzw. b — l — a eines einfeidigen, links und rechts
gleich schief gelagerten Stabes:

Vm 9 l

(38)

l

1

0
a
J

1 + 20

fei (o + n -

ss T 1 + 2C

(o + n für n

Für die speziellen Werte (34) wird

Vm

ffl
-TH' + m für

m i

f<
2

m

M
2

T
was in den Bildern 12 und 13 als Einflussfläche veranschaulicht

ist. Zum Vergleich ist im Aufriss von Bild 12 auch die
Einflusslinie rjMo, Gl. (37), eingetragen.

Die Stabkonstante C

In der gesamten Berechnung spielt der Koeffizient O

(Tab. 2) eine entscheidende Rolle. In ihm sind alle zu
erwartenden Faktoren bei schiefer Lagerung enthalten.

Im einfachsten Fall von gleicher Lagerschiefe S,

konstanter Torsionssteifigkeit GK und Biegesteifigkeit EI ist zu
erwarten, dass die Schnittgrössen nicht nur von Spannweite
und Belastung abhängig sind, sondern auch noch vom
Verhältnis von Torsions- zu Biegesteifigkeit, GK/EI, und
irgendwie vom Winkel S. Es ist ferner zu vermuten, dass sich
eine Vergrösserung der Torsionssteifigkeit gegenüber der
Biegesteifigkeit in ähnlicher Richtung auswirken wird wie
die Vergrösserung der Lagerschiefe.

Aus dieser Arbeit resultiert, dass der alle neuen
Einflüsse umfassende Koeffizient O folgendermassen aus den
Parametern GK/EI und S aufgebaut ist:

GK tg2S
(39) C ^r-ij-

Es ist zu erwarten, dass der erstgenannte Parameter,
GK/EI, stark von den Abmessungen des Stabquerschnittes
abhängt. Um eine Vorstellung darüber zu erhalten, seien
nachstehend zwei typische Fälle untersucht.

Für einen schlanken, rechteckigen Vollquerschnitt,
dargestellt in Bild la, ist

(40)
GK 2(l + y) 3 bts

EI E
12 6*3 1+ v

Das Verhältnis von Torsions- zu Biegesteifigkeit ist somit
unabhängig von den Querschnittabmessungen! Wenn daher
die Vouten bei einer Vorberechnung für den Einfluss der
Lagerschiefstellung unberücksichtigt bleiben, so wird eine
genauere Berechnung keine grossen Veränderungen mehr
bringen. Die Stabkonstanten sind jedoch nicht vollständig
unabhängig von der Materialverteilung, wie aus der ersten
Kolonne der Tabelle 2 ersichtlich ist.

Im Falle eines rechteckigen Hohlquerschnitts, b • h, mit
konstanter Wandstärke t wird K aus der Bredtschen Formel
berechnet (Bild lb), und das Verhältnis von Torsions- zu
Biegesteifigkeit ist nun

E

(41)
GK 2(l + y)
EI E

4:b*h*
2 (b + h)

*

T~~ ~~2~
YbtM + ^ths

mm m 1 h\
~3~b

Wenn somit die Querschnittshöhe h klein ist gegenüber der
Breite b, so entsteht derselbe Wert wie beim entsprechenden
Vollquerschnitt!

Verhältnisse bei Auflagern
Zur Darstellung des durch Lagerschiefstellung

verursachten Torsionsmomentes sind in Bild 6 zwei an den
Stabrändern hegende Lagerkörper pro Stütze angenommen worden.

Dies geschah, um die Vorstellung zu erleichtern. Die
effektive Stabbreite oder der Abstand der Lagerkörper ist
unwesentlich für die Berechnung. Als Resultat wird lediglich
der Auflagerdruck, Gl. (20), und seine Wirkungslinie,
Gl. (21) bzw. (33) festgesetzt.

Dies sei veranschaulicht am gleichmässig verteilt
belasteten Einzelfeld. Der resultierende Auflagerdruck ist
Fa FB pl/2. Seine rechtwinklig zur Stabaxe gemessene
Lage ist durch den letzten Ausdruck in (26) festgelegt. Die
Resultierende liegt immer auf der Verlängerungsgeraden
durch die schiefe Lagerkante. In dieser Richtung gemessen
beträgt die Exzentrizität

IZI l
cosS 3sinS 1 + 20

mit O nach (39) eingesetzt
GK

l
(42)

EI sin S

6 GK
COS2 S + -=y sin2 s

0.040.12 0.08

0.08 0.10 0.1D.04 3.14 0.16 0,06

5PUR"t

4UFRISS

Bild 12. Einflussfläche für das Biegemoment im Schnitt f 2/i, f
(M i? PI)
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Diese Lage der resultierenden Auflagerkraft istgMffi
Grundriss des Stabes (Bild 14) eingezeichnet für alle Winkel

S und den grösstmöglichen Wert von GK/EI 2. Für
GK/EI 1 entsteht als Spur der Resultierenden bei variabler
Lagerschiefe S je ein Halbkreis mit Durchmesser 1/6. Was
diese Figur auch illustriert, ist 'die Feststellung, dass die
geringste Lagerschiefstellung die Resultierende stark aus der
Axe verschiebt und demzufolge ungleiche Lagerpressung
verursachen wird.

Bild 14. Lage der Wirkungslinie des Auflagerdruckes als Funktion der
Lagerschiefe S beim Einzelfeld unter gleichmässig verteilter
Belastung

Falls bei der baulichen Ausführung nur zwei Lagerkörper

vorgesehen sind, so kann aus Kenntnis der Wirkungslinie
und Resultierenden die Belastung der beiden Lagerkörper

mit Gleichgewichtsbedingungen allein berechnet werden.

Befinden sich diese in den Abständen +d/2 und —d/2
von der Stabaxe (positive Abstände in x-Richtung gemessen),

so sind die beiden Lagerkörperauflasten Fk(-\-d/2) und
Fk(—d/2).

(43) Ffc I 2
Tu — Tfc

d~'
Sind mehr als zwei Lagerkörper vorhanden, oder wird

ein eigentliches Linienlager ausgebildet, so ist die Lastverteilung

auf die einzelnen Lagerpunkte noch •unbestimmt,
nicht aber — und dies sei nochmals betont — Lage und
Grösse der resultierenden Auflagerkraft. Wird als Hypothese
die Annahme der linearen Lastverteilung getroffen, so ist die
Linienpressung pro Längeneinheit der schiefen Lagerkante

(44)
Ffc

id + •

12 (Tfc Tfc i)
d» cos Sfc

Beim Betrachten von Bild 3b scheint es, als ob zu den
Voraussetzungen der durchgeführten Berechnung auch die
Annahme gehöre, dass die BiegelSe in Auflagernähe durch
ihre Tangenten in den theoretischen Lagerpunkten ersetzt
werden müsse. Da aber nichts über die Distanz zweier
angenommener Dagerkörper ausgesagt zu werden braucht, kann
man sich diese auch belHMg nahe, aber dennoch schief,
zusammengerückt denken, um die Voraussetzungen zu erfüllen.
Mit anderen Worten, die Randbedingung ist eine
mathematische, und es genügt, die im Vorwort erwähnte Voraussetzung

der Gültigkeit der Stabstatik zu postulieren.
Zur Beurteilung verschiedener Einzelheiten ist es aber

von Vorteil, wenn man sich des Unterschiedes gegenüber
praktisch ausgeführten Randbedingungen bewusst ist. So
wird zum Beispiel eine Einflussfläche, wie sie in Bild 10
gezeichnet ist, nur die mathematische Randbedingung in den
Endpunkten des Stabes erfüllen. Würde je ein Lager in den
Ecken des skizzierten Balkenfeldes angenommen, so wären
selbstverständlich dJätateächlichen Randbedingungen leicht
verletzt, wie dies deutlich aus Bild 10 ersichtlich ist.

Aber auch die Torsions- und Biegemomentenflächen
erfahren über den Stützen leichte Korrekturen, die von der
ausgeführten Lagerkörperanordnung abhängen. Würden
zum Beispiel je zwei Lagerkörper pro Stü|ze in einem so

grossen gegenseitigen Abstand ausgeführt, 'dass sie unter
die Stabränder zu hegen kämen, so entstünde der dn Bild 6

mit kräftigen Linien dargestellte Verlauf der Schnittgrössen.
Die Feststellung, dass sich schiefe Lagerung günstig auf

die Feldmomente auswirkt, ist jetzt noch dahin zu ergänzen,

dass sich auch über den Stützen -die Momentenspdtzen

brechen lassen durch Lagerschiefstellung. Dabei können
allerdings erhöhte Schubkräfte zwischen den beiden
Lagerkörpern auftreten.

Grösste Schubspannung infolge Lagerschiefe
Schiefstellung der Auflager hat den Nachteil, dass

Schubspannungen aus Torsion verursacht werden, auch wenn
nur zentrische Belastung vorkommen soll. Wie gross können
diese, ausschliesslich auf Lagerschiefstellung zurückzuführenden

Schubspannungen werden? In diesem Abschnitt soll
versucht werden, dafür eine obere Schranke zu erstellen.

Aus Gl. (15a) ist ersichtlich, dass das Torsionsmoment
dann am .grössten ist, wenn der Quotient vor der Klammer,
wie auch deren Inhalt, den grösstmöglichen Wert erreicht.
Der erwähnte Quotient

W - EI
W + tg*S

verschwindet für eine Lagerschiefe S 0° als auch S 90°.
Er muss zwischen diesen beiden Grenzen einen optimalen
Wert erreichen, dessen Lagerschiefe sich aus der Bedingung

(45)
dQ

W T

-gjt + tg2 S — 2 tg2 S

d(tgS) EI

bestimmen lässt zu

Somit ist

tg2s)

-[/"-BZ
tg S0pt - [/-QK

(46) Ti==
GK,
~E~IT

K

EI, (ai0 + ßK)_ Mk + Mk+1
li

Der Klammerausdruck stellt ein durchschnittlisn|5S|j
Biegemoment über die Stablänge li dar. Wie immer auch die
Belastungsanordnung und die Stabednspannung gewählt
wird, das durchschnittliche Biegemoment kann das extremale
nie übersteigen, d. h.

Tnr,, g -F-°*" 2 V EI
GK

Me.

Diese Ungleichheit ist nun noch in Spannungen
auszudrücken. Für die beiden im vorletzten Abschnitt besprochenen

Querschnitte lauten sowohl die Schubspannungen infolge
St. Venantscher Torsion3) als auch die Normalspannungen
infolge Biegung

Schmaler
Rechteckquerschnitt

T
T 3

Rechteckiger
Hohlquerschnitt

T
bt*

M
~b~W

2bht
M

>ht (l 1 h
~3~!>

Für den schmalen Rechteckquerschnitt ist daher Topt
11>£2/3 und Mextr <rextr W?/<j. Eingeführt in die letzte

Ungleichung, in der auch GK/EI entsprechend (40) ersetzt
wird, liefert:

•opt <

ropt 1 + v •"*"
Die entsprechende Ungleichung für den rechteckigen
Hohlquerschnitt wird erhalten zu

ropt 4 |/ 1 + v

1 +

1 +
Für kleine Seitenverhältnisse h/b wird die zweite Wurzel

dn guter Näherung eins; jedenfalls wird die Ungleichung

3) Torsionskonstanten und Schubspannungen bei St. Venantscher

Torsion, von C. F. Kollbrunner und K. Basler, «Mitt. der T. K.»,
Heft 23, Verlag Schweizer Stahlbauverband, Zürich 1962.
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durch kein Seitenverhältnis h/b verletzt, wenn der Wurzelwert

durch eins ersetzt wird. Schliesslich liegt für alle
Materialien c zwischen null und 0,5, so dass im ungünstigsten
Falle der erste Wurzelwert |/2~ sein kann. Wären dicke,
rechteckige Vollquerschnitte zugelassen, so würde sich das

Verhältnis GK/EI leicht verkleinern.
Somit lässt sich aussagen, dass sowohl für den

rechteckigen Voll- als auch Hohlquerschnitt die durch
Lagerschiefstellung verursachte Schubspannung unter keiner
Laststellung, bei beliebigen Spannweitenverhältnissen und freier
Wahl des Baumaterials, den |/2~/4-fachen Wert der
Biegespannung überschreitet

(47) ropt H 0,354 aextr

Zusammenfassung

Bei schiefen Brücken sind zwei Sätze von
Verträglichkeitsbedingungen notwendig: eine Bedingung für jedes Feld,
die verlangt, dass die Gesamtverdrehung des Stabfeldes
verschwinden muss, damit es verträglich mit den horizontalen
Lagerkanten sein kann, und eine Bedingung für jede
Zwischenstütze, die bewirkt, dass die Stabaxe kontinuierlich ist.
Diese beiden Bedingungen sind in den Gl. (1) und (8) formuliert.

Sie entkoppeln sich nur für normale Lagerung des

Durchlaufträgers, d. h. wenn tg Sk tg Sk+1 0 ist.
Als überzählige Grössen werden beim, durchlaufenden

Träger üblicherweise die Stützmomente eingeführt. Bei schiefer

Lagerung sind aber zwei Stützmomente pro Lager 7c

vorhanden, Mk ;_! und Mkt, und je ein Torsionsmoment Ti

pro Feld. Die Zahl der Unbekannten ist daher gleich der
dreifachen Felderzahl. Würden diese Unbekannten benützt,
so müssten die erwähnten beiden Sätze von Elastizitätsgleichungen

noch durch je eine Momentengleichgewichtsbedin-
gung pro Stütze ergänzt werden.

(48) Mk ¦ Mki.i — (Ti - Ti_i) tg S 0

Trotzdem ist es gelungen, ein Berechnungsverfahren
herzuleiten, bei dem die Zahl der überzähligen Grössen auf
diejenige des Normalfalles beschränkt ist, ohne dabei eine

grössere Verkettung der Elastizitäts-Gleichungen zu erhalten
als bei den Clapeyronschen Dreimomentengleichungen. Die

zwei wesentlichsten Punkte, Wahl des Grundsystems und

der überzähligen Grössen, seien nochmals kurz beleuchtet.
Zur Herleitung des Berechnungsverfahrens wurde eine

Serie einfeidiger, aber bereits mit der schiefen Lagerung
verträglicher Balken als statisch un-hestimmtes Grundsystem
benutzt. Durch Auflösen der simultanen Gleichungen (6) ist
ein für alle Mal ein zweigliederiges Gleichungssystem gelöst
worden, das für jedes Feld des Trägers Gültigkeit hat und
daher die Zahl der überzähligen Grössen um gleichviel zu
reduzieren vermag, wie ^»bfeider vorhanden sind. Als
verbleibende überzählige Grössen wurden auch nicht die effektiv

vorkommenden Stützmomente gewählt — man müsste
sich dabei für die linken oder die rechten entscheiden —
sondern ideelle Uebertragungsmomente Mk. Diese sind zwar
keine am Bauwerk feststellbaren Grössen mehr, vermögen
aber die Berechnung noch weiter zu vereinfachen und formal
derjenigen des normalgelagerten Durchlaufträgers
anzugleichen.

Diese Ueberlegungen braucht der Konstrukteur nicht
für jeden schief gelagerten Träger neu herzuleiten, denn das

verbleibende Gledchungssystem wie auch die zu ermittelnden
Schnittmomente sind in vertrauten Verschiebungsgrössen
ausgedrückt, die sich am normal gelagerten, einfachen Balken
bestimmen lassen). Die Anleitung für eine solche Berechnung
lautet einfach:

Alternierend sind Auflager und Feld durchzunumerieren,
so dass den Lagern die ungeraden Zahlen k und den Feldern
die geraden Zahlen i zugeordnet sind. Für jedes Feld sind —
wie beim normal gelagerten Durchlaufträger — die
Belastungsglieder zu ermitteln. Ferner sind für jedes Feld die
Stabkonstanten O und D entsprechend Tabelle 2 bereitzustellen.

An^iliessend können die Dreimomentengleichungen
angeschrieben werden, wobei je nach Kompliziertheit des

Falles die Formen (12), (11), (10) oder (9) angewendet
werden dürfen. Nach deren Auflösung muss als erste Schnitt-

grösse das Torsionsmoment in jedem Feld angeschrieben
werden. Dies geschieht mit den Formeln (15b), bzw. (14)
oder (13) je nach der Schwierigkeit des Falles. Unter
Mitbenützung .dieser ersten Schnittmomente lassen sich die
Stützmomente berechnen aus den Gleichungen (17) und
damit, wie üblich, die Biegemomente an jeder anderen
Stabstelle, (18), die Querkräfte, (19), und die resultierenden
Auflagerdrücke, (20). Zu den letzteren gesellt sich noch je
eine Angabe über die Lage ihrer Wirkungslinien (21).

Im Falle einer exzentrischen Belastung wird diese
zerlegt in eine zentrische und in ein angreifendes Drehmoment.
Mit dem ersten Belastungsanteil wird wie oben verfahren,
aber auch mit dem zweiten können dieselben Dreimomentengleichungen

verwendet werden, falls die Belastungsglieder
nach Gl. (28) eingesetzt werden.

Adresse des Verfassers: Dr. sc. techn. Konrad Basler,
Südstrasse 1090, Egg bei Zürich

Neue Wege zur Behandlung schiefer
Türme dk 624.159.^

Von Prof. Dr. R. Haefeli, Zürich

Die Schiefstellung von Türmen ist ein schleichender,
sich oft über Jahrhunderte erstreckender Vorgang, -wobei

die Exzentrität der Resultierenden immer grösser wird.
Bodenmechanisch betrachtet handelt es sich dabei um eine stetig

fortschreitende Verformung des Untergrundes unter der

Wirkung äusserer Kräfte (Auflagerkräfte des Turmes),
d. h. um einen Kriechprozess, welcher die Nachsetzung mit
umfasst. Es liegt daher nahe, die gleiche Eigenschaft des

Bodens, nämlich seine Kriechfähigkeit, zu verwenden, um
die Schiefstellung des zu behandelnden Objektes zu
korrigieren bzw. zu beeinflussen.

Um einen schiefen Turm wieder aufzurichten oder in
einer bestimmten Lage zu stabilisieren, können künstlich
regulierbare Kriechprozesse eingeleitet werden, die der
Schiefstellung dn der gewünschten Weise entgegen wirken. Nach
diesem Verfahren wurde in den Jahren 1955—1956 ein

30 m hoher, im kriechenden Bergschutt fundierter Pfeiler
des Castieler Viadukts1) der Rhätischen Bahn durch einen

regulierbaren Seilzug mit Erfolg behandelt. Dabei zeigte es

sich, dass bei einer geeigneten Disposition die äusserlich

aufgebrachten Zusatzkräfte so reguliert werden können,
dass nach gegebener Zeit eingr Vorgeschriebene Neigung des

schiefen Objektes erzielt wird. In ähnlicher Weise wurde
schon in den 20er Jahren der äusserste Pfeiler des
linksseitigen Anschlussviaduktes der Eisenbahnbrücke bei Eglis-
au2), der sich durch den einseitigen Gewölbeschub gegen
den Fluss geneigt hatte, dadurch korrigiert, dass man auf
den Pfeilerkopf einen konstanten, vom eisernen Ueberbau

aufgenommenen Horizontaldruck — als Ersatz für den
fehlenden Gewölbeschub — wirken liess.

In gewissen Fällen, insbesondere bei berühmten Baudenkmälern,

wipjz. B. beim schiefen Turm von Pisa, besteht die

Aufgabe bekanntlich darin, den Turm — wenn überhaupt —
nur soweit aufzurichten, als dies vomStandpunkt der Sicherheit

aus notwendig ist. Er muss also in einer gerade noch

stabilen Lage erhalten bzw. fixiert werden, d. h. mit einer

«zulässigen Schiefstellung», die seinem Weltruf als der
«schiefe Turm» angemessen ist.

In diesem wie in allen andern ähnlich gelagerten Fällen
wird die Aufgabe dadurch wesentlich erschwert, dass die

korrigierenden Kräfte, die den stabilisierenden Kriechprozess

bewirken, äusserlich nicht in Erscheinung treten sollen.

Die letzte Bedingung kann dadurch erfüllt werden, dass

man die Korrekturkräfte unter der Bodenoberfläche auf das

betreffende Objekt bzw. dessen Fundamente angreifen lässt,

was allerdings in der Regel mit einer gewissen Verteuerung
der Sanierung verbunden ist. Trotzdem dürfte die genannte
Methode, die nicht zuletzt auf den Fortschritten der
Bodenmechanik und insbesondere auf den neuen Erkenntnissen

1) Vergleiche auch SBZ Bd. 124, S. 255 ff. (1944)

2) Siehe SBZ Bd. 79, S. 133 ff. (1922); ähnlich Sitter-Brücke der

BT, SBZ Bd. 83, S. 287 ff. (1924).
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