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SCHWEIZERISCHE BAUZEITUNG

19. Marz 1964

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.1.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENOSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P

Zur Berechnung gekriimmter Briicken
Von Christian Menn, Dr. sc. techn. ETH, Chur

DK 624.072.6

Vortrag gehalten am 8. November 1963 in Zirich vor der S.l. A.-Fachgruppe fiir Briickenbau und Hochbau (FGBH)

In den letzten Jahren haben sich die Projektierungs-
grundlagen im Strassen- und Briickenbau wesentlich ge&n-
dert. Wahrend frither zugunsten moglichst kurzer und ein-
facher Kunstbauten die Linienfiihrung der Strasse oft stark
vernachléssigt wurde, stellen wir heute fest, dass die Briik-
ken im allgemeinen zu einem mehr oder weniger unterge-
ordneten Bestandteil der Strassen geworden sind., Die fliis-
sige Linienfiihrung des Strassenzuges dominiert eindeutig;
auf die technischen Schwierigkeiten beim Brilickenbau nimmt
der Strassenprojektant sehr wenig Riicksicht.

Die Folge hievon ist, dass einfache, gerade Briicken eine
seltene Ausnahme bilden, wihrend in der Regel grosse
Schwierigkeiten beziiglich Abstiitzung, Bauhdhe, Verwin-
dung, Schiefe und Kriimmung zu bewéiltigen sind. Zweifel-
los stellt damit die Projektierung von Briicken heute viel
grossere Anforderungen an den Ingenieur, Da aber ander-
seits in den nédchsten Jahren zahlreiche Briicken gebaut wer-
den miissen, ist es unbedingt notwendig, dass sich die pro-
jektierenden Ingenieure vermehrt mit den etwas komplizier-
teren statischen Problemen befassen,

Der Modellversuch eignet sich sicher vorziiglich zur Lo-
sung besonders uniibersichtlicher und schwieriger Aufgaben;
es ist aber meines Erachtens falsch und unwirtschaftlich,
wenn Probleme, die der Berechnung ohne weiteres zugénglich
sind, mit teuren und zeitraubenden Versuchen gelost werden.

Diestatische Berechnung gekriimmter Briicken ist .durch-
aus nicht neu. Es finden sich diesbeziigliche Angaben in den
meisten Lehrbiichern!) und in verschiedenen wissenschaft-
lichen Arbeiten 2), Eine umfassende Darstellung der Berech-
nungsmethoden ist natiirlich im Rahmen dieses Aufsatzes
nicht mdglich. Ich beschrdnke mich deshalb darauf, einen
bestimmten Sektor des Problemkreises herauszugreifen: die
Berechnung des kreisformig gekriimmten, torsionssteifen
Balkens; ein Tragelement, das im Massivbriickenbau sehr
hiufig anzutreffen ist, denn es entspricht einem — im Ver-
gleich zur Breite — weitgespannten, torsionssteifen Briik-
kentrédger. Ich mache ausdriicklich darauf aufmerksam, dass
die Tragwerksbreite in der Berechnung nicht erscheint. Die
nachfolgenden Berechnungen verlieren somit ihre Gliltigkeit,
wenn das Tragwerk flichenhaften Charakter annimmt.

Dags Ziel meiner Ausfithrungen besteht darin, zu zeigen,
wie ein Tréger, der den oben gemachten Voraussetzungen
geniigt, mit den allereinfachsten Mitteln berechnet werden
kann und anhand von Vergleichen darzustellen, bei welchen
Oeffnungswinkeln die Kriimmung iiberhaupt beriicksichtigt
werden muss, und wie sich die Kriimmung auf die Schnitt-
kréifte auswirkt.

Die Schwierigkeit der Kreisringtrédgerberechnung liegt
im Awuftreten einer neuen Schnittgrosse — des Torsions-

1) K. Beyer: Die Statik im Stahlbetonbau; Springer-Verlag,

Berlin 1956.
K. Hirschfeld: Baustatik; Springer-Verlag, Berlin 1959.

2) F. Stissi: Zur Berechnung von Stahlbriicken mit gekriimmten
Haupt-Trigern. Denkschrift der ETH zum hundertjihrigen Bestehen
des S. I. A., Ziirich 1937.

J. Courbon: Théorie des ponts courbes, «Annales des ponts et
chausséesy, Paris 1961.
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momentes — die liberdies noch eng mit dem Biegemoment
verkniipft ist.

Die vorgeschlagene Berechnungsmethode ist auf mathe-
matischer Grundlage aufgebaut und stellt die numerische
Losung eines mathematischen Problems dar, Sie erfordert
die Kenntnis von nur drei sehr einfachen Rechenvorgingen:

1. Bestimmung der Knotenlasten, am besten mit der Parabel-
formel.

2. Analytische Berechnung des Seilpolygons zu lotrechten
Lasten.

3. Simpson’sche Regel fiir die numerische Integration.

Zum besseren Verstdndnis soll die Methode vorerst am
geraden Balken erldutert werden. Im allgemeinen Fall eines
beliebig gelagerten und belasteten Trigers filihren wir die
Berechnung der Schnittkrifte folgendermassen durch:

1. Wahl eines Grundsystems und Berechnung der Schnitt-
krafte So.

2. Einfiihren von {iberzihligen Grossen X; und Berechnung
der zugehorigen Schnittkrédfte §; fiir X; = 1 am Grund-
system.

3. Unter Beriicksichtigung der Superpositionsgleichungen
werden die Blastizitdtsbedingungen aufgestellt, woraus
sich die iiberzdhligen Grossen berechnen lassen.

4. Die endgiiltigen Schnittgrossen S ergeben sich durch
Ueberlagerung von S, + Y. X; 8;.

Dabei denken wir meistens gar nicht an die grundlegende
Differentialgleichung des geraden Balkens, in deren Losung
ja alle Balkenprobleme eingeschlossen sind. Sie lautet

1) M'=—p

und hat die Losung

(2) M=C12+Co+f (%),

wobei f(x) irgend ein partikuldres Integral der Differential-
gleichung f”(x) = — p darstellt.

In Bild 1 ist die partikuldre Losung f(x) — deren An-
fangs- oder Randbedingungen natiirlich durchaus frei sind —
und die Gerade Cya + Co dargestellt. In die Sprache der
Baustatik iibertragen, bedeutet f(x) irgend ein Seilpolygon
zu den vorgegebenen lotrechten Lasten und die Gerade
Cix + Cs stellt die Schlusslinie des Seilpolygons dar, die
den Rand- bzw. Auflagerbedingungen Rechnung tragt.

Die Berechnung eines Balkens soll nun noch kurz an
einem Beispiel gezeigt werden. Wir wihlen einen Balken von
der Lénge I, der in der Mitte durch eine Last P belastet
wird; die Lagerung soll vorldufig noch frei sein (Bild 28

M l/’
’(CIX"'CZ —
A 7 2 3 8
— l
X
fx) Bild 2
Bild 1
0 X
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Zundchst ermitteln wir nun eine partikuldre Ldsung der
Gleichung f”(x) = —p. Am einfachsten erfolgt diese Inte-
gration mit der ganz gewohnlichen Seilpolygonrechnung fiir
den einfachen Balken (s. F. Stiissi: Baustatik I, Verlag
Birkhéuser, Basel 1946). In Tabelle 1 sind die Berechnungs-
punkte, die Knotenlasten, die Zwischendistanzen, die Quer-
kréfte bzw. die Funktion f’ () und die Momente bzw. die
Funktion f(x) eingetragen. Da wir fiir die partikuldre L&-
sung keine Randbedingungen zu erfiillen haben, beginnen wir
die Integration vom Balkenende 4 aus und setzen vollstin-
dig willkiirlich — dies sei nochmals betont —

f’l‘ o und fr 0= 10\

Nun untersuchen wir einige Randbedingungen (Bild 3). Zu-
erst den links freien und rechts eingespannten Balken.

l/’
Bild 3 E
2 =10 M =0 —> Cs +f (0) =0 Co=0
=000 = M —0/ — > €5 -7 (0) =0 Ci=0

Aus den Randbedingungen am linken Balkenende (M und @
sind hier null) erhalten wir durch Einsetzen der Werte
f(0) = 0 bzw. f'(0) = 0 in die Lésung der Differentialglei-
chung (Gl 2) direkt die Grésse von Cy und Ce. Im vorliegen-
den Fall werden beide Konstanten null, Unsere Partikular-
l6sung erfiillt somit an sich schon die vorgegebenen Rand-
bedingungen, Das Moment ist identisch mit f(x); M = f(x).

Im n#chsten Beispiel (Bild 4) ist der Balken an beiden
Enden frei drehbar gelagert. Nun formulieren wir die
Randbedingungen fiir beide Auflagerpunkte # = 0 und = = I,
da hier das Moment null sein muss. Auch diesmal lassen

P
Bild 4 A ~
z =0 M =0 —> Cs+ f(0) =0 Cy=0
=l M =0 —> C11+Ca+f(1)=0 Ci=05P

sich ¢y und €y direkt berechnen. Die Gleichung der Mo-
mentenfldche lautet:
M = 0,5Px + f(x).

Das dritte Beispiel (Bild 5) behandelt einen beidseits
fest eingespannten Balken. Aus den Randbedingungen fiir
2 =0 bzw, x =1 ldsst sich aber keine Gleichung fiir die
Konstanten ableiten. Wir gehen daher auf den baustatischen

Bild 5 P
L =10" "y =10 l
x:l (1'2:0 2 g

Losungsweg {iiber, indem wir von der Tatsache Gebrauch
machen, dass f(2) die Lsung an irgendeinem Grundsystem
darstellt und €'y und Oy als iiberzihlige Groéssen aufgefasst
werden kdénnen.

Ueber die Art des Grundsystems oder die baustatische
Bedeutung der Konstanten C brauchen wir uns durchaus
keine Gedanken zu machen, Die Momente am Grundsystem
lauten

Mo = f(x)
und fir die Momente infolge einer iiberzdhligen Grosse
0; = 1 finden wir aus der Grundgleichung (Gl. 2)
M=Ciz 4 Cp + f (x)
das Moment, indem wir ausser C; =1 alles andere null
setzen. Fiir ¢y =1 wird somit My =2, und analog fiir
Co = 1 wird M, = 1.

Moj= f (2) Mi=2 My =1
M; My,
& = **E:,_ das
i
Cy a1 + Coajp = —ayg cH=""05P
C1asy + C2 a90 = —azg Co = —0125 P!

186

Tabelle 1

Sehniti K Y e f(x)
t m t mt

A 0 0
/4 0

1 0 2
/4 0

2 P 0
14 —P

3 0 —Pl/4
14 —P

B 0 —Pl/2

Mit diesen Momenten My, My und M, berechnen wir
nun mittels der Arbeitsgleichung die Koeffizienten a;,, und
die Elastizitétsbedingungen liefern uns ein Gleichungssystem
flir ¢y und C,. Im vorliegenden Fall ergibt die Auflésung
¢y = 0,5 P und Cy, = —0,125 Pl Die endgtiltige Momenten-
gleichung lautet:

M = 0,5 Po — 0,125 Pl 4+ f (2) .

Aus diesen Berechnungen konnen wir einige wichtige
Folgerungen ziehen:

Sobald wir die allgemeine Losung der Differentialglei-
chung kennen, berechnen wir vorerst ein partikulires Inte-
gral. Handelt es sich dann um einen statisch bestimmt ge-
lagerten Balken, ergeben sich die Integrationskonstanten
direkt aus den Randbedingungen und das Problem ist gelost.
Ist der Balken jedoch statisch unbestimmt gelagert, miissen
wir die Integrationskonstanten aus den Elastizitdtsbedingun.
gen bestimmen. Dabei sind die Momente am Grundsystem
identisch mit der partikuldren Losung und die Momente in-
folge einer Einheitsiiberzdhligen-Grosse erhalten wir, indem
wir in der Differentialgleichungs-Losung die entsprechenden
Konstanten 1 und alle anderen Ausdriicke null setzen. Es sei
nochmals betont, dass uns die statische Bedeutung des Grund-
systems nicht interessiert und dass wir fiir jede partikulidre
Losung bzw. filir jedes Grundsystem mit den gleichen iiber-
zhhligen Grossen arbeiten, deren statische Bedeutung eben-
falls belanglos ist.

Mit dieser Methode wollen wir nun den Kreisringtriger
behandeln, und wir leiten deshalb vorerst die entsprechende
Differentialgleichung ab.

Der Kreisringtriger

In Bild 6 ist ein Kreisringtridger dargestellt. Die Ver-
schiebung und die Verdrehung eines Tréagerelementes, die
angreifende Schnittkraft und das angreifende Schnittmoment

> >
lauten in vektorieller Schreibweise (HEinheitsvektoren ¢, n
>
und ns) :
—> =5 > >
Verschiebung : v=ut +vny Fw ne
> > > >
Verdrehung : d=xt +v1m -+ Y2 ne
(3) S oy > >
Schnittkraft : S=Nt 4 @11 + Q2 no
> > > >
Schnittmoment : M = Myt -+ Myng + Mone

Die gililtige Vorzeichenregelung ist aus Bild 6 ersicht-
lich, Die Last greift mit einer Exzentrizitit e am Triger an.
Der Radius des Tragers ist mit a bezeichnet. Bei lotrechter
Belastung verschwinden bei der Schnittkraft die Kompo-
nenten N und @y, beim Schnittmoment die Komponente M.

Bild 6
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Der Einfachheit halber bezeichnen wir im folgenden @, mit
@ und M4 mit M. Die Differentialgleichung lautet:

ae .
ds — P
dMqp M
(4) ds T
am My
ds R Q

Man findet diese Differentialgleichung in der Literatur 8).
Die Losung der Differentialgleichung lautet:

s

Q =— f pds + X4
0
M = X, sin 8/, + X3z cos¥/a + f (s)
(5) :
Myp =X c085/q— Xgsins/,—aX;+a j pds -+ af'(s)
0
. 1 (]
mit f7(s) + 5 f(s) = =D (1 +E)
Diese Ausdriicke konnen ohne weiteres .durch Einsetzen
in die Differentialgleichung verifiziert werden,
Wir kennen nun alles, was wir fiir die konkrete Berech-
nung brauchen, und konnen sofort mit der Losung eines Bei-
spiels beginnen.

Beispiel 1

Wir wéhlen einen 32 m langen Tréger mit 50 m Radius
(Bild 7). Die Belastung betridgt 10 t/m, die Exzentrizitit 0.
An beiden Auflagern ist der Trédger frei drehbar gelagert
und torsionsfest eingespannt; das Tragwerk ist somit ein-
fach statisch unbestimmt. In einer ersten Phase miissen wir
ein partikulédres Integral der Differentialgleichung

il
a2 f(s):_p

RACHESS
berechnen.

Hs wire ohne weiteres moglich, diese Differentialglei-
chung mit der allgemeinen Seilpolygongleichung direkt zu
losen. Ich verweise auf die diesbezliglichen Ausfiihrungen im
Lehrbuch F. Stiissi: Entwurf und Berechnung von Stahl-
bauten, Springer-Verlag, Berlin 1958 TUnsere Differential-
gleichung ist librigens analog gebaut wie diejenige des quer-
belasteten Zugstabes. Da nur ein partikuldres Integral er-

forderlich ist, konnte man sich — wie bei einem Anfangs-
wertproblem — zwei Werte z. B. f(0) und f(1) vorgeben. Die
librigen Werte f(s) liessen sich dann — ohne Gleichungs-

system — mit Rekursformeln berechnen.

Ein etwas anderer Losungsweg — der sehr einfach und
ubersichtlich ist und zudem den Vorteil hat, dass der Kriim-
mungseinfluss direkt sichtbar wird — kann mit einem Itera-
tionsverfahren gefunden werden, Die Differentialgleichung

" (s) + (1/a?) f(s) = —p
wird in der Form

f"(s) = —p —(1/a2)f(s)
geschrieben, Das Glied (1/a®)f(s) ist sehr klein gegentiber
p und man erhdlt eine erste Niherung durch Auflésen
der Differentialgleichung fy"(s) = —p, der gewohnlichen
Balkengleichung. fi(s) kann somit mit einer einfachen Seil-
polygonrechnung ermittelt werden. Die Berechnung ist
in Tabelle 2 durchgefiihrt.

3) u. a. €. Menn: Kreisringtriger und Wendelfldche, Diss., Druk-
kerei Leemann AG, Ziirich 1956.

= 32im
a=50m
p=10 t/m
e =0

Bild 7

19. Méarz 1964

Schweiz. Bauzeitung - 82. Jahrgang Heft 12 -

Ap
, A / 2 3 4
Bild 8 I\
X Mr
X
N
NS
N
>
\\
> 1000
M- \\_\\\\ i

Im néchsten Schritt wird die zweite Naherung

fa" (8) = —p — (1/a?) f1 (s)

berechnet, d.h. die Seilpolygonrechnung wird fiir eine korri-
gierte Belastung wiederholt. Man sieht sofort, dass das Ver-
fahren sehr rasch konvergiert, da die urspriingliche Bela-
stung von 10 t/m mit (1/a2)f1(s) nur wenig verdndert wird.
Das Endergebnis findet sich in Tabelle 3. f/(s) in den Kno-
tenpunkten wurde durch Aufsummieren von p -+ (1/a2)f(s)
(Parabelformel) erhalten,

In der zweiten Phase sind die Integrationskonstanten zu
bestimmen, Wie man sieht, erfiillt die partikuldre Losung
f(s) bereits die Anfangsbedingungen fiir M; X, und X3 sind
somit null. X; miisste eigentlich — weil unser System ein-
fach statisch unbestimmt gelagert ist — aus einer Elastizi-
tdtshedingung ermittelt werden. Im vorliegenden Fall genligt
aber eine Symmetriebetrachtung fiir @ oder My, da diese
beiden Schnittgrossen in Trégermitte null sein miissen. Hier-
aus folgt fiir X 160 t.

Bild 8 zeigt den Verlauf von M und My, wobei gestri.
chelt das Moment am geraden Balken angedeutet ist. My ist
am Auflager am grossten. Dies war schon aus der Diffe-
rentialgleichung ersichtlich, da fiir e = 0 M, am Momenten-
nullpunkt extremal wird,

Beispiel 2

Im zweiten Beispiel wird der gleiche Kreisringtridger
— diesmal jedoch mit biegefester Einspannung an heiden
Auflagern — berechnet. Zunichst wird wieder ein partiku-
lires Integral ermittelt. Die Seilpolygonrechnung fiihren
wir — von der Trigermitte ausgehend — am rechten Tré-
gerteil iiber die Punkte 4—3—2'—1'—A’ durch (Tab. 4).
Es besteht natiirlich kein Zwang zu diesem Vorgehen, Wir
werden aber sehen, dass wir damit die Symmetriebedin-
gungen leichter ausniitzen konnen (¢ = 0 in Punkt 4). Die
Endwerte der Iteration finden sich in Tabelle 5.

Ganz analog der eingangs durchgefiihrten Berechnung
des eingespannten Balkens nehmen wir nun an, dass das
partikuldre Integral die Schnittkrifte am Grundsystem lie-
fert, Die Schnittgréssen infolge der Ulberzéhligen Grossen

Tabelle 2
Schnitt p K A f1’(s) fi(s) (1/a2) f1(s)
t/m t m I mt t/m
A 10 0 0
4,0 140
1 10 40 560 0,224
4,0 100
2 10 40 960 0,384
4,0 60
83 10 40 1200 0,480
4,0 20
4 10 40 1280 0,512
Tabelle 3
Schnitt i(s) r(s) Jpas
0
mt t Vi
A 0 165,60 0
it 582,11 125,14 40
2 1000,58 83,87 80
& 1252,74 42,07 120
4 13836,97 0 160
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Tabelle 4

Schwitt p K \ (s) f(s) (1/a2) f(s)
t/m t m t mt t/m

4 10 40 0 0
4,0 — 20

3 10 40 — 80 —0,032
4,0 — 60

24 10 40 — 320 —0,128
4,0 —100

i 10 40 — 720 —0,288
4.0 —140

A’ 10 40 —1280 —0,512

Tabelle 5

Schnitt f(s) r(s) [pds Qo Mo My s/a
0

mt t t i mt mt

4 0 0 0 0 0 0 0

3 — 7996 — 39,94 40 — 40 — 79,96 3,25 0,08

2’ — 319,31 — 79,62 80 — 80 — 319,31 19,25 0,16

1’ — 716,54 —118,79 120 —120 — 716,54 60,70 0,24

A’ —1269,10 —157,20 160 —160 —1269,10 140,15 0,32

X4, Xo und X3, konnen aus den Grundgleichungen fiir @,
M und My abgeleitet werden, indem nacheinander X;, Xg
und X3 = 1 gesetzt werden.

s

Q(,:—fpds

0
Mo=7F(s)
Mg = a fpds+af'(s)

0

X, =1: Q1:1 Xg =13 QQZO Xg=1: Q3=0
My =0 Moy = sin $/, M3z = cos$/q
Mp =—a Mo = COS ¥/q Myps = —sin s/,

Die Elastizitdtsgleichungen lauten:

81 =810+ X1 811 + X812 + X3813 =0
(6) 82 =20+ - =0
33 = 830 + - =0

Die einzelnen Koeffizienten werden mit der Arbeits-
gleichung berechnet, wobei man zur Integration zweck-
missigerweise die Simpsonsche Regel anwendet.

Im Gegensatz zum geraden Balken muss zur Errei-
chung der erforderlichen Genauigkeit ausser dem Biege-
moment auch das Torsionsmoment in die Integration ein-
bezogen werden; der Einfluss der Querkraft ist nach wie
vor vernachlidssigbar klein. Der Koeffizient §; ergibt sich
somit aus

M; My My My
(7) B f i

Da wir von der Tragermitte aus gesehen Uber den
Bereich —s, bis +s, intergrieren, verschwinden die Integrale
der ungeraden Funktionen (e, sinx, sin z cos x usw.).

ds

Xy X X3
* 0 = — i
& * 0 = = 820
0 0 w = — 830

Das Gleichungssystem der Elastizitdtsbedingung spal-
tet sich in zwei voneinander unabhingige Teile auf: Xy und
X, fiir den unsymmetrischen Anteil und X3 filir den sym-
metrischen Anteil. Da die Belastung ebenfalls symmetrisch
verteilt ist, verschwinden auch §y9 und 8s0; es verbleibt
lediglich die dritte Zeile

X3 833 = —&a30.
Die Berechnung von X3 ist sehr einfach:

1 asin2so/ EJ
533:E7J|:80(1+M+%(1—>\)] A:GJT
My cos s/ Mg sin 8
U = f gy ds— TgJT " as
330
L=—rny
und wir gelangen zu den endgliltigen Werten fir @, M
und M.
Q = — fpdS
0

(9) M =X3cos3/q+ f (s)
Mp=—X3sins/, + a [fpds 4+ f (S)]
0

Der Verlauf von M und My ist in Bild 9 graphisch dar-
gestellt. Es ist zu beachten, dass M, bei der Momentennull-
stelle ein Maximum aufweist. Es ist wichtig, zu wissen, dass
beim eingespannten Balken das Torsionsmoment ungeféhr
im Tragerviertel extremal wird und ja nicht etwa am Awuf-
lager.

Vergleich

In Bild 10 sind das Biege- und Torsionsmoment bei
verschieden starker Kriimmung des Trigers dargestellt.
Lénge und Belastung der Triger sind gleich angenommen
wie in den vorhergehenden Beispielen. Die Tréigerldnge
betrdgt 32 m und die Belastung 10 t/m. Die Beispiele wur-
den fiir verschiedene Kriimmungsradien durchgerechnet.
Auf der Abszisse ist der Oeffnungswinkel go angegeben. ¢g
— 0 bedeutet, dass der Radius o gross ist; das entspricht
dem geraden Balken. g9 = 1 bedeutet, dass Radius und Tré-
gerlinge gleich sind (p von A aus gemessen).

Wir stellen nun fest, dass bei freier Auflagerung das
Biegemoment mit zunehmendem Oeffnungswinkel grosser
wird — die 10%-Abweichung gegeniiber dem geraden
Balken liegt bei rd. 99 = 0,95 — und «dass das Torsions-
moment schon bei kleinem ¢, sehr stark anwéchst, d. h.
schon bei go = 0,5 muss ein frei aufliegender Triager, des-
sen Dimensionen auf das Biegemoment abgestimmt sind,
bereits kréftig auf Schub armiert werden.

Beim eingespannten Triger nimmt das Moment in
Tragermitte bei wachsendem ¢, leicht ab (das Einspann-
moment verdndert sich gleich). Die 10%-Grenze liegt bei
rd. o = 1,6 und das Torsionsmoment wéchst ebenfalls nur
langsam mit zunehmender Kriimmung.

My frefe Auflagerung Mt Feste Einspannung
M-
-500

* 10My ~ o "

| w00+  Min Tragermitte 5004
4| 5 ’ 2/ 71 A /i \\

X ‘M in Tragermitte =10%

|

| My am Auflager /wf’_

| h \

| 190 Po 10 Po
Bl Bild 10
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Zusammenfassend kann gesagtwerden, dass bei ¢, < 1
das Biegemoment wie bei einem geraden Balken, dessen
Spannweite der Trégerabwicklung entspricht, berechnet
werden darf. Dem Torsionsmoment ist aber in jedem Fall
Aufmerksamkeit zu schenken, Beim frei aufliegenden Tré-
ger, weil es sehr rasch und stark anwéchst, beim einge-
spannten Tréger, weil das Maximum ungeféhr im Tréger-
viertel auftritt, wo die Druckplatte eines Kastenquerschnitts,
die meistens die geringste Stirke und somit die grossten
Schubspannungen aufweist, keine Voutenverstédrkung mehr
besitzt.

Ndherungsberechnung

Aus der Tatsache, dass das Biegemoment am Kreis-
ringtrdger keine grossen Abweichungen gegeniiber dem ge-
raden Balken aufweist, kann eine sehr einfache Nadherungs-
berechnung abgeleitet werden,

Wir berechnen zu diesem Zweck vorerst das Biege-
moment am geraden Balken, dessen Spannweite der Triger-
abwicklung entspricht, Das Torsionsmoment kann dann aus
zwei Anteilen zusammengesetzt werden (Bild 11). Der erste
Anteil wird aus der &Husseren Belastung abgeleitet. Die
auf dem Kreis angreifenden Lasten weisen gegeniiber der
Sehne eine Exzentrizitdt auf; in der Sehne, dem geraden

Balken, miisste somit ein Torsionsmoment MM entstehen.
Zerlegt man dieses Torsionsmoment in die dem Kreisring-
trager entsprechenden Komponenten, so ergibt sich fiir den
Kreisringtridger das Torsionsmoment Mypy zu

Der zweite Torsionsmomentanteil wird aus dem Biege-
moment des geraden Balkens abgeleitet. Wenn dieses Biege-

Mpq cos ¢

moment M betrigt und in seine Komponenten zerlegt wird,
entfillt auf den Kreisringtriger als Torsionsmomentenanteil

M2'2 = — ]TJ sin (7]
Das vollstdndige Torsionsmoment betrégt:
My = My + Myo

Durchlaufwirkung

Zur Beriicksichtigung der Durchlaufwirkung soll noch
kurz ein Verfahren erldutert werden, das grundsitzlich
gleich aufgebaut ist, wie die Dreimomentengleichung am
geraden Durchlauftridger. Voraussetzung flir diesen Berech-
nungsgang ist, dass der Trédger tliber den Stiitzen keine
Drehung um seine Axe ausfiihren kann, d. h. der Trager ist
iiber den Stiitzen torsionsfest eingespannt.

Als Grundsystem unserer Berechnung dient der frei
drehbar gelagerte Kreisringtridger. Vorerst werden an die-
sem Grundsystem, das mit einer tiiberzdhligen Torsions-
einspannung selber einfach statisch unbestimmt ist, die
Schnittgrossen M,, My, und @, berechnet. An diesem sta-
tisch unbestimmten Grundsystem bringen wir als tUber-
zéhlige Grossen zur Beriickichtigung der Durchlaufwirkung
an den Auflagern die Momente I, und M, an, die den Mo-
menten M; und M, die wir in der Baustatik verwenden,
entsprechen (Bild 12).

Fiir diese iiberzdhligen Grossen miissen wir noch den
Momentenverlauf am Grundsystem berechnen. Ich zeige
im folgenden, wie die Berechnung fiir M; durchzufiihren ist.
Wir verlangen,dass am linken Auflager das Moment 1, am
rechten Auflager das Moment null, entsteht. Da keine
Hdusseren Lasten vorhanden sind, verschwindet das partiku-
lire Integral und wir entnehmen der Losung der Differen-
tialgleichung (Gl. 5)

M = X, sin 3/, 4 X3 cos %/,
My = Xo C0OS 8/q — XgsSin¢/q —a X4

Bild 11
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Zwei Konstanten, ndmlich Xo und X3, lassen sich direkt be-

stimmen. Die Randbedingungen flir M; sind — wie bereits
gesagt —flirs =0—> M = 1lundesfolgtX;=1undfiirs =1
—> M = 0 und es folgt Xo = —ctgl/,.

M infolge M; = 1 ist damit vollstdndig bestimmt, wéh-
rend fiir My noch Xy aus der Elastizitdtsbedingung
81 = 810 + X4 811 zu berechnen ist.
Die Momente am Grundsystem lauten:

My9 = — ctg Y/, sin 8/, 4+ cos 3/,
Mypy = — ctg !/, cos 9/, — sin ¢/,
und fir Xy = 1
My = 0
Mr11=—a
Damit ergibt die Rechnung fiir konstantes Torsionstréig-
heitsmoment X; = —1/;. Analog gehen wir fiir die Bestim-
mung der Schnittmomente infolge M, = 1 vor.
Da wir nun M, und My, am Grundsystem und I und
My infolge M; = 1 bzw. M, = 1 Kkennen, konnen mit der

Arbeitsgleichung ohne weiteres die Auflagerdrehwinkel am
Grundsystem infolge der Husseren Last und der Tragerfest-
werte If; = 1 und M, = 1 berechnet werden. Die Elastizitits-
bedingungen fiir y ergeben dann das Gleichungssystem zur
Bestimmung der effektiven Grdsse von M; und M, und durch
Superposition findet man die endgiiltigen Schnittgrossen.

Die Beriicksichtigung der Vorspannung

Die grundlegenden Eigenschaften der Vorspannung blei-
ben natiirlich auch bei gekrliimmten Trédgern erhalten. So
sind bei einem statisch bestimmt gelagerten Tréiger Beton-
und Stahlspannungen gesamthaft betrachtet in jedem Schnitt
im Gleichgewicht und wie bei jedem Eigenspannungszustand
sind wohl Tragwerksverformungen, aber keine Auflager-
reaktionen feststellbar. Erst die Behinderung der Verfor-
mungen durch statisch unbestimmte Lagerung hat Auflager-
reaktionen zur Folge, die ihrerseits wieder das Kréaftespiel im
Tréger beeinflussen.

Hieraus ergibt sich die wichtige Feststellung, dass die
Vorspannung bei statisch bestimmt gelagerten Tragern im
allgemeinen wohl Biegemomente, in keinem Fall jedoch Tor-
sionsmomente erzeugt, Man sieht ebenfalls ohne weiteres ein,
dass z. B. zentrische Vorspannung auch bei einem gekriimm-
ten Triager nur zentrischen Druck verursacht, darf dabei
aber keinesfalls die sekunddren Wirkungen der Vorspan-
nung iibersehen; denn die aus der Kabel-Krimmung im
Grundriss entstehenden horizontalen Umlenkkréfte haben die
Tendenz, die Vorspannkabel aus dem Betonquerschnitt her-
auszureissen, und es ist deshalb sehr wichtig, dass jene
Spannkabel, die auf der konkaven Seite des Querschnitts
verlaufen, geniigend stark in den Beton hineingebunden wer-
den.

Die Wirkung der Vorspannung ist nun aber bei ge-
kriimmten Trigern nicht so glinstig wie bei geraden oder
schiefen Balken. Woh]l kénnen auch im gekriimmten Trag-
werk die Biegemomente nach Belieben kompensiert werden,
und die durch die Vorspannung erzeugten Betondruckspan-
nungen wirken sich insofern glinstig aus, als damit die
Hauptzugspannungen infolge Torsion abgemindert werden
konnen, Da aber bei Vollast in der diinnen unteren Platte
in den Trigerviertelpunkten meist nur noch geringe Druck-
reserven vorhanden sind, fallt dieser Vorteil der Vorspannung
oft nicht stark ins Gewicht.

Besonders schwierig ist eine geeignete Beeinflussung
der Torsionsmomente, kann doch hier oft der Fall eintreten,
dass das Torsionsmoment infolge Vorspannung im Kkriti-
schen Schnitt gleich gerichtet ist wie das Torsionsmoment

e a—

M, ——s

7 Elastizitatsbedingung: y=0
Bild 12
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Bild 13. Tragerabwicklung, L&ngen 1:200, Héhen 1:50

zufolge der &dusseren Lasten. Dies bedeutet, dass die Vor-
spannung die unglinstigsten Torsionsmomente nicht abbaut,
sondern im Gegenteil vergrossert.

An einem Beispiel soll nun noch die Berechnung der
Schnittkrifte infolge Vorspannung durchgefiihrt werden.
Wir wéhlen dafiir wieder einen Tréger von 32 m Linge und
einem Kriimmungsradius von 50 m. Der Tréiger sei an beiden
Auflagern biege- und torsionsfest eingespannt. Bei einer
Trigerhthe von 1,0 m verlduft die Vorspannung — wie aus
Bild 13 ersichtlich ist — symmetrisch in Form von aneinan-
dergefiigten Parabeln zweiter Ordnung. Im Punkt 1 bzw. 1’
weisen diese Parabeln eine gemeinsame Tangente auf. Die
Berechnung der Schnittkrédfte kann nun entweder mit Hilfe
der Umlenkkréfte oder — viel einfacher — direkt in der
nachfolgend beschriebenen Art durchgefiihrt werden.

Wir schreiben die Differentialgleichung (4) in der
Form
a9
ds — P
My M
(10) a5 +T = — my
aM My
ash Al

wobei p die Umlenkkraft der Vorspannung in vertikaler
Richtung und m,; das tordierende Moment der Umlenkkrifte
der Vorspannung in horizontaler Richtung bedeuten. Die Lo-
sung dieser Differentialgleichung wird ebenfalls in etwas
abgednderter Form angeschrieben:

Q@ = Qo + Xy
M = X sin 8/q ++ X3 cos ¢/, + Mo

(11)
Myp = X5 cos 8/, —Xzsins/,—aXy —aQo -+ ally
a e 1 My
mit My —*——(E-MO:-—Z)—T

Qo und My, die Querkraft bzw. das Moment infolge Vor-
spannung am statisch bestimmten Grundsystem, sind aus
der Kabelneigung und der Kabellage in jedem Querschnitt
direkt ersichtlich und kriimmungsunabhidngig. Deshalb ver-
schwindet in Gl. (11) — wie zu erwarten war — das Tor-
sionsmoment am Grundsystem.

MTO = —-aQ() —I'- aMOI =10 5
und die partikuldre Differentialgleichung
” il My
Yo'ty Moi= —Bi=—5
ist a priori erfiillt.

Fiir die Berechnung der uberzéhligen Grosse X3 (X und
X, verschwinden aus Symmetriegriinden) dienen die Aus-
gangswerte der Tabelle 6 (¢ bzw. 3/, von Punkt 4 aus ge-
rechnet).

Die Integration (Simpson’sche Regel) ergibt die Koeffi-
zienten 839 und 833 nach Formel (7) und es folgt

= 69,6mt

Die Superposition liefert die endgiiltigen Werte am beid-
seitig biege- und torsionsfest eingespannten Trager (Tab, 7).
Das gleiche Beispiel soll nun noch durch Einfiihren der

Umlenkkréfte berechnet werden. Wie aus Bild 138 ersichtlich

ist, betragen die vertikalen Umlenkkrédfte in den Berech-
nungspunkten 4,1, 2, 3, 4...

8LV

A gy = (2As)?E = 25t/m
] 8faV
1—-'4:qv:—(6TS)2:—— 8,33..t/m

Die horizontalen Umlenkkréfte sind auf der ganzen Triger-
lange konstant:

7

n= T =

20t/m

Unter Berlicksichtigung der Kabelexzentrizitdt in den ein-
zelnen Schnitten findet man die tordierenden Momente m;
(Tabelle 8).

Da vertikale und horizontale Umlenkkrifte wie dussere
Lasten aufgefasst werden, wenden wir wieder die hiefiir be-
schriebene Methode an und ermitteln ein partikulidres Inte-
gra] der Differentialgleichung

My all
FERy =—p——r = i)

Der erste Iterationsschnitt ist in Tabelle 9 dargestellt.
Auch hier konvergiert die Iteration sehr schnell. Tabelle 10
zeigt die endgililtigen Losungswerte der partikuldren Diffe-
rentialgleichung.

Da mit den Umlenkkréften allein die Hohenlage des
Vorspannkabels im Tréger noch nicht fixiert ist, muss den
Werten der Tabelle 10 zur Bestimmung der Schnittkrifte am
statisch bestimmten Grundsystem noch eine Randstorung,
die die Hohenlage der Vorspannung definiert, {iiberlagert
werden, Im Schnitt 4 betrdgt das Randmoment

MR = V8(4) = — 400mt
und der Einfluss von My in den Ubrigen Schnitten ist nach
GI8 (Gl

W= MR Ccos X/u

My = — Mp sin 8/,

Wie zu erwarten war, hat somit die Berechnung iiber die
Umlenkkréfte zu den gleichen Schnittmomenten am Grund-

Tabelle 6 Tabelle 7
Schnitt Mo My M3 = cos sla Mpz = —sin s/a Schnitt M My

mt mt mt mt
4 —400 0 1,0 0 4 —330,4 0
3’ —333 0 0,99680 —0,07991 37 —263,9 — 5,6
2! —133 0 0,98723 —0,15932 27 — 64,6 —aliial
1’ 200 0 0,97134 —0,23770 1t 267,6 —16;5
A’ 400 0 0,94924 —0,31457 A’ 466,1 —21,9
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Tabelle 13

Bild 14
Tabelle 8
Schmnitt an e me
t/m m mt/m
4 20,0 0,4 8,0
3 20,0 0,333 6,66
2’ 20,0 0,133 2,66
i 20,0 —0,20 —4,0
A’ 20,0 —0,40 —8,0
Tabelle 9
Schnitt p Mila K fi’(s)  fi(s) (1la?) f(s)
t/m t/m t t mt t/m
4 — 8,33 0,16 —16,355 0 0
16,355
3’ — 8,33 0,133 —32,817 65,42 0,026
49,172
2! —8,33 0,053 —33,137 262,11 0,105
_ 833 82,309
i 2’5 0 —0,08 33,031 591,34 0,237
20) 49,278
A’ -+25,0 —0,16 49,706 788,46 0,315
Tabelle 10
Schnitt M = f(s) 1(s) fp ds My
0
mt t t mt
4 0 0 0 0
3’ 65,39 32,70 — 33,33 — 31,9
27 261,56 65,39 — 66,66 — 63,7
1’ 588,53 98,10 —100,0 — 95,1
A’ 779,69 —2,51 0,0 —125,7
Tabelle 11
Schnitt M = Mp cos ¢ Mp=—DMWpsing My My
mt mt mt mt
4 —400,0 0 —400,0 0
3’ —398,72 31,9 —333,3 0
2 —394,89 63,7 —133,3 0
e —388,54 95,1 200,0 0
A’ —379,69 1125571 400,0 0
Tabelle 12
Schnitt M=M M
Néherung Soll-Wert
mt mt
4 —333,3 —330,4
3" —266,7 —263,9
2" — 66,7 — 64,6
5[ 266,7 267,6
A’ 466,7 466,1
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Schnitt e K(qs) SK(qv) Mp(Qv) me Mpy(an)
m t t mt mt/m mt

4 —16,67 0 8,00 0
0,1600 —16,67

3’ —33,33 2,66 6,67 —29,34
0,4785 —50,00

2 —33,33 26,59 2,67 —-48,02
0,7945 —83,33

17 +33,33 92,80 —4,00 —45,36
1,1050 —50,00

A’ +50,0 148,05 —8,00 —21,36

Tabelle 14

Schmitt My cOS ¢ — M sin o My My

Néherung Sollwert
mt mt mt

4 0 0 0 0

3’ —26,5 21,3 — 5,2 5,6

21 —21,1 10,6 —10,5 —11,1

1’ 46,0 — 63,4 —17,4 —16,5

A’ 120,2 —146,8 —26,6 -—21,9

system gefiihrt (Tabelle 11), wie die Berechnung der Mo-
mente aus der Kabellage in den einzelnen Schnitten, Da die
Berechnung der liberzéhligen Grosse X3 wieder gleich durch-
geflihrt wird, &ndert sich natiirlich auch am Endergebnis
(statisch unbestimmtes System) nichts.

Unter der Voraussetzung biegefest eingespannter Triger-
enden konnte X3 auch direkt aus den Werten der Tabelle 10
berechnet werden, da in diesem Falle die Hohenlage des
Spannkabels (bzw. das Randmoment) keine Rolle spielt. Die
Berechnung ergibt in diesem Falle

X3 = —330,4 mt
Das Endergebnis liefert ebenfalls wieder die Werte der Ta-
belle 7.

Zum Schluss sei nochmals kurz auf die vorgeschlagene
Nédherungsberechnung hingewiesen. Es ist klar, dass diese
Naherungsmethode fiir die Berechnung der Vorspannung
weniger genau ist als fiir die Berechnung &usserer, verti-
kaler Lasten, da in der partikuldren Losung der Differential-
gleichung (11) das Glied m;/a von betrédchtlichem Einfluss ist.

Am geraden Trager findet man die Biegemomente I ge-
méss Tabelle 12, die als Ndherung bereits endgiiltigen Cha-
rakter haben. Die Torsionsmomente My setzen sich zusam-

men aus My cose und —M sing (Bild 14); wobei My eine
Funktion der vertikalen Umlenkkrifte (g,) und der hori-
zontalen Umlenkkrifte (gj) ist.

Mpy = Myy (q) + Mr1 (qn)
Bezeichnet man mit
& = a (COS ;1 — COS ¢;)

die Differenz der Exzentrizitdat zwischen zwei Punkten i + 1
und ¢ gegeniiber der Sehne, so folgt

My (qy) = Z (5 Z Qtr)

Mqpi(qn) ergibt sich durch Aufsummieren der durch die hori-
zontalen Umlenkkrifte V/a erzeugten tordierenden Momente
m; = (V/a)e (Tabelle 13). Damit liefert die Ndherungsberech-
nung mit

My = Mq'l COS ¢ — Msin(p

verglichen mit den Sollwerten die angen&herten Torsions-
momente geméss Tabelle 14,
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