Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 81 (1963)

Heft: 51

Artikel: Die Steilerbachbrücke der N13 bei Sufers

Autor: Roš, Mirko Robin

DOI: https://doi.org/10.5169/seals-66939

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P.

Zur Diskussion um das Traglastverfahren

DK 624.04:539.37

Kürzlich ist in den «Proceedings» der Institution of Civil Engineers in London ein Vortrag von H.L.SU: Some problems in the philosophy of structural design, erschienen 1), der eine Reihe von gewichtigen Argumenten gegen das Traglastverfahren enthält. In seinem Schlusswort zur anschliessenden Diskussion 2) fasst der Verfasser seine Kritik zusammen. Nachstehend seien seine wichtigsten Feststellungen wörtlich wiedergegeben:

«Attention should be paid to the fact that several major criticisms had been raised in discussing plastic publications during the past few years, but none of them had been squarely answered. The only exception (about the acceptability of non-rigid joints in plastic theory) proved erroneous. On the other hand, after such unanswerable criticisms, leading plasticians had begun a silent retreat. Not only was elastic theory to be used in «plastic» design, but also no more plastic research was to be carried out in future. The stage was at present overwhelmed by some minor characters who were still unaware of appearing in the finale of the collapse drama.

A positive approach to determining the structural health was already in the process of evolution. It was well known that the ancient elastic design was insufficient for supersonic aircraft, missiles, and space vehicles. Yet, no plastic salesmanship has succeeded in penetrating into these fields.

Any physical science was indeed an approximation to the truth. The more a science advanced, the better the truth could be approximated. Nevertheless, the plastic theory, founded upon fallacious mathematical analyses and erroneous diagnoses of physical phenomena, was more a fiction than a science. In the history of science, it was not unusual to find that a minor inconsistency was often enough to spark off an explosion sufficient to destroy an unsatisfactory theory. Many major contradictions were apparent in plastic theory, and none of them could be camouflaged in any diplomatic voca-

bulary. This could not but lead to the belief that plastic theory and collapse-happy philosophy would probably remain as a casualty in the genetics of mechanics and structural engineering.»

Diese Feststellungen bedeuten eine sehr scharfe und deutliche Herausforderung an die Vertreter des Traglastverfahrens, der nicht mehr ausgewichen werden kann. Es bestehen nur zwei Möglichkeiten: Entweder werden die gegen das Traglastverfahren vorgebrachten Argumente widerlegt (was bisher nicht geschehen ist und wohl auch kaum möglich sein dürfte), oder sie müssen als richtig anerkannt werden und dann dürfte die Diskussion um das Traglastverfahren abgeschlossen sein.

1. November 1963

F. Stüssi

Die Steilerbachbrücke der N 13 bei Sufers

Von Mirko Robin Ros, dipl. Ing., Zürich

DK 624.21:624.012.47

Die im Zuge der Strassenverlegung Sufers 1959 erbaute Steilerbachbrücke gehört mit 210 m Länge zu den grössten Vorspannbrücken der N 13. Sie wurde schon vor dem Einstau des Stausees Sufers gebaut. In diesem Zustand hatte sie den Steilerbach und dessen Ufer in einer Höhe von 10 bis 16 m zu überbrücken (Bilder 1 u. 2). Nach erfolgtem Einstau liegt der Wasserspiegel rd. 3 m unterhalb der Fahrbahnoberkante, so dass der grösste Teil der Stützen dem Blicke des Betrachters entzogen bleibt (Bild 3). Ausführliche Vergleichsstudien mit verschiedenen Spannweiten, beginnend bei 17 m, und mit verschiedenen Querschnittsformen, nämlich volle Platte, Plattenbalken und Hohlkasten, führten zur Wahl des in den Bildern 1 und 2 gezeigten Systems. Ueber die Vorteile des Hohlkastenquerschnitts für kontinuierliche Brücken kleinerer Spannweite wird auf Abschnitt 3 des Aufsatzes über die Hinterrheinbrücke Reichenau verwiesen (SBZ 1963, H 45, S. 777).

- 1) Hsuan Loh SU, M. Sc. Tech., Some problems in the philosophy of structural design, «Proceedings of the Institution of Civil Engineers», vol. 22, pp. 391—404, London, August 1962, paper 6482.
- 2) Hsuan Loh SU, M. Sc. Tech., Discussion on Paper No. 6482, Some problems in the philosophy of structural design, «Proceedings of the Institution of Civil Engineers», vol. 25, pp. 80—86, London, May 1963.

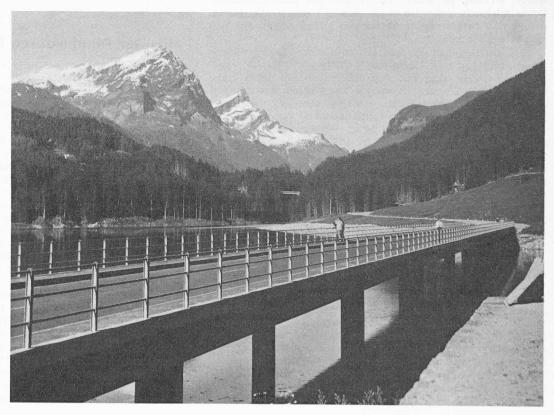


Bild 3. Blick auf Brücke und Stausee von Sufers aus, in Richtung Rheinwald (im Hintergrund Einshorn, davor Guggernüll)

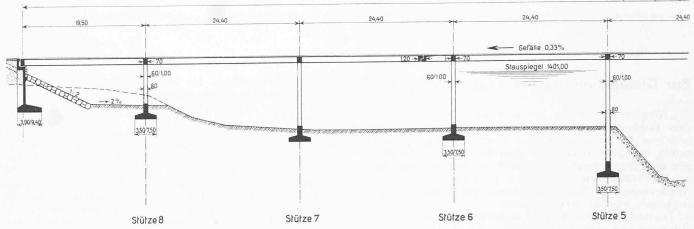


Bild 1. Steilerbachbrücke bei Sufers, Längsschnitt 1:600 (linke Hälfte)

Da die Pfeiler ihrer beträchtlichen Höhe wegen kostenmässig stark ins Gewicht fallen, wurde deren Form möglichst einfach und deren Abmessung möglichst klein gehalten. Mit dem Pfeilerquerschnitt von 0,6 \times 1,0 m ergab sich ein maximaler Schlankheitsgrad $\lambda=121$ in Brückenlängsrichtung. Die Pfeilerbreite von 1 m erlaubte eine Aufnahme der maximalen Windmomente mit der aus dem Schlankheitsgrad erforderlichen minimalen Bewehrung. Der Anschluss der Pfeiler erfolgte ohne Portalriegel an den im Innern des Kastens befindlichen Auflagerquerträger.

Die Brücke ist ein durchlaufender Rahmen über 9 Felder von 19,50 + 7 imes 24,4 + 19,50 m mit Dilatationsfugen im 4. und 7. Feld. Dadurch wurde die Erstellung des Baues in drei Etappen mit Wiederverwendung des Gerüstes ermöglicht. Ferner wird durch die Unterteilung in drei Abschnitte die Stützenkopfverschiebung infolge Schwinden, Kriechen und Temperaturänderung so klein - max. 3 cm - dass auf den Einbau von Gleitlagern oder Pendeln an den Stützenköpfen verzichtet werden konnte. Als weiterer Vorteil ergab sich die Verminderung der Reibungsverluste in den Kabeln. Allerdings mussten besondere Nischen im auskragenden Teil ausgeführt werden (Bild 4). Ein Teil der über die Stützen des bereits betonierten Trägers führenden Kabel konnte erst gespannt werden, nachdem das Gewicht des anschliessenden Teiles wirksam geworden war. Ferner mussten die Kabel des neu zu betonierenden Teiles von beiden Seiten her gespannt werden können.

Die Gleitlager in den Dilatationsfugen und in den Widerlagern bestehen aus einfachen Stahlplatten (Bild 5). Die Dilatationsfugen sind mit der üblichen Konstruktion aus Schleppblechen überbrückt worden. Die Kosten dieser Lager und Dilatationsfugen betrugen rund 1/10 von dem, was heute für (allerdings raffiniertere) Konstruktionen ausgelegt wird, nämlich für die Gleitlager einschl. Verlegen Fr. 57.- pro Stück, für die Dilatationsfugen Fr. 126.- pro m. Nach fünfjähriger Betriebszeit sind sowohl Lager wie auch Fugenbleche in einwandfreiem Zustand. Nach Auffassung des Verfassers haben sie mindestens eben so gute Aussicht, sich auf die Dauer zu bewähren, wie die heute so beliebten Neopreneund Teflon-Konstruktionen, tragen aber in entscheidendem Ausmass zu den geringen Baukosten der Brücke bei. Ohne Honorar für die Projektierung und Bauleitung betrugen die gesamten Baukosten Fr. 365.— pro m2.

Der Umstand, dass zu Lasten einer erhöhten Sorgfaltspflicht beim Verlegen für die konstruktive Armierung Torstahl Ø 6 bis 8 mm verwendet wurde, gestattete es, mit einem mittleren Aufwand an schlaffem Stahl von 53 kg/m³ auszukommen. Bei dem heute von verschiedenen Behörden mit Rücksicht auf die leichtere Verlegbarkeit vorgeschriebenen minimalen Durchmesser von 10 bis 12 mm wäre der Armierungsgehalt um rd. 100 % höher ausgefallen, was allein einer Baukostenverteuerung von 10 % entspricht!

Die Unternehmer, W. Zindel, Chur, und Künzli & Mai, Davos, lösten durch die Person ihres örtlichen Bauleiters H. Züst, dipl. Baumeister, eine Reihe von neuartigen Auf-

gaben mit viel Geschick und grosser Sorgfalt. Das Absenken der Gerüste konnte mit grosser Genauigkeit reguliert werden, die Vorfabrikation der Platten für den Hohlkasten, das Verlegen der Kabel (Bild 6) und das Betonieren der Hohlkasten sowie die Behandlung der Arbeitsfugen erfolgte mit grösster Gewissenhaftigkeit. Eine ganz genaue Nivelette des Geländers hat man erreicht indem dieses vor dem Einbetonieren provisorisch an einem Gerüst aufgehängt wurde. Der Belag, bestehend aus 2 cm Gussasphalt als Isolation, darüber 3 cm Teerasphaltbeton auf der Fahrbahn, wurde auf eine Unterlage aus Oelpapier aufgebracht. Beim Abkühlen konnte sich die Asphaltdecke ohne Rissebildung zusammenziehen, und da sämtliche Fugen mit Fugenkitt abgedichtet wurden, konnte auf diese Weise jeglicher Zutritt des Wassers in die Betonkonstruktion verhindert werden, so dass sich nach 5 Jahren die Brückenunterseite praktisch frei von jeglichen Kalkausscheidungen darbietet.

Die Bauleitung lag in den Händen der Motor-Columbus AG., die Projektbearbeitung wurde von A. Aschwanden, dipl. Ing., im Büro des Verfassers besorgt.

Literatur: $H.\ Kradolfer$, Die Strassenverlegung bei Sufers, «Strasse und Verkehr» 8/1963.

Adresse des Verfassers: M. R. Ros, dipl. Ing.. Asylstrasse 58. Zürich 7/32.

Fahrt der Planer durch Norddeutschland

Die Regionalplanungsgruppe Nordwestschweiz organisierte vom 12. bis 19. Mai 1963 eine Studienreise nach Norddeutschland um die Planungsprobleme einiger Städte näher kennenzulernen. Die Reise führte nach Hannover, Wolfsburg, Bremen, Hamburg, Lübeck und Kiel. Unter den 82 Teilnehmern befanden sich Mitglieder von Behörden, Juristen, Ingenieure, Architekten u. a. Dank sorgfältiger Vorbereitung seitens der Reiseleitung und dank dem Entgegenkommen der Planungsstellen in den erwähnten Städten, konnten die Reiseteilnehmer einen gründlichen Einblick in die mit Planung und Ausführung verbundenen Probleme gewinnen, indem in jeder Stadt Vorträge über Planung sowie Besichtigungsfahrten organisiert worden waren. Besonders interessant war der Besuch im Volkswagenwerk in Wolfsburg. In diesem kurzen Bericht können nicht alle Eindrücke besprochen werden, es sind hier nur die interessantesten und charakteristischen angeführt.

In allen besuchten Städten besteht das selbe dringliche Problem: die Bewältigung des fliessenden und ruhenden Verkehrs. Das konnte schon in *Hannover* festgestellt werden, obwohl gerade diese Stadt wegen ihrer grosszügigen Verkehrslösungen bekannt ist (vgl. *E. Zietzschmann*, Verkehrsplanung in Hannover, SBZ 1962, H. 4. S. 61). Ein äusseres Tangentensystem wurde geschaffen, das durch Radialstrassen Verbindung mit dem Innenstadtring erhielt. Infolge des unvorhergesehen starken Anstieges des Motorisie-