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Temperaturanstieg des Gases im heissesten Kiihlkanal pro-
portional ist. Diejenige Massenstromdichte im heissesten
Kanal, welche eine vorgegebene maximale Hiilsentemperatur
ergibt, kann fiir eine cosinus-formige axiale Leistungsver-
teilung, und unter Einbeziehung einer passenden Gleichung
flir den Wérmeiibergang durch Konvektion, explizit ange-
geben werden. (Auf die Wiedergabe der resultierenden For-
me]l wird hier verzichtet, da deren Ableitung zu viel Platz
beanspruchen wiirde). Wenn wir nun Tou.k, bis hinauf zu
einem Wert nahe bei der maximal zuldssigen Hiilsentempe-
ratur verdndern, so wird die Massenstromdichte im heisse-
sten Kiihlkanal, welche iibrigens vom Druck im Kreislauf
praktisch unabhéingig ist, schliesslich gleich Null. Die Leistung
je Fldcheneinheit des Kernquerschnittes verschwindet somit
fiir Ty = Ty und fiir T, nahe bei der héchstzulédssigen Hiil-
sentemperatur T} ... Zwischen diesen beiden Werten ergibt
sich ein Maximum. So wurde z. B. fiir Ty = 150 °C, Ty mar =
650 °C und B = 1,32 das Maximum fiir jeden beliebigen Wert
der relativen Pumpleistung bei Toy.x, = 540 °C gefunden.
Um die mittlere Austrittstemperatur aller Kiihlkanile durch
die Stromung in den &usseren, weniger Leistung produzie-
renden Kanélen nicht zu vermindern, wiirden die letzteren
durch Blenden in der Weise gedrosselt, dass deren Aus-
trittstemperatur etwa dieselbe wire wie die des heissesten
Kanals.

Die zweite Frage im Zusammenhang mit den Haupt-
daten der Kiihlung betrifft den statischen Druck im Kreis-
lauf. Der Druckverlust im ganzen Kreislauf ist, wie der-
jenige im Kern, der Dichte und damit dem Druckniveau indi-
rekt proportional, siehe Gl. (4); Gl (3) zeigt, dass die rela-
tive Pumpleistung daher dem Quadrat des Druckes indirekt
proportional ist. Es besteht somit ein grosser Anreiz, den
Druck so hoch wie moglich zu wéhlen; Einsparungen an
Pumpleistung miissen dabei den Kosten gegeniibergestellt

werden, die sich durch die stdrkeren Bauteile des Kiihlkreis-
laufs ergeben. Es wurde gefunden, dass ein Druck in der
Grossenordnung von 70 kg/cm?2 zu geniigend bescheidenen
relativen Pumpleistungen fiihrt.

Die Massenstromdichte im heissesten Kiihlkanal ist we-
sentlich hoher als diejenige von gasgekiihlten thermischen
Reaktoren. Der Schallzustand am Austritt und die damit
verbundene Begrenzung ergibt sich aber erst bei relativen
Pumpleistungen, welche weit ausserhalb des wirtschaftlich
tragbharen Gebiets liegen.

Schliesslich seien einige Werte von resultierenden mittle-
ren Leistungsdichten im Reaktorkern in Abhingigkeit des
Durchmessers der Brennstoffelemente sowie des Verhéltnis-
ses von Stromungsquerschnitt zu Gesamtquerschnitt des
Reaktorkerns angegeben, Bild 1. Die Kleinheit der Durch-
messer mag erstaunen, doch handelt es sich um die normale
Gréssenordnung von Brennstoffelementen vom «Nadel-Typ»
flir schnelle Reaktoren, welche in der Tat durch den Wirme-
iibergang im Innern der Elemente vorgeschrieben wird2).
Die Leistungsdichten wurden gegeniiber der idealen relativen
Pumpleistung aufgetragen die es braucht, um das Gas durch
den Reaktorkern zu pumpen, siehe Gl. (3a) und (4). Wih-
rend fiir einen konstanten Wert der relativen Pumpleistung
die Leistung je Fldcheneinheit des Kernquerschnitts mit v
proportional anwéchst, siehe Gl. (5), nimmt die Leistung je
Volumeneinheit des Reaktorkerns mit wachsendem v ab, da
die Lénge der Brennstoffelemente stdrker als v zunimmt,
siehe GI. (6). Wie man sieht, konnten schon bei bescheidenen
relativen Pumpleistungen Leistungsdichten bewiltigt wer-
den, welche in dem fiir schnelle Reaktoren wiinschharen Be-
reich liegen.

2) Die durch den Wirmeiibergang im Innern der Brennstoff-
elemente bedingte Beschrinkung der erzielbaren Leistungsdichten
ist im vorliegenden Diagramm nicht beriicksichtigt.

Stationdre Stromungsverhiltnisse in einem Vertikalschacht unter Beriicksichtigung

eines Warme-Austausches
Von M. Gaillard, Institut fir Aerodynamik an der ETH, Ziirich

Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

Einleitung

Im Zusammenhang mit den zahlreichen Tunnelprojekten
taucht eine ganze Anzahl liiftungstechnischer Fragen auf.
Eine davon bilden die stationdren Stromungsverhiltnisse
in einem langen Schacht, welcher in unserem Fall einen
vertikal in den Felsen getriebenen Abluftkanal eines Tunnel-
abschnittes darstellen soll.

Ein Gebldse im Schachtfuss beférdere die Abluft durch
den Kanal ins Freie. Eine Anwendung der Ldsung des Stro-
mungsproblemes wére nun, die zur Bemessung des Ven-
tilators erforderlichen Grdssen zu bestimmen und einen
wirtschaftlichen Betrieb zu gewdihrleisten. Bei Beriicksich-
tigung des Wéarmeaustausches zwischen Schachtwand und
Luftstrom muss der Verlauf der Wandtemperatur bekannt
sein. Wir nehmen eine lineare Abhdngigkeit zwischen Tiefe
und Temperatur an.

Grundgleichungen

Die allgemeinen Grundgleichungen der Strémung in
einem Vertikalschacht mit Reibungsdruckabfall und Wirme-
austausch zwischen Schachtwand und Luftstrom sind:

A. Die Kontinuitdtsgleichung

My
u(z) = 7 v(2)

oder, differentiell geschrieben

My
= F dv
z ist die senkrechte Koordinate (positive Richtung nach
oben), w (2) die mittlere Geschwindigkeit auf der Hohe z,
m, die sekundliche Menge, D der Schachtdurchmesser, der

(1) du
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DK 533.6

liber die Hohe konstant sein soll, F = /4 - D2 der Schacht-
querschnitt und v das spezifische Volumen.

B. Der Impulssatz

Adz

gD &

Darin ist p (2) der Druck, g die Schwere-Beschleunigung
und A der Druckverlustkoeffizient des Schachtes.

Allgemein fiihrt die Berechnung des Druckabfalles in-
folge Rohrreibung und damit auch von A\ auf ein Grenz-
schicht-Problem. In unserem Fall sollen alle Geschwindig-
keitsprofile diejenigen der voll ausgebildeten turbulenten
Rohrstromung sein, so dass der Widerstandsbeiwert A in
einen Bereich zu liegen kommt, wo nur die relative Rauhig-
keit ¢D (e absolute Rauhigkeit) dessen Wert bestimmt,
Bild 1, A ist dann unabhidngig von der Reynoldszahl und
der Geschwindigkeit.

Ist der Schacht um einen Winkel
geneigt, lautet das Schwereglied
g cos #-dz. Die Koordinate z
Schachtes.

(2) udu = —vdp — gdz —

¥ zur Senkrechten
in der Gleichung (2):
liegt dann in der Axe des

C. Erster Hauptsatz der Wdarmelehre

(3) dg =di—vdp =c¢,dT—vdp wobei
dq =dq.,+ dq,
aD
dq, = a — (Tw(z) *T(z)) dz

k
Tw(2) =Two+ 5 2

h
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Es bedeuten: g, die von aussen zu- oder abgefiihrte Warme-
menge, g, die Reibungswirme und i die Enthalpie. Diese
drei Grossen sind auf die Masseneinheit bezogen. Weiter ist
a die Warme-Uebergangszahl Ty (2) und T (2) die absolute
Temperatur der Schachtwand bzw. der stromenden Luft.

Unter Verwendung der Gleichung (2) ldsst sich Glei-
chung (3) schreiben:

(3a) a {'wﬁ (Tw —T)dz = udu + c,d T + gdz

Dabei streicht sich dq, gegen \-dz/2D-u2 wegen der
Aequivalenz von Reibungswidrme und Reibungsarbeit. In
dieser Darstellung gilt der Energiesatz fiir jede beliebige
verlustbehaftete Stromung mit Warmeaustausch.

An dieser Stelle soll nun eine Abschitzung der Wirme-
Uebergangszahl « erfolgen. — Jede Wirmelibertragung in
einem stromenden Gas ist mit Reibung verbunden, Man
kann nun da der Mechanismus der Turbulenz den konvek-
tiven Wiarmetransport ins Innere der Stromung bestimmt,
einen Zusammenhang zwischen Reibung und Wirmeiiber-
gang suchen. Ein solcher ist uns durch die Reynolds-Ana-
logie gegeben, die einen linearen Zusammenhang zwischen
dem dimensionslosen Wirme-Uebergangskoeffizienten cq
und dem Widerstandsheiwert A\ liefert. Dieser ist:

Cy

Damit ist die sekundliche Wiarmemenge gleich:

u
My dqq = CqCp (wD 3) (TW —T) dz,

a D2
und mit m, = T erhalten wir

4
dds =g, cpﬁ(T||-~T_) dz
aD
dga  =a—p— (Tw —T)de
Daraus folgt:
A Cpmy
L

¢, bleibt bei diesen Temperaturen konstant, so dass sich a
unter Beriicksichtigung des konstanten Wertes von )\ iiber
z kaum merkbar dndern wird.

D. Die Zustandsgleichung idealer Gase
(4)

mit R als Gaskonstante von Luft.

pv=RT

Herleitung des Systems von Differentialgleichungen:

Aus den Gleichungen (1), (2), (3a) und (4) eliminieren
wir das spezifische Volumen v und die absolute Tempe-
ratur 7. Dadurch verringert sich die Anzahl der Gleichungen
auf zwei. In diesen kommen nur der Druck p und die Ge-
schwindigkeit » in Funktion von vor. Schliesslich schrei-
ben wir die beiden Differentialgleichungen dimensionslos.
Aus den Gleichungen (2) und (1) eliminieren wir das spe-
zifische Volumen v und erhalten

F A u2
(5) uuz+Wsupz+"27D+g:0
Ferner schreibt sich Gl.
chungen (4) und (1) als

I

(3a) bei Verwendung der Glei-

cpF Acp, F ey
(6) uuz"}‘ﬁh’(“p)z‘*‘ 2D m, P¥) ——5p Tw+9g=0

a( )

wobei ( )7 = —— bedeuten soll.

dz
Mit Hilfe der dimensionslosen Ausdriicke
u P 1 2
= — T = —— 0=+ =
B =" Po T, $=73

wobei sich die mit dem Index 0 behafteten Grossen auf den
Eintrittsquerschnitt 2 = 0 beziehen, und h die Schachttiefe
ist, ergeben sich die Gleichungen:

Up? RT, /No Uo
(5a) (h)“” +( )#//»+(2D)#+
Up2 cpTo AepTo
(6a) (h l);zu.\v-i-( n ) ;m- (75' ,u'r—

( )Tu'—l-g:()

Dieses Gleichungspaar umschreibt die Strémungsvor-
gidnge in einem Vertikalschacht bei Beriicksichtigung eines
allfdlligen Wéirmeaustausches zwischen Schachtwand und
Luftstrom. Der Einfluss des Auftriebes wurde in der Glei-
chung (2) ausser acht gelassen. Nachtridglich kann dieser
ndherungsweise in summarischer Form mitberiicksichtigt
werden. Die iiber die Schachttiefe ermittelte Druckdiffe-
renz setzt sich im wesentlichen aus der hydrostatischen
Druckhohe und dem Reibungsdruckabfall zusammen, Letz-
tere, verringert um den «Auftriebsdruck» Ap, ist schliess-
lich die Druckerhdhung, die vom Ventilator zu bewiltigen
ist. Die Berechnung der Druckdifferenz Ap, die vom Auf-
trieb herriihrt, erfolgt ndherungsweise mit Hilfe des ermit-
telten Dichteverlaufes im Schacht und desjenigen der Aus-
senluft nach der Beziehung:

Am-—f—( )—»v%(f))d

Losung des Gleichungssystems
Bevor zur eigentlichen Losung der Differential-

A XI '";"“3:1 S T LS N o (A e e i [ TT ¢/p gleichungen gegangen wird sollen einige Ueber-
0,08 ,L“m‘"""be"“h Byepoutischirast I S| e #“" 5.10-2 legungen iiber den zu erwartenden Verlauf der
0,07 \ : y mmn ! ! ’/l.~10': Kurven u, m und © angestellt werden. Unter den
006 - 54%5‘~ ! = 2 T 310" getroffenen Voraussetzungen eines iiber der Hohe
SR s ) = "’/1‘3,::3_2 konstanten Schacht-Querschnittes mit einer stetig
NS > ! = —""1q9-2 Verlaufenden Schachtwand-Temperatur wird der
0.04 T\ \':\Q* = = 8.10-3 Verlauf der gesuchten Kurven sicher keine Singu-
‘\ \ Q~- ! I : 6102 larititen aufweisen. Bei nicht zu grossem Wirme-
003 T 8% T T TNS I T — e 4-10-% Ubergang diirfen die Steigungen dieser Kurven als
,L, I,“.a, f} ] I~ 1] g 1. 207 verhédltnismissig klein angenommen werden. Dem-
0,02 %7«)‘; J i 0§ T W 110"°  entsprechend ist es nahelie.,gend., die Lés\'mgen in
' - R T 1 J: —t— 810 * McLaurin-Reihen bis und mit Gliedern zweiter Ord-
0,016 | | ’T“**" H— i ~ - 610""  nung anzusetzen.
oore T 1T NG Lif 41074
| | Hydruuhsch glatt N = -4 w
0,012 {~-——t-—t—{-| T K\N__ — ﬂg_“ p=o—=1ltaitatt...
0,01 . w A | ] = i, =
mE s R w0 s
0,008+ : - \ R = e B Q= = g7y
0° 2 461" 2 461° 2 461° 2 4610 2 4610° 5-10’:
Re - L2 e T ==l gt
Bild 1. Widerstandszahl \ in Abhiingigkeit der Reynoldszahl Re fiir ver- 8 ¢ (0) s ¢ (0)
schiedene Rohrrauhigkeiten ¢ el = 1! = 2!
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Die Koeffizienten «; und g; stellen, von Konstanten abge-
sehen, die i-te Ableitung der Funktion x bzw. 7 an der
Stelle 0 dar. Man beachte, dass die Randbedingungen im
Losungsansatz bereits enthalten sind; es gilt ndmlich fiir

¢t =0; u(0) = uound p(0) = po.

Um die Koeffizienten oy und fB; zu bestimmen, setzen
wir zunidchst in den Differentialgleichungen (5a) und (6a)
die Anfangswerte { = 0, p = 1; @ = 1 ein. Damit entstehen
zwei gewdhnliche algebraische Gleichungen, aus welchen sich
die zwei Unbekannten g (0); und T (0) unmittelbar berech-
nen lassen.

Die Ermittlung von as und 3 erfolgt ganz dhnlich. Wir
differenzieren das Gleichungssystem (5a), (6a) nach { und
setzen wiederum ¢ = 0; ¢ = 1; 7 = 1 ein. Aus den zwei somit
erhaltenen algebraischen Gleichungen bestimmen wir die ge-
suchten Koeffizienten as und B leicht. Nach durchgefiihrter
Rechnung erhalten wir:

h \ U2 g AR
B ( 2D s )‘f‘ op (Two—To)
(RTO— ,Z)
o h N\ U2 U2 Epr
Bi==— g, {(ZD—+Q)+ h‘“] = oo
o h "N U2 U2 RT,
= ey |2 (\ D T =P )
2(RT0— )
K
AR A
—W(To (ay +,31)*k)
. h : A U2 U2
Be=—5gr, [« (’27.7_g> +2 (*h' ) oz

In vielen Féllen sind die Glieder mit u,2? verglichen mit
den restlichen Gliedern der Formel fiir ay, 81, as, 2 vernach-
lassighar klein und koénnen somit gestrichen werden.

Die Koeffizienten ¢y, ¢ der dimensionslosen Temperatur-

formel ® = T/T, berechnen wir mit Hilfe der Gl. (4) und (1)
T Dl 0 u v
Ty = Po Vo #ZTAIT_ Vo
O =um

Daraus ergeben sich

g = a1 + B1 eo = a1 B1 + a2 + B2

Wir diskutieren nun noch kurz zwei Verodffentlichungen,
welche ein dhnliches Thema behandeln. In beiden Féllen wer-
den im Gegensatz zur vorliegenden Studie gewisse Glieder
in den Differentialgleichungen vernachlissigt.

Kemp [1], der in seinem Bericht die Stromungsvor-
gédnge in einem Grubenschacht behandelt, streicht in der
Impuls- und Energiegleichung den gegeniiber den restlichen
Gliedern kleinen Ausdruck wdu. Ferner trifft er filir die ge-
samte ausgetauschte Wiarmemenge zwischen Luftstrom und
Schachtwand einen linearen Ansatz.

h
Aep [
Q:qz: 2D /(THWT)(ZC'
0

Zur Bestimmung von ¢ muss er aber noch die Luft-
temperatur und die Geschwindigkeit im Endquerschnitt
kennen.

In der «Theoretischen Maschinenlehre» von Grashof [2]
wird die Bewegung der Luft in einer Rohre mit Wirmelei-
tung untersucht, und dies im Hinblick auf die Stromung
von Heizgasen in einem Heizkanal. Somit ist der Einfluss
des Wirmeaustausches auf die Temperatur weit grosser als
der der kinetischen Energie oder der Hubarbeit. Demzufolge

178

werden in der Energiegleichung die Glieder udu und gdz ver-
nachlissigt. Aus &dhnlichen Ueberlegungen setzt er in der
Gasgleichung das spezifische Volumen der absoluten Tem-
peratur proportional.

Alle diese getroffenen Vereinfachungen der Differential-
gleichungen erlauben dann eine Ldsung in geschlossener
Form. Zum praktischen Gebrauch aber entwickelt Kemp
seine Formel in eine Potenzreihe.

Rechenbeispiel

Das Beispiel, das hier behandelt werden soll, gliedert
sich in zwei Teile, ndmlich in die Bestimmung der u-, 7- und
©-Kurven, erstens unter Beriicksichtigung des Wé&rmeaus-
tausches, und zweitens ohne Wirmeaustausch zwischen
Schachtwand und Luftstrom. Im zweiten Fall vergleichen
wir unsere Formeln mit den entsprechenden von Kemp.
Abmessungen des Schachtes:

L = 1000 m D=T7m A = 0,022
Anfangswerte:

uy = 10 m/s k=—18"°

T, = 300 °K Ty = 297 °K
Fall 1. Mit Wiarmeaustausch. Fiir die Koeffizienten ergibt
sich:

a; =  0,0677 B1 = —0,1159 gy — — 0,0482

as = — 0,00526 B2 = -+ 0,0038 0 = — 0,00931

Somit gelten die Gleichungen:

u =1+ 0,0677 { — 0,00526 ¢

7 =1-—0,1159 { 4 0,0038 {2

6 =1—0,0482 { — 0,00931 {2
Fall 2: Ohne Wirmeaustausch. Die Koeffizienten sind:

a; = 0,0833 B1 = —0,1159 g1 = — 0,0326

ay — 0,00499 ﬁg = + 0,00467 £ — 0

u = 1 - 0,0833 ¢ + 0,00499 ¢

7 =1—0,1159 { 4 0,00467 ¢

6 =1—0,0326 ¢

Bild 2 zeigt die Ergebnisse. Nach unserer Schreibweise

dargestellt, lauten die Formeln von Kemp:

p =14 0,0831 ¢ + 0,00498 {2

7 =1—0,1156 { + 0,004625 {2

6 =1—0,03255 ¢
Zwischen den Formeln Kemp und den unserigen bestehen
keine nennenswerte Unterschiede. Dies ist auf die verhilt-
nismissig kleinen Geschwindigkeiten zurlickzufiihren.

Zusammenfassung

Aus den vier Grundgleichungen (1), (2), (3), (4) leiten
wir zwei Differentialgleichungen in den unbekannten Funk-
tionen u(z) und p(z) her. Nachdem wir zur dimensionslosen

$

N LA L i

15 " \ U
mit Wormeaustausch \ \
— — —ohne Warmeoustousch o1 /

e *_,\ f —k

088 090 092 094 096 098 10 102 104 106 108 11 # X8
Bild 2. Verlauf der dimensionslosen Geschwindigkeiten u, der
Driicke 7 und der Temperaturen © in Abhiingigkeit vom Hohen-
verhiltnis
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Schreibweise libergegangen sind, stellen wir, gestiitzt auf
qualitative  Betrachtungen der Strémungsvorginge im
Schacht, die Funktionen x und 7 in Potenzreihen dar. Ihre
Koeffizienten, welche im wesentlichen die Ableitungen der
unbekannten Funktionen z und 7 im Nullpunkt darstellen,
konnen durch Einsetzen der Anfangswerte { = 0: u =1,
7 = 1 sowohl in den Differentialgleichungen als auch in dem
einmal nach { differentierten Gleichungssystem ermittelt
werden.

Bemerkungen zur Reduktion elliptischer Integrale auf Normalintegrale

Von Dr. Reinhard Hiirlimann, AG Brown, Boveri & Cie., Baden *)

Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

1. Einleitung

Im Zusammenhang mit einer von Prof. Dr. J. Ackeret
angeregten Arbeit auf dem Gebiete der Aerodynamik — Be-
rechnung des minimalen induzierten Widerstandes einer
Schaufel mit Spalt im Rechteckkanal [1] — hatte sich der
Verfasser verschiedentlich mit der Lésung und numerischen
Auswertung elliptischer Integrale zu befassen. Die Beschif-
tigung mit diesem Problemkreis gab den Anstoss zu den fol-
genden Ueberlegungen.

Ein erster Schritt bei der Berechnung elliptischer Inte-
grale besteht bekanntlich darin, diese mit einer geeigneten
Substitution auf Normalintegrale zuriickzufiihren. In gewis-
sen Féllen treten nun die Integrale bereits in einer Form auf,
die bei Kenntnis dieser Substitution nach kurzer Rechnung
auf Normalintegrale reduzierbar ist.

Dem Ingenieur, der sich vor die Aufgabe gestellt sieht,
solche nicht elementare Integrale zu l6sen, kann es jedoch
nicht in erster Linie daran gelegen sein, sich auf diesem Ge-
biet eingehender mit Funktionentheorie zu befassen. Er ist
deshalb auf Hilfsmittel angewiesen, wie die Integraltafeln von
Byrd und Friedman [2], Jahnke und Emde [3] u.a. Unter
diesem Gesichtspunkt erscheint es deshalb angebracht, auf
eine Moglichkeit hinzuweisen, die fiir einige Fille das
rasche Auffinden der gewiinschten Substitutionsformeln ge-
stattet.

2. Die elliptischen Integrale
Elliptische Integrale lassen sich in die Form

R
(1) ﬁ—,
| P(t)
bringen wo R(t) eine rationale Funktion von t und P(t) ein
Polynom 3. oder 4. Grades in ¢ mit einfachen Nullstellen be-
deuten.

Das Integral (1) ist, wie bereits angedeutet, reduzierbar
auf eine Linearkombination von elementaren Integralen und
von Normalintegralen. Die letzteren sind nachstehend an-
geschrieben:

Normalintegral 1. Gattung:

1
(2) FG*k)=u= l
1/(1_72) 1 —K2r2)
Normalintegral 2. Gattung:

T*

(3)  E(r% k) :fl/l

0

iy oy

1
1— 72 et

Normalintegral 3. Gattung:

T

(4)  TI(r*, a2 k) ar 2
Ty Qb4 — — e ————
3 J 1 —azr2) /(1 —72) (1 —f272)
0

*) Ehemals Mitarbeiter am Institut fiir Aerodynamik an der
ETH, Ziirich.
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Weiter diskutieren wir kurz zwei Veréffentlichungen von
Kemp und Grashof an Hand eines Rechenbeispiels.

Literaturverzeichnis

[1] J. F. Kemp: Analysis of the Air Flow in Downcast Shafts with
Reference to the Trailing-hose Method of Resistance Measure-
ment. «Mine Ventilation Journal», January, 1962,

[2] F. Grashof: Theoretische Maschinenlehre, Leipzig, Verlag von
Leopold Voss, 1875, Bd. 1.

DK 517.7

Dabei bezeichnet k den Modul und a2 den Parameter des
elliptischen Normalintegrals 3. Gattung, wobei
— oo < a2 < + 0.

Die Substitution r = siny fiihrt auf die Legendreschen
Normalformen F (¢, k), E (¢, k) und 1I (¢, a2, k) mit
¢ = arc sin 7*. Falls die obere Integrationsgrenze 7% = 1 bzw,
¢ = m/2 ist, ergeben sich die vollstindigen Normalintegrale
K (k), E (k) und II (a2, k).

3. Die Ermittlung der Substitutionsformel

Die Integrale (2), (3) und (4) sind fiir reelle Werte,
die den Bedingungen 0 =k =1,0 <=7* <1 geniligen, tabel-
liert. Zur Auswertung ist deshalb das Integral (1) auf Nor-
malintegrale, welche die vorgenannten Bedingungen erfiil-
len umzuformen. Eine Moglichkeit, in bestimmten Féllen
eine dazu geeignete Substitution auf einfachem Wege zu
finden, wird nachstehend erldutert.

Fir die folgenden Ausfiihrungen wird vorausgesetzt,
dass die Koeffizienten des Polynoms P(t) in (1) reell sind.
Falls P(t) konjugiert komplexe Wurzeln aufweist, werden
lediglich die hdufig auftretenden «symmetrischen» Félle be-
handelt, welche durch

P(t) = ap (12 + a?) (12 £ b2)

definiert sind. Ausserdem sei angenommen, dass eine Inte-
grationsgrenze zugleich Nullstelle des Radikanden P(t) ist.
Diese wird mit #,*, die andere Integrationsgrenze mit ¢* be-
zeichnet. Oft ist es von Vorteil, die reellen Nullstellen zu-
sammen mit der Integrationsgrenze t* auf einer Zahlenge-
raden angeordnet zu denken, die iiber den unendlich fernen
Punkt geschlossen ist.

Zur Umformung des elliptischen Integrals (1) auf Nor-
malintegrale sowie fiir eine spétere numerische Auswer-
tung ist es vorteilhaft, die trigonometrische Schreibweise zu
benutzen oder Jacobische elliptische Funktionen einzufiihren
(vgl. [2]).

Die Substitution wird in der schon von Richelot [4] be-
handelten Form
3
(5) sin2 /—f(t)———'

S2 Sy
geschrieben. Die Grossen sy, s», s3, s4 werden dabei entspre-
chend dem Integrationsintervall und den Wurzeln der Glei-
chung P(t) = 0 fiir die verschiedenen mdoglichen Félle nach
folgendem Schema bestimmt (vgl. Bild 1):

S3
-
|
|
NS

Sy a>b>c>d

t#

T —— Q- ~I—
ot —

Bild 1. Darstellung der in (5) bendtigten Grossen sy,
sv, S3, 84 als Strecken auf einer Zahlengeraden (iiber den
unendlich fernen Punkt als geschlossen zu denken)
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