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Bild 3. Amsler — Fotenzplanimeter für
Potenzen 1/2, 1 und 3/2 zur Auswertung
aerodynamischer Strömungsgrössen

die einzelnen Streuungen bei
mehrmaligem Umfahren der Einzelfunktionen

mit einem Linearplanimeter.
C. Der gesamteZeitgewinn gegenüber
einer Eineelauswertung mit dem
Linearplanimeter ist sehr beträchtlich.
Er kann bei zweckmässiger Normierung

der Diagramme und einiger
Fertigkeit in der Handhabung etwa %
und mehr betragen. Man wird dabei
mit Vorteil mehrere Kurven auf ein
Blatt auftragen.

Dieses Potenzplanimeter wird am
Institut für Aerodynamik der ETH,
Zürich, sowohl bei den Laboratoriums-
Übungen für die Studierenden wie
auch bei den Forschungsarbeiten
angewendet.

man die Leitschiene parallel zur NuUinie des Diagramms, das
sodann zuerst von der Nullinie am Anfang bis zur Nullinie
am Ende der Kurve (für Ablesungen oi und Os) und schliesslich

bis zum Ausgangspunkt zurück (für Ablesung aa) um-
fahren wird. Die Differenz-Anzeigen (a,) an den drei
Integrierrollen (i 1, 2 und 3) ergeben mit entsprechenden,
dem Instrument eigenen Konstanten (K{) multipliziert, die
drei gesuchten Integralwerte

l 1

Ii (yVi dx Ki. ai 72 fy dx K2 a® und
0 0
1

h fy3'* dx Ks (ai—Ki aa)
0

wobei für das dritte Integral eine Superposition der
Anzeigen massgebend ist. Damit ist die Bestimmung der
sekundlichen Volumina, der Impulsströme und der kinetischen
Energieströme auf eine einmalige, simultane Planimetrie-
rung der direkt aufgetragenen Messgrössen Staudrücke
reduziert unter Elimination von Zwischenrechnungen und
Zwischenauftragungen.

Auf Grund von Erfahrungen beim Gebrauch ergeben sich
folgende Regeln:
A. Das Umfahren mit diesem Potenzplanimeter ist mit
demjenigen bei einem gewöhnlichen Planimeter vergleichbar.
Zwecks Gewährleistung der Genauigkeit werden die üblichen
Planlmetrlerungsregeln befolgt (kein ruckiweises Anfahren
und Anhalten, kein Uebersprlngen von Papierkanten, kein
Hochspringen des Fahrarms). Dazu gehören Papierblätter
von entsprechendem Format: hier etwa 50 X 70 cm.
B. Die Genauigkeit der simultanen Auswertung mit diesem
Planimeter ist sehr befriedigend. So ergeben z. B. Kontrollen

der hier erhaltenen Integralwerte von analytischen
Funktionen durch Rechnungen keine grösseren Abweichungen, als
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Numerische Methoden des restringierten Dreikörperproblems
Von PD Dr. Theo Ginsburg, Institut für angewandte Mathematik an der ETH, Zürich *)
Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

DK 621.631

1. Einleitung
Das Zeltalter der Erforschung des Weltenraumes -

oder sagen wir vorläufig bescheidener des Sonnensystems —

mit Hilfe von Raumschiffen, verbunden mit der raschen
Entwicklung von hochleistungsfähigen Rechenautomaten, hatmit
der Himmelsmechanik eine Wissenschaft wieder zum
pulsierenden Leben erweckt, welche in den vergangenen Jahrzehn-

*) Ehema
ETH, Zürich.

MI tarbelter Ii srodynarolk an der

ten zu erstarren schien. Waren es bis vor kurzem lediglich
einige wenige besinnliche Forscher, welche Im stillen
Kämmerlein mit Bleistift und Handrechenmaschine Planetenbahnen

berechneten, so finden sich heute in allen grossen
Raketen- und Flugzeugwerken mit den modernsten
Computern ausgerüstete Rechenzentren, deren Aufgabe in erster
Linie darin besteht, bessere, genauere und schnellere Methoden

der Bahnbestimrnung von Himmelskörpern zu entwik-
keln. Dabei werden viele alte, fast vergessene Forschungs-
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ergebnisse wieder aktuell, welche zur Zeit ihrer Erarbeitung
nur einen rein theoretischen Wert besassen, verbunden mit
den modernen Hilfsmitteln der Rechentechnik jedoch heute
grosse Bedeutung erlangen. Wir denken hierbei an die
Arbeiten von Poincare, Sundman, Levi-Civita, um nur einige
der wichtigsten zu nennen.

Wenn die Schweiz sich auch heute noch nacht selbst mit
praktischen Problemen der Weltraumforschung befasst (sondern

höchstens die europäische Raumforschung finanziell
unterstützt), so werden doch an unseren Hochschulen theore-

ctfiieiie Fragen aus diesem Problemkreis untersucht. So wurde
an der ETH vor zwei Jahren ein Seminar unter der Leitung
der Professoren J. Ackeret und E. Stiefel durchgeführt, bei
welchem die Himmelsmechanik im Mittelpunkt stand. Neben
verschiedenen theoretischen Untersuchungen, wie beispielsweise

über den Einfluss des Lichtdruckes, der Reibung und
der Abplattung der Erdkugel auf Satellitenbahnen, wurden
im »pisäeHen einige Methoden der Bahnbestimm/ung durch
mathematische Experimente auf elektronischen Rechenmaschinen

auf ihre Güte und Schnelligkeit hin getestet. Zur
Verfügung stand dabei der an der ETH entwickelte Computer
ERMETH, eine dezimale Seriemasohine mit beweglichem
Komma; die Zahlen werden dabei in halblogarithmischer
Darstellung mit einstelligen Mantissen angegeben und umfassen

einen WertebenfäCh von 10-20|> ins 10200. Die mittleren
Operationszeiten betragen für die Addition 9 msec, für die
Multiplikation 23 msec.

Alle im folgenden dargelegten Tjgfersuchungen wurden
im Hinblick auf die Bestimmung von Satellitenbahnen im
Einflussbereich von Erde und Mond gemachf» wobei die
Störeinflüsse der Sonne und der anderen Planeten "fernach-
lässigt wurden. Unter einigen vereinfachenden Annahmen
kommt man zu dem sogenannten «restmxtgierten Dreikörperproblem»,

welches in § 2 formuliert ist. Einige. Lösungsmethoden

werden in § 3 kurz diskutiert, u. a. die IntegraÜdijäfig
methode von Govoell, mit welcher die in § 4 angegebenen
Resultate gewonnen wurden. Die dabei auch erwähnte Regu-
larisierung des restringierten Dreikörperproblems wurde am
Institut für angewandte Mathematik der ETH von J-. Waldvogel

genauer untersucht; die dabei verwendete Theorie und
die Resultate einiger numerischer Berechnjungen auf der
ERMETH sollen in Kürze in einem Bericht publiziert werden

[1].

2. Das restringierte Dreikörperproblem
Beim gewöhnlichen Dreikörperpfcblem der

Himmelsmechanik handelt es sich um die Bewegung dreier materieller
Punkte im Räume, welche sich gegensetttefonach dem

Newtonschen Gravitationsgesetz anziehen. Bekannterweise
existiert eine explizite Lösung dieses allgemeinen Problems
nicht, ebensowenig wie für das restringierte Dreikörperproblem,

welches angenähert auch das Verhalten eines Satelliten
im Kraftfeld von Erde und Mond beschreibt. Dieses spezielle
Problem ist gekennzeichnet durch folgende drei Einschränkungen:

1. Alle drei Körper, deren Massen punktförmig konzentriert
angenommen werden, bewegen sich in einer EbeS&p;

2. Die Masse des Satelliten m Ist vernachlässigbar klein
gegenüber den beiden anderen Massen M und M' von Erde und
Mond. Deren Bewegungen werden somit vom Satelliten nicht
beeinflusst.

3. Im geozentrischen System, in welchem wir rechnen werden,

wird die Mondbahn als kreisförmig angenommen, so
dass sich der Mond mit konstanter Geschwindigkeit um die
im Nullpunkt ruhende Erde dreht. Die sich aus dieser
Annahme gegenüber der Wirklichkeit ergebenden Abweichungen
sind gering, da die Exzentrizität der Mondbahn lediglich
e 0,0549 betrögt.

Für die Rechnung Im geozentrischen Koordinatensystem
werden die Massen-, Längen- und Zeiteinheiten so normiert,
dass die im Nullpunkt des Systems konzentrierte Erdmasse
M — 1, der konstante Abstand zwischen Erde und Mond
a — 1 und die Umlaufzeit des Mondes um die Erde t 2 tr

Bild 1 Bezeichnungen
der Massen (M Erde, M1

Mond, m Satellit), der
Koordinaten und der
Abstände

M(X.Y]

x

wird. Bezeichn^Gß wir ferner mit X, Y die Koordinaten des
Mondes, mit x, y diejenigen des Satelliten und mit r und p
die Abstände des Satelliten von der Erde bzw. vom Monde
(Bild 1), so erhalten die Newtonschen Bewegungsgleichungen
für x, y unter Berücksichtigung der Einschränkungen 1 bis 3

folgende Form:

(1)
y

Ix X—x ].fc2j_ -f/l pX\

\ '3 pa

Dabei bedeutet p das Verhältnis der Mond- zur Erdmasse

M'
(2) P

M'

während K1 die Gravitationskonstante darstellt, welche sich
bei den oben getroffenen Normierungen mit Hilfe des dritten
Keplerschen Gesetzes bestimmen lässt:

(3) fe« 4 TT2 -

(1+/»)
1

A 384 405 km
T 27,3216 Tage
M 5.977.102'' g
R, 6371,229 km
M' 7,350.1026 g
Rm 1738,0 km

Als einziger Parameter für das vom Satelliten unabhängige

System der beiden grossen Massen tritt somit lediglich p
auf, welches für das Erde-Mond-System den Wert p 0,0123
aufweist. Der Vollständigkeit halber seien hier noch die
physikalischen Daten dieses Systems gegeben, welche-teilweise

nach der Rechnung mit den normierten Einheiten
gebraucht werden, um die gefundenen Resultate in die uns
geläufigen Längen- und Zeiteinheiten umzurechnen:

Mittlerer Abstand Erde-Mond
Umlaufdauer des Mondes
Masse der Erde
Mittlerer Radius der Erde
Masse des Mondes
Mittlerer Radius des Mondes

Da auch das restringierte Dreikörperproblem in seiner
äusserst einfachen Form (1) keine explizite Lösung zulässt,
ist man auf numerische Verfahren zur Integration des
Gleichungssystems angewiesen. Um ein spezielles Problem
genau zu definieren, müssen ausser den Differentialgleichungen
(1) auch die Anfangsbedingungen gegeben sein. Diese
umfassen neben den zur Zeit t 0 vorgegebenen Koordinaten

x(0), 2/(0) und Geschwindigkeitskomponenten x(0), j/(0)
auch die für diesen Zeitpunkt geltende Lage des im
Gegenuhrzeigersinne drehenden Mondes. Anstatt der Koordinaten
X, Y wird diese Lage durch den Winkel cto gegeben, welcher
die Verbindungslinie Erde-Mond mit der positiven «-Achse
zur Zelt t 0 bildet. In dem für die ERMETH entwickelten
Rechenprogramm wurde die Wahl der Anfangsbedingungen
etwas eingeschränkt, indem der Start des Satelliten immer
auf der positiven «-Achse angenommen wurde und dar Ab-
schuss parallel zur Erdoberfläche, d. h. in der jy-Richtung
erfolgte.
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Die gesamte Problemstellung des restringierten
Dreikörperproblems ist in den Formeln (4) kurz zusammengefasst:

(4)

Stellung des Mondes

für t-0

Reisedouer 3,15 Toqe

Anfangsbedingungen: x(0) — x0 ; y(0) 0 ; <*(0) ao

«(0) =0 ; y(0) =y0
Systemparameter: p (für Erde-Mond-System: p 0,0123)

System der
Differentialgleichungen: x

X
ß

p*

Y — y
P3

"

pX

/* Y

1 I x
x — — — l —1 + /« \r»

1(3/
1 + 1» \r«

r-2 =«2 + 3/2 ; p2 (X — x)* + (Y ¦

X cos (t + ao) ; Y sin (t + o0)

J/)2

Dabei sind natürlich bei den Anfangsbedingungen xo und y0
in den nonjÄerten Einheiten anzugeben.

3. Lösungsmethoden
Gehen wir darauf aus, Flugbahnen von Satelliten zu

bestimmen, die von der Erde ausgehend in die Nähe des Mondes

führen (Annäherungsbahnen), so zeigt bereits eine
oberflächliche Analyse der Differentialgleichungen (4), dass bei
der Annäherung des Satelliten an den Mond (p <r), dessen

Kraftwirkung gegenüber derjenigen der viel weiter entfernten

Erde startj&jperwiegt. Um diese qualitative Feststellung
mathematiscmzuSfassen, führte Subbotin [2] den Begriff der
«Einflußsphäre eines kleinen Himmelskörpers M' in bezug
auf einen grossen Himmelskörper M» ein; der Radius r* der
Einflussphäre ergibt sich nach der Formel:

(5) r* A (M'JM)ta Ap"5
wobei A den Abstand zwischen den beiden Körpern bedeutet
(für die! genaue Definition der Einflussphäre verweisen wir
auf [3], S. 83). Für das Erde-Mond-System wird r* 66 000

Kilometer. Bezeichnen wir mit p den Abstand des Satelliten
vom Mond, so zeigt eine kleine Abschätzung, dass das
Verhältnis der Störung durch die Erdanziehung AF zur Anziehung

F' des Mondes innerhalb der Einflussphäre der Relation

(6) \F
ül

i6 m' rw
genügt.

Gibt man sich bei der Bestimmung der Annäherungsbahnen

von der Erde zum Mond mit Näherungsmethoden
zufrieden, so erlaubt der so definierte Begriff der Einflusssphäre

eine Gliederung der Flugbahn in drei Teile: die
Bewegung von der Erde zur Einflussphäre, die Bewegung
innerhalb dieser Sphäre und die Bewegung von ihr weg. Bei
der ersten und dritten Phase ist der Einfluss des Mondes

^^SKichlässigbar; wir können deshalb in einem geozentrischen

System die Flugbahn näherungsweise durch die Kepler-
schen Gesetze (Zweikörperproblem) bestimmen. Eine
entsprechende Vereinfachung ergibt sich innerhalb der Einflusssphäre,

wo in einem selenozentrischen System der Störein-
fluss der Erde vernachlässigtMbd die Flugbahn deshalb wieder

als ein Kegelschnitt mit dem Mond in einem der
Brennpunkte angenähert werden kann. Egorov hat mtplM&aäieses
äusserst einfachen Verfahrens in einer umfangreichen
Arbeit [3] die grundlegenden Gesetphässigkeiten und
Eigenschaften von AiESlherungsbahnen untersucht.

Genügt die bei diesem Näherungsverfahren erreichte
Genauigkeit nicht, so müssen numerische IntegrationsverfahnjjE&

herangezogen werden. Die Astronomen haben im Laufe der
Jahrhunderte äusserst genaue Methoden entwickelt, welche
der speziellen Form der in der Himmelsmechanik auftretenden

Differentialgleichungen Rechnung tragen. Alle diese
Rechenverfahren beruhen auf dem sogenannten Differenzen-
schema, mit dessen Hilfe die Lösungskurven stückweise durch
Polynome ersetzt werden können. Bei seinen Untersuchungen
der Bewegung des Halleyschen Kometen für den langen Zelt.
räum von 1759 bis 1910 wandte der englische Astronom Co-

Stort: h • 1322 km

v 10,085 km/sec

ji*«t Msg ¦;
* *y J?

2Toge ITog
3 Toge

UngeslörTe Bahn

(2- Körpe rproblem)

Bild 2. Flugbahn eines Satelliten, der nach 3,15

Tagen auf den Mond auftrifft

well zum erstenmal eine neue Methode an, welche seither
seinen Namen trägft und die nach einer noch von Cowell
selbst empfohlenen Verbesserung den grossen Vorteil hat,
dass die Ausbreitung von Rundungsfehlern auch bei Integrationen

über lange Zeiträume gering ist. Die Methode Ist für
den praktischen Gebrauch in [4] beschrieben; eine Theorie
der Fehlerfortpflanzung und Fehlerabschätzung findet sich
in [5]. Das zweite verbesserte Integrationsverfahren von
Cowell wurde auf der ERMETH programmiert, wobei das
Differenzenschema für die beiden Koordinaten x,y bis zur
siebten Differenz verwendet wurde.

Schon aus dem Differentialgleichungs-System (4) ist
ersichtlich, dass bei starker Annäherung des Satelliten an die

vESte oder den Mond r bzw. p sehr klein •wird und im Falle
eines Zusamanenstosses ganz verschwindet, wodurch die rechten

Seiten von (4) sehr gross und im Grenzfalle sogar unendlich

werden. Dies äussert sich im Differenzenschema darin,
dass die höchste verwendete Differenz (in unserem konkreten
Falle die siebte) bei der Annäherung des Satelliten an einen
der beiden Himmelskörper immer grössere Werte annehmen,
wenn die Schrittweite A t konstant gehalten wird. Dies gibt
uns ein Miratl in die Hand, den Zeitschritt für die Integration
zu regeln. Um eine gleichmässige Genauigkeit über die ganze
Integration zu erreichen, wird vorgeschrieben, dass sich die
siebten Differenzen in bestimmten Grenzen bewegen müssen.
Ueberirameiten diese Differenzen die obere Grenze, so wird
der Zeöchritt verkleinert, bis sie sich wieder im vorgeschriebenen

Intervall befinden. Anderseits kann der Zeitschritt
vergrössert werden, falls die höchsten Differenzen eine
vorgeschriebene Grenze unterschreiten. Im Falle der Flugbahn von
der Erde zum Mond muss natürlich die Schrittweite beim
Wegflug von der Erde vergrössert und beim Anflug des Mondes

verkleinert werden. In der Praxis hat sich eine Verdoppelung

bzw. eine Fünftelung der Schrittweibe als günstig erwiesen

und wurde deshalb in das ERMETH-Programm eingebaut.

Mit dieser Methode der diskreten Anpassung der Schrittlänge

an die Genauigkeit gelingt es, Annäherungsbahnen an
den Mond zu berechnen, welche sehr nahe am Mondmittelpunkt

vorbeiführen, wobei eben in der Nähe des Mondes sehr
viele Integrationsschritte durchgeführt werden müssen. Die
Grenze dieses Verfahrens wird jedoch dort erreicht, wo die
Schrittweite so gering wird, dass sie mit der Rechengena/uig-
keit der Maschine vergleichbar wird; dies ist der Fall, wenn
die Satellitenbahn fast oder ganz durch den Mondmittclpunkt
führt (der Mond wie auch die Erde werden bei der ganzen
Rechnung immer als Massenpunkte angenommen). In diesem
Falle hilft nur ein Radikalmittel: die in den Gleichungen (4)
möglichen Singularitäten bei r — 0 oder p 0 müssen durch
spezielle Transformationen ausgemerzt werden. Dies gelingt
durch das sogenannte Verfahren der Regularisierung,
welches zuerst von Levl-Civita [6] entwickelt wurde. Diese
Transformationen gewährleisten eine automatische und kon-
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Reisedouer 7.37 Torje

Start: h *\5Z2 km

v 10.085 km/sec

Geringster Mondabstond

5840 km

Tag

/ ungestörte Bahn

/ (2-Körperproblem)

Bild 3 Flugbahn eines Satelliten, der den Mond umfliegt (geringster

Abstand von der Mondoberfläche 5480 km) und nach 7.37 Tagen
wieder auf die Erdoberfläche auftrifft

timüeEMBhe Anpassung der Schrittweite an die Genauigkeit
und sind so wirkungsvoll, dass auch beim Auftreffen des
Satelliten auf den Mondmittelpunkt die Differentialgleichungen

über den Stoss hinaus integriert werden können. Ein
entsprechendes Programm für die ERMETH wurde nach
Abklärung der theoretischen Fragen von Waldvogel am
Institut für angewandte Mathematik der ETH aufgestellt, wobei

die Rechnung ausgezeichnete Resultate lieferte und auch
Flugbahnen integriert werden konnten, bei welcher die
Methode von Cowelöersagte. Ein Bericht über diese
Untersuchungen soll demnächst erscheinen [1].

4- Ergebnisse
In den Bildern 2 bis 4 sind die Ergebnisse einiger

Berechnungen zusammengefasst, welche nach dem Cowellschen
Verfahren auf q§r ERMETH durchgeführt wurden. Die Bilder

2 und 3 zeigen Satelliten-Flugbahnen von der Erde zum
Mond, wobei die erste auf dem Mond auftrifft, während bei
der zweiten die Anfangsbedingungen so gewählt sind, dass
das Raumschiff den Mond in einer Schleifenbahn umfliegt
und wieder zur Erde zurückkehrt. Bei beiden Flugbahnen
erfolgt der Start in einer Höhe von 1322 km über der
Erdoberfläche mi^Peinier horizontalen Geschwindigkeit von
10,085 km/s, der einzige Unterschied in den Anfangsbedingungen

für beide Bahnen besteht lediglich in einer kleinen
Differenz bei der Ausgangslage des Mondes im Zeitpunkt
t 0.

Bei der in Bild 2 dargestellten Auftreffbahn, welche den
Satelliten In etwas mehr als drei Tagen zum Mond führen
würde, verläuft die berechnete Bahnkurve so nahe am
Mondmittelpunkt vorbei, dass das Rechenverfahren aus dem in § 3
erwähnten Grunde dort abbrach. Im Gegensatz dazu konnte
J. Waldvogel [1] mit Hilfe der regularisierten Differentialgleichungen

diese auch über die «fast singulare Stelle»
hinweg integrieren; bei der von uns immer angenommenen
Idealisierung der vollkommenen Konzentration der Mondmasse
im Mondmittelpunkt gelang es ihm so, die Bahnkurve über
den mondnächsten Punkt hinweg weiterzuführen.
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Bild 4 Schwingung um einen stabilen Librationspunkt im rotierendien

System Erde—Mond

Die Schleiläaibahn um den Mond nach Bild 3 zeigt den
mögUqsHjki Flugweg eines Satelliten, welcher den Mond an
dessen Hinterseite in einem minimalen Abstand von 5840 km
von der wirklichen Mondoberfläche umfliegt und durch die
Mondmasse gerade so stark abgelenkt wird, dass er zur Erde
zurückfliegt, wo er nach einem etwas mehr als eine Woche
dauernden Flug wieder eintrifft. In diesem Fall gelingt es
auch mit dem Cowellschen Verfahren, die Flugbahn über den
erdnächsten Punkt hinweg weiterzuführen, was in der
gestrichelten Kurve dargestellt ist.

Als weiteres Resultat ist in Bild 4 die Bewegung eines
Raumkörpers in der Umgebung eines stabilen Libnations-
punktes L angegeben, welcher — wie in Bild 4 skizziert —
in der Spitze eines gleichseitigen Dreiecks über der
Verbindungslinie Erde—Mond liegt. Die Kurve ist deshalb
interessant, weil sie zeigt, mit welch ^ausserordentlicher Genauigkeit

das Cowellsche Verfahren arbeitet, beträgt doch der
maximale Abstand des Körpers vom Librationspunkt L,
welcher im rotierenden System Erde—Mond festliegt, in dem

ganzen untersuchten Zeitraum von sechs Monaten weniger
als zwanzig Meter. Verglichen mit dem Abstand Erde—Mond
stellt dies rund den zwanzigmillionsten Teil dar. Trotz dieser
äusserst geringen Schwingungsamplituden der Störung können

die Kurven mit grosser Präzision bestimmt werden.
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Windkanalmessungen am Modell eines Luftkissenfahrzeuges
Von H. Baumann, dipl. Ing., Wallisellen und R. Murao, dipl. Ing., Tokio *)

Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

DK 533.6:629.124.8

Einleitung
Durch eine steigende Anzahl von Firmen in der ganzen

Welt wurden in den letzten Jahren Luftkissenfahrzeuge
gebaut und Im ganzen auch ziemlich erfolgreich erprobt.
Während man sich in den USA mehr für die militärischen
Anwendungen dieser Fahrzeugkategorie interessiert, haben

*) Beide Autoren sind ehemalige Mitarbeiter am Institut für
Aerodynamik an der ETH, Zürich.

sich die britischen Firmen einen klaren Vorsprung im Bau
von zivilen Typen für Fahrten über Wasserflächen erworben.
In der Sowjetunion werden ebenfalls Versuche mit grossen
Fahrzeugen dieser Art für den zivilen Einsatz durchgeführt.
Wenn auch der fahrplanmässige Verkehr bisher eine nicht
sehr grosse Regelmässigkeit erreichte, da er mit den
kleineren in England letztes Jahr dazu verwendeten
Fahrzeugen noch zu stark von Wetter und Wellengang abhängig
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