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man die Leitschiene parallel zur Nullinie des Diagramms, das
sodann zuerst von der Nullinie am Anfang bis zur Nullinie
am Ende der Kurve (fiir Ablesungen a; und a3) und schliess-
lich bis zum Ausgangspunkt zuriick (fiir Ablesung as) um-
fahren wird. Die Differenz-Anzeigen (a;) an den drei Inte-
grierrollen (i = 1, 2 und 3) ergeben mit entsprechenden,
dem Instrument eigenen Konstanten (K;) multipliziert, die
drei gesuchten Integralwerte

1 1
I,:fyl/:dx:Kl.m ,Ingydx:K._),ag und
0 0

1
I3 = /'ys/: dr =Ky . (ay — K4 . az) ,
0

wobei fiir das dritte Integral eine Superposition der An-
zeigen massgebend ist. Damit ist die Bestimmung der se-
kundlichen Volumina, der Impulsstrome und der kinetischen
Energiestrome auf eine einmalige, simultane Planimetrie-
rung der direkt aufgetragenen Messgrossen = Staudriicke
reduziert unter Elimination von Zwischenrechnungen und
Zwischenauftragungen.

Auf Grund von Erfahrungen beim Gebrauch ergeben sich
folgende Regeln:
A. Das Umfahren mit diesem Potenzplanimeter ist mit dem-
jenigen bei einem gewohnlichen Planimeter vergleichbar.
Zwecks Gewihrleistung der Genauigkeit werden die iiblichen
Planimetrierungsregeln befolgt (kein ruckweises Anfahren
und Anhalten, kein Ueberspringen von Papierkanten kein
Hochspringen des Fahrarms). Dazu gehdren Papierbliitter
von entsprechendem Format: hier etwa 50 X 70 cm.
B. Die Genauigkeit der simultanen Auswertung mit diesem
Planimeter ist sehr befriedigend. So ergeben z. B. Kontrol-
len der hier erhaltenen Integralwerte von analytischen Funk-
tionen durch Rechnungen keine grésseren Abweichungen, als
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Bild 3. Amsler — Potenzplanimeter fiir
Potenzen 1/2, 1 und 3/2 zur Auswertung
aerodynamischer Stromungsgriossen

die einzelnen Streuungen bei mehr-
maligem Umfahren der Einzelfunk-
tionen mit einem Linearplanimeter.

C. Der gesamte Zeitgewinn gegeniiber
einer Einzelauswertung mit dem Li-
nearplanimeter ist sehr betrédchtlich.
Er kann bei zweckméissiger Normie-
rung der Diagramme und einiger Fer-
tigkeit in der Handhabung etwa %
und mehr betragen. Man wird dabei
mit Vorteil mehrere Kurven auf ein
Blatt auftragen.

Dieses Potenzplanimeter wird am
Institut fiir Aerodynamik der ETH,
Ziirich, sowohl bei den Laboratoriums-
ibungen fiir die Studierenden wie
auch bei den Forschungsarbeiten an-
gewendet,
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Untersuchungen an einer

DK 521,531

Von PD Dr. Theo Ginsburg, Institut fiir angewandte Mathematik an der ETH, Ziirich *)

Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

1. Einleitung

Das Zeitalter der Erforschung des Weltenraumes -
oder sagen wir vorldufig bescheidener des Sonnensystems
mit Hilfe von Raumschiffen, verbunden mit der raschen Ent-
wicklung von hochleistungsfihigen Rechenautomaten, hat mit
der Himmelsmechanik eine Wissenschaft wieder zum pulsie-
renden Leben erweckt, welche in den vergangenen Jahrzehn-

*) Ehemals Mitarbeiter am
KTH, Ziirich,

Institut fiir Aerodynamik an der
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ten zu erstarren schien. Waren es bis vor kurzem lediglich
einige wenige besinnliche Forscher, welche im stillen Kim-
merlein mit Bleistift und Handrechenmaschine Planeten-
bahnen berechneten, so finden sich heute in allen grossen
Raketen- und Flugzeugwerken mit den modernsten Com-
putern ausgeriistete Rechenzentren, deren Aufgabe in erster
Linie darin besteht, bessere, genauere und schnellere Metho-
den der Bahnbestimmung von Himmelskdrpern zu entwik-
keln. Dabei werden viele alte, fast vergessene Forschungs-
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ergebnisse wieder aktuell, welche zur Zeit ihrer Erarbeitung
nur einen rein theoretischen Wert besassen, verbunden mit
den modernen Hilfsmitteln der Rechentechnik jedoch heute
grosse Bedeutung erlangen. Wir denken hierbei an die Ar-
beiten von Poincaré, Sundman, Levi-Civita, um nur einige
der wichtigsten zu nennen.

Wenn die Schweiz sich auch heute noch nicht selbst mit
praktischen Problemen der Weltraumforschung befasst (son-
dern hochstens die européische Raumforschung finanziell un-
terstiitzt) so werden doch an unseren Hochschulen theore-
tische Fragen aus diesem Problemkreis untersucht. So wurde
an der ETH vor zwei Jahren ein Seminar unter der Leitung
der Professoren J. Ackeret und E. Stiefel durchgefiihrt, bei
welchem die Himmelsmechanik im Mittelpunkt stand. Neben
verschiedenen theoretischen Untersuchungen, wie beispiels-
weise liber den Einfluss des Lichtdruckes, der Reibung und
der Abplattung der Erdkugel auf Satellitenbahnen, wurden
im speziellen einige Methoden der Bahnbestimmung durch
mathematische Experimente auf elektronischen Rechenma-
schinen auf ihre Giite und Schnelligkeit hin getestet. Zur Ver-
fligung stand dabei der an der ETH entwickelte Computer
ERMETH, eine dezimale Seriemaschine mit beweglichem
Komma; die Zahlen werden dabei in halblogarithmischer
Darstellung mit elfstelligen Mantissen angegeben und umfas-
sen einen Wertebereich von 10-200 his 10200, Die mittleren
Operationszeiten betragen fiir die Addition 9 msec, fiir die
Multiplikation 23 msec.

Alle im folgenden dargelegten Untersuchungen wurden
im Hinblick auf die Bestimmung von Satellitenbahnen im
Einflussbereich von Erde und Mond gemacht, wobei die
Storeinfliisse der Sonne und der anderen Planeten vernach-
ldssigt wurden. Unter einigen vereinfachenden Annahmen
kommt man zu dem sogenannten «restringierten Dreikoérper-
problem», welches in § 2 formuliert ist. Einige Losungsme-
thoden werden in § 3 kurz diskutiert, u. a. die Integrations-
methode von Cowell, mit welcher die in § 4 angegebenen
Resultate gewonnen wurden. Die dabei auch erwdhnte Regu-
larisierung des restringierten Dreikoérperproblems wurde am
Institut fiir angewandte Mathematik der ETH von J. Wald-
vogel genauer untersucht; die dabei verwendete Theorie und
die Resultate einiger numerischer Berechnungen auf der
ERMETH sollen in Kiirze in einem Bericht publiziert wer-
den [1].

2. Das restringierte Dreikorperproblem

Beim gewo6hnlichen Dreikorperproblem der Himmels-
mechanik handelt es sich um die Bewegung dreier materiel-
ler Punkte im Raume, welche sich gegenseitig nach dem
Newtonschen Gravitationsgesetz anziehen. Bekannterweise
existiert eine explizite Losung dieses allgemeinen Problems
nicht, ebensowenig wie fiir das restringierte Dreikorperpro-
blem, welches angenéhert auch das Verhalten eines Satelliten
im Kraftfeld von Erde und Mond beschreibt. Dieses spezielle
Problem ist gekennzeichnet durch folgende drei Einschrin-
kungen:

1. Alle drei Korper, deren Massen punktférmig konzentriert
angenommen werden, bewegen sich in einer Ebene.

2. Die Masse des Satelliten m ist vernachlissighar klein ge-
geniiber den beiden anderen Massen M und M’ von Erde und
Mond. Deren Bewegungen werden somit vom Satelliten nicht
beeinflusst.

3. Im geozentrischen System, in welchem wir rechnen wer-
den, wird die Mondbahn als kreisférmig angenommen, so
dass sich der Mond mit konstanter Geschwindigkeit um die
im Nullpunkt ruhende Erde dreht. Die sich aus dieser An-
nahme gegeniiber der Wirklichkeit ergebenden Abweichungen
sind gering, da die Exzentrizitit der Mondbahn lediglich
e = 0,0549 betrigt.

Fiir die Rechnung im geozentrischen Koordinatensystem
werden die Massen-, Lidngen. und Zeiteinheiten so normiert,
dass die im Nullpunkt des Systems konzentrierte Erdmasse
M =1, der konstante Abstand zwischen Erde und Mond
a = 1 und die Umlaufzeit des Mondes um die Erde r = 27
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Bild 1 Bezeichnungen y
der Massen (M Erde, M’
Mond, m Satellit), der
Koordinaten und der Ab-
stinde

wird. Bezeichnen wir ferner mit X, ¥ die Koordinaten des
Mondes, mit z,y diejenigen des Satelliten und mit » und p
die Abstdnde des Satelliten von der Erde bzw. vom Monde
(Bild 1), so erhalten die Newtonschen Bewegungsgleichungen
fiir «, y unter Beriicksichtigung der Einschrdnkungen 1 bis 3
folgende Form:

X :——kQ{ 73—}—;1 Pfsﬁf—,uX[
(1)
)i
FERAERURS S

Dabei bedeutet p das Verhéltnis der Mond- zur Erdmasse

@ w=

R
wihrend k2 die Gravitationskonstante darstellt, welche sich
bei den oben getroffenen Normierungen mit Hilfe des dritten
Keplerschen Gesetzes bestimmen lésst:

3
) e L LI T
72 (1+p) 1+

Als einziger Parameter flir das vom Satelliten unabhén-
gige System der beiden grossen Massen tritt somit lediglich u
auf, welches fiir das Erde-Mond-System den Wert x = 0,0123
aufweist. Der Vollstdndigkeit halber seien hier noch die
physikalischen Daten dieses Systems gegeben, welche teil-
weise nach der Rechnung mit den normierten Einheiten ge-
braucht werden, um die gefundenen Resultate in die uns
geldufigen Léngen- und Zeiteinheiten umzurechnen:

Mittlerer Abstand Erde-Mond A = 384405 km
Umlaufdauer des Mondes T = 27,3216 Tage
Masse der Erde M =5,9771027g
Mittlerer Radius der Erde R, = 6371,229 km

Masse des Mondes . M =17350.102%5 g
Mittlerer Radius des Mondes R,, = 1738,0 km

Da auch das restringierte Dreikdrperproblem in seiner
dusserst einfachen Form (1) keine explizite Losung zuldsst,
ist man auf numerische Verfahren zur Integration des Glei-
chungssystems angewiesen. Um ein spezielles Problem ge-
nau zu definieren, miissen ausser den Differentialgleichungen
(1) auch die Anfangsbedingungen gegeben sein. Diese um-
fassen neben den zur Zeit t = 0 vorgegebenen Koordinaten

x(0), y(0) und Geschwindigkeitskomponenten 2(0), 3}(0)
auch die flir diesen Zeitpunkt geltende Lage des im Gegen-
uhrzeigersinne drehenden Mondes. Anstatt der Koordinaten
X, Y wird diese Liage durch den Winkel o, gegeben, welcher
die Verbindungslinie Erde-Mond mit der positiven x-Achse
zur Zeit t = 0 bildet. In dem fiir die ERMETH entwickelten
Rechenprogramm wurde die Wahl der Anfangsbedingungen
etwas eingeschréinkt, indem der Start des Satelliten immer
auf der positiven x-Achse angenommen wurde und der Ab-
schuss parallel zur Erdoberfliche, d.h. in der y-Richtung
erfolgte.
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Die gesamte Problemstellung des restringierten Dreikor-
perproblems ist in den Formeln (4) kurz zusammengefasst:

Stellung des Mondes
fir t=0

(4) Reisedaver 315 Toge
Anfangsbedingungen: z (0) = xp; ¥ (0) =0; a(0) =ag

#(0) =0 ; ¥(0) = : B
Systemparameter: m (fiir Erde-Mond-System: u = 0,0123) ///;'7
o el e P | I E !

o 1 \

- :“1+J{i+’“’ !*y—"y} S

r2 = x2 + y2 i 2= (X —x)2 4 (Y —y)2

X =cos(t4a); Y=sin(t+a) | Sl e E

Dabei sind natiirlich bei den Anfangsbedingungen x, und Yo
in den normierten Einheiten anzugeben.

3. Losungsmethoden

Gehen wir darauf aus, Flughahnen von Satelliten zu be-
stimmen_ die von der Erde ausgehend in die Ndhe des Mon-
des fiihren (Anndherungsbahnen), so zeigt bereits eine ober-
flichliche Analyse der Differentialgleichungen (4), dass bei
der Anndherung des Satelliten an den Mond (p < r), dessen
Kraftwirkung gegeniiber derjenigen der viel weiter entfern-
ten Erde stark iiberwiegt. Um diese qualitative Feststellung
mathematisch zu fassen, fithrte Subbotin [2] den Begriff der
«Binflussphire eines kleinen Himmelskorpers M' in bezug
auf einen grossen Himmelskorper M» ein; der Radius r* der
Einflussphére ergibt sich nach der Formel:

(5) re=A M/M)" = Aap"

wobei A4 den Abstand zwischen den beiden Korpern bedeutet
(fiir die genaue Definition der Einflussphire verweisen wir
auf [3], S. 83). Fiir das Erde-Mond-System wird r# = 66 000
Kilometer. Bezeichnen wir mit p den Abstand des Satelliten
vom Mond, so zeigt eine kleine Abschitzung, dass das Ver-
hiltnis der Stérung durch die Erdanziehung AF zur Anzie-
hung F’ des Mondes innerhalb der Einflussphire der Relation

AF _ ([ p )3
Fr 7\ e

genuigt.

Gibt man sich bei der Bestimmung der Annédherungs-
bahnen von der Erde zum Mond mit Naherungsmethoden zu-
frieden, so erlaubt der so definierte Begriff der Einfluss-
sphire eine Gliederung der Flugbahn in drei Teile: die Be-
wegung von der Erde zur Einflussphére, die Bewegung in-
nerhalb dieser Sphire und die Bewegung von ihr weg. Bei
der ersten und dritten Phase ist der Einfluss des Mondes
vernachlidssighar; wir konnen deshalb in einem geozentri-
schen System die Flughahn ndherungsweise durch die Kepler-
schen Gesetze (Zweikodrperproblem) bestimmen. Eine ent-
sprechende Vereinfachung ergibt sich innerhalb der Einfluss-
sphiare, wo in einem selenozentrischen System der Storein-
fluss der Erde vernachlissigt und die Flugbahn deshalb wie-
der als ein Kegelschnitt mit dem Mond in einem der Brenn-
punkte angendhert werden kann. Egorov hat mit Hilfe dieses
dusserst einfachen Verfahrens in einer umfangreichen Ar-
beit [3] die grundlegenden Gesetzméissigkeiten und Eigen-
schaften von Anndherungsbahnen untersucht.

Geniigt die bei diesem Ndherungsverfahren erreichte Ge-
nauigkeit nicht, so miissen numerische Integrationsverfahren
herangezogen werden, Die Astronomen haben im Laufe der
Jahrhunderte #usserst genaue Methoden entwickelt welche
der speziellen Form der in der Himmelsmechanik auftreten-
den Differentialgleichungen Rechnung tragen. Alle diese
Rechenverfahren beruhen auf dem sogenannten Differenzen-
schema, mit dessen Hilfe die Losungskurven stiickweise durch
Polynome ersetzt werden konnen. Bei seinen Untersuchungen
der Bewegung des Halleyschen Kometen fiir den langen Zeit.
raum von 1759 bis 1910 wandte der englische Astronom Co-

s\ 1/5
(6) 16,%)

M
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(2-Karperproblem)

Bild 2. Flugbahn eines Satelliten, der nach 3,15

Tagen auf den Mond auftrifft

well zum erstenmal eine neue Methode an, welche seither
seinen Namen tridgt und die nach einer noch von Cowell
selbst empfohlenen Verbesserung den grossen Vorteil hat,
dass die Ausbreitung von Rundungsfehlern auch bei Integra-
tionen {iber lange Zeitrdume gering ist. Die Methode ist fiir
den praktischen Gebrauch in [4] beschrieben; eine Theorie
der Fehlerfortpflanzung und Fehlerabschédtzung findet sich
in [5]. Das zweite verbesserte Integrationsverfahren von
Cowell wurde auf der ERMETH programmiert, wobei das
Differenzenschema fiir die beiden Koordinaten x,y bis zur
siebten Differenz verwendet wurde.

Schon aus dem Differentialgleichungs-System (4) ist
ersichtlich, dass bei starker Anndherung des Satelliten an die
Erde oder den Mond r bzw. p sehr klein wird und im Falle
eines Zusammenstosses ganz verschwindet, wodurch die rech-
ten Seiten von (4) sehr gross und im Grenzfalle sogar unend-
lich werden. Dies dussert sich im Differenzenschema darin,
dass die hochste verwendete Differenz (in unserem konkreten
Falle die siebte) bei der Annidherung des Satelliten an einen
der beiden Himmelskorper immer grossere Werte annehmen,
wenn die Schrittweite A ¢ konstant gehalten wird. Dies gibt
uns ein Mittel in die Hand, den Zeitschritt fiir die Integration
zu regeln. Um eine gleichmissige Genauigkeit iiber die ganze
Integration zu erreichen, wird vorgeschrieben, dass sich die
siebten Differenzen in bestimmten Grenzen bewegen miissen.
Ueberschreiten diese Differenzen die obere Grenze, so wird
der Zeitschritt verkleinert, bis sie sich wieder im vorgeschrie-
penen Intervall befinden. Anderseits kann der Zeitschritt ver-
grossert werden, falls die héchsten Differenzen eine vorge-
schriebene Grenze unterschreiten. Im Falle der Flugbahn von
der Erde zum Mond muss natiirlich die Schrittweite beim
Wegflug von der Erde vergrossert und beim Anflug des Mon-
des verkleinert werden. In der Praxis hat sich eine Verdoppe-
lung bzw. eine Fiinftelung der Schrittweite als glinstig erwie-
sen und wurde deshalb in das ERMETH-Programm einge-
baut.

Mit dieser Methode der diskreten Anpassung der Schritt-
linge an die Genauigkeit gelingt es, Annédherungsbahnen an
den Mond zu berechnen, welche sehr nahe am Mondmittel-
punkt vorbeifiihren, wobei eben in der N#éhe des Mondes sehr
viele Integrationsschritte durchgefiihrt werden miissen. Die
Grenze dieses Verfahrens wird jedoch dort erreicht, wo die
Schrittweite so gering wird, dass sie mit der Rechengenauig-
keit der Maschine vergleichbar wird; dies ist der Fall, wenn
die Satellitenbahn fast oder ganz durch den Mondmittelpunkt
fiihrt (der Mond wie auch die Erde werden bei der ganzen
Rechnung immer als Massenpunkte angenommen). In diesem
Falle hilft nur ein Radikalmittel: die in den Gleichungen (4)
moglichen Singularitidten bei »r = 0 oder p = 0 miissen durch
spezielle Transformationen ausgemerzt werden. Dies gelingt
durch das sogenannte Verfahren der Regularisierung, wel-
ches zuerst von Levi-Civita [6] entwickelt wurde. Diese
Transformationen gewihrleisten eine automatische und kon-
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Reisedouer 7,37 Tage

Start: h =1322 km
v =10,085km/sec

/ b
73 /
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Bild 3 Flugbahn eines Satelliten, der den Mond umfliegt (gering-

ster Abstand von der Mondoberfldche 5480 km) und nach 7,37 Tagen
wieder auf die Erdobertldche auftrifft

tinuierliche Anpassung der Schrittweite an die Genauigkeit
und sind so wirkungsvoll, dass auch beim Auftreffen des
Satelliten auf den Mondmittelpunkt die Differentialgleichun-
gen iiber den Stoss hinaus integriert werden konnen. Ein
entsprechendes Programm fiir die ERMETH wurde nach
Abklarung der theoretischen Fragen von Waldvogel am In-
stitut fiir angewandte Mathematik der ETH aufgestellt, wo-
bei die Rechnung ausgezeichnete Resultate lieferte und auch
Flugbahnen integriert werden konnten, bei welcher die
Methode von Cowell versagte. Ein Bericht liber diese Unter-
suchungen soll demnéchst erscheinen [1].

4. Ergebnisse

In den Bildern 2 bis 4 sind die Ergebnisse einiger Be-
rechnungen zusammengefasst, welche nach dem Cowellschen
Verfahren auf der ERMETH durchgefiihrt wurden. Die Bil-
der 2 und 3 zeigen Satelliten-Flugbahnen von der Erde zum
Mond, wobei die erste auf dem Mond auftrifft, wihrend bei
der zweiten die Anfangsbedingungen so gewéhlt sind, dass
das Raumschiff den Mond in einer Schleifenbahn umfliegt
und wieder zur Erde zuriickkehrt. Bei beiden Flugbahnen
erfolgt der Start in einer Hohe von 1322 km {iiber der Erd-
oberflache mit einer horizontalen Geschwindigkeit von
10,085 km/s, der einzige Unterschied in den Anfangsbedin-
gungen fiir beide Bahnen besteht lediglich in einer kleinen
Differenz bei der Ausgangslage des Mondes im Zeitpunkt
t=0.

Bei der in Bild 2 dargestellten Auftreffbahn, welche den
Satelliten in etwas mehr als drei Tagen zum Mond fiihren
wiirde, verlduft die berechnete Bahnkurve so nahe am Mond-
mittelpunkt vorbei, dass das Rechenverfahren aus dem in § 3
erwdhnten Grunde dort abbrach. Im Gegensatz dazu konnte
J. Waldvogel [1] mit Hilfe der regularisierten Differential-
gleichungen diese auch iiber die «fast singuldre Stelle» hin-
weg integrieren; bei der von uns immer angenommenen Idea-
lisierung der vollkommenen Konzentration der Mondmasse
im Mondmittelpunkt gelang es ihm so, die Bahnkurve iiber
den mondndchsten Punkt hinweg weiterzufiihren.

Windkanalmessungen am Modell eines Luftkissenfahrzeuges

21078

—2.108

55

Bild 4 Schwingung um einen stabilen Librationspunkt im rotieren-
den System Erde—Mond

Die Schleifenbahn um den Mond nach Bild 3 zeigt den
moglichen Flugweg eines Satelliten, welcher den Mond an
dessen Hinterseite in einem minimalen Abstand von 5840 km
von der wirklichen Mondoberfliche umfliegt und durch die
Mondmasse gerade so stark abgelenkt wird, dass er zur Erde
zuriickfliegt, wo er nach einem etwas mehr als eine Woche
dauernden Flug wieder eintrifft. In diesem Fall gelingt es
auch mit dem Cowellschen Verfahren, die Flugbahn iiber den
erdnidchsten Punkt hinweg weiterzufiihren, was in der ge-
strichelten Kurve dargestellt ist.

Als weiteres Resultat ist in Bild 4 die Bewegung eines
Raumkorpers in der Umgebung eines stabilen Librations-
punktes L angegeben, welcher — wie in Bild 4 skizziert —
in der Spitze eines gleichseitigen Dreiecks liber der Verbin-
dungslinie Erde—Mond liegt. Die Kurve ist deshalb inter-
essant, weil sie zeigt, mit welch ausserordentlicher Genauig-
keit das Cowellsche Verfahren arbeitet, betrdgt doch der
maximale Abstand des Korpers vom Librationspunkt L, wel-
cher im rotierenden System Erde—Mond festliegt in dem
ganzen untersuchten Zeitraum von sechs Monaten weniger
als zwanzig Meter. Verglichen mit dem Abstand Erde—Mond
stellt dies rund den zwanzigmillionsten Teil dar. Trotz dieser
Ausserst geringen Schwingungsamplituden der Stérung kon-
nen die Kurven mit grosser Prézision bestimmt werden.
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Von H. Baumann, dipl. Ing., Wallisellen und R. Murao, dipl. Ing., Tokio *)

Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

Einleitung

Durch eine steigende Anzahl von Firmen in der ganzen
Welt wurden in den Iletzten Jahren Luftkissenfahrzeuge
gebaut und im ganzen auch ziemlich erfolgreich erprobt.
Wihrend man sich in den USA mehr fiir die militdrischen
Anwendungen dieser Fahrzeugkategorie interessiert, haben

*) Beide Autoren sind ehemalige Mitarbeiter am Institut fir
Aerodynamik an der ETH, Ziirich.
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sich die britischen Firmen einen klaren Vorsprung im Bau
von zivilen Typen fiir Fahrten tiber Wasserfldchen erworben.
In der Sowjetunion werden ebenfalls Versuche mit grossen
Fahrzeugen dieser Art fiir den zivilen Einsatz durchgefiihrt.
Wenn auch der fahrplanmaissige Verkehr bisher eine nicht
sehr grosse Regelméssigkeit erreichte, da er mit den Kklei-
neren in England letztes Jahr dazu verwendeten Fahr-
zeugen noch zu stark von Wetter und Wellengang abhéngig
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