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Zwei Hilfsverfahren im Laborbetrieb DK 511.'

Von Z. Plaskowski, Institut für Aerodynamik an der ETH, Zürich

Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

Der theoretische Unterricht und die experimentelle
Ausbildung des Ingenieurnachwuchses bilden einen wesentlichen
Teil der Institutsaufgaben. Insbesondere im Laborbetrieb
geht es mitunter darum, den Studierenden Mess- und
Auswerteverfahren beizubringen, die — selbst prinzipiell einfach
— den Arbedtsa<ufwand möglichst rationell gestalten. Dabei
soll aber der Ueberbliek über das Zustandekommen der
gesuchten Grössen nicht verloren gehen, was bedeutet, dass
zunächst die allzu stark automatisierten Mittel gemieden
werden. Im vorliegenden Aufsatz sollen dafür zwei Beispiele
gegeben werden.

I. Zur Bestimmung von Quadratwurzeln auf der
Rechenmaschine

Eine bekannte Methode zum Ziehen der Quadratwurzel
auf der Rechenmaschine1) soll wieder in Erinnerung
gerufen werden. Obwohl sie als einfaches Rechenverfahren
vorzügliche Hilfsdienste leistet, scheint sie doch verschiedentlich

vergessen worden zu sein. Darauf weisen mitunter hin:
Unterlassung von entsprechenden Angaben in
Gebrauchsanweisungen zu den Rechenmaschinen durch Lieferfirmen
und wiederholt gemachte Erfahrungen, Studierende dm
Laborbetrieb — zwecks Rationalisierung der Auswertungen —
darüber instruieren zu müssen. Deshalb richten sich auch
die folgenden Ausführungen vor allem an die akademischen
Maschineningenieur denen solche Auswertungsarbeiten
obliegen.

Das VerfaSSren selbst besteht darin, dass diejenige Zahl,
aus der die Quadratwureel gezogen werden soll, durch einen
grob geschätzten Wurzelwert dividiert wird, aus dem Divisor
und dem Quotienten das arithmetische Mittel gebildet und
damit der nächst-iterierte Wert für die Lösung erhalten wird.
Danach wird die ganze Operation (Operation Division +
Mittelwertbdidung) bis zu einer gewünschten bzw. maschi-
nenseitig möglichen Genauigkeit wiederholt, was in Praxis
in wenigen Gängen erreicht wird. Dieses Verfahren hat die
angenehme Eigenschaft, auf grobe Fehleinschätzungen
der Eingangswerte weitgehend unempfindlich zu sein. Es sei
noch beigefügt, dass man damit an einfachen, mechanischen
Hand-Rechenautomaten gut arbeiten kann und dazu keine
Hilfstabellen braucht.

Algebraisches
Zwecks Veranschaulichung der erwähnten Eigenschaften

seien hier einige Relationen der «Division + Mittelwert-
bildiung»-Iteration angeführt und die zugehörige Konvergenz

gezeigt. Dabei wird auf eine Wiedergabe der etwas
platzraubenden algebraischen Ableitungen durchwegs ver-
zichtefeind es folgen allein die Definitionen und die Resultate.

Definitionen:
Ausgangsgröße (direkt) — exakte Beziehung

A =B*2 (D 1)

Bezugsgrösse (direkt) — exakt: B* =]/A~ (Dl')
Bezugsgrösse (relativ) — exakt: 6* 1 (D 1")

Approximativer Wert (dtaiifcfcji B B* (1 + d) ^0,
(D2)

Approximativer Wert (relativ): b B : B* \ -\- d ^= 0.
(D 2')

Differenz Abweichung (direkt): D B — B*, (D3)

Differenz Abweichung (relativ): d D : B*, d > — 1.

') Vgl. beispielsweise R. Zurmühl: Praktische Mathematik für
Ingenieure und Physiker. Springer-Verlag, Berlin 1958, S. 8.

Grosse Buchstaben («direkt») gegebenenfalls vorkommende

Zahlenwerte.
Kleine Buchstaben («relativ«) bezogen auf den exakten
Wurzelwert.

Indizes:

¦1

einem allgemeinen Iterationsschritt s
zugehörende Grössen.
Eingangswerte (erste Schätzung).
Endwerte (zuletzt betrachtete Approximation).

Anzahl der vorgenommenen Iterationsschritte

(«Operationen»).

Abgeleitete Grössen:

Generell geschrieben
Quotient (direkt): Q A : B, (Gl)
Quotient (relativ): q— Q:B* 1 :b 1: (1 + d). (Gl')
Mittelwert (direkt): M V2 • (B + Q), (G 2)
Mittelwert (relativ): m Af:B*=(l-fd-|- i^d2): (1 + d).

(G2')
Für die fortschreitende Iteration

a) Grössen in zwei aufeinanderfolgenden Iterationsschritten:

Iterierte Quadratwurzel-Beträge (direkt):
B, + i Ms, (G3)

Iterierte Quadratwurzel-'Beträge (relativ):
fc»+i m„ 1 -f d,+i. (G3')

Abweichungen (direkt): Z)s+i (D,) vgl. unten (Gl)
Abweichungen (relativ): d,+i Vsd»2 • (1 + d,). (G4')
Konvergenzfaktor2) (direkt): K, — D,+i : D„ (G 5)

Konvergenzfaktor (relativ): fc, ¦ <j,+i: d, K,
1l*d,: (l + d„). (G5')

b) Gesamthaft für den Iterationsendwert:
Endabweichung (relativ):

dn — *n
n-l / n-\
TT (l+£ *,

S=l \ S=l
(G6')

mit
/ d\ \2»-1 und #i di Eingangsabweichung

2V2" (relativ)

n-l / n-l \
ir (1+ £ <t>. )=(1

8=1 \ s=l / + *i) (1 + *i + *2)

• •• (l + *i + *a+*s)-d +
• (1 + *i + + *J|1|1

Uebriges, mit d d,u laut Definitionen.

Diskussion der Resultate:
a) Für die fortschreitende Iteration
Die positiven Relativabweichungen rf.. i (d,) (d. h. für

B, > B,+i > B*) nehmen In zwei nacheinander folgenden
Schritten stärKer als quadratisch ab (vgl. (G4') und Bild 1),
was einen deutlichen Hinweis auf die starke Konvergenz
der Iteration B —¥ B* darstellt.

Verfolgt man das schrittweise Vorgehen vom ersten
Schätzunswert Bi(di) weiter und zwar sowohl fUr positive
di (Bi > B*), wie für negative di (Bi < B*), so lässt sich
anhand von (G4') zeigen, dass der zweite Iterationswert d?

-) Definition des Konvergenzfaktors — vgl. loc. dt., S. 25.
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Bild 1. Abhängigkeit der relativen Abweichungen d, n (de) in zwei
aufeinanderfolgenden Iterationsschritten, sowie des Konvergenzfaktors

fcs von einer vorhandenen Abweichung o!s. Man beachte die
Aufsagungen in zwei verschiedenen Masstäben (1) und (II). Das
eingetragene Beispiel für die fortschreitende Iteration entspricht
demjenigen in Bild 2

und somit alle folgenden in beiden Fällen (d\ ^ 0) identisch
sind, wenn die Bedingung zutrifft:
rf](.) —di(+) : (1 -+- di(+)) mit du-) <Ji<0und<Ji(+) dt >0
was aber auch heisst Bi{+) (di<+)) : B* B* : Bi(.) (c*1(_))
weiter Q1M Bli+) und Q1M =BU.).
Mit anderen Worten: Ob man den Eingangswert sc-mal zu
klein oder gleich x-mal zu gross einsetzt, so kommen im
weiteren Verlauf der Iteration gleich genaue Resultate, bzw.
gleich kleine Abweichungen heraus, Bild 2.

Dies ist — hinsichtlich der Schätzung von Eingangswerten
— eine für den Rechner sehr sympathische Eigenschaft des
Verfahrens, da sie ihn von der Sorge über «Unter- oder
Ueberschätzung» befreit.

Im übrigen sei bemerkt, dass, nachdem die zweite
Iteration erreicht ist, sich die approximativen Werte B„^2 von
oben, und die Quotienten Qx^ von unten dem exakten Wert
B* der Qudratwurzel nähern, Bild 2. Darin liegt auch der
Sinn der Mittelwertbildung (G 3) aus diesen beiden für
einen nächsten Iterationswert begründet.

Konvergenzfaktor
Beurteilt man — wie üblich — die Iteration nach dem

Absolutwert des Konvergenzfaktors \k„\ so sieht man hier
(vgl. (G 5') und das Bild 1), dass dieser im ganzen positiven
Bereich der Abweichungen <i., (d.h. für B„ ä B*) kleiner
als 1 ist. Sein Betrag strebt mit zunehmenden dH von Null
gegen den Wert % für sehr grosse Abweichungen asymptotisch

zu.
Der Umstand, dass die |fc»| für negative Werte von ds

im Bereich — 1 < de g — s/a (d. h.: 0 < B, g Va B*) grösser

als 1 werden, ist hier bei mehrschrittigen Iterationen,
wie vorher gezeigt, ohne Belang. Schon nach dem zweiten
Wert Bs^2 konvergiert das Verfahren wieder. Somit ist eine
sehr befriedigende Konvergenz der vorliegenden
Rechenmethode erwiesen.

b) Gesamthaft für den Endwert einer vorzunehmenden
Iteration:

Stellt sich die Frage, wieviel Operationen (n — 1)
nötig sind, um eine verlangte Genauigkeit des Endweites
Bn:B* bn zu erreichen, wenn verschiedene Eingangsabweichungen

d^ vorliegen, oder — anders formuliert — welche
Endgenauigkeit wird vorhanden sein, wenn man bei einer
etwaigen Eingangsabweichung die Anzahl der Operationen
einschränken will, so wird die Antwort darauf anhand des
schrittweisen Vorgehens s —is -f 1 (vgl. Beispiel in Bild 1),
oder mit Hilfe der Gl. (G6') gewonnen. Die Tabelle I mag
die Verhältnisse beleuchten:

Tabelle 1

Bn
Eingangswerte

> :£* 1 + &„(,) B* : Bu-))

—? ergeben
Endwert

B,h : B* l + b„

1,0014 1,054 1,39 2,36 4,27
-?

1 + 1 • 10-«

1,0457 1,373 2,32 4,41 8,69
-?

1 + 1 • 10-3

1

nach (n — 1) Operationen
2 3 | 4 5

Man sieht daraus, dass z. B. schon eine mögliche
Kopfschätzung des Wurzelbetrages mit rd. 5 % Genauigkeit
als Eingangswert in einem Schritt das Resultat mit etwa
1 %o, und in zwei Schritten dasjenige mit nur 1 • 10-G Abweichung

vom exakten Wert liefert. — Damit sei auf die sehr
kleine Anzahl notwendiger Interationsschritto in den meisten

praktischen Anwendungsfällen hingewiesen.

Zahlenbeispiele:
1. Theoretisches Beispiel mit einem bewusst extremen
Vorgehen:

Gegeben: 100. Gesucht: Quadratwurzel aus 100 10
exakt. Eingangswert (absichtlich grob daneben) 1.

1. Quotient 100:1 100.

1. Mittelwert y2 ¦ (100 + 1) 50,5.
2. Quotient 100:50,5 1,980 198
2. Mittelwert y2 • (50,5 + 1,980 198 26,240 099
3. Quotient 100:26,240 099 3,810 961
3. Mittelwert V2 ¦ (26,240 099 + 3,810 961

15,025 530
4. Quotient 100:15,025 530
4. Mittelwert y2 • (15,025 530

10,840 434
5. Quotient 100:10,840 434

5. Mittelwert y2 • (10,840 434
10,032 578

6. Quotient 100:10,032 578 -
6. Mittelwert % ¦ (10,032 578

10,000 0525

Hier wird die Rechnung abgebrochen. Man sieht, dass
mit einer zehnfachen Ueberhöhung des Eingangswertes
und nach 6 Operationen ein Endwert mit der Relativabweichung

von rd. 5 • 10-6 gegenüber dem exakten Wert erhalten
wird.

2. Beispiel der praktischen Anwendung
Gesucht die Quadratwurzel aus 650.

1. Operation:
I. Die Zahl 650 in das Dividenden-Zählwerk eintasten.
II. Einen nach 1X1-Regeln im Kopf abgeschätzten Wert

— hier, da 25-25 625 und 26-26 676 auswendig
bekannt — z. B. 25,5 als den ersten Eingangswert in das
Divisoren-Zählwerk eingeben und, zwecks bequemer Mittelwertbildung

danach das Zählwerk auf «Repetition» blockieren.
Dann die Division ausführen:

6,655 339 279

+ 6,655 339 279

9,224 722

+ 9,224 722...)

9,967 527

+ 9,967 527.
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Bild 2. Ein Beispiel für die fortschreitende Iteration. Der Verlauf
von approximativen Lösungen (relativ zum exakten Wert) b«

B, : B* 1 + da, sowie der relativen Quotienten q» Q. B* mit
zunehmender Zahl der Iterationsschritte s. Gültig für die Eingangswerte

ök+) 1,5 bei di +0,6 <Jk+) (ausgezogene Geraden) und
OK-) 1/1,16 bei di —1/3 di<-) (gestrichelte Geraden). Von
&2 an ist der Verlauf der Grössen für beide Eingangswerte identisch

1. Quotient 650:25,5 25,490 196 07
HI. Aua dem Divisor und dem Quotienten mittels eines

Vergleichs der beiden — in der Reihenfolge von links nach
rechts — das arithmetische Mittel direkt auf dem Divisoren-
Zählwerk bilden (eintasten):

1. Mittelwert i/ /i 25,500
/2 • \+ 25,490196 1 25,495 098.

NB. Da hier der Eingangswert 25,5 offenbar einen zu
grossen Betrag darstellt, ikann mit Vorteil (vgl. q, und b,
in Bild 2) der Quotient zur Mittelwertbildung leicht
aufgerundet und der Mittelwert selbst zur weiteren Verwendung
leicht abgerundet werden.
2. Operation:

TV. Die Ausgangszahl 650 in das Dividenden-Zählwerk
eingeben — am besten von Hand an den Einstellknöpfen,
damit der Mittelwert im Divisoren-Zählwerk nicht gelöscht
werden muss — und die neue Division ausführen:

2. Quotient 650:25,495 098 25,495 097 13.

V. Gleich, wie bei HL, den zweiten Mittelwert bilden:

2. Mittelwert | (+ ggj? °j» M) 25,495 097 565.

Wie man hier sieht, ist das Resultat bereits nach der
ersten Operation (1. Mittelwert) auf sieben Stellen und nach
der zweiten Operation (2. Mittelwert) auf elf Stellen genau.
Die Genauigkeit der letztgenannten Stelle des zweiten Mittelwertes

könnte durch einen nächsten Quotienten nachgewiesen
werden (hier wäre sie es auch), was sich jedoch In

normalen Fällen erübrigen dürfte.
Zusammenfassend darf festgehalten werden, dass sich

die «Division -f- Mittelwertbildung»-Iteration zur Berechnung
der Quadratwurzelwerte aus gegebenen Zahlen sehr gut zur
praktischen Verwendung eignet da sie — wie vorangehend
gezeigt — folgende Merkmale aufweist:

a) prinzipielle Einfachheit und gute Uebersichtldchkeit
in der Handhabung;

b) Durchführbarkelt schon auf einfacheren Rechenmaschinen

ohne weitere Hilfen (Rechenschieber nützlich, aber
nicht unbedingt nötig);

c) Erhaltung von mehrstellig genauen Resultaten In sehr
wenigen Schritten bei beträchtlicher Freiheit im Einsetzen
der erst-geschätzten, oder willkürlich gewählten Eingangs-
werte für die gesuchte Lösung.

II. Planimeter für Potenzen '/u. 1 und s/a

Bei stationären Strömungsuntersuchungen ohne
Wägungen geht es bekanntlich vielfach darum, Impuls- und
Energiebilanzen über die Strömungsfelder aufzustellen. Damit

werden je nach Fall aerodynamische Kräfte an um¬

strömten Körpern, Strömungsverluste oder auch Wirkungsgrade

von durchströmten Anlagen ermittelt. Aus der grossen
Zahl von Beispielen für die Anwendung des Impulssatzes
könnte man etwa zitieren: Bestimmung der Grenzschicht-
Daten ohne und mit Absaugung [1] *), der Prafilwiderstände
[2] [3], der kompressiblen Widerstände infolge Verdich-
tungsstösse [4], der Kräfte an Schaufelgittern [5] [6] und
Umlenkern, die Verwendung von Strahlmischungen [7], die
Bestimmung der Strahlausbreitung, usf.

Der Energiesatz, angewendet auf «Kanalströmungen»
verschiedener Art, liefert Verlustziffern bzw. Wirkungsgrade
von Anordnungen, so z. B. von Rohrleitungen [8] und Krümmern

[12], von Tunneln [9] und Diffusoren [10], wie auch
die Stufenwirkungsgrade von Schaufelgittern [5] [6] [11].

Um die Impuls- und Energiebetrachtungen durchzuführen,

•benötigt man für inkompressible Strömungen (p
konst) im allgemeinen Integrale folgender Art:

1) für die Druckkräfte:

P =jjpdf =~p.F
F

2) für die sekundlichen Voluminas:

u<Q,=JJwdf — w.F
F

3) für die Impulsströme

J jVOa • wn '

F

und bei voa II wn wn w±F

Sa — pJJwa.w„df
F

8» pjjvo*df - p.vcß.F
F

4) für die kinetischen Energieströme:

¦ p/s ¦ jjvo^df -p/a.vo».F
F

Hierin bedeuten vo die mengenmässige, w die impulsmässige

und vo die energiemässige mittlere Strömungsgeschwindigkeit
und F den Strömungsquerschnitt.
Eine Traversenmessung mit Drucksonden (Prandtl-Rohr,

bzw. Pitot-Rohr + statische Drucksonde) liefert die Verteilungen

des statischen Druckes p und des Staudruckes q
p/s vfi in einem Schnitt. Aus einer gewöhnlichen Planimetrie-
rung dieser Verteilungen können die Druckkräfte und die
Impulsströme pro Schnitt, bzw. im rotationssymmetrischen Fall
im ganzen Querschnitt (bei Auftragung über r8) direkt
gewonnen werden. Für die Bestimmung der sekundlichen
Volumina und der Energieströme musste man zuerst die
Staudrücke q in Va- und in 3/o-Potenzen ausrechnen und neu
auftragen (w )/*/p~ .yq, p/2 ws ]/Vp ¦ o*/j)> um m't einem F1S-
chenplanimeter die zugehörigen Integralwerte bestimmen zu
können.

Zwecks Ersparnis des damit verbundenen Aufwandes an
rechnerischer und zeichnerischer Arbeit im Laborbetrieb
wurde seinerzeit auf Anfrage des Verfassers von der Firma
A. J. Amsler 0% Co., Schaffhausen, ein Planimeter (Bild 3) für
die Potenzen i/2, 1 und % entwickelt und für das hiesige
Institut gebaut. Dieses Planimeter [13] [14] besteht aus
einer Leitschiene, zwei Abstandlehren, einem an der
Leitschiene geführten Rollwagen mit senkrechtem Halter, aus
einem schwenkbaren Fahrarm mit UmfahrungssUften auf
zwei verschiedenen Radien und aus drei Integrierrollen im
Fahrarm-Gehäuse.

Es gilt dafür folgendes Arbeitsvorgehen: Eine zu
integrierende Kurve y(x), hier z.B. mit Vorteil dimensionslos
dargestellte Messgrössen-Verteilung, ist in cartesischen
Koordinaten aufzutragen. Zulässig sind dabei zwei verschiedene
maximale Kurvenhöhen — 15 cm für den kurzen und 35 rm
für den langen Fahrarm. Mittels der Abstandlohron richtet

3) Die Zahl
turangaben am

n in eckigen Klammern beziehen sich auf die Litera-
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i

¦t

4J

Bild 3. Amsler — Fotenzplanimeter für
Potenzen 1/2, 1 und 3/2 zur Auswertung
aerodynamischer Strömungsgrössen

die einzelnen Streuungen bei
mehrmaligem Umfahren der Einzelfunktionen

mit einem Linearplanimeter.
C. Der gesamteZeitgewinn gegenüber
einer Eineelauswertung mit dem
Linearplanimeter ist sehr beträchtlich.
Er kann bei zweckmässiger Normierung

der Diagramme und einiger
Fertigkeit in der Handhabung etwa %
und mehr betragen. Man wird dabei
mit Vorteil mehrere Kurven auf ein
Blatt auftragen.

Dieses Potenzplanimeter wird am
Institut für Aerodynamik der ETH,
Zürich, sowohl bei den Laboratoriums-
Übungen für die Studierenden wie
auch bei den Forschungsarbeiten
angewendet.

man die Leitschiene parallel zur NuUinie des Diagramms, das
sodann zuerst von der Nullinie am Anfang bis zur Nullinie
am Ende der Kurve (für Ablesungen oi und Os) und schliesslich

bis zum Ausgangspunkt zurück (für Ablesung aa) um-
fahren wird. Die Differenz-Anzeigen (a,) an den drei
Integrierrollen (i 1, 2 und 3) ergeben mit entsprechenden,
dem Instrument eigenen Konstanten (K{) multipliziert, die
drei gesuchten Integralwerte

l 1

Ii (yVi dx Ki. ai 72 fy dx K2 a® und
0 0
1

h fy3'* dx Ks (ai—Ki aa)
0

wobei für das dritte Integral eine Superposition der
Anzeigen massgebend ist. Damit ist die Bestimmung der
sekundlichen Volumina, der Impulsströme und der kinetischen
Energieströme auf eine einmalige, simultane Planimetrie-
rung der direkt aufgetragenen Messgrössen Staudrücke
reduziert unter Elimination von Zwischenrechnungen und
Zwischenauftragungen.

Auf Grund von Erfahrungen beim Gebrauch ergeben sich
folgende Regeln:
A. Das Umfahren mit diesem Potenzplanimeter ist mit
demjenigen bei einem gewöhnlichen Planimeter vergleichbar.
Zwecks Gewährleistung der Genauigkeit werden die üblichen
Planlmetrlerungsregeln befolgt (kein ruckiweises Anfahren
und Anhalten, kein Uebersprlngen von Papierkanten, kein
Hochspringen des Fahrarms). Dazu gehören Papierblätter
von entsprechendem Format: hier etwa 50 X 70 cm.
B. Die Genauigkeit der simultanen Auswertung mit diesem
Planimeter ist sehr befriedigend. So ergeben z. B. Kontrollen

der hier erhaltenen Integralwerte von analytischen
Funktionen durch Rechnungen keine grösseren Abweichungen, als
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Numerische Methoden des restringierten Dreikörperproblems
Von PD Dr. Theo Ginsburg, Institut für angewandte Mathematik an der ETH, Zürich *)
Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

DK 621.631

1. Einleitung
Das Zeltalter der Erforschung des Weltenraumes -

oder sagen wir vorläufig bescheidener des Sonnensystems —

mit Hilfe von Raumschiffen, verbunden mit der raschen
Entwicklung von hochleistungsfähigen Rechenautomaten, hatmit
der Himmelsmechanik eine Wissenschaft wieder zum
pulsierenden Leben erweckt, welche in den vergangenen Jahrzehn-

*) Ehema
ETH, Zürich.

MI tarbelter Ii srodynarolk an der

ten zu erstarren schien. Waren es bis vor kurzem lediglich
einige wenige besinnliche Forscher, welche Im stillen
Kämmerlein mit Bleistift und Handrechenmaschine Planetenbahnen

berechneten, so finden sich heute in allen grossen
Raketen- und Flugzeugwerken mit den modernsten
Computern ausgerüstete Rechenzentren, deren Aufgabe in erster
Linie darin besteht, bessere, genauere und schnellere Methoden

der Bahnbestimrnung von Himmelskörpern zu entwik-
keln. Dabei werden viele alte, fast vergessene Forschungs-
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