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Zwei Hilfsverfahren im Laborbetrieb

Von Z, Plaskowski, Institut fiir Aerodynamik an der ETH, Ziirich

Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

Der theoretische Unterricht und die experimentelle Aus-
bildung des Ingenieurnachwuchses bilden einen wesentlichen
Teil der Institutsaufgaben. Insbesondere im Laborbetrieb
geht es mitunter darum, den Studierenden Mess- und Aus-
werteverfahren beizubringen, die — selbst prinzipiell einfach
— den Arbeitsaufwand moglichst rationell gestalten. Dabei
soll aber der Ueberblick iiber das Zustandekommen der ge-
suchten Grossen nicht verloren gehen, was bedeutet, dass
zunédchst die allzu stark automatisierten Mittel gemieden
werden, Im vorliegenden Aufsatz sollen dafiir zwei Beispiele
gegeben werden.

I. Zur Bestimmung von Quadratwurzeln auf der Rechen-
maschine

Eine bekannte Methode zum Ziehen der Quadratwurzel
auf der Rechenmaschine ) soll wieder in Erinnerung ge-
rufen werden. Obwohl sie als einfaches Rechenverfahren
vorziigliche Hilfsdienste leistet, scheint sie doch verschiedent-
lich vergessen worden zu sein. Darauf weisen mitunter hin:
Unterlassung von entsprechenden Angaben in Gebrauchs-
anweisungen zu den Rechenmaschinen durch Lieferfirmen
und wiederholt gemachte Erfahrungen, Studierende im La-
borbetrieb — zwecks Rationalisierung der Auswertungen —
dariiber instruieren zu miissen. Deshalb richten sich auch
die folgenden Ausfiihrungen vor allem an die akademischen
Maschineningenieure, denen solche Auswertungsarbeiten ob-
liegen.

Das Verfahren selbst besteht darin, dass diejenige Zahl,
aus der die Quadratwurzel gezogen werden soll, durch einen
grob geschétzten Wurzelwert dividiert wird, aus dem Divisor
und dem Quotienten das arithmetische Mittel gebildet und
damit der néchst-iterierte Wert fiir die Losung erhalten wird.
Danach wird die ganze Operation (Operation = Division -+
Mittelwertbildung) bis zu einer gewiinschten bzw. maschi-
nenseitig moglichen Genauigkeit wiederholt, was in Praxis
in wenigen Gingen erreicht wird. Dieses Verfahren hat die
angenehme Eigenschaft, auf grobe Fehleinschidtzungen
der Eingangswerte weitgehend unempfindlich zu sein. Es sei
noch beigefiigt, dass man damit an einfachen, mechanischen
Hand-Rechenautomaten gut arbeiten kann und dazu keine
Hilfstabellen braucht.

Algebraisches

Zwecks Veranschaulichung der erwédhnten Eigenschaften
seien hier einige Relationen der «Division -+ Mittelwert-
bildung»-Iteration angefiihrt und die zugehérige Konver-
genz gezeigt. Dabei wird auf eine Wiedergabe der etwas
platzraubenden algebraischen Ableitungen durchwegs ver-
zichtet und es folgen allein die Definitionen und die Resultate.

Definitionen :
Ausgangsgrosse (direkt) — exakte Beziehung

A =B*2 (D 1)
Bezugsgrosse (direkt) — exakt: B* = l/A' (D19
Bezugsgrosse (relativ) — exakt: b* =1 (B 1)

Approximativer Wert (direkt): B=B*.(144d) #0,

(D2)

Approximativer Wert (relativ): b=B:B*=1+4d 0.

(D 2)

Differenz = Abweichung (direkt): D =B — B*, (D3)
Differenz = Abweichung (relativ): d =D :B*, d > —1.

1) Vgl. beispielsweise R. Zurmiihl: Praktische Mathematik fiir
Ingenieure und Physiker. Springer-Verlag, Berlin 1953, S. 8.
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Grosse Buchstaben («direkt») = gegebenenfalls vorkom-

mende Zahlenwerte.

Kleine Buchstaben («relativ«) = bezogen auf den exakten

Wurzelwert.

Indizes:

3 = einem allgemeinen Iterationsschritt s zu-
gehorende Grossen.

1 = Eingangswerte (erste Schéitzung).

n = Endwerte (zuletzt betrachtete Approxi-
mation).

n—1 = Anzah] der vorgenommenen Iterations-
schritte («Operationen»).

Abgeleitete Grossen:

Generell geschrieben

Quotient (direkt): @ =A:B, (G1)

Quotient (relativ): q=@:B*=1:b=1:(1+d). (G1")

Mittelwert (direkt): M =1/.(B + Q), (G2)

Mittelwert (relativ): m = M :B¥*= (14+d-+1/5d2): (1 + d).

(G2)
Fiir die fortschreitende Iteration
a) Grossen in zwei
schritten:

aufeinanderfolgenden Iterations-

Iterierte Quadratwurzel-Betrdge (direkt):

By,1 = M,, (G 3)
Iterierte Quadratwurzel-Betrdge (relativ):
bspi=my =1+ dgs,q. (G3)
Abweichungen (direkt): Dy, (D,) vgl. unten (G 4)
Abweichungen (relativ): dg1 = 1/2d2 : (1 4+ d;). (G4)
Konvergenzfaktor 2) (direkt): K, = D, :.D;, (G 5)
Konvergenzfaktor (relativ): k= dsrn o ds =K,
=1/sds: (1 +ds). (G5')
b) Gesamthaft fiir den Iterationsendwert:
Endabweichung (relativ):
n-1 n-l o\
An =Py [ T (1 -+ }; (hs)] (G6)
s=1 s=1
mit
b, — 2 (d_l‘)zx-1 und & =d; = Eingangsabweichu'ng
2 (relativ)
sowie

n-1 n-1
T (1 + ¥ ‘l's): (14 P1) - (1 + &4 + P2) -

s=1 s=1
S A=y = Po AP ) (L - s ) ol
UL o 1A Pag).

Uebriges, mit d = d,,, laut Definitionen.

Diskussion der Resultate:

a) Fiir die fortschreitende Iteration

Die positiven Relativabweichungen d,,; (d,) (d. h. fiir
By > Bsy > B*) nehmen in zwei nacheinander folgenden
Schritten stirker als quadratisch ab (vgl. (G4') und Bild 1),
was einen deutlichen Hinweis auf die starke Konvergenz
der Iteration B —p B* darstellt.

Verfolgt man das schrittweise Vorgehen vom ersten
Schétzunswert By(d;) weiter und zwar sowohl fiir positive
d; (By > B*), wie fiir negative d; (B; < B*), so lidsst sich
anhand von (G4') zeigen, dass der zweite Iterationswert dy

2) Definition des Konvergenzfaktors — vgl. loc. cit., S. 25.
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Bild 1. Abhéngigkeit der relativen Abweichungen d., (d.) in zwei
aufeinanderfolgenden Iterationsschritten, sowie des Konvergenz-
faktors ks von einer vorhandenen Abweichung d.. Man beachte die
Auftragungen in zwei verschiedenen Masstiben (I) und (II). Das
eingetragene Beispiel fiir die fortschreitende Iteration entspricht
demjenigen in Bild 2

und somit alle folgenden in beiden Féllen (dy = 0) identisch
sind, wenn die Bedingung zutrifft:

A1y = —dyy 2 (1 + dy(4)) mit dy(-) Ed1<0undd|(+) =d; >0
was aber auch heisst By, (d;,) : B*=B* : By (dyoy)
weiter @) = By(y) und Q1) = By (..

Mit anderen Worten: Ob man den Eingangswert x-mal zu
klein oder gleich x-mal zu gross einsetzt, so kommen im
weiteren Verlauf der Iteration gleich genaue Resultate, bzw.
gleich kleine Abweichungen heraus, Bild 2.

Dies ist — hinsichtlich der Schitzung von Eingangswerten
— eine flir den Rechner sehr sympathische Eigenschaft des
Verfahrens, da sie ihn von der Sorge iiber «Unter- oder
Ueberschitzung» befreit.

Im iibrigen sei bemerkt, dass, nachdem die zweite Ite-
ration erreicht ist, sich die approximativen Werte B,>, von
oben, und die Quotienten @,-, von unten dem exakten Wert
B* der Qudratwurzel nidhern, Bild 2. Darin liegt auch der
Sinn der Mittelwertbildung (G 3) aus diesen beiden fiir
einen néchsten Iterationswert begriindet.

Konvergenzfaktor

Beurteilt man — wie iiblich — die Iteration nach dem
Absolutwert des Konvergenzfaktors |ks| , so sieht man hier
(vgl. (G 5’) und das Bild 1), dass dieser im ganzen positiven
Bereich der Abweichungen d, (d.h. fiir B, = B*) Kkleiner
als 1 ist. Sein Betrag strebt mit zunehmenden d, von Null
gegen den Wert 14 fiir sehr grosse Abweichungen asymp-
totisch zu.

Der Umstand, dass die |k, fiir negative Werte von d,
im Bereich —1 < d; =<—2/3 (d. h.: 0< B, < 1/3 B¥) gros-
ser als 1 werden, ist hier bei mehrschrittigen Iterationen,
wie vorher gezeigt, ohne Belang. Schon nach dem zweiten
Wert B,=, konvergiert das Verfahren wieder. Somit ist eine
sehr befriedigende Konvergenz der vorliegenden Rechen-
methode erwiesen.
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b) Gesamthaft fiir den Endwert einer vorzunehmenden
Iteration:

Stellt sich die Frage, wieviel Operationen (n — 1)
notig sind, um eine verlangte Genauigkeit des Endwertes
B,:B* = b, zu erreichen, wenn verschiedene Eingangsab-
weichungen dy vorliegen, oder — anders formuliert — welche
Endgenauigkeit wird vorhanden sein, wenn man bei einer
etwaigen Eingangsabweichung die Anzahl der Operationen
einschrédnken will, so wird die Antwort darauf anhand des
schrittweisen Vorgehens s —bs + 1 (vgl. Beispiel in Bild 1),
oder mit Hilfe der Gl. (G 6’) gewonnen. Die Tabelle I mag
die Verhéltnisse beleuchten:

Tabelle |
Eingangswerte T En;zvg;zen
Biw : B¥ =1 4+ bawy (= B*: Bi)) By : B¥=1+D,
——p

1,0014 1,054 1,39 2,36 I 4,27 I 1+41-106
_} =

1,0457 1,373 2,32 4,41 ( 8,69 ‘ 1-+41-10-3

nach (n—1) Operationen =
1 2 3 4 | 5

Man sieht daraus, dass z. B. schon eine mégliche Kopf-
schiatzung des Wurzelbetrages mit rd. 5 9, Genauigkeit
als Eingangswert in einem Schritt das Resultat mit etwa
1 %, und in zwei Schritten dasjenige mit nur 1-10-6 Abwei-
chung vom exakten Wert liefert. — Damit sei auf die sehr
kleine Anzahl notwendiger Interationsschritte in den mei-
sten praktischen Anwendungsfillen hingewiesen.

Zahlenbeispiele:

1. Theoretisches Beispiel mit einem bewusst extremen Vor-
gehen:
Gegeben: 100. Gesucht: Quadratwurzel aus 100 = 10

exakt. Eingangswert (absichtlich grob daneben) = 1.
1. Quotient = 100:1 = 100.

1. Mittelwert = 14 - (100 + 1) = 50,5.

2. Quotient = 100:50,5 = 1,980 198 . ..

2. Mittelwert = 14 - (50,5 + 1,980198...) = 26,240099...
3. Quotient = 100:26,240 099 — 3,810961. ..

3. Mittelwert — 15 - (26,240099 ... 4 3,810961...)

= 15,025 530 . ..
4. Quotient = 100:15,025 530 = 6,655 339 279 . . .

4. Mittelwert = 14 - (15,025 530 ... 4 6,655339 279 ...)
— 10,840 434 . ..

5. Quotient = 100:10,840 434 — 9,224 722 . ..

5. Mittelwert = 15 - (10,840434 ... + 9,224722...)
= 10,032 578 . ..

6. Quotient = 100:10,032 578 = 9,967 527 ...

6. Mittelwert = 14 - (10,032578 ... + 9,967 527 ...)
= 10,000 0525 . . .

Hier wird die Rechnung abgebrochen. Man sieht, dass
mit einer zehnfachen Ueberhdhung des Eingangswertes
und nach 6 Operationen ein Endwert mit der Relativabwei-
chung von rd. 5-10-6 gegeniiber dem exakten Wert erhalten
wird.

[

2. Beispiel der praktischen Anwendung
Gesucht die Quadratwurze] aus 650.

1. Operation:

I. Die Zahl 650 in das Dividenden-Zdhlwerk eintasten.

II. Einen nach 1X1-Regeln im Kopf abgeschitzten Wert
— hier, da 25-25 = 625 und 26-26 — 676 auswendig be-
kannt — z. B, 25,5 als den ersten Eingangswert in das Divi-
soren-Zéhlwerk eingeben und, zwecks bequemer Mittelwert-
bildung danach das Zdhlwerk auf «Repetition» blockieren.
Dann die Division ausfiihren:

Schweiz, Bauzeitung + 81. Jahrgang Heft 11 - 14, Méarz 1963




ds~ s
| bs=1+ds
ifests // gs=1:bs!
os | ’ |
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i o gl i T
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Bild 2. Ein Beispiel fiir die fortschreitende Iteration. Der Verlauf
von approximativen Losungen (relativ zum exakten Wert) b: =
Bs : B* = 1+ ds, sowie der relativen Quotienten g, = Q, : B* mit
zunehmender Zahl der lterationsschritte s. Giiltig filir die Eingangs-
werte by) = 1,6 bei di = +0,6 = d;») (ausgezogene Geraden) und
bi = 1/1,15 bei dy = —1/3 = di-) (gestrichelte Geraden). Von
bs an ist der Verlauf der Grossen fiir beide Eingangswerte identisch

1. Quotient = 650:25,5 = 25,490 196 07 . ..

III. Aus dem Divisor und dem Quotienten mittels eines
Vergleichs der beiden — in der Reihenfolge von links nach
rechts — das arithmetische Mittel direkt auf dem Divisoren-
Zahlwerk bilden (eintasten):
25,500
25,490 196 1

NB. Da hier der Eingangswert 25,5 offenbar einen zu
grossen Betrag darstellt, kann mit Vorteil (vgl. g, und b,
in Bild 2) der Quotient zur Mittelwertbildung leicht aufge-
rundet und der Mittelwert selbst zur weiteren Verwendung
leicht abgerundet werden.

2. Operation:

IV. Die Ausgangszahl 650 in das Dividenden-Zahlwerk
eingeben — am besten von Hand an den Einstellknopfen,
damit der Mittelwert im Divisoren-Zahlwerk nicht geldoscht
werden muss — und die neue Division ausfiihren:

2. Quotient = 650:25,495 098 = 25,495 097 13.

V. Gleich, wie bei IIIL., den zweiten Mittelwert bilden:
25,495 098
25,495 097 13

Wie man hier sieht, ist das Resultat bereits nach der
ersten Operation (1. Mittelwert) auf sieben Stellen und nach
der zweiten Operation (2. Mittelwert) auf elf Stellen genau.
Die Genauigkeit der letztgenannten Stelle des zweiten Mittel-
wertes konnte durch einen nidchsten Quotienten nachgewie-
sen werden (hier wire sie es auch) was sich jedoch in nor-
malen Féllen eriibrigen diirfte.

Zusammenfassend darf festgehalten werden, dass sich
die «Division + Mittelwertbildung»-Iteration zur Berechnung
der Quadratwurzelwerte aus gegebenen Zahlen sehr gut zur
praktischen Verwendung eignet da sie - wie vorangehend
gezeigt — folgende Merkmale aufweist:

a) prinzipielle Einfachheit und gute Uebersichtlichkeit
in der Handhabung;

b) Durchfiihrbarkeit schon auf einfacheren Rechenma-
schinen ohne weitere Hilfen (Rechenschieber niitzlich, aber
nicht unbedingt nétig);

¢) Erhaltung von mehrstellig genauen Resultaten in sehr
wenigen Schritten bei betrdchtlicher Freiheit im Einsetzen
der erst-geschitzten, oder willkiirlich gewiihlten Eingangs-
werte fiir die gesuchte Losung,

1. Mittelwert = 1/, . (+ ) — 25,495 098.

2. Mittelwert = 1/, .+ ) — 25,495 097 565.

II. Planimeter fiir Potenzen 1/,, 1 und %/,

Bei stationdren Stromungsuntersuchungen ohne Wii-
gungen geht es bekanntlich vielfach darum Impuls. und
Energiebilanzen iiber die Stromungsfelder aufzustellen. Da-
mit werden je nach Fall aerodynamische Krifte an um-
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stromten Korpern, Stromungsverluste oder auch Wirkungs-
grade von durchstromten Anlagen ermittelt. Aus der grossen
Zahl von Beispielen filir die Anwendung des Impulssatzes
konnte man etwa zitieren: Bestimmung der Grenzschicht-
Daten ohne und mit Absaugung [1] 3), der Profilwiderstdnde
[2] [3], der kompressiblen Widerstdnde infolge Verdich-
tungsstosse [4], der Krafte an Schaufelgittern [5] [6] und
Umlenkern, die Verwendung von Strahlmischungen [7], die
Bestimmung der Strahlausbreitung, usf.

Der Energiesatz, angewendet auf «Kanalstromungen»
verschiedener Art, liefert Verlustziffern bzw. Wirkungsgrade
von Anordnungen, so z. B. von Rohrleitungen [8] und Krim-
mern [12], von Tunneln [9] und Diffusoren [10] wie auch
die Stufenwirkungsgrade von Schaufelgittern [5] [6] [11].

Um die Impuls. und Energiebetrachtungen durchzufiih-
ren, benotigt man fiir inkompressible Stromungen (p —
konst) im allgemeinen Integrale folgender Art:

1) fir die Druckkrifte:
Pi= f f pdf =p.F
F
2) fiir die sekundlichen Voluminas:
Qx:ffwdfzﬁ.l?
F
3) fiir die Impulsstrome
Ba= pffwﬂ . Wy df
F

und bei wy || Wn , Wp =w LF

S,,:pf[w‘-’df:p.??'-?.F
F
4) fiir die kinetischen Energiestrome:

E,‘-:p/-z.ffwi‘df = P/-_).{_B:‘.F
F

Hierin bedeuten w die mengenmiissige, w die impulsmissige

und w die energiemiissige mittlere Stromungsgeschwindig-
keit und F den Stromungsquerschnitt.

Eine Traversenmessung mit Drucksonden (Prandtl-Rohr,
bzw. Pitot-Rohr + statische Drucksonde) liefert die Vertei-
lungen des statischen Druckes p und des Staudruckes q =
p/2 w? in einem Schnitt. Aus einer gewdhnlichen Planimetrie-
rung dieser Verteilungen konnen die Druckkréifte und die Im-
pulsstrome pro Schnitt, bzw. im rotationssymmetrischen Fall
im ganzen Querschnitt (bei Auftragung liber 72) direkt ge-
wonnen werden. Fiir die Bestimmung der sekundlichen Vo-
lumina und der Energiestrome miisste man zuerst die Stau-
driicke g in 1/o- und in 3/9-Potenzen ausrechnen und neu auf-
tragen (w = |2/p.|q, p/2 w* = |2/p. g¥), um mit einem Fli-
chenplanimeter die zugehorigen Integralwerte bestimmen zu
konnen.

Zwecks Ersparnis des damit verbundenen Aufwandes an
rechnerischer und zeichnerischer Arbeit im Laborbetrieb
wurde seinerzeit auf Anfrage des Verfassers von der Firma
A.J. Amsler & Co., Schaffhausen, ein Planimeter (Bild 3) fiir
die Potenzen 1!/5, 1 und %/o entwickelt und fiir das hiesige
Institut gebaut. Dieses Planimeter [13] [14] besteht aus
einer Leitschiene, zwei Abstandlehren einem an der Leit-
schiene gefiihrten Rollwagen mit senkrechtem Halter, aus
einem schwenkbaren Fahrarm mit Umfahrungsstiften aut
zwei verschiedenen Radien und aus drei Integrierrollen im
Fahrarm-Gehiuse.

Es gilt dafiir folgendes Arbeitsvorgehen: Eine zu inte-
grierende Kurve y(x), hier z.B, mit Vorteil dimensionslos
dargestellte Messgrossen-Verteilung, ist in cartesischen Ko-
ordinaten aufzutragen. Zulissig sind dabei zwei verschiedene
maximale Kurvenhohen 15 em filir den kurzen und 35 ¢m
fiir den langen Fahrarm, Mittels der Abstandlehren richtet

4) Die Zahlen in eckigen Klammern beziehen sich aufl die Litera-
turangaben am linde.
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man die Leitschiene parallel zur Nullinie des Diagramms, das
sodann zuerst von der Nullinie am Anfang bis zur Nullinie
am Ende der Kurve (fiir Ablesungen a; und a3) und schliess-
lich bis zum Ausgangspunkt zuriick (fiir Ablesung as) um-
fahren wird. Die Differenz-Anzeigen (a;) an den drei Inte-
grierrollen (i = 1, 2 und 3) ergeben mit entsprechenden,
dem Instrument eigenen Konstanten (K;) multipliziert, die
drei gesuchten Integralwerte

1 1
I,:fyl/:dx:Kl.m ,Ingydx:K._),ag und
0 0

1
I3 = /'ys/: dr =Ky . (ay — K4 . az) ,
0

wobei fiir das dritte Integral eine Superposition der An-
zeigen massgebend ist. Damit ist die Bestimmung der se-
kundlichen Volumina, der Impulsstrome und der kinetischen
Energiestrome auf eine einmalige, simultane Planimetrie-
rung der direkt aufgetragenen Messgrossen = Staudriicke
reduziert unter Elimination von Zwischenrechnungen und
Zwischenauftragungen.

Auf Grund von Erfahrungen beim Gebrauch ergeben sich
folgende Regeln:
A. Das Umfahren mit diesem Potenzplanimeter ist mit dem-
jenigen bei einem gewohnlichen Planimeter vergleichbar.
Zwecks Gewihrleistung der Genauigkeit werden die iiblichen
Planimetrierungsregeln befolgt (kein ruckweises Anfahren
und Anhalten, kein Ueberspringen von Papierkanten kein
Hochspringen des Fahrarms). Dazu gehdren Papierbliitter
von entsprechendem Format: hier etwa 50 X 70 cm.
B. Die Genauigkeit der simultanen Auswertung mit diesem
Planimeter ist sehr befriedigend. So ergeben z. B. Kontrol-
len der hier erhaltenen Integralwerte von analytischen Funk-
tionen durch Rechnungen keine grésseren Abweichungen, als

Numerische Methoden des restringierten Dreikdrperproblems

Bild 3. Amsler — Potenzplanimeter fiir
Potenzen 1/2, 1 und 3/2 zur Auswertung
aerodynamischer Stromungsgriossen

die einzelnen Streuungen bei mehr-
maligem Umfahren der Einzelfunk-
tionen mit einem Linearplanimeter.

C. Der gesamte Zeitgewinn gegeniiber
einer Einzelauswertung mit dem Li-
nearplanimeter ist sehr betrédchtlich.
Er kann bei zweckméissiger Normie-
rung der Diagramme und einiger Fer-
tigkeit in der Handhabung etwa %
und mehr betragen. Man wird dabei
mit Vorteil mehrere Kurven auf ein
Blatt auftragen.

Dieses Potenzplanimeter wird am
Institut fiir Aerodynamik der ETH,
Ziirich, sowohl bei den Laboratoriums-
ibungen fiir die Studierenden wie
auch bei den Forschungsarbeiten an-
gewendet,
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Untersuchungen an einer
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Von PD Dr. Theo Ginsburg, Institut fiir angewandte Mathematik an der ETH, Ziirich *)

Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

1. Einleitung

Das Zeitalter der Erforschung des Weltenraumes -
oder sagen wir vorldufig bescheidener des Sonnensystems
mit Hilfe von Raumschiffen, verbunden mit der raschen Ent-
wicklung von hochleistungsfihigen Rechenautomaten, hat mit
der Himmelsmechanik eine Wissenschaft wieder zum pulsie-
renden Leben erweckt, welche in den vergangenen Jahrzehn-

*) Ehemals Mitarbeiter am
KTH, Ziirich,

Institut fiir Aerodynamik an der

164

ten zu erstarren schien. Waren es bis vor kurzem lediglich
einige wenige besinnliche Forscher, welche im stillen Kim-
merlein mit Bleistift und Handrechenmaschine Planeten-
bahnen berechneten, so finden sich heute in allen grossen
Raketen- und Flugzeugwerken mit den modernsten Com-
putern ausgeriistete Rechenzentren, deren Aufgabe in erster
Linie darin besteht, bessere, genauere und schnellere Metho-
den der Bahnbestimmung von Himmelskdrpern zu entwik-
keln. Dabei werden viele alte, fast vergessene Forschungs-
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