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Berichtigungen

Seite 7, Kolonne links, 7. und 8. Linie von unten, lies
Ty, Ty Bezeichnung des Anlauffalles. (Rr=S1bzw.
T'iy=1): Aussen-bzw.Innenanlauf. (I' =0): Radsatzfrei.
statt T' Faktor zum Einsetzen des massgebenden Vor-
zeichens fiir Az in Gleichung (K 17).

Seite 15, Linie vor GIL. (21), lies
Radsatzachse statt Radsatzaxe
(Die Schreibweise -axe soll hier geometrische Linien
bezeichnen)

Seite 21, Anschrift zu Bild D9, lies
e und (r-— D/,) statt e und (= D/s)

Seite 23, Anschrift zu Bild D12, lies
r statt r

Seite 35: im rechten Glied der Gleichung (12) lies
m,. (.l.r m;‘.Qr
COS o B o or

Seite 37. Flussdiagramm II. Der unleserliche Teil in der Bild-
mitte links ist wie bei Flussdiagramm IIT, Seite 39

Seiten 40 und 44, Flussdiagramme IV und VIIT oben rechts,
liesEl =08 statt [, =1

Seite 45: In Gl. (2) lies
d. statt q,

Seite 46: In der dritten Linie von unten, in Kolonne links, lies

@gj @g; vj und v; statt g, 2, v; und v
Seite 48: In Gleichungen (36) und (37) lies
Aqg; und qu statt qu und Kq,-

Seite 49: Flussdiagramm IX, bei der oberen rechten Test-
stelle, lies
Xq =1 statt x; =0

Seite 61: Im rechten Glied der Gleichung (32) lies
(T; — G, sin @;) statt (o (Chasibn ®;)




Zur Laufmechanik der elektrischen Drehgestell-Lokomotive

Von Dr. G. Borgeaud, Winterthur

Die letzten Entwicklungen im Eisenbahnbetrieb zeigen
eindeutig die Tendenz, h6here Reisegeschwindigkeiten und die
Beforderung grosserer Lasten zu verwirklichen. Hohe Reise-
geschwindigkeiten koénnen durch grosse Anfahrbeschleuni-
gungen, grosse Bremsverzogerungen, kurze Aufenthalte in
den Stationen und durch hohe Fahrgeschwindigkeiten er-
reicht werden. Die ersten drei Massnahmen sind besonders
beim Vorortverkehr wichtig. Beim Fernverkehr fillt hingegen
das Hauptgewicht vor allem auf hohe Fahrgeschwindigkeiten.

Handelt es sich darum, nur wenig Passagiere und
Giiter zu befordern, so kann der Triebwagen oder der Trieb-
wagenzug mit Vorteil eingesetzt werden. Fiir den schweren
Reise- und Giiterverkehr hingegen ist nur die Lokomotive
das geeignete Beforderungsmittel.

Am Anfang der elektrischen Traktion wurden die Trieb-
fahrzeuge grosserer Leistungen nach dem Vorbild der Dampf-
lokomotive als Rahmenlokomotiven gebaut. Einer solchen
Maschine kann, dank ihrer leichteren Laufachsen bzw. Lauf-
gestellen, der Vorteil einer massenarmen Fiihrung zuge-
sprochen werden, Diese trégt beirichtiger Auslegung wesent-
lich dazu bei, die auftretenden Fiihrungskrifte zu begren-
zen. Hine Rahmenlokomotive ist aber bedeutend schwerer,
als es zur Entwicklung der gewlinschten Zugkrifte notwen-
dig ist. Dies ergibt hohere Gestehungskosten und, ganz be-
sonders bei Gebirgsstrecken, einen hoheren Stromverbrauch.
Bei der Ae8/14-Lokomotive der SBB-Gotthard-Linie z. B.
bleibt das auf die sechs Laufachsen entfallende Gewicht von
rund 84 t bei der Zugkraftentwicklung unausgeniitzt und be-
ansprucht bei einem totalen Zugsgewicht von 850 t etwa
10 % des Energieverbrauches. Es ist daher begreiflich, dass
die heutige Entwicklung als Losung die laufachslose Loko-
motive anstrebt. Da eine leistungsfihige Lokomotive minde-

stens vier Triebachsen aufweisen muss, lisst sie sich ohne
Laufachsen fiir den Schnellverkehr einzig als Drehgestell-
Lokomotive verwirklichen. Bei einer solchen ist aber die
Fihrung nicht mehr massenarm, und es konnen bei ho-
heren Geschwindigkeiten erhebliche Massentrigheitskrifte
zur Wirkung kommen. Es ist somit schwieriger, ihre Fiih-
rungskrifte klein zu halten, als dies bei den durch Laufachsen
gefiihrten Lokomotiven der Fall ist. Das zwingt dazu, in die
verschiedenen Probleme, die beim Lauf der Lokomotive auf-
treten, tiefer einzudringen. Diese Probleme enthalten grund-
sétzlich verschiedene Unlinearitéiten, die u.a. durch die be-
sondere Form der Schienen- und Radreifenprofile, durch den
Verlauf des Reibungskoeffizienten zwischen Rad und Schiene,
durch die Reibungen in den Federn sowie durch die freien
und elastischen Spiele in der Radsatzlagerung und in der
Kasten-Drehgestell-Verbindung bedingt sind.

In dieser Arbeit wird versucht, diese Probleme einheit-
lich und systematisch n#&her zu behandeln, einheitlich, in-
dem vor allem fiir jede vorkommende Grdsse eine eindeutige,
moglichst eigene Bezeichnung gewidhlt wird, und systema-
tisch, indem zundchst die Vorgidnge zwischen Rad und
Schiene, dann diejenigen am Radsatz, am Fahrgestell und
schliesslich am Kasten untersucht werden. Bei der Ldsung
der massgebenden Gleichungen wird iiberall dort, wo der
rein mathematische Weg wegen der auftretenden Nicht-
linearitéten, Unstetigkeiten und Vielfaltigkeiten nicht gang-
bar ist oder zu grosseren Schwierigkeiten fiihrt, die nume-
rische Behandlung unter Anwendung eines elektronischen
Rechengerédtes durchgefiihrt. Mit Hilfe eines solchen Ge-
ridtes ist es heute méglich, umfangreiche Berechnungen vor-
zunehmen und damit sonst unerlédssliche Vereinfachungen zu
vermeiden.

A. Einleitende Bemerkungen zum Lauf des Eisenbahnfahrzeuges und verschiedene Voraussetzungen

Die Bewegung eines fahrenden Eisenbahnfahrzeuges
setzt sich allgemein aus einer gleichméssigen Bewegung
und aus uberlagerten Nebenbewegungen, den storenden Be-
wegungen, zusammen, Die Hauptbewegung kann dadurch
gekennzeichnet werden, dass sie allein auftritt, sobald die
liberlagerten Nebenbewegungen verschwinden, und dass dann
alle auftretenden Grossen einen konstanten Wert beibehalten.
Dies gilt insbesondere fiir die Kréifte, deren Zusammenspiel
in diesem speziellen Fall einem statischen Zustand entspricht.
Wir wollen deshalb kiinftig diese Hauptbewegung als die
«statische Bewegung» des Fahrzeuges bezeichnen und auch
sinngeméss von einem statischen Lauf des Fahrzeuges spre-
chen, Im Gegensatz dazu bezeichnen wir die aus der sta-
tischen und den storenden Bewegungen sich ergebende Be-
wegung weiterhin als «dynamische Bewegung» und es soll
daher dementsprechend auch vom «dynamischen Lauf» ge-
sprochen werden.

Da der statische Lauf ein besonderer Fall des allge-
meineren dynamischen Laufes ist, sollen hier sdmtliche Ab-
leitungen zunéchst fiir diesen gemacht werden. Der Ueber-
gang zum statischen Lauf ergibt sich dann einfach dadurch,
dass in den verschiedenen Beziehungen sédmtliche Glieder,
die gewisse Ableitungen nach der Zeit enthalten, wegfallen.

Bei rein kinematischer Betrachtung der Vorgdnge kann
bekanntlich die Bewegung eines Korpers in jedem Augen-
blick als eine momentane Drehung um eine momentane Axe
angesehen werden. In unserem Falle kann also die Bewegung
des Fahrzeuges auf der Gleiskopfebene in jedem Augenblick
als eine Bogenbewegung um eine momentane Axe angesehen
werden. Diese Betrachtungsweise darf jedoch lediglich auf
die bei der Bewegung entstehenden Geschwindigkeiten sowie
auf die davon unmittelbar abhingigen Krédfte erstreckt wer-
den.

Das Problem des allgemeinen L.aufes eines Schienenfahr-
zeuges schliesst nach obigem dasjenige des Bogenlaufes ein.
Es ist deshalb unerlésslich, zunédchst die kinematischen Ver-
hédltnisse beim Bogenlauf ndher zu betrachten, wobei es unse-
res Erachtens am verniinftigsten ist, der klassischen Betrach-
tungsweise unter Heranziehung des Reibungsmittelpunktes
treu zu bleiben, den wir aber hier, der Eindeutigkeit der
Begriffe wegen, Gleitpol benennen wollen. Da die Frage des
Bogenlaufes in den letzten Jahrzehnten durch mehrere Ar-
beiten verschiedener Autoren weitgehend behandelt worden
ist, soll hier vom schon Bekannten nur dasjenige wiederholt
werden, das als Grundlage flir eine einheitliche Behandlung
des allgemeinen Laufes benotigt wird. Wir werden aber auch
verschiedene Hinzelheiten des statischen Bogenlaufes beriih-
ren, die unseres Wissens noch nicht untersucht bzw. verof-
fentlicht wurden.

Bei allen unseren weiteren Untersuchungen sollen ferner
folgende Voraussetzungen gelten:

a. Die Mittellinie des Gleises liegt in einer horizontalen Ebene.
b. Die in der z-Richtung stattfindenden Bewegungen und die
zugehorigen Trégheitskrifte werden nicht in Betracht ge-
zogen.

ec. Die vom Radsatz senkrecht zur Gleisebene sowie in x-
Richtung ausgelibten Kréfte rufen keine Schienendeforma-
tionen hervor.

d. Die von der axialen Fiihrungskraft T verursachten Quer-
deformationen ¢ finden nicht in der senkrecht zur Gleisaxe
stehenden Ebene statt, sondern parallel zu T und daher
parallel zur Radsatzaxe. (Ohne diese Voraussetzung wére es
im Kapitel G notwendig, fiir w; die Lidngskomponente der
Deformationsgeschwindigkeit ¢ zu beriicksichtigen, wodurch
sich nur eine unnétige aber wesentliche Komplikation erge-
ben wiirde.)



e. Bei den kinematischen und dynamischen Betrachtungen
werden die Deformationen {(r und A¢ der Rider auf die
Schiene verlegt und der Radsatz somit als starr angesehen.

f. Entsprechend der bei unseren schweizerischen Drehgestell-
Lokomotiven zur Anwendung kommenden Radsatzlagerung
wirken die Lagerlangskrifte X, und X; senkrecht zur Rad-
satzaxe und die Lagerquerkraft H in Richtung dieser Axe.

g. Die vom Fahrgestell auf den Kasten ausgeilibte Zug-
kraft Zg; wirkt parallel zur Kastenldngsaxe.

h. Die zwischen Kasten und Fahrgestell wirkenden Quer-
kréfte K und 9is sind senkrecht zur Fahrgestell-Lingsaxe
gerichtet.

i. Der Radsatz iibt eine konstante Zug- oder Bremskraft U
aus.

k. Der Radsatz wird von seinem Antrieb stets auf diejenige
Drehzahl gebracht, die zur Entwicklung der Léngskraft U
notwendig ist. (Siehe Kapitel I, Abschnitt 1.1.)

1. Die sich abspielenden Vorgidnge werden lotrecht und hori-
zontal beobachtet und zwar in Léngsrichtung stets von hinten
nach vorn und in Querrichtung von rechts nach links.

m. Entsprechend der Voraussetzung 1. verstehen wir unter
dem Anlaufwinkel a ausdriicklich denjenigen Winkel, der
sich bei der Projektion auf die Horizontale ergibt. Beim An-
laufpunkt ist a somit der Winkel zwischen der lotrechten
Meridianebene des Rades und der lotrechten Normalebene zur
Schiene.

n. Wenn sich die Lokomotive in einer Kurve befindet, dann
soll diese eine Rechtskurve sein. Deshalb bezeichnen wir ihre
linke Seite als dussere und ihre rechte als innere.

o. Wenn nichts anderes erwdhnt ist, wird fiir die Wahl des
Vorzeichens der verschiedenen Ausschlidge und Kréafte stets
der Fall festgehalten, bei dem die Lokomotive vom Gleis aus
nach rechts abgelenkt bzw. quergestossen wird, bei dem also
die Radsédtze vom Gleis, das Drehgestell von den Radsitzen,
der Wiegebalken vom Drehgestell und der Kasten vom
Wiegebalken nach rechts beschleunigt werden. Die in diesem
Falle entstehenden und in den Bildern festgehaltenen gegen-
seitigen Kréifte und Relativausschldge sollen als positiv
gelten.

p. Wenn nicht besonders darauf aufmerksam gemacht wird,
nehmen die verschiedenen Querordinaten von links nach
rechts, die ¢-Drehungen im Gegenuhrzeigersinn und die y-
Drehungen, entsprechend der Ablenkung nach rechts, im
Uhrzeigersinn zu,

q. Im Gegensatz zur Voraussetzung p. wird der Winkel &

Verzeichnis der Bezeichnungen

Indizes:
Es weisen
G auf den Gleisrost,
K das Fldchenelement der Beriihrungsflédche,
R das Rad,
S die Schiene,
a, i das. dussere, bzw. innere Rad des betrach-

teten Radsatzes,
g das Gestell im allgemeinen,
o das Gestell beim Radsatz j,
h die horizontale Richtung,
i die einzelne Speiche (i=1, 2...n),
k den Kasten,
1 die Léngsrichtung in bezug auf den Rad-

satz,

n die letzte Speiche,

q die horizontale Querrichtung in bezug auf
den Radsatz,

T den Radsatz im allgemeinen,

die in der vertikalen Ebene senkrecht zur
Radsatzaxe verlaufende Richtung,
t die zur Radsatzaxe parallele Querrichtung,
g das einzelne Fahrgestell (g =1, II...z2),

der Querneigung des Gleises als positiv betrachtet, wenn er
einer Ueberhdhung der Aussen- bzw. der linken Schiene ent-
spricht. Steht somit die Radsatzaxe parallel zum Gleis, so
gilt @, = — .
r. Das Gleis bleibt bei
elastisch.

Wenn einzelne dieser Voraussetzungen gewisse Verein-
fachungen mit sich bringen, so bleibt ihr HEinfluss doch un-
wesentlich. Hingegen bleiben folgende Punkte beriicksichtigt:

a. Der beliebige Verlauf des Gleises in der Querrichtung und
in seiner Querneigung @,

seiner Deformation vollkommen

b. die beliebige Form des Schienen- und Radreifenprofils,

c. freies und elastisches Querspiel in der Radsatzlagerung,
d. freies Léngsspiel in der Radsatzlagerung,

e. die genaueren Zusammenhidnge in der Verbindung zwi-
schen Drehgestell und Kasten,

f. die beim Lauf entstehenden Raddruckinderungen,

g. die Ausilibung einer Zug- oder Bremskraft,

h. die Querdeformationen der Schienen und der Rider und ihr
Einfluss auf die Gleitverhiltnisse zwischen Rad und Schiene,

i. der unvereinfachte Verlauf der u(v)-Kurve.

Diese Punkte werden normalerweise vernachléssigt, spie-
len aber eine nicht unbedeutende Rolle.

Um den Ueberblick iiber die genaueren Zusammenhénge
zu bewahren, werden bei einzelnen Bildern gewisse Grossen,
insbesondere die Ausschlige, stark iibertrieben dargestellt.
Ferner werden bei der Aufstellung der verschiedenen Be-
ziehungen und Gleichungen Vereinfachungen irgendwel-
cher Art moglichst vermieden. Dadurch fallen einzelne Be-
ziehungen ziemlich umfangreich aus. Es ist aber ein Leichtes,
sie bei ihrer numerischen Behandlung durch Weglassen der
Glieder kleinerer Ordnung nachtriglich zu vereinfachen, wo-
bei die Zulédssigkeit der getroffenen Vereinfachungen besser
beurteilt werden kann.

Der Uebersicht halber werden die Geschwindigkeiten,
die Beschleunigungen und das Kréftespiel am Radsatz und
am Fahrgestell grundsdtzlich zundchst auf das dem betrach-
teten Korper eigene System bezogen, Die dabei in Betracht
kommenden horizontalen Geschwindigkeiten und Beschleuni-

gungen werden mit x, q und X, q bezeichnet. Da sie sich aber
auf ein bewegliches Koordinatensystem beziehen, sind sie
nicht als Ableitungen der Grossen x und g nach der Zeit
aufzufassen, sondern als Komponenten der sich im festen
Koordinatensystem ( @, w bzw. v) ergebenden Geschwindig-
keiten und Beschleunigungen.

gj das einzelne Fahrgestell beim Radsatz j,

) die einzelnen Kréfte T und C (i =1, 2,
& o 060

j den einzelnen Radsatz des betrachteten

Fahrgestelles (ersetzt den Index r, wenn
sich die betreffende Grosse eindeutig auf
den Radsatz bezieht, wird sonst zugefiigt.

=l P s i)
l die Léngsrichtung in bezug auf die Schiene,
m den Radsatz m,

(Die Radsédtze werden mit dem Index m be-
zeichnet, wenn ihr Einfluss auf die Defor-
mation beim Radsatz j untersucht wird.)

n den letzten Radsatz sowie
die Richtung normal zur Schiene,
q die horizontale Querrichtung in bezug auf

die Schiene,

v, h das vordere, bzw. hintere Triebgestell,
By U & die -, bzw. y-, bzw. z-Richtung,
2 den Aufstandspunkt 9(* (z. B. bei Y°, A°
usw.),
2 das letzte Fahrgestell,
& den Spurkranzdruckpunkt 9(* (z.B. bei Y#,
A¥ UsSw.).



Koordinaten in der Querrichtung
Kasten

u Ausschlag des Kastenschwerpunktes Si.

u; Ausschlag des sich in der Querebene der
Kastenverbindung des Gestelles g befindenden
Punktes der Kastenlédngsaxe .

Uy, up Desgleichen bei der vorderen, bzw. bei der hin-
teren Kastenquerverbindung.

uy Ausschlag des Mitnahmepunktes O, des Kastens.

uy, up Desgleichen bei der vorderen, bzw. bei der hin-
teren Kastenquerverbindung.

Triebgestell

hg Grosse des Hauptradius des Gestells.
v Ausschlag des Triebgestell-Schwerpunktes.
vo Ordinate des Mitnahmepunktes O des Gestelles.
vp Ordinate des Punktes D.
Ausschlag des Gestellpunktes S,.

S|

vy, vy Desgleichen beim vorderen bzw. beim hinteren
Triebgestell.
v; Ausschlag des Punktes Hg;.
Radsatz

) Ordinate des betrachteten Beriihrungspunktes 9(
gegentiber dem Wendungszentrum £ (f >0
wenn sich O, auf der rechten Seite der Radsatz-
langsaxe befindet).

7 Ordinate des Punktes A in bezug
Wendungszentrum £),.

hm Ordinate des Punktes E des mittleren Lauf-
kreises gegeniiber dem Wendungszentrum ..

ho Ordinate des Punktes A, gegeniliber dem Wen-
dungszentrum £,.

h, Grosse des Hauptradius des Radsatzes.

I, lp, I, Ordinate des Punktes A bzw. Ay bzw. E, in be-
zug auf die Axe 3.

w; Ordinate des sich auf Achshdhe befindenden
Zentralpunktes E des Radsatzes j.

w; Ordinate des sich auf Hohe der Schienenober-
kante befindenden Zentralpunktes E des Rad-
satzes j.

Wy, w; Die durch das anlaufende Aussen- bzw. Innen-
rad festgelegte Ordinate w des Radsatzes.

n Ordinate des Punktes A, des Haftkreises gegen-
Uber der durch den Punkt E, gehenden Radsatz-
langsaxe (n > 0 wenn sich der Haftkreis links
von der Radsatzaxe befindet).

=

auf das

Gleis und Schiene

h', h* Querordinate des betrachteten Beriihrungs-
punktes gegeniiber dem Mittelpunkt B der
Schiene.

Da, 1i Der in Bild D 6 definierte Abstand.
y Ordinate der Gleismitte im undeformierten Zu-
stand.
Va, ¥i Ordinate der undeformierten Aussen- bzw. In-
nenschiene.
Yi» Yjar ¥ji Ordinaten y, ya, yi beim Radsatz j.

Ya, Vi Ordinate der deformierten Aussen- bzw. Innen-
schiene.

Yja, Y;ji Desgleichen beim Radsatz j.

Koordinaten in der Langsrichtung

a Vorverlagerung des Beriihrungspunktes 9[ ge-
gentliber dem tiefsten Punkte A des zugehorigen
Laufkreises ¢ bzw. gegeniiber der lotrechten
Meridianebene des Rades.

h Wendungspoldistanz des Punktes 9[.

g Schwenkungspoldistanz (g > 0 wenn sich der
Schwenkungspol 9t hinter dem Radsatz befin-
det).

py Wendungspoldistanz des Gestells, d.h. der hori-
zontale Abstand des Wendungspoles Ny vom

Schwerpunkt S,.
Wendungspoldistanz des Radsatzes, d. h. der Ab-
stand des Wendungszentrums von der Radsatz-
axe (pr > 0 wenn sich N, hinter dem Radsatz be-
findet).
‘p; Desgleichen beim Radsatz j.
x, Abszisse des Gestellschwerpunktes S,.
xy Abszisse des Gestellpunktes Sg.
Tpg, pi Abszisse des Mitnahmepunktes D des Gestelles
bzw. des Kastens.
x, Abszisse des Zentralpunktes HE,. des Radsatzes.
x,; Desgleichen beim Radsatz j.
£, & Gleitpoldistanz des Aussen- bzw. des Innenrades
(¢ > 0 wenn sich der Gleitpol hinter dem Radsatz
befindet).
&ja, &51 Desgleichen beim Radsatz j.

Dy

Koordinaten in der vertikalen Richtung

b HOhe des betrachteten Beriihrungspunktes 9(

gegeniiber dem tiefsten Punkt A des zugehori-

gen Laufkreises ¢ (f wird in der Kreisebene ge-

messen).

Lotrechte Hohe des betrachteten Beriihrungs-

punktes 9( gegeniiber dem Mittelpunkt B der

Schiene.

z Hohenbetrag um welchen sich der Spurkranz-
druckpunkt 9(* tiefer als der Aufstandspunkt
9 des Rades befindet.

=

Winkelkoordinaten

Drehung wm die x-Axe

vy Neigungswinkel des Radreifen-
profils im betrachteten Beriih-
rungspunkt (y nimmt im Gegen-
uhrzeigersinn zu, ist somit beim
Innenrad > 0 und < 0 beim Aus-
senrad).

§ Neigungswinkel der Beriihrungs-

ebene im betrachteten Beriih- s o
rungspt.mkt A. . Gegenuhr-
oz Querneigungswinkel des Gestells. zeigersinn
o Querneigungswinkel des Kastens. it
¢r Querneigungswinkel des Rad-
satzes.
or* Querneigungswinkel, nach wel-

chem der Radsatz in der x,-Rich-
tung beobachtet wird (Bild H 3).
psj Querneigungswinkel der Gera-
den, die beide Aufstandspunkte
des Radsatzes j verbindet.
¢p Projektion des Winkels ¢, in Schienenrichtung.
®; Querneigung des Gleises beim Radsatz j (posi-
tives ¢ entspricht einer Ueberhdhung der linken
Schiene).
&, Desgleichen bei der Gleislage z.

Drehung um die z-Axe

vg Stellungswinkel des Gestells.

v Stellungswinkel des Kastens.

v, Stellungswinkel des Radsatzes.

Vva; Winkel ¢ der Gleisaxe beim
Radsatz j.

nehmen im
Uhrzeiger-
sinn zu

Deformationen und Verschiebungen

In der Querrichtung

» Horizontaler Abstand des Mitnahmepunktes D
von der Kastenldngsaxe.

Do Querverschiebung des Kastenmitnahmepunktes
O (do >0, wenn O nach links verschoben ist).

) Verschiebung des Triebgestell-Querkupplungs-
punktes von der Getriebemitte aus.

8§ Querverschiebung des Radkranzes unter dem
Einfluss der Fihrungskraft T.



Ay Horizontale Querverschiebung des Radsatzmit-
telpunktes K, gegeniiber der Gestelldngsaxe
(Ag > 0, wenn sich E, rechts vom Gestellpunkt
B, befindet).
Nach voller Ausniitzung des Querspieles i, ein-
genommener maximaler Wert der Querverschie-
bung Ag.
Yy Querdeformation am Radsatz unter der Einwir-
kung einer Querkraft T.
¢ Die sich aus den Defor-
mationen am Gleis und am
Radsatz ergebende Quer-
verschiebung zwischen Rad
und Schiene.
¢{se Querdeformation des Gleis-
rostes.
¢ss Querdeformation der
Schiene auf Schienenkopf-

|
{=]

finden parallel zur
Radsatzaxe statt
und sind positiv,
~wenn die betrach-

hohe. ; tete Schiene durch
¢{s Aus (sg und ({sg resultie- ihr Rad nach aus:
rende Querverschiebung

. sen gedriickt wird.
des Schienenkopfes.

¢{r Querdeformation des Ra-
des in seinem Beriihrungs-
punkt mit der Schiene.

¢(n Horizontale Projektion
{cos ¢, der Deformation ¢.

In der Ldngsrichtung

Ax Verschiebung des Radsatzmittelpunktes gegen-
liber dem Fahrgestell (im Falle des Vorhanden-
seins eines Léngsspiels i in den Radsatzlager-
stellen).

A¢,, A§ Verlagerung des Schwenkungspols 9t zum Gleit-
pol M, bzw. M; des Aussen bzw. des Innenrades
infolge der Querdeformation von Rad und
Schiene (A¢ > 0 wenn M hinter 9t verlegt wird).

Winkeldeformationen

yn Verdrehungswinkel der Speiche n.
Ap Die durch die Deformation des Radsatzes be-
dingte Neigung der Radkranzebene.

Andere variable Grossen

¢ Abstand des Kreises ¢ gegeniliber dem mittleren
Kreis ¢, (¢ > 0, wenn sich der Kreis ¢ links bzw.
ausserhalb des mittleren Kreises c, befindet).
"¢ Horizontaler Querabstand zwischen den beiden
Punkten 9 und E, (¢ > 0, wenn sich 9[ links
von E, befindet, d.h. beim Aussenrad).
¢ Halbmesser des Kreises c.
a, b Halbaxen der Ellipsen konstanten Schlupfes v
(siehe Bild B 7).
a;, b; Halbaxen der fiir die Bestimmung von u; mass-
gebenden Ellipse konstanten Schlupfes v (siehe
Bild B 8).
aq, by Halbaxen der fiir die Bestimmung von p, mass-
gebenden Ellipse konstanten Schlupfes v (siehe
Bild B 8).
e, €3 Abstand des Aufstandspunktes von der Radsatz-
mittelebene (absoluter Wert von ¢, ¢i)-
e,*, ei* Abstand des Spurkranzdruckpunktes von der
Radsatzmittelebene (absoluter Wert von g*,, ¢*;).
‘e Absoluter Wert von e.
r’y, ;s Halbmesser des dusseren und des inneren Lauf-
kreises.

r; Horizontale Projektion rpcose; der halben La-
gerdistanz ry.

r,, Halbmesser des mittleren Laufkreises c,.

Ar Halbmesseriibermass des betrachteten Kreises
gegeniiber dem in der gleichen Ebene liegenden
Kreis des Rollkegels.

b Horizontaler Abstand des Radsatzmittelpunktes

E, von der Mittellinie der betrachteten Schiene
(Bild D 10).

da, di Schwenkungsarm, d.h. der Strahl Wi, A.bzw.
M A

Qa, qi Gleitarm, d.h. der Arm M, A, bzw. M, A,.

p Momentaner Radius der Wendung (p > 0 wenn
sich der momentane Drehpunkt © der Wendung
entsprechend einem positiven Wert der Drehung
¢r auf der rechten Seite der Radsatzlingsaxe be-
findet).

pg Der momentane Radius der Triebgestell-Wen-
dung.

pr Der momentane Radius der Radsatz-Wendung.

a Horizontaler Anlaufwinkel des Radsatzes (er-
gibt sich in der horizontalen Ebene aus der lot-
rechten Projektion der Radsatzaxe.

ag Horizontaler Anlaufwinkel des Radsatzes im
Augenblick des Anlaufens.

B Effektiver Anlaufwinkel (Winkelzwischen Schie-
nenaxe und Radebene, Kapitel D),

e Halbwinkel des Rollkegels.

7 Richtungswinkel der Gleitgeschwindigkeit.

¢ Neigung des Radkranzes unter dem Einfluss der
Filihrungskraft T (Kapitel C).

@ Richtungswinkel der Reibungskraft % gegen-
iiber der umgekehrten Richtung der Gleitge-
schwindigkeit ty des Rades auf der Schiene.

¢, Richtungswinkel der Zugkraft Zj.

Feste Grossen

2e Spurweite (Abstand zwischen den beiden Schie-
nenmitten).

2e Abstand zwischen beiden dem Nenndurchmesser
entsprechenden Radebenen des Radsatzes.

g Querverlagerung des Gestellschwerpunktes.

h.; Hohe der Kraft C; liber Radsatzaxe.

h, Hohe des Gestellschwerpunktes S, liber Radsatz-

axe.

h, H6he des Kastenschwerpunktes S, iiber Rad-
satzaxe.

ho Hohe des Kastenmitnahmepunktes iiber Rad-
satzaxe.

h, Hohe des Kastenquerddmpfers iber Radsatzaxe.
hp Ho6he des Mitnahmepunktes D liber dem Punkt
E,.
2r;, Distanz zwischen den Lagern.
2 rp Federbasis der Gestellfederung.
ry Radius mit dem die Querkraft T auf das Rad
wirkt.
Innendurchmesser der Radfelge (Einspannstelle
der Speichen).
s, Hohe des Kastenschwerpunktes iiber Mitnahme-
punkt O.
Hohe des Kastenschwerpunktes iliber Zughaken.
Nenndurchmesser des Radsatzes.
Krimmungsradius im Falle des statischen Bo-
genlaufs.
2a Radstand des Fahrzeuggestells.
ay; Abstand zwischen dem ersten und dem j-Rad-
satz.
a5 Abstand zwischen dem ersten Radsatz und dem
Schwerpunkt des Fahrzeugoberteils.
axy Léngsabstand der Dampfungskraft $Hz vom
Mitnahmepunkt 0 (ax- >0 wenn 9z vor dem
Punkte 0 wirkt).
axs Léngsabstand der Mitnahmequerkraft Ko vom
Schwerpunkt des Triebgestells (ayxs > 0 wenn K
vor dem Schwerpunkt wirkt).
¢, t; Wirkdistanz der Kréfte C; T
2 d Drehzapfenabstand.
d, Distanz des Angriffspunktes der Kraft Z; hinter
dem Kastenschwerpunkt.
d, Distanz zwischen dem Kastenschwerpunkt und
der Querebene der Kastenabstiitzung beim Ge-
stell g (d, > 0 wenn diese Ebene vor S steht).

2T

-
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s Querspiel in der Querkupplung.
o Halbes Spurspiel.
A® Befestigungs-Winkel des Schienenfusses gegen-
iiber der Traverse.

Geschwindigkeiten 1)

1t Momentane Geschwindigkeit des Mittelpunktes
des Radsatzes bzw. des betrachteten Punktes
der Triebgestell-Lédngsaxe [.

p Absolute Geschwindigkeit der Radoberfldchen-
elemente im betrachteten Bertihrungspunkt.

19 Gleitgeschwindigkeit ~der Radoberfléchenele-
mente relativ zur Schienenoberfldiche im be-
trachteten Beriihrungspunkt.

g Gleitgeschwindigkeit des Flédchenelementes f
der Beriihrungsflache.
Die Grosse von 1.
Fahrgeschwindigkeit.
Die Grosse der Geschwindigkeit y.
w Die Grosse der Geschwindigkeit 1.
X,, ¢, Horizontale Komponente der Geschwindigkeit
des Radsatzmittelpunktes E, parallel und senk-

. . . . recht zur Radsatzlingsaxe.

Xg, Qg Xg, Jg Horizontale Komponente der Geschwindigkeit
des Gestellpunktes E, bzw. E, parallel und senk-
recht zur Gestelldngsaxe,

< <4c

i{,(} Horizontale Komponente der Geschwindigkeit
des Radsatzmittelpunktes E, parallel und senk-
recht zur Gestellingsaxe.

Aq, AX Horizontale relative Quer- und Léngsgeschwin-
digkeit des Radsatzmittelpunktes H, gegeniiber
dem Gestellpunkt E,; (nicht zu verwechseln mit
den Ableitungen Aq und Ax der Ausschlige
Ag und Ax nach der Zeit),

2 Rotation des Radsatzes, d.h. seine Drehung um
seine eigene Axe.

Q, Wendung des Rollkegels, d. h. seine Drehung um
seine Spitze.

Q, Schwenkung des Radsatzes, d.h. Drehung, aus
welcher die absoluten Geschwindigkeiten § der
tiefsten Punkte A des Rollkegels entstehen.

@, Rollen des Radsatzes, d.h. seine Drehung um
seine momentane Berilihrungsgerade g mit der
Grundebene.

2, Wendung der Radsatzaxe, d. h. Drehung der Rad-
satzaxe um die in Betracht fallende Momentan-

axe.
W, 0z w,«} Die Winkelgeschwindigkeit dieser verschiedenen
wg, w.! Drehungen.

Beschleunigungen 1)

by Die durch Gleichung (K 2) definierte Beschleu-
nigung.
by; Die durch Gleichung (K 33)
beschleunigung des Radsatzes.
x,, d, Horizontale Komponente der Beschleunigung des
Radsatzmittelpunktes E, parallel und senkrecht
zur Radsatzlingsaxe.

definierte Quer-

Xz, Qg Xg, 4z Horizontale Komponente der Beschleunigung des
Gestellpunktes E, bzw. E, parallel und senk-
recht zur Radsatzlangsaxe.

X, q Horizontale Komponente der Beschleunigung des
Radsatzmittelpunktes E, parallel und senkrecht
zur Gestellangsaxe.

1) Obwohl die Schreibweise #, ¥ ... bzw. &, ¥ ... ublicherweise
fiir die erste bzw. die zweite Ableitung der Gréssen x, ¥ ... nach
der Zeit verwendet wird, soll sie hier gem#ss Einleitung zur Verein-
fachung der Schrift auf die Bezeichnung der Geschwindigkeit bzw.
der Beschleunigung verallgemeinert werden. Dabei kann sie nur fur
die sich auf ein festes System beziehenden Koordinaten z, y, u, v, w

. eine unmittelbare Ableitung nach der Zeit bedeuten. Bei den an-
deren Grossen hingegen, so zum Beispiel bei x, X, q, g, x und g soll
sie die entsprechende Geschwindigkeits- bzw. Beschleunigungskom-
ponente bezeichnen,

Krifte

Q=

o

R B E g

Gy
Gg
G,

3

Q'a Q*ay‘[
Qi QFif
Qav Qi

Q;

AV

Elementare Reibungskraft im Fldchenelement f.
Die durch den Winkel ¢ bedingte Querkompo-
nente ¢G des betrachteten Gewichtes (& >0
wenn nach aussen bzw. nach links wirkend).
Reibungskraft im Beriihrungspunkte 9f.
Normalkraft im Beriihrungspunkte 9.
Déampfungskraft bei der Kastenquerverbindung.

. Die Tragheitskraft (m,q,/cos¢,) des Radsatzes.

Die Tragheitskraft mgijg des Fahrgestells.
Einzelne auf den Rahmen (gefederter Teil) wir-
kende &ussere Querkridfte (C >0 wenn nach
aussen wirkend).

Grosse der Reibungskraft .

Federkraft (Kapitel O).

Federvorspannung.

Gewicht des Kastens.

Gewicht des gefederten Teils des Gestells.
Gewicht des Radsatzes.

Lagerquerkraft des Radsatzes, d.h. die vom
Rahmen auf den Radsatz ausgeilibte Querkraft
(H > 0 wenn auf den Radsatz nach aussen wir-
kend).

; Lagerquerkraft, die beim Spielen der elastischen

Querriickstellung der Radsatzlagerung entsteht
[Gl. (K8)].

: Lagerquerkraft die entsteht, wenn der Radsatz

entsprechend (d;} = 17]) starr mit dem Gestell ge-
bunden bleibt [Gl. (K 5)].

Vorspannung der Lagerriickstellung.

Die aus i3 und K, resultierende Mitnahmekraft
der Kastenquerverbindung.

Mitnahmekraft am Zapfen der Kastenquerver-
bindung.

i Lagerdruck beim &Husseren bzw. beim inneren

Rad.

Mittlerer Lagerdruck.

Summe der beiden Lagerdriicke beim Radsatz j
(Lj = 2Ly).

Abweichung der beiden Lagerdriicke L, und Lj
von ihrem Mittelwert.

Grosse der Normalkraft 9i.

Richtkraft. Entspricht bei der Rollenfiihrung
der Fiihrungskraft der Rolle. (P > 0 wenn nach
rechts auf Radsatz wirkend).

; Die von der Speiche i libernommene Querkraft.

Die in der vertikalen Ebene liegende, senkrecht
zur Radsatzaxe gerichtete Komponente der im
allgemeinen Beriihrungspunkte 9( zwischen Rad
und Schiene entstehenden Kraft.

Die im betrachteten Beriihrungspunkt 9(‘,, A*a,
9'; oder 9(*; entstehende Kraft Q.

Raddruck, d.i. die sich zwischen dem Aussen-
bzw. Innenrad und seiner Schiene ergebende
totale Kraft Q.

Achsdruck, d.i. die sich fiir den ganzen Radsatz
ergebende Kraft Q.

Querkomponente der Reibungskraft (im ver-
einfachten Verfahren) (S > 0 wenn sie auf das
Rad nach innen wirkt).

Abweichung der beiden Raddriicke V, und V;
von ihrem Mittelwert (kommt beim vereinfach-
ten Verfahren in Betracht).

Mittelwert von V, und V; (mittlerer Raddruck
im vereinfachten Verfahren).

Die vom Kasten auf das Triebgestell ausgeiibte
vertikale Kraft.

Lagerldngskraft (X >0 wenn der Radsatz beim
betrachteten Lager nach vorn auf das Gestell
driickt).

Zugkraft an der Zug- und Stossvorrichtung des
Kastens (Bremskraft gilt als negative Zug-
kraft).

Zugkraft am Triebzapfen des Gestelles g.
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Die parallel zur Radsatzaxe
gerichtete Komponente der
im allgemeinen Beriihrungs-
punkte 9( zwischen Rad und
Schiene entstehenden Kraft
(T > 0 wenn nach aussen auf
die Schiene wirkend). Anteil
an die axiale Fihrungskraft

T
Axijale Fihrungskraft des

Radsatzes, .
Axiale Fiihrungskraft des | Index-Bezeich-

nung der sich

Aussen- bzw. Innenrades. . g
im einzelnen

Die Léngskomponente der im

allgemeinen Beriihrungs- | Beruhrungs-
punkte 9[ zwischen Rad und | Punkte Q['ar A*a,
Schiene entstehenden Kraft { 21 oder 9%
(U >0 wenn auf den Rad- ambetrachteten
satz nach vorn wirkend). Rad oder am
Die lotrechte Komponente der | Radsatz erge-
benden Kraft,

im allgemeinen Beriihrungs-
punkte 9( zwischen Rad und
Schiene entstehenden Kraft. Q-
Die horizontale Querkompo-
nente der im allgemeinen
Beriihrungspunkte 9( zwischen
Rad und Schiene entstehen-
den Kraft (Y > 0 wenn nach
aussen auf die Schiene wir-
kend). Anteil an die horizon-
tale Fiihrungskraft Y,.
Horizontale Flihrungskraft
des Radsatzes.

Stiitzkraft der Radsatzfederung.

Hinzelne auf das ganze Fahrzeug, d.h. sowohl
auf die Radséitze als auf den gefederten Rah-
men wirkende Querkréfte (T; > 0 wenn nach
aussen wirkend).

Die Kraft in der eventuellen Querkupplung zwi-
schen den Triebgestellen (Ty; > 0 wenn auf vor-
deres Gestell nach aussen und auf das hintere
Gestell nach innen wirkend.

gleich wie fiir

Moment der durch die Querkomponenten S der
Reibungskréifte F' bedingten Richtkraft in bezug
auf den Schwenkungspol des Fahrzeuges.
Moment der Reibungskréfte F' in bezug auf den
Schwenkungspol des Fahrzeuges,

Moment der Reibungskréfte F' in bezug auf den
Schwenkungspol des Fahrzeuges abziiglich des
Momentes der beiden Querreibungskrifte Sy, und
S1i des ersten Radsatzes.

Differenzmoment zwischen 9} und 9.

Das von den &dusseren Kréften beim ersten Rad-
satz auf das Gestell ausgeiibte Moment.

Ein #dusseres, auf das Fahrzeug um eine senk-
rechte Axe wirkendes Moment.

Das totale Stiitzmoment aller Radsitze des
Fahrgestelles.

Das Stiitzmoment des Radsatzes j.

Das Stiitzmoment der Radsatzfederung beim
Radsatz j.

Das Lagerdruckmoment beim Radsatz j.

Das Einspannmoment am Ende der Speiche i.
Das von der Speiche i aufgenommene Dreh-
moment.

Das sich bei der Kastenabstiitzung nach Reduk-
tion auf den Mitnahmepunkt O ergebende Mo-
ment.

Steifigkeiten, Nachgiebigkeiten und REinflussfaktoren

mej

Hinflussfaktor fiir die Auswirkung der Fiih-
rungskraft T, bzw. T; des Aussen- bzw, Innen-
rades des Radsatzes m auf die Deformation
{ss der betreffenden Schiene beim Radsatz j.

mej

foj
s
f1

fa®
fa
fo*

kg
kg
1/k*p

kg
ko

Einflussfaktor fiir die Auswirkung der Fiih-
rungskraft T des Radsatzes m auf die Defor-
mation £y des Gleisrostes beim Radsatz j.
Einfederung der Radsatzfedern unter Einwir-
kung der statischen Last.

Einsenkung des Gestellschwerpunktes infolge
der ausser der statischen Last wirkenden Krifte.
Die sich beim ersten Radsatz infolge der ausser
der statischen Last wirkenden Krifte zusitzlich
zu fs ergebende Einsenkung sowie
Nachgiebigkeit der Speiche unter Einwirkung
der Querkraft P [siehe Gl. (C10)].
Spezifische Neigung der Speiche unter der Ein-
wirkung der Querkraft P [siehe Gl. (C10)].
Nachgiebigkeit der Speiche unter Einwirkung
des Einspannmomentes M [siehe GIl. (C10)].
Spezifische Neigung der Speiche unter der Ein-
wirkung des Einspannmomentes M [siehe GI.
(C10)1.

Nachgiebigkeit der Speiche gegen Verdrehung.
Steifigkeit der Lagerriickstellung.

Steifigkeit sidmtlicher Federn der Vertikalfede-
rung des Gestells.

i Steifigkeit der ganzen vertikalen Federung des

Radsatzes j.

i In bezug auf die Winkel ¢, und ¢, reduzierte

Steifigkeit der ganzen vertikalen Federung des
Radsatzes j.

Steifigkeit des Gleisrostes gegen eine Quer-
kraft.

Steifigkeit des Rades bei seiner Querdeformation.
Nachgiebigkeit des Gegenrades. (Die auf ein
Rad wirkende Querkraft T ruft die Verschie-
bung T/k*p des Gegenrades hervor.)
Steifigkeit der Schiene gegen eine Querkraft.
Steifigkeit der Schiene gegen Verdrehung.

Diampfungen

D

7
7!

T4 j
T3

8

Die der Ddmpfung r entsprechende Ddmpfungs-
zahl, GL. (0.19).

Die Ddmpfung im allgemeinen.

Die Ddmpfung aller parallel mit der Gestellfede-
rung arbeitenden Vertikalddmpfer.

Die auf den Radsatz j entfallende Didmpfung ry.
Die Didmpfung der parallel zur Gestell-Kasten-
riickstellung arbeitenden Dampfer.

Die der Ddmpfung r entsprechende Abklingkon-
stante.

Massen und Tragheitsmomente

i

m, M
my
my
my

m#

Okz, Okz

Or

Frequenzen

70
L)

Tréagheitsradius.

Masse im allgemeinen.

Masse des gefederten Teils des Gestells.
Masse des gesamten Triebgestells.

Masse des Kastens.

Masse des Kastenanteils, der sich auf das be-
trachtete Triebgestell abstiitzt.

- Masse des Radsatzes.

Geometrisches Trégheitsmoment der Radsatz-
axe in ihrem elastischen Teil zwischen Rédern.
Tragheitsmoment des gefederten Teils des Ge-
stells um seine senkrechte bzw. um seine Lings-
axe bei gz = 0.

Das bei (pg==0) fiir die y-Drehung zu beriick-
sichtigende Trégheitsmoment des Fahrgestelles.
Tragheitsmoment des Kastens um seine senk-
rechte bzw. um seine Lingsaxe.
Tragheitsmoment des Radsatzes um die a- bzw.
z-Axe.

Eigenfrequenz der ungeddmpften Schwingung.
Eigenfrequenz der geddmpften Schwingung.



Punkte

Beriihrungspunkt im allgemeinen.
Aufstandspunkt.

Spurkranzdruckpunkt.

Wendungszentrum, d.h. momentaner Mittel-
punkt der Drehung der Radsatzaxe.
Schwenkungspol, d. h. der Fusspunkt
Schwenkaxe .

Spitze des Rollkegels.

Tiefste Punkte der Laufkreise c, und c;.
Tiefster Punkt des Laufkreises cg.
Mittelpunkt der Schiene.
Verbindungspunkt zwischen Kasten und Ge-
stell in Léangsrichtung: Angriffspunkt der Kraft
Zg.
Mittelpunkt des Radsatzes j auf Achsenhohe.
Mittelpunkt des Radsatzes j auf Hohe der Schie-
nenoberkante.

der

i Schnittpunkt der Radsatzaxe und der Axe [.
- Tiefster Punkt des Mittleren Kreises cp des

Radsatzes.

i Der sich bei (A, = 0) in der gleichen Querebene

wie der Radsatz j befindende Punkt der Gestell-
lingsaxe [ bzw. [,

Gleitpol, d.h. das Momentanzentrum der Dre-
hung @4, aus welcher die Gleitgeschwindigkeit
i im Punkte A entsteht.

- Wendungspol des Radsatzes, d. h. der Fusspunkt

des Hauptradius auf der Radsatzlingsaxe.
Wendungspol der Gestell-Ldngsaxe [ bzw. [.
Verbindungspunkt zwischen Kasten und Gestell
in Querrichtung.

Schwerpunkt des gefederten Teils des Gestells.
Der sich in der Schwerpunktsquerebene befin-

dende Punkt der Léngsaxe [ des Gestelles.

. Schwerpunkt des Kastens.
- Schwerpunkt des Radsatzes.

Tiefster Punkt des Rollkegels in der Ebene des
Kreises c.

Geraden, Axen, Kreise

¢
g

[

[

m

D

3

Ca, Ci
Co
cm

k

Der Kreis des allgemeinen Radpunktes 9.

Die momentane Beriihrungsgerade des Lauf-
kegels mit der Grundebene.

Langsaxe durch den Schwerpunkt des gefederten
Teils des Gestells.

Léngsaxe des Gestellrahmens auf Radsatzmit-
tenhohe.

Schwenkungsaxe, d. h. die momentane Axe der-
jenigen Radsatzteilbewegung, aus der allein die
horizontalen Geschwindigkeiten v; und v, der
Punkte A entstehen.

Wendungsaxe, d. h. momentane Axe der Drehung
der Radsatzaxe.

Senkrechte Axe durch die Spitze des Laufkegels.
Laufkreis des Aussen- bzw. des Innenrades.
Haftkreis.

Mittlerer Laufkreis, d.h. der in der Mitte des
Radsatzes liegende Kreis des Rollkegels.
Laufkreis der Schiene,

Verschiedene Faktoren

b, .C i %e

i’
A
AL, Ags An, Az

>\]‘y 7\3

Koeffizienten der verschiedenen TUnbekannten
in den Gleichungssystemen (I18) (I22)—(I25)
(I47).

Faktor zum Einsetzen des massgebenden Vor-
zeichens fiir Az in Gleichung (K 17).

Faktoren zur Bestimmung der Grosse v der Ge-
schwindigkeit y.

Faktoren zur Bestimmung der Komponenten v,

Vg, Vn und v, der Geschwindigkeit p.

Reduktionsfaktoren bei der Projektion des Ra-
des in Schienenrichtung.

A1, A2

Ap
Al: Aq: Az

Ay, Ag

—>
"

Ky gy Pz

Say Si

Te

Tq

Ta: Tby Tc

Xq

Verschiedene

ag
2eq
214
21,
n
Px
£

n

2

Bi

o

Faktoren zur Bestimmung der Griossen g und H
des Beriihrungspunktes 9[.

Bezugsfaktor fiir die Stosskraft F.

Faktoren zur Bestimmung der Krifte U, Y und
V im Berihrungspunkte 9[.

Faktoren zur Bestimmung der beiden Krifte T
und Q im Berlihrungspunkte 9.

Reibung, das ist der als gerichtete Grosse be-
trachtete Reibwert.

Léngs-, Quer- und lotrechte Komponenten der
Reibung J

Faktoren zur Bestimmung der beiden Lager-
langskrédfte X, und X; im Falle der Radsatz-
lagerung mit freiem L&ngsspiel.

Faktor, der mit seinem Wert + 1 bzw. — 1 den
Zustand des aussen bzw. innen bis zum An-
schlag querverschobenen Radsatzes und mit
seinem Wert 0 den Zustand der festen Lage-
rung des Radsatzes in der Mittelstellung bei
| H] < Hy kennzeichnet.

Faktor, der mit seinem Wert 4+ 1 bzw. — 1 den
Zustand des aussen bzw. innen bis zum Angschlag
querverschobenen Radsatzes kennzeichnet,

w
Schl —
c upf(v)

Faktoren, mit welchen die bei der Radsatzlage-
rung mit freiem Léngsspiel i, fiir die Félle der
Gruppen a, b, ¢ massgebenden Beziehungen be-
ricksichtigt werden.

Faktor, der mit seinem Wert 1 den Zustand des
innerhalb des elastischen Spiels e, liegenden
Radsatzes kennzeichnet.

Faktor, der mit seinem Wert 1 den Zustand des
innerhalb des Querspiels + i, frei liegenden Rad-
satzes kennzeichnet.

Grossen

Flache des Elementes f der Beriihrungsflache.
Elastisches Querspiel in der Radsatzlagerung.
Freies Querspiel in der Radsatzlagerung.
Freies Langsspiel in der Radsatzlagerung.
Speichenanzahl.

Fléachendruck im Flichenelement f.

Zeit.

Anzahl der Radsidtze im betrachteten einfachen
Fahrzeug.

Anzahl der Fahrgestelle.

Stellungswinkel der Speiche i.

Halbes Spurspiel.

Definition besonderer Ausdriicke

Fiihrungskraft Querkraft zwischen Rad und Schienen
bzw. Radsatz und Gleis.

Gleitarm g Arm zwischen dem Gleitpol M und dem
betreffenden Berlihrungspunkt.

Gleitpol M Das fiir die Ermittlung der Gleitge-

Gleitpoldistanz £

Haftkreis ¢,

Hauptradius

Pawelka-Gerade

Richtkraft

Rotation @

schwindigkeit Mo-
mentanzentrum.

Horizontaler Abstand zwischen dem
Gleitpol und der Radsatzaxe.
Derjenige Kreis des Rollkegels, der in
Léangsrichtung nicht gleitet.

Der senkrecht zur Radsatz- bzw. Fahr-
gestellingsaxe stehende und von £ aus-
gehende Radius.

Die vertikale Projektion der senkrech-
ten, durch den Wendungspol und die
Spitze des Rollkegels gehenden Verti-
kalebene.

Querkraft zwischen Spurkranz und
Schiene.
Drehung des
eigene Axe.

v massgebende

Radsatzes um seine



Der durch beide Aufstandslaufkreise
gegebene Kegel.

Momentane Drehung, aus welcher die
absoluten Geschwindigkeiten {) der tief-
sten Punkte des Rollkegels entstehen.

Rollkegel

Schwenkung (2,

Schwenkungsarm d Arm zwischen dem Schwenkungspol
und der betreffenden Beriihrungs-

punkte.

Vertikale Momentanaxe der Schwen-
kung.

Schwenkungsaxe #

Der in der betrachteten Horizontalbene
liegende Punkt der Schwenkungsaxe,

Schwenkungspol )}

Schwenkungspol- Horizontaler Abstand zwischen der

distanz g Schwenkungsaxe i und der Radsatz-
axe.

Wendung 2, Die Drehung der Radsatzaxe um die

betreffende vertikale Momentanaxe.

Wendungsaxe p Die vertikale Momentanaxe der Wen-

dung.
Wendungspol- Horizontaler Abstand zwischen der
distanz p, Wendungsaxe und der Radsatzaxe,

Wendungspol N Fusspunkt des Hauptradius auf der be-
trachteten Lingsaxe.
Wendungszentrum 9 Der in der betrachteten Horizontal-

ebene liegende Punkt der Wendungsaxe.

B. Die Reibung zwischen der Schiene und dem rollenden Rad

Die einem gemeinsamen Fahrzeug angehérenden Rad-
sdtze miissen infolge ihrer stets etwas ungleichmaéssigen
Bewegung nach ganz bestimmten Zusammenhingen auf bzw.
gegen ihre Schienen gleiten. Sie sind somit u.a. den ent-
sprechenden Reibungskriften ausgesetzt, die auch die Bin-
dung zwischen Rad und Schiene in der Fahrrichtung geben
und deshalb bei den Laufvorgingen eine wichtige Rolle spie-
len. Es ist daher unerldsslich, diese Krafte nidher zu be-
trachten.

Die Beriihrung zwischen Rad und Schiene findet beim
nicht anlaufenden Rad in der sich auf dem Schienenscheitel
befindenden Aufstandsfliche bzw. bei Voraussetzung einer
punktférmigen Kraftiibertragung im Aufstandspunkt statt.
Beim anlaufenden Rad treten zwei verschiedene Fille auf,
je nachdem sich aus den Umrissen der Schiene und des Rad-
reifens eine Zwei- oder eine Einpunktberiihrung ergibt. Im
Falle der Zweipunktberiihrung tritt, nebst der Beriihrung
im Aufstandspunkt, eine weitere Beriihrung am Spurkranz
auf, durch welche die notwendige Richtkraft entsteht. Ein-
punktberiihrung kommt, wie wir im n#chsten Abschnitt
sehen werden, praktisch seltener vor 1), Wir untersuchen hier
daher in erster Linie die sich allein im Falle der Zweipunkt-
beriihrung in der Aufstandsfliiche und in der seitlichen Stiitz-
fldche ergebenden Verhiltnisse und werden am Schluss kurz
auf den Fall der Einpunktberiihrung zuriickkommen.

1. Die Reibung in der Aufstandsfliche im Falle der Zwei-
punktberiihrung

Die Radlast wird vom Rad auf die Schiene iiber eine el-
lipsenférmige, durch die Elastizitdt des Schienen- und Rad-
materials bedingte Kontaktflédche iibertragen, in welcher der
Druck von der Grosse Null am Rande bis zu einem Maximal-
wert im Innern zunimmt., Infolge der verschieden gerich-
teten Wolbungen des Rades und der Schiene werden dabei
die einzelnen Elemente der Kontaktfliche beim Rad in der
Léngsrichtung zusammengedriickt bzw. in der Querrichtung
ausgedehnt und umgekehrt bei der Schiene. Wihrend des
Rollens wird jedes zur Beriihrung kommende Fldchenelement
voriibergehend Bestandteil der Kontaktfliche, indem es an
einem bestimmten Randpunkt in diese eintritt und iiber
sie bis zum Austrittsrand wandert. Dabei wird das Flidchen-
element zunichst allmdhlich bis zu einem maximalen Wert
deformiert, um nachher wieder auf seinen urspriinglichen
Zustand zuriickzukommen, den es beim Austritt aus der
Kontaktfliche voraussichtlich wieder erreicht. Da sich in-
folge der ungleichen Deformationen seine Abmessungen am
Rad und an der Schiene verschieden dndern, muss sein Wan-
dern tiber die Kontaktfliche durch ein fortwidhrendes Glei-
ten zunéchst in der einen, dann in der andern Richtung be-
gleitet werden.

In jedem Fléchenelement ay entsteht somit eine elemen-
tare Reibungskraft {x, deren Grosse entsprechend dem Cou-
lomb’schen Reibungsgesetz

(1) fx = px Pk 2k
betriagt und deren Richtung durch die Gleitgeschwindigkeit
g des Flidchenelementes gegeben ist. Die totale Reibungs-

1) Siehe z. B. «Int, Archiv fiir Verkehrswesen» 1957, Nr. 17, Was
ist mit der Spurfiihrung, von Prof. Dr. W. Bdseler.

kraft ¥ des Rades ergibt sich als Resultierende

2) F=Yir

aller elementaren Reibungskrifte, und ihre Richtung ist
durch die Gesamtheit aller Flichenelemente bedingt. Wird
keine Reibungskraft ¢ ausgelibt, so stellt sich der Span-
nungszustand in der Beriihrungsfliche derart ein, dass sich
alle elementaren Reibungskrifte fr gegenseitig aufheben und
damit die Resultierende %5 = 0 ergeben. Tritt hingegen eine
Reibungskraft auf, so #dndern sich die Spannungsverhilt-
nisse in der Weise, dass durch Ueberwiegen der in der ent-
sprechenden Richtung gleitenden Elemente die resultierende
Reibungskraft ¥ entsteht. Hs ergibt sich dann eine Relativ-
bewegung zwischen Rad und Schienenoberfliche, die — von
aussen betrachtet — als Gleithewegung zwischen Rad und
Schiene erscheint, die in Wirklichkeit aber teils durch
elastische Deformationen, teils durch Gleitung entsteht. Da
sich u.a. die Rad- und Schienenoberfliche in Lings- und
Querrichtung elastisch verschieden verhalten, kann voraus-
gesetzt werden, dass die Reibungskraft § grundsétzlich nicht
unmittelbar, sondern durch ihre beiden Léngs- und Normal-
komponenten §; und &Fn gegeben ist, die jede ihrem eigenen
Gesetz folgen. Demnach wird % in der Gleitebene im allge-
meinen nicht nach der gleichen Richtungslinie wie die Rela-
tivhewegung wirken,

Somit kann hier das durch die Beziehung

iy
G} = (W> N
gekennzeichnete Coulombsche Reibungsgesetz nicht mehr
verwendet werden 2). Statt dessen ist die Beziehung
= W\ i

(4) g-«u(w)e N
in Betracht zu ziehen, wobei ¢ der Winkel-Verschiebung der
Reibungskraft % gegeniiber (— jy) entspricht. Dieser Winkel
lasst sich theoretisch kaum erfassen und kann u.E. nur
durch entsprechende Versuche ermittelt werden. Einzig im
speziellen Fall, wo das Rad nur eine Léngs- oder nur eine
Querkraft ausiibt, kann angenommen werden, dass & nur in
der entsprechenden Richtung wirkt und dass somit & den
Wert 0 hat.

Fassen wir in Gl. (4) die drei ersten Glieder mit dem
Ansatz

B)  p=e—y (:N—”> el

zusammen, dann ergibt sich die einfache Beziehung

—>
(6) FHF=uN

—) .. . s
in welcher p nun eine gerichtete Grosse darstellt, die wir

Retbung nennen wollen, dies im Gegensatz zu ihrem Wert
u, den wir weiterhin als Reibwert bezeichnen werden. Die

—>
Reibung p kann durch ihre drei Komponenten erfasst wer-
den, die mit ihrem Vorzeichen auch gerichtete Grossen sind

S > . o
und dementsprechend mit u, g, und g, zZu bezeichnen wéren.

2) Diese Beziehung besagt, dass die Reibungskraft die entgegen-
gesetzte Richtung wie 1D und die Grosse ¢N hat, wobei p grundsétz-
lich als skalare Grosse aufzufassen ist.
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Es ist jedoch einfacher, nur ihre Werte in Betracht zu
ziehen und die drei Komponenten der Reibungskraft % mnach
den Beziehungen

F; = — yNsgnw,
(7) Fg=—uNsgnw,
F,=—uNsgnw,

zu bestimmen, die einzeln gesetzmiissig der Gleichung (3) ent-
sprechen. Die sich aus ¥ und ¥ ergebende Normalkompo-
nente ¥, der Reibungskraft & liegt auf der Schnittgeraden
der Gleitebene und der Normalebene zur Schiene und weist
den Neigungswinkel § auf. Das gleiche gilt fiir die Normal-
komponente iy, der Gleitgeschwindigkeit. Beide lassen sich
somit im gleichen Verhiltnis entsprechend der Beziehung

F,.  w;
F, Wy

= tgé
in ihre Quer- und Normalkomponenten zerlegen. Daraus folgt
fiir F', die Beziehung

W, w
(8) FZ:FQW‘ZZMMN[VTZ‘
q q

und daher fiir g, die Beziehung

W
Wy

9) Mz — Hg

Fir die Grosse F der Reibungskraft % selbst gilt grundsitz-
lich die bekannte, sich auch aus Gl. (4) ergebende Beziehung

10y B =uN

Aus den beiden parallel und senkrecht zur Schiene ge-
richteten Komponenten {; und %q der Reibungskraft & er-
geben sich die beiden, fiir das Kréftespiel am Radsatz mass-
gebenden Komponenten §, und %; — parallel und senkrecht
zur Meridianebene des Radsatzes — zu

Fj=F;cosa—F;sina
A g =F, cosa + Fsina

Es ist schwer, eine genaue Definition der Relativge-
schwindigkeit jp zu geben und diese genau zu bestimmen, weil
dazu der Deformationszustand in der z-Richtung im Gebiete
der Kontaktfldche berticksichtigt werden muss. yp weicht
aber nur sehr wenig von der Gleitgeschwindigkeit ab, die
sich fiir den Aufstandspunkt des Rades gegeniiber der
Schiene bei Voraussetzung eines starren Schienen- und Rad-
reifenmaterials ergibt. Da sich diese Geschwindigkeit, wie
wir spéter sehen werden, einfach aus den kinematischen
Verhiltnissen des Radsatzes ermitteln ldsst, ist es ange-
bracht, sie allein in Betracht zu ziehen. Der dadurch be-
gangene Fehler ist praktisch unbedeutend und fillt ausser
Betracht, wenn man bei der Bestimmung von x und ¢ durch
Versuche von dieser Gleitgeschwindigkeit ausgeht. Durch
Festhalten und Verwenden der entsprechenden Versuchs-
ergebnisse wird es moglich, bei Laufuntersuchungen die
Probleme zu trennen, d. h. die genaueren Vorginge zwischen
Rad und Schiene ausser Betracht zu lassen und eine punkt-
formige Beriihrung anzunehmen, wie wir dies bei unseren
spateren Untersuchungen tun werden.

Der Reibwert ux jedes Elementes der Kontaktfldche
héngt von dessen Oberflichenzustand, Gleitgeschwindigkeit
und Fldchendruck pgx ab. Dieser ergibt sich aus der durch
den Raddruck Q, den Raddurchmesser D und die ausgelibte
Reibungskraft & bedingten Druckverteilung in der Kontakt-
flache. Hieraus folgt, dass der Reibwert p auch vom Ober-
flachenzustand, vom Raddurchmesser, vom Raddruck @ und
von der Fahrgeschwindigkeit bzw. von der Rollgeschwindig-
keit x, abhingt.

Der Deformationszustand héngt von der ausgeiibten Rei-
bungskraft % ab. Durch ihn ist nun bestimmt, wie jedes
Fldchenelement f im Verh&dltnis zur Bewegung des Rades
gleiten muss. Der sich liber die ganze Beriihrungsfldche er-
gebende resultierende Reibwert p kann somit mit dem Ver-

héltnis der Relativgeschwindigkeit w zur Rollgeschwindigkeit
x, des Rades in Beziehung gebracht werden. Dieses Verh&lt-

nis wird Schlupf genannt. Bezeichnen wir es mit v, so gilt
die Definition

w
(12) v=-—
Xy

Bei gegebenem Raddurchmesser, Raddruck, Oberflachen-
zustand und gegebener Gleitrichtung kann nach obigem der
Reibwert unmittelbar als Funktion p (v) des Schlupfes an-
gegeben werden. Bild 1 zeigt Versuchsergebnisse des VMEV 3).
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Bild B 1. Abhéingigkeit der Reibungszahl vom Schlupf v, im
Falle des reinen Quergleitens.
Versuche des VMEV mit gleichen Raddurchmessern.

Diese wurden mit Hilfe eines dreiachsigen Versuchswagens
durchgefiihrt, bei dem der mittlere Radsatz schridg zur
Schiene gestellt und dessen Querkraft bei verschiedenen
Schréigstellungen und bei einem Achsdruck von 8,12 und 16t
gemessen wurde, Bei den Versuchen, die zu den Kurven des
Bildes 1 fiihrten, wiesen beide Réder des Versuchsradsatzes
den gleichen Durchmesser von 1000 mm auf, so dass nur
Quergleitung und somit nur Querreibung auftrat.

Der Fall des reinen Langsgleitens wurde von mehreren
Autoren untersucht. In Bild 2 sind Ergebnisse gezeigt, die
von Sachs durch Versuche an einem ortsfesten Priifstand mit
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Bild B. 2. Abhingigkeit der Reibungszahl vom Schlupf
v, im Falle des reinen Léangsgleitens.
Versuche von Sachs.

38) Verein Mitteleuropidischer Eisenbahnverwaltungen (VMEV):
Die Reibungszahl u der quergleitenden Bewegung rollender Réder
an Eisenbahnfahrzeugen. «Organ fiir die Fortschritte des Eisenbahn-
wesensy 1931, S. 391.



zwei aufeinander rollenden R&dern erhalten wurden. Der
Durchmesser der Riéder betrug 300 mm, ihre Breite 25 mm
und ihre Last 6,67 kg. Als interessante Feststellung ist
dabei hervorzuheben, dass sich der hier angegebene Reib-
wert u; der reinen Léngsgleitung bedeutend grosser als der
vom VMEV gefundene Reibwert p, der reinen Quergleitung
ergibt, der allerdings bei grdsseren Radabmessungen und
grosseren Lasten ermittelt wurde.

Wie wir spéter sehen werden, lduft jedes Schienen-
fahrzeug praktisch nie in absolut gerader Linie, sondern
fiihrt stets ungleichméssige Bewegungen aus, die sich in
jedem Augenblick auf eine Bogenbewegung um einen
momentanen Mittelpunkt zuriickfiihren lassen. Dabei miis-
sen sdmtliche R&der grundsétzlich gleichzeitig in der
Léangs- und Querrichtung gleiten, so dass dieser Fall als
Normalfall anzusehen ist und ihm daher eine besondere
Bedeutung zukommt. Er wurde ebenfalls vom VMEV mit
Hilfe des bereits erw#hnten Versuchswagens untersucht,
indem der schridg gestellte Versuchsradsatz mit ungleich
grossen Ridern versehen wurde und diese deshalb nicht nur
quer-, sondern auch ldngs gleiten mussten. Unseres Wis-
sens wurde jedoch dabei nur die Querkraft gemessen, so
dass die Versuche keinen Aufschluss {iber die Léngsrei-
bungskraft geben. Bild 3 zeigt die bei einem Achsdruck
von 16 t erhaltenen Messergebnisse.
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Bild B.3. Abhingigkeit der Reibungszahl u, der Querreibung
vom Schlupf v.
Versuche des VMEV mit ungleichen Raddurchmessern.

Bild B. 4. Gleit- und Krifteverhéltnisse beim schrig laufen-
den Radsatz mit ungleichen Raddurchmessern.

4) In Wirklichkeit tritt infolge der zur Verschiebung notwendi-
gen Querkraft eine Entlastung des Aussenrades und eine entspre-
chende Mehrbelastung des Innenrades auf.

5) Die Reibung zwischen Rad und Schiene im Bogen, «Organ
fiir den Fortschritt des Eisenbahnwesens», 1, Marz 1932,
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Die Geschwindigkeits- und Kréifteverhiltnisse, die
beim Versuchsradsatz auftraten, sind in Bild 4 gezeigt,
wobei ein Laufkreishalbmesser (ry, — Ar/2) fiir das Aussen-
rad und (r,, + Ar/2) fiir das Innenrad vorausgesetzt sind.
Bezeichnet man mit » die Ordinate desjenigen Kreises cg
des Radsatzes, welcher in Umfangsrichtung entsprechend
der Bedingung

row = X, COSa

in seinem tiefsten Punkt N keine Relativgeschwindigkeit
gegeniiber der gemeinsamen Schienenkopfebene aufweist, so
betrug beim Versuch die Ldngskomponente der Gleitgeschwin-
digkeit Are (e —17) /2e) beim Aussenrad bzw. Arw (e -+ 5)/
(2e) beim Innenrad, wihrend sich ihre Querkomponente aus
der Fahrgeschwindigkeit x, und dem Anlaufwinkel a zu
X, sin ¢ ergab. Da v, und jp; fiir beide Reibungskrifte Fa
und ;i in Richtung und Grosse massgebend sind, musste sich
n derart einstellen, dass sich aus beiden Umfangskompo-
nendten dieser Kréfte die totale Umfangkraft U = 0 des Rad-
satzes ergibt.

Unter der Voraussetzung, dass bei einem solchen Ver-
such beide Raddriicke untereinander gleich bleiben 4) und
dass ferner fiir beide Reibungskréfte ¥, und §¥; die Bezie-
hung (3) gilt, dass also beide in der entgegengesetzten Rich-
tung wie die Gleitgeschwindigkeiten jp, und {y; wirken, hat
Heumann 5) gezeigt, dass man entsprechend (7 = 0) fiir
beide Gleitgeschwindigkeiten den gleichen Richtungswin-
kel 7 (¢ bei Heumann) annehmen kann, der rein kinematisch
durch die einfache Beziehung

Ar

(13) tgr = R

gegeben ist.

Die Annahme, dass r ebenfalls fiir die Reibungskrifte
F, und F; massgebend ist, gestattet dann aus der gemesse-
nen Querreibungszahl p, (x’ bei VMEV und Heumann) die
totale Reibungszahl nach der Beziehung

_ Mg
14 =
( ) ? COS T

zu ermitteln.

Auf Grund obiger Voraussetzungen und der daraus fol-
genden Feststellungen hat Heumann die in Bild 3 festgehal-
tenen Hrgebnisse zu den Kurven von Bild 5 umgearbeitet.
Diese stellen den Reibungskoeffizienten g in Abhéngigkeit
des Schrigstellungswinkels a« bzw. des Schlupfes v bei ver-
schiedenen Werten des Parameters = dar. An Stelle dieser
Darstellung kann man p auch in einem Polardiagramm mit
r als Polarwinkel und v als Parameter darstellen, womit sich

SH
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Bild B.5. Abhingigkeit des Reibwertes p vom Schlupf bei
verschiedenen Gleitrichtungen.

Heumanns Auswertung der VMEV-Versuchsergebnisse ge-
méiss Bild B. 3.



ein fiir die Untersuchung des Fahrzeuglaufes geeigneteres
Bild ergibt. Man erhilt dadurch v-Kurven, die ellipsendhnlich
sind. Das den Kurven des Bildes 5 entsprechende Polardia-
gramm ist in Bild 6 angegeben, wobei als Polarkurven die
genauer durch beiden Kurven = = 0 und = = 20° des Bildes 5
bestimmten Ellipsen aufgetragen sind. Die sich aus diesen
Ellipsen fiir + = 10° und 15° ergebenden Werte sind in Bild 5
mit kleinen Kreisen aufgetragen. Wir konnen erkennen, dass
die betreffenden Punkte nicht viel von den zugehorigen Kurven

abweichen, so dass die Darstellung durch Ellipsen im Polar-
diagramm recht brauchbar zu sein scheint. Hs ergibt sich
daraus, dass bei kleinen Werten von v die Reibungszahl u bei
vorwiegendem Léngsgleiten viel grosser ist als bei Querglei-
ten, wahrend bei grossen Werten von v das Umgekehrte auf-
tritt. Ob dies der Wirklichkeit entspricht, kann nur durch
tieferschiirfende Versuche geklidrt werden, deren Durchfiih-
rung dringend zu begriissen wére.

Wiirde eine weitere Kldrung dieser Frage zeigen, dass
im Polardiagramm die Kurven (v = konst.) praktisch durch
Ellipsen ersetzt werden kénnen, dann wiirde es vollkommen
geniigen, die Grosse der Halbaxen a und b der Ellipsen, d. h.
die u-Werte fiir das reine Langs- und fiir das reine Quer-
gleiten zu kennen. Dementsprechend kénnten Versuchsergeb-
nisse vollkommen durch die beiden entsprechenden u(v)-Kur-
ven im orthogonalen Koordinatensystem (u,v) festgehalten
werden.

Die beiden Lings- und Querkomponenten der Reibung
waren dann unmittelbar durch die beiden Beziehungen

(15) abtgr 5 ab
—_——— ul’l e
& /a2 + b2tg2r i Va2 -+ b2tg2r
bestimmt.

Diese letzten Betrachtungen setzen voraus, dass die
Gleitgeschwindigkeit jp und die resultierende Reibungskraft ¢
entgegengesetzt gerichtet sind und dass daher der Winkel &
null ist, so dass Gl. (3) gtliltig ist. In Wirklichkeit kann dies,
wie wir festgestellt haben, kaum zutreffen. Es ist somit
unerldsslich, bei allfélligen weiteren Versuchen die Rei-
bungskraftkomponente sowohl in der Quer- wie auch in der
Lingsrichtung, bzw. die entsprechenden u,- und uy-Werte zu
messen. Die HErgebnisse konnten ebenfalls in einem Polar-
diagramm geméss Bild 6 festgehalten werden. Dabei wiirde
jedoch der jeweils massgebende Punkt nicht mehr unmittel-
bar in der Richtung von — iy liegen, sondern wére durch den

Bild B. 6. g-Kurven bei konstantem
Schlupf im Polardiagramm im Falle
(@ =0).

Auswertung der Kurven des Bildes
B. 4.

Schnitt der betrachteten (v = konst)-Kurve mit einer weite-
ren Kurve r = konst gegeben, wie dies ganz schematisch in
Bild 7 gezeigt ist. Diese Darstellung hétte aber fiir den

Kurve (v = konst.)

Kurven (T =konst.)

b()

Bild B.7. Darstellung der p-Kurven im Po-
lardiagramm im allgemeinen Fall (& 5= 0).
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praktischen Gebrauch den Nachteil, dass bei gegebener
(v = konst)-Kurve der Betriebspunkt nicht unmittelbar mit
Hilfe der Richtungslinie der Gleitgeschwindigkeit gefunden
werden konnte. Praktischer wire es deshalb, die Ergebnisse
in zwei Polardiagrammen festzuhalten, wie dies in Bild 8
grundsétzlich gezeigt wird, In beiden wiirde jeweils in der
der Gleitgeschwindigkeit 1y entgegengesetzten Richtung ein
Wert u*(7,v) aufgetragen werden, dessen Léngskompo-
nente in einem Diagramm dem g, und dessen Querkompo-
nente im anderen dem uq entsprechen. Der p*-Wert miisste

Bild B. 8. Polardiagramme fiir die Bestimmung der p- und uq-Werte

im allgemeinen Fall & == 0.

. 3 W .
demnach im ersten Fall w/sinT bzw. (& und im anderen
Wy

w
Fall y,/cos T bzw. u, ’ ol betragen.
q

Konnten die entsprechenden Kurven (v = konst) wie-
derum durch Ellipsen ersetzt werden, so liessen sich simt-
liche Versuchsergebnisse, wie dies in Bild 9 grundsétzlich
gezeigt ist, durch die Angabe ihrer vier Halbaxen ar, by, a,
und b, in Abhédngigkeit des Schlupfes festhalten, wobei a;
und b, dem u-Wert bei reinem Léngs-, bzw. Quergleiten
entsprechen. Die beiden Léngs- und Querkomponenten der
Reibung wéren dann aus den Beziehungen

:’ a; by w; ; = a, by w,
Vaw)z + w2 | |(@gwe)? + (bywi)2

zu bestimmen.

(16) m

S8
b
020 —— 9
/ bl
——
/
015 a,
/
/ _—
070 / / —— Q
0,05
0 0002 0004 0006 0006 0008 0070 0,012 0014 —> v

Bild B.9. Angabe der Halbaxen a; a, b; und by der Rei-
bungsellipsen in Abhéngigkeit des Schlupfes.
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Moglicherweise konnte das Problem schirfer erfasst
werden, wenn man wie Leven 6) — der dies allerdings nur
fir die Querbewegung gemacht hat —, den Schlupf, bzw. die
Relativgeschwindigkeit jp in zwei Teile trennt (Bild 10). Der
eine Teil, jyy, wiirde dann durch das reine Gleiten gegeben
sein und wére allein fiir die Richtung der Reibungskraft

massgebend, Vielleicht kdnnte er auch mit ,u> in einem ein-
zigen Polardiagramm gemiss Bild 6 in Beziehung gebracht
werden. Der andere Teil, y., wire rein durch die elastische
Deformation gegeben und wiirde mit der Reibungskraft zu-
nehmen. Da aber nach obigen Feststellungen
verschiedenes Verhalten in Léngs- und in Quer-
richtung zu erwarten ist, kann e und infolge-
dessen auch iy nicht nach der gleichen Axe wie
die Reibungskraft % gerichtet sein. Deshalb
wére die Richtung der zu beriicksichtigenden
Gleitgeschwindigkeit 0z nicht mehr unmittel-
bar durch die rein kinematischen Verhiltnisse
des Radsatzes gegeben, dies im Gegensatz zum
Verfahren mit den beiden Polardiagrammen
geméss Bild 8. Dieses Verfahren ist deshalb
fiir die Untersuchung des allgemeinen Laufes
doch lbersichtlicher und daher vorzuziehen.

Die eben gemachten Erliuterungen sollen
vor allem ein Hinweis auf die Notwendigkeit
der Durchfiihrung von weiteren, vollkommene-
ren Versuchen sowie auf eine mogliche Art
der Darstellung sein, die sowohl fiir die Fest-
haltung der Versuchsergebnisse als auch fiir
den Gebrauch praktisch und iibersichtlich sein
diirfte.

Zurzeit stehen uns lediglich die Versuchser-
gebnisse des VMEV zur Verfiigung. Wir sind
somit heute noch nicht in der Lage, den Ein-

_U=konst.

fluss des Richtungswinkels 7 der Gleitge-
3 1 ey

elastische Verschiebung
T reines Gleiten
0,20 / =

/ //ﬁo‘
0,15
010
0,05
0 0002 0004 0006 0008 0010 00712 0014 0016 —> v

Bild B. 10. Teilung des Schlupfes in einen durch elastische
Deformation und in einen durch reines Gleiten bedingten Teil.

schwindigkeit auf den Reibwert u, bzw. die Reibung ;
zu beriicksichtigen und werden daher bei unseren prakti-
schen Anwendungen annehmen, dass die Reibungskraf =
entgegen der Gleitgeschwindigkeit jy gerichtet ist und der
Reibungswert u nicht von der Gleitrichtung, sondern nur
vom Wert des Schlupfes v abhédngt. Die erste Annahme
fiihrt zur Giiltigkeit der Beziehung (3) und daher zur Giiltig-
keit des Verfahrens mit einem Polardiagramm gemiss Bild 6
sowie der zugehorigen Gl. (15) fiir »; und p, Die zweite fiihrt
dazu, dass in dem Polardiagramm sdmtliche (v = konst)-
Kurven entsprechend a = b Kreise werden, deren Radien
durch eine einzige p(v)-Kurve gegeben sind. In diesem Falle

6) Die Reibung zwischen Rad und Schiene, «Organ fiir den
Fortschritt des Eisenbahnwesens, November 1941,



vereinfachen sich die Beziehungen (15) zu
Wq

und = 1 COSw =
Hg — B =5 ==

b Wi
(17 = Siny — —
) m=psint =g } =

und die Beziehungen (7) und (10) zu

(18) Fi=—uN " ynd Fy = —uN "¢
w W
sowie
{19) Fy= — gy =
W

Als p(v)-Kurve werden wir die gleiche wie Miiller 7) an-
nehmen, die in Bild 11 wiedergegeben ist.

i

020——

05— / == S
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|
0 00062 Q004 0006 0008 0Q010 0072 0014 0016 —> VU

Bild B.11. Die fiir unsere praktischen Anwendungen zu-
grunde gelegte Abhéngigkeit der Reibungszahl vom Schlupf.

2. Die Reibung in der seitlichen Beriihrungsfliche im Falle
der Zweipunktberithrung

Wenn die Vorgédnge in der Aufstandsfldche, wie wir oben
gesehen haben, nur in ungeniligender Weise erforscht worden
sind, so sind es diejenigen in der seitlichen Beriihrungsfldche
noch viel weniger. Sie sind versuchsméssig schwieriger zu
untersuchen, weil es bei einer Messung an einem normalen
Radsatz nicht moglich ist, die Spurkranzkrdfte von den-
jenigen in beiden Aufstandsflachen zu trennen. Die Messung
sollte daher an einem Radsatz vorgenommen werden, dessen
fiihrendes Rad etwas gehoben wéire, um nur Spurkranzbe-
rithrung aufzuweisen. Die Kréfte beider Rdder konnten durch
Messungen an beiden Lagern ermittelt werden, wobei fiir
die Bestimmung beider Kréfte in Querrichtung eine weitere
Messung der axialen Kraft in der Achse zwischen beiden
Rédern notwendig wéire.

Die Gleitvorgédnge sind in der seitlichen Berilihrungs-
fldche grundsétzlich dhnlich wie diejenigen in der Aufstands-

C. Die elastischen Querdeformationen der Schiene

Geméss den in der Einleitung gemachten zwei ersten
Voraussetzungen sind hier nur die von den parallel zur
Radsatzaxe gerichteten Fiihrungskréiften T, und T; hervor-
gerufenen Schienendeformationen in Betracht zu ziehen,
und es soll angenommen werden, dass sie in Richtung
dieser Krifte stattfinden. Diese Fihrungskraft T wirkt
uber verschiedene hintereinander geschaltete Teile einer-
seits auf die Unterlage des Oberbaues und anderseits auf
das Fahrzeug. Alle diese Teile deformieren sich und fiih-
ren zu Querverschiebungen ¢y und (g der Schienenober-
flache, bzw. der Radoberfliche. Entsprechend der spéter
getroffenen Definition fiir das Vorzeichen der Querkréfte

7) «Dynamische Probleme des Bogenlaufes von Eisenbahnfahr-
seugeny, Glasers Annalen, August 1956.

flache. Ein wesentlicher Unterschied liegt jedoch im Ober-
flachenzustand, da die Spurkrdnze sehr oft, insheson-
dere bei Lokomotiven geschmiert werden. In diesem Fall
wird der Wert der Spurkranzreibung wesentlich herabge-
setzt. Ein weiterer Unterschied liegt ferner darin, dass sich
normalerweise im Spurkranzdruckpunkt eine grossere Gleit-
geschwindigkeit als im Aufstandspunkt ergibt, so dass die
elastischen Deformationen am Entstehen der Gleitgeschwin-
digkeit voraussichtlich keine merkbare Rolle mehr spielen.
Es darf daher in diesem Falle angenommen werden, dass X
entgegen 1y gerichtet ist, so dass die Darstellung in einem
Polardiagramm geméss Bild 6 moglich sein sollte. Kénnten
die (v=konst)-Kurven durch Ellipsen mit den Halbaxen a (v)
und b (v) ersetzt werden, so wéren die Gleichungen (15) fiir
w und p, gililtig. Fiir p, bleibt grundsdtzlich Gleichung (9)
massgebend. Nun liegen aber die Reibwerte infolge der
grosseren Gleitgeschwindigkeiten bzw. der grosseren Schlupf-
werte eher in demjenigen Bereiche ihrer yp (v)-Kurven, wo sie
ihr Maximum erreichen und einigermassen konstant bleiben.
Es diirfte somit berechtigt sein, im Polardiagramm nur die
entsprechende Kurve in Betracht zu ziehen.

Wiirde man schliesslich voraussetzen, dass der Reib-
wert p, unabhéngig von der Gleitrichtung, konstant ist,
so wire die Reibungskraft & nach Gleichungen (17) bis
(19) zu zerlegen.

3. Die Reibung in der Berithrungsfliche im Falle der Ein-
punktberiithrung

Die Vorgénge in der Beriihrungsfliche sind hier grund-
sétzlich die gleichen wie in der Aufstandsfléiche im Falle der
Zweipunktberiihrung; sédmtliche im Abschnitt 1. gemachten
Feststellungen und abgeleiteten Beziehungen bleiben somit
grundséatzlich giiltig. Es tritt jedoch in diesem Falle die
Schwierigkeit auf, dass sich der Beriihrungspunkt nicht
mehr auf dem Schienenkopf befindet, sondern je nach Grosse
der vom Rad ausgelibten Fiihrungskraft stark seitlich wan-
dern kann., Die massgebenden Kriimmungsradien des Schie-
nen- und des Radprofiles, die im Abschnitt 1. stillschwei-
gend als anndhernd konstant vorausgesetzt waren, konnen
sich hier somit stark &ndern, so dass fiir jede Lage des Be-
rihrungspunktes eine eigene Schar der im Bild 9 angegebe-
nen vier Kurven in Betracht zu ziehen wéire. Da dies prak-
tisch nicht moglich ist, konnte man von einigen, fiir be-
stimmte Lagen des Beriihrungspunktes gililtigen Kurven-
scharen ausgehen und die massgebenden Werte von a;, by, a,
und b, durch Interpolation bestimmen. Ob und wie solche
Kurvenscharen durch Versuche ermittelt werden konnen,
bleibt aber vorldufig eine offene Frage. Eine weitere Schwie-
rigkeit liegt ferner in der im Abschnitt 2. bereits erwédhnten
Tatsache, dass die Spurkrénze der Lokomotiven meistens ge-
schmiert werden. Da es keine eindeutige Trennung der ge-
schmierten Radoberfliche von der ungeschmierten geben
kann, ist mit einer sehr grossen Unsicherheit in der Be-
stimmung der u-Werte zu rechnen.

und des Rades unter der Wirkung von Querkriften

bezeichnen wir die beiden Querverschiebungen (g und (g
als positiv, wenn sie nach aussen stattfinden. Demzufolge
treten bei einer positiven Fiihrungskraft T ein positives
¢y und ein negatives (r auf.

Die Verschiebung ¢y der Schienenoberfliche setzt sich
aus einer Verschiebung (gss des ganzen Gleisrostes auf sei-
ner elastischen Unterlage und aus einer Verschiebung {gs
der Schienenoberkante gegeniiber dem Gleisrost zusam-
men, wobei sich letztere aus der Biegungs- und Verdre-
hungsdeformation der Schiene selbst, aus der eventuellen
Nachgiebigkeit der Schienenbefestigung auf den Schwel-
len, sowie aus der in der vertikalen Ebene entstehenden
Biegungsdeformationen der Schwellen ergibt.

Die Deformation ¢gs wird vor allem durch die Fiihrungs-
kraft

T:,' = Tja i Tj'l
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des betrachteten Radsatzes j verursacht, wird aber grund-
sédtzlich auch durch die benachbarten Radsdtze m beein-
flusst. Dieser Einfluss kann nach dem Maxwellschen Satz
durch Einflussfaktoren fg,,; festgehalten werden, so dass
man fiir {sc die Beziehung

n
ak
(1) {se¢ = e Z meij
¢ T

aufstellen kann, wobei der Faktor fg,,; flir m = j den Wert
1 aufweist.
Fiir die Verschiebung ¢(gg der Schiene ladsst sich die der

Gl. (1) &hnliche Beziehung
1 n
TS Z me]Tmi
1

n
1
T ZfSnlenm bzw. §ssi =
= 1

angeben. Fassen wir {gg und {gc zusammen, so erhalten wir
fiir die elastische Querverschiebung der Aussen- bzw. der
Innenschiene die Gleichung

(2)  §ssa =

n 1 n
1
(3) (§Sa)j == TS ZTS111anla k— Z Gm] T
al 1
bzw.
n n
1 1l
(§Si)i = kfs Zfﬁ‘mj Thi + TG szijm
i iy

Als Querverschiebung ¢ der Radoberfliche soll hier
allein diejenige festgehalten werden, die sich aus den De-
formationen der Radscheibe und der Axe ergeben1). Sie ent-
steht in erster Linie infolge der Fiuhrungskraft T, bzw. T
des betreffenden Rades, zum Teil aber auch infolge der Fiih-
rungskraft beim Gegenrad. Es gilt somit die Beziehung

a0 Ty Ty Ta
4 e b. et P it <
(4) {Ra kg =15 ’C* ZW. {Ri = K kg

Aus Gl. (3) und (4) erhalten wir fiir die elastische Ver-

schiebung

(O)Eh (6 = o510k

zwischen Schienen- und Radoberfliche die Gleichungen

Z f("mj m

T, s
(6) G = ( i T")

kIB W Z me]Tma +

bzw.

(o (Tn_ T
& kr k*g

Diese beiden Gleichungen gestatten, den Wert von {;,
bzw. ¢ zu bestimmen, wenn man T;, bzw. Tj; und die tbri-
gen Filhrungskréifte T,, kennt. Will man umgekehrt zum
Wert von T;, bzw. T; kommen, wenn ¢, bzw. {; und die
ubrigen Fihrungskréifte bekannt sind, so gilt

j—1
(7) ja = l:fja +R‘*_;( Z me] ma.+ Z me] ma)_

Gzl
1 & kg ks
o T m'T TR
kengj m](klz-}-ks)

1 n 1 n
+ 'Ig ?meiji + _;E ;ff}m]’Tm

bzw.

=1l
<]Z meJ T'nu i Z fqmj mi) e

]1—[§]1 + k"
gL

i & kg ks
== E -T e
kG - f(}m] m] ( kS kR >

1) Die rahmenseitigen Deformationen hingen von der Lagerquer-
kraft H und nicht von der Fiihrungskraft T des Radsatzes ab. Da
beide Krifte im allgemeinen um die Tragheitskraft des Radsatzes
verschieden sind, ist es angebracht, diese Deformationen nur im
Rahmen der Fairzeugdynamik zu beriicksichtigen,
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Es ist uns nicht bekannt, ob fiir die Untersuchung der
gegenseitigen Kraftwirkungen zwischen Fahrzeug und Gleis
eine solche Beziehung fiir die totale Deformation { bzw. fiir
die Fihrungskraft T schon beriicksichtigt wurde. Wir konn-
ten in der Fachliteratur lediglich eine summarische Steifig-
keit finden, fiir welche Werte von 5000 bis 10 000 kg/cm an-
gegeben werden. Diese Steifigkeit fasst angeblich die Nach-
giebigkeit des betrachteten Rades und der zugehorigen
Schiene zusammen.

Nach Angaben der SBB betrdgt die Quersteifigkeit kg
des normalen Stahlschwellenoberbaues im vertikal belaste-
ten Zustand rd. 200 000 kg/cm. Dies ist das 20- bis 40-fache
des oben gegebenen Wertes. Demnach wire die Deformation
tss der Schiene bedeutend grosser als die Verschiebung {s¢
des Gleisrostes. Ausserdem geht aus Messungen der SBB
hervor, dass der Einfluss der Fiihrungskrifte des einzelnen
Radsatzes bereits in einem Abstande von rd. 1 m kaum be-
merkbar ist. Da bei unseren schweizerischen Drehgestell-
Lokomotiven der Abstand zwischen zwei benachbarten Rad-
sdtzen mindestens 2 m betrdgt, kann dieser Einfluss offen-
bar vernachlédssigt werden. Demnach konnten in den Glei-
chungen (6) und (7) sédmtliche Faktoren f fiir m == j gleich
null gesetzt werden, wodurch sich diese Gleichungen zu

1 al il 1 1
@)fﬂZGg+%;+zﬂ“f+G§*%§

1 al 1 1 1
1= {5+ 5 * 1) W+ 5 — 7

ik 1
s — (o — ) ™
il 1 il
i )
il al
51— (g — o)

al 1 al
ks ;CR RG

und

(9) Ty =

vereinfachen wiirden.

Wir konnen nicht beurteilen, in welchem Masse die
oben erwihnten Zahlen stimmen, es scheint uns aber, dass
sie ziemlich ungenau sind. Es wire deshalb auf alle Félle
interessant, von Oberbaufachleuten genauere, auf sorgfil-
tigere Messungen fussende Angaben liber die Steifigkeiten
kg und kg sowie liber die Einflussfaktoren fg und fs zu er-
halten. Im folgenden bringen wir unseren Anteil mit der Ab-
kldrung der Steifigkeiten kp und k*g.

Diese Steifigkeiten hdngen von den Radsatzabmessun-
gen ab und sind deshalb von Fall zu Fall zu bestimmen.
Die der Steifigkeit kr entsprechende Nachgiebigkeit 1/fp ist
durch die Elastizitdt der Achse und durch diejenige des
Radkorpers gegeben. Sie setzt sich somit aus zwei Teilen
zusammen. Fiir den ersten ldsst sich leicht der Ausdruck

I‘t2l
3JE
ermitteln. Fiir den zweiten Teil sind hingegen die Verhilt-

nisse ziemlich verwickelt. Sie lassen sich jedoch wesentlich
vereinfachen, wenn man annimmt, dass der durch die Felge

1 %b‘

Bild C.1. Belastungen und Deformationen am Ende der
Speiche.



und den Radreifen gebildete Kranz absolut starr bleibt und
die Speichen in diesem Kranz und in der Radnabe einge-
spannt sind, und wenn man getrennt das elastische Ver-
halten der einzelnen Speiche entsprechend den in Bild 1
definierten Belastungsfillen auf graphischem Weg unter-
sucht, und die Elastizitdtsfaktoren

Yp Pp Ymb PMb
1 . * e . P . *0._ .
(10) f1;“fP, f1——Py f2_Mb’ e = M,
o
s = 3

ermittelt. Mit Hilfe dieser Faktoren lassen sich die beiden
Beziehungen

(11) yi=f1Pi— foMp; und @i = f*3P; — f*2 My

aufstellen. Weiter ergeben sich aus Bild 2 unter Vorausset-
zung eines steifen Radkranzes unmittelbar die weiteren
Beziehungen

Yi = 8 4+ @r;cos B
@i = @ Cos Bi
Y1 = psin B

T = r;cos B

(12)

Aus den Gleichungen (10), (11) und (12)
folgt dann nach Umformungen

%28 4 (1f*s — f2) peos By

13 12hi—]
e fif*e — f*1fe

f*18 + (ref*1 — f1) pcosBi
14) My =
i B f1f*e — f*1fe
und
(15) My= EERAL

I3

Der Radkranz ist der in Bild 2 einge-
zeichneten Kraft P; sowie den Momenten
M,;; und My; der einzelnen Speichen und der
unten angreifenden Fiithrungskraft T ausge-
setzt. Seine Gleichgewichtsbedingungen lau-
ten somit

n
(16) T= )P
1!

und
n n n

@l i = ZPir; — ZMbicos,Bi -+ ZMdisin,Bi
1 1 1

Beriicksichtigt man, dass die auf die n gleichméssig verteilten
Speichen zu erstreckenden Summen folgende Werte

n n n n n
Zcosﬁ =0 ZcosQ,Bi = =3 Zsinﬂﬂi = =
1 1 2 T 2

Y
Bild C.2. Das querbelastete [Speichenrad.

aufweisen, so wird aus Gl. (13) und (16) nach Umformungen

(18) %: flf*2n;2f*1fl

und aus Gl. (13) nach Einfiihrung von GI. (14), (15) und (17)
(19)
P 21 (f1f*2 — f*1f2) I3

T~ [ri(ref¥s —fa) fa— (vef*s— f1) fa + (Fif*a— f*1f2)In

Damit erhalten wir schliesslich fiir die totale Nachgiebigkeit
des Rades die Beziehung

1. n2l fif*2 — f*1f2 1
B0 _k?ﬁ3JE+( n ){f*2+
s 212 f3 }
fa [re (ref*s — fo) — (rof*1 — f1)1 + (f1f*2 — f*1f2)

Bild C. 3. Der Radsatz der SBB Ae 6/6-Lokomotive beim Deformationsversuch.

Fiir die Steifigkeit f*p, die allein durch die Deformation
der Radsatzaxe gegeben ist, gilt

1 ri2l
O

Diese beiden Steifigkeiten gestatten, die Beziehungen 4
fiir die totale Verschiebung des Angriffspunktes der KraftT
auszuwerten, wihrend sich die totale, durch die Deforma-
tionen des Radsatzes bedingte Neigung der Radebene beim
Aussen- bzw. Innenrad zu

1 [/Ta T ffte— 7% fa
=— === =] =il — =
(22) Aga - [( 5 k*l) a nf*y ]
bzw.
| AT Ta fif*e —f*1fe
e o oy AR e
= [( o k) FnfR ]
ergibt.

Um den praktischen Wert dieser beiden Beziehungen zu
kontrollieren, wurden Deformationsversuche an verschiede-
nen Radsitzen durchgefiihrt, wie dies in Bild 8 im Falle des
Radsatzes der SBB Ae 6/6-Lokomotive gezeigt ist. Das
Schema der Versuchsanlage ist in Bild 4 angegeben. Aus den
verschiedenen gemessenen Grossen ergeben sich u. a. die bei-
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Bild C.4. Schema der Versuchsanlage zur Bestimmung
der Radsatzdeformation unter Einwirkung einer Quer-
kraft.

//

den Beziehungen
dq
(23) ya = Ady =T und Yi = Aay — Ya

die uns in erster Linie interessieren. In Bild 5 sind die auf
Grund dieser Messungen ermittelten Steifigkeiten fz und fg
als Ordinaten und die nach Gl. (20) und (21) berechneten als
Abszissen aufgetragen. Die zugehdrigen Punkte liegen alle
nahe an der Geraden unter 45°, so dass beide Beziehungen
(20) und (21) trotz des Ausserachtlassens der Radkranz-
deformationen als giiltig betrachtet werden k&nnen.

D. Die Beriihrung zwischen Rad und Schiene

1. Der Umriss der Radoberfliche

62

gemessene Steifigkeit inkg/om

b
100000
1°
&)
3 /
%
50000 /
1./ ¥
0 50000 100000 errechnete Steifigkeit in kg/em
Bild C.5.

Steifigkeiten kr und k*p verschiedener Radsdtze

all
2. Radsatz
3%

4. Radsatz

Radsatz

Radsatz

der SBB-Re 4/4-El. Lokomotive

der C-C Diesel-elektr. Lokomotive CFR
der BLS-Ae 4/4-Lokomotive

der SBB-Ae 6/6-Lokomotive,

Die Bertihrung zwischen dem schrég stehenden Rad und  also bei Beobachtung des Rades in der Schienenrichtung den
der zugehdrigen Schiene kann nur in solchen Punkten des Umriss der Radreifenoberfliche ergeben, Wie an anderer
Rades stattfinden, die der Schiene am ni#ichsten liegen, die  Stelle gezeigt wurde 1), ergibt sich dieser Umriss als Umhiil-

Bild D. 2. Das Entstehen
des Radumrisses als Um-
hiillende der Laufkreise.



Bild D.1. Ansicht der Radoberflédche.

lende der Ellipsen, nach denen die einzelnen Laufkreise ¢ der
Radoberflédche in Schienenrichtung beobachtet werden (siehe
Bilder 1 und 2, in welchen der Uebersicht halber nur die
Spurkranzpartie des Rades in Betracht gezogen wird).

Bezeichnen wir mit « den Winkel zwischen der lotrech-
ten Meridianebene des Rades und der zur horizontalen
Schiene senkrecht stehenden Ebene und mit ¢ 2) den Nei-
gungswinkel der Radaxe gegeniiber der Horizontalebene
und kennzeichnen wir den beliebigen Kreis ¢ durch sei-
nen Radius r und den Tangentenwinkel vy, den das Radreifen-
profil bei ihm aufweist, so lassen sich3) u.a. folgende Be-
ziehungen aufstellen:

éﬂchfung
AN
N
N

iz G,

—_—
p\
R\,
-

B

Bild D. 3. Geometrische Zusammenhéinge beim schrigstehen-
den Radsatz,

Neigung der Tangentialebene des

Rades im Umrisspunkt 9( und er-

: 2 20 2, — to?
@y L= 4 tg @ cos g, B hitER Lk de aCOS. )
I3 1 4 tg2asin2¢,
(2) b _ 1+ tgZasing coser (tg7 + tge,) — J1 + tg2acos?e, (tg2, — tg27)
@ 1 4 tg2asinZg,

Dabei legen ¢ und [ die Lage des Umrisspunktes 9( in der
Ebene des Kreises ¢ in bezug auf seinen tiefsten Punkt A
fest, q in horizontaler Richtung und p senkrecht dazu. Fiir
den Tangentenwinkel § des Umrisses im Punkt 9( gilt ferner

scheint somit in der Normalebene zur
Schiene.

Das Rad stellt sich gegeniiber sei-
ner Schiene grundsitzlich so ein, wie
dies in Bild 3 flir den durch seinen
Abstand e vom Radsatzmittelpunkt E

tgy + tge: J1 + tg2acos?e, (1229 — tg2y)

festgelegten Kreis c gezeigt ist, wo-
bei zur deutlichen Darstellung die bei-

(3) tgd = cosea

cos?a |/1 + tgZacos2g, (tg2¢, — tg27) — tg8v tgo,

Bei diesen Beziehungen ist zu beachten, dass der Winkel
vy positiv gilt, wenn er in der gleichen Richtung wie g,
zunimmt. Er ist somit bei normalem Radreifenprofil beim
Aussenrad grundsétzlich negativ und beim Innenrad positiv.
Er filihrt u.a. bei horizontaler Radsatzaxe (¢ = 0) und
bei positivem Anlaufwinkel a zu einem positiven Wert von
a beim Aussenrad, und zu einem negativen Wert von g beim
Innenrad. Ein positiver Wert von g bedeutet eine Verlage-
rung des Umrisspunktes 9[ gegeniiber dem tiefsten Punkt
des Kreises nach vorn, ein negativer Wert eine Verlagerung
nach hinten, Ferner entspricht der Winkel § der effektiven

1) Jahn: Spurerweiterung oder nicht? «Zeitung des Vereins deut-
scher HEisenbahnverwaltungeny 1927. Heumann: Spurkranz und
Schienenkopf. «Organ fiir die Fortschritte des Eisenbahnwesens»
1931.

2) Laut Voraussetzung wird die durch Deformation bedingte
Winkelverschiebung des Rades auf die Schiene verlegt. Demzufolge
kann hier der Winkel ¢ der Radebene demjenigen des Radsatzes
gleichgestellt werden.

3) Vgl. Borgeaud: Doktorarbeit ETH 1937: Le passage en courbes
de chemin de fer, Gleichungen (60) und (61).

den Winkel a und ¢ iiberméissig gross
gezeichnet sind. In dieser Abbildung
ist der Kreis ¢ und seine Axe unten lotrecht, oben in Schie-
nenrichtung und links senkrecht zur lotrechten Meridian-
ebene projiziert. Aus diesen drei Projektionen ergeben sich
unmittelbar folgende Beziehungen:

I1sin ¢ I sin g tg o
(4) tg‘ (p' — = =l
14 cos « 1cos ¢ cos « cosa
I{COS r Sin ¢ cos a
5 topli—= - — -
(8) e Isin @ Ising
1t sin g cos
= M — tgpcosa
Ising
r CcOoS 1, cos CoS @ COS
Lo — ,? und 1y = ,a~ 7 ,a
cos @ cos @ cos g
Fiihren wir die Gleichungen (4) und (5) in die beiden

letzten Beziehungen ein, so erhalten wir

rp = r|/cos?¢ + sin2¢ cos2a  und

1, = 1}]/sin2¢p + cos2g cos2a

Mit den Ansédtzen



(6) A, =]/cos2¢p + sin2¢ cos2a

Ao = |/sin2¢ + cos2 ¢ cos2a
ergeben sich schliesslich die einfachen Beziehungen

(7) o= N und, 1o = Nyl

Dabei bedeuten A, und A, die Faktoren derjenigen Verkiir-
zungen, welche die in Richtung des meist geneigten Radius
OA bzw. in Richtung der Radachse gemessenen Gridssen in
der Aufrissprojektion erfahren.

Nach Definition ist der Winkel a im Grundriss gege-
ben. Er entspricht somit nicht dem Winkel 8 der Schiene
gegeniiber der Kreisebene. Dieser Winkel liegt in der
Ebene DOB, und es gilt somit

BiDy =1sin8 = 1lysina — lcospsina
bzw.
(8) sin 3 = sina cos¢

Flhren wir diese Beziehung in Gl. (3) ein, so wird diese
nach gewissen Umformungen zu

tey tge
tgs = cosp J1 — tg2p te2y cosa
5 tey tg¢

cosp V1 — tg2p tg2y cosw
und mit dem Ansatz
tgy
cosf |1 —tg2ptg2y

sowie unter Beriicksichtigung von Gl. (4) zu

(9) tgop =

(10) g =08 — ¢

Die Beziehung (9) bedeutet, dass bei gegebenem wirk-
lichem Anlaufwinkel B die Tangente an den Umriss im
betrachteten Umrisspunkt 9( unabhéngig vom Neigungswin-
kel ¢ des Rades stets den gleichen Winkel 85 gegeniiber der
Projektion der Radaxe aufweist. Insbesondere stimmt fiir
¢ = 0 der Winkel 8 mit « liberein, womit die rechten Glie-
der beider Gleichungen (3) und (9) identisch werden. 8p und
8 werden daher ebenfalls gleich, was auch sein muss, da in
diesem Falle ¢’ null ist.

Werten wir die Beziehungen (1), (2) und (3) fiir den
Fall des SBB-Radreifenprofiles aus und setzen die wohl ex-
tremen Werte sing = 0,1 und tga = 0,05 ein, so ergibt sich
flir das Glied

tg%a cos?g (tg2¢ — tg2vy)

der maximale Betrag von 0,00001875 fiir die Lauffliche mit
tgy'= 0,05 und von 0,0076 fiir die Spurkranzfliche mit
tgy* = 1,746, Diese Werte sind so klein, dass man zur Ver-
einfachung ohne weiteres den Ansatz

J1 + tg2acos?2p (tg2¢ — tg2y) ~
=1+ %tg&a cos2p (tg2e — tg2y)

machen kann. Damit vereinfachen sich die Beziehungen (1)
und (2) zu

tga cosp . (tgy + tgor) [1 + % tg2a sing, cos ¢, (tg o — tgy)]

a=—Mrtgatgy und
b=Nr(l —J1I —tg2atg?y)

a und p von ihren Werten bei (p = 0) aus zu bestimmen.
Diese Kurven werden uns bei den sp#teren Untersuchungen
der kinematischen Verhiltnisse sowie des Kréftespiels am
Radsatz gestatten, die Zuldssigkeit gewisser Vereinfachun-
gen zu priifen.

Vernachlédssigen wir zur weiteren Vereinfachung das
letzte Glied im Nenner und im Zihler der Gleichungen (1a)
und (2a) und setzen fernmer fiir cos¢ den Wert 1 ein, so
wird schliesslich

(1b) %:—tga (tgo +tgy)
il
(2b) %:7tg2a(tgcp+tgv)2

Beim anlaufenden Rad ergeben sich verschiedene Ver-
héltnisse, je nachdem die Beriihrung zwischen Rad und
Schiene in einem oder in zwei Punkten stattfindet. Im Falle
der Zweipunktberihrung ist der eine stets der Aufstands-
punkt 9(', widhrend der andere, (*, am Spurkranz liegt. Die
Lage dieser beiden Punkte ist rein geometrisch gegeben und
bleibt somit unabhingig von den auftretenden Kriften.

Wie an anderer Stelle gezeigt wurde 4), ist beim nor-
malen Schienen- und Radreifenprofil der SBB stets Zwei-
punktberiihrung vorhanden, wenn vom Rad eine Richtkraft
ausgetlibt wird. Dabei liegt der Aufstandspunkt 9[- stets auf
der kegeligen Lauffliche und der Spurkranzdruckpunkt 9(*
stets auf der kegeligen Fliche des Spurkranzes. Bei der
Einpunktberiihrung liegt der Beriihrungspunkt in der Hohl-
kehle des Rades. Seine Lage ist durch den Gleichgewichts-
zustand der auf den Radsatz wirkenden Krifte bestimmt.
Der zugehdrige Profilwinkel Y, der vor allem durch die vom
Radsatz aufzunehmende Querkraft bedingt ist, bringt somit
eine weitere Unbekannte in das Gleichgewichtsproblem, so
dass dieses wesentlich komplizierter als im Falle der Zwei-
punktberiihrung ausfillt 5), Dabei ist zu bemerken, dass die
Einpunktberithrung beim schrig anlaufenden Rad anderseits
schnell verschwindet und zur Zweipunktberiihrung {iiber-
geht. Da anderseits beim normalen Schienen- und Rad-
reifenprofil der SBB, wie oben erwihnt, stets Zweipunkt-
beriihrung vorliegt, werden wir bei unseren weiteren Aus-
fihrungen zundchst grundsitzlich diese voraussetzen und am
Schluss auf den Fall der Einpunktberiihrung zuriicklkommen.

2. Die Beriihrungspunkte des anlaufenden Radsatzes bei
Zweipunktberiihrung des anlaufenden Rades
2.1 Die Bertihrungspunkte der angelaufenen Schiene

Die Lage der beiden Beriihrungspunkte 9(* und 9(* auf
der Schiene ist mit beiden Tangentenwinkeln §° und §* fest-
gelegt, die sich aus den zugehérigen Neigungswinkeln Y
und y* des Rades nach Gl. (3) ermitteln lassen. Im Falle
der SBB-Normalprofile liegen, wie wir bereits erw#hnt
haben, beide Beriihrungspunkte des Rades auf seinen Ke-
gelflidchen, so dass die Winkel y'und y* von Anfang an be-
kannt sind. Dieses trifft allerdings nur im neuen Zustand
des Rades zu. Weist die Lauffliche infolge Abniitzung oder
aus einem anderen Grunde eine gekriimmte
Form auf, so ist y* nicht mehr gegeben und
muss bestimmt werden. Hiezu wird man am
besten von einer ersten Annahme iiber die

a _
() w 1 - tg2asin2e,
und

b 1 (tgp 4 tgvy)2

P = e S

Die Auswertung der Beziehungen (la) und (2a) fiihrt
im Falle des normalen Radreifenprofiles der SBB fiir die
konische Laufflédche mit tgy* = 0,05 und fiir den Spurkegel
mit tgy* = 1,746 bzw. y* = 60°11'51,5” zu den Kurven in
Bild 4, wobei zur einfacheren Darstellung nicht die Werte
von q/y und p/r aufgetragen sind sondern diejenigen der
Faktoren Ay und A9, welche es gestatten, nach den einfachen
Beziehungen
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durch r* und y® gekennzeichnete Lage des

Aufstandspunktes 9(* ausgehen, um auf dem
Iterationsweg zur Losung zu kommen, Bei diesem Vorgehen
ist somit auch y* fiir jede Durchrechnung gegeben.

Aus den Kurven des Bildes 4 ergeben sich fiir tg y° = 0,05
und fiir den wohl extremen Fall tgo = 4+ 0,1 und tgae =
0,05 beim Innenrad die Werte Ay ~ 3,0 und \'s ~ 8,95, welche
zu q'/r ~ — 0,0075 und pH*/r ~ 0,000028 fiihren.

4) Borgeaud, G.: Doktorarbeit ETH Zurich 1937: Le passage en
courbes de véhicules de chemin de fer, Seite 66.

5) Borgeaud, G.: Doktorarbeit ETH Zurich 1937: Le passage en
courbes de véhicule de chemin de fer, Seiten 106 und folgende.
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Bild D. 4. Abhéngigkeit der Faktoren Ay und A, vom Nei-
gungswinkel ;.

Die beiden letzten Werte sind derart klein, dass sie
flir die Bestimmung der Laufkreise vernachléssigt werden
konnen. Es kann somit angenommen werden, dass diese
ihre Schienen in ihren tiefsten Punkten A, bzw. A; be-
riihren.

Unter der Voraussetzung, dass sich das massgebende
Schienenprofil aus zwei Kreisen mit den Halbmessern p° und
p* ergibt, treten bei der Aussenschiene bzw. Innenschiene die
im Bild 5 links bzw. rechts gezeigten geometrischen Verh#lt-

Bild D.5. Geometrische
Verhéltnisse bei den Be-
riithrungspunkten der an-

nisse auf, wobei der Winkel §* beim Aussenrad bzw. bei der
Aussenschiene entsprechend der fiir § und y allgemein ge-
troffenen Definition mit negativem Wert in Betracht zu
ziehen ist. Besteht im Gegensatz zur obigen Voraussetzung
das Schienenprofil nicht einfach aus zwei, sondern aus mehr
Kreisen, so konnen fiir jeden Kreisabschnitt die beiden Be-
ziehungen (12) und (14) angewendet werden. Weist hingegen
das Schienenprofil eine beliebige Form auf, dann ist es immer
mdoglich, fiir jede Schiene Beziehungen fiir 5 und 3 in Ab-
héngigkeit von § aufzustellen, die an Stelle yon Gl. (12) bzw.
(14) und (13) bzw. (15) zu beriicksichtigen sind. Der Nei-
gungswinkel des Schienenkopfes ergibt sich aus dem Ueber-
hohungswinkel ®, dem Querneigungswinkel A® des Schienen-
fusses gegeniiber der Traverse sowie aus der durch die Fiih-
rungskraft T bedingten Verdrehung T/k, der Schiene. Wird
der Deformationswinkel Ap des Rades einfachheitshalber auf
die Schiene verlegt, dann ergibt sich der zu beriicksichti-
gende Neigungswinkel des Schienenkopfes zu

(11} @sa = — (P + AP) 4 Tu/ky — Aga 5)
gsi = — (P — AP) + Ti/k, — Api  5)

Aus Bild 5 lassen sich unmittelbar die geometrischen Be-
ziehungen

(12) p* =bcosegs + (p*sin §* — a sin gs) sgny*
(13) Yy = — p’ (sings — sin §’) sgn y*

(14) 3* = acosgs — p*cosd* + bsingssgny*
(15) 3 = p’ (cos gs — cos §*) 6)

%) Nach Definition entspricht ein positives & einer UeberhShung
der linken Schiene und nimmt somit im Uhrzeigersinne zu. Fiir die
¢-Drehungen wird aber die Gegenuhrzeigerrichtung als positiv fest-
gelegt, so dass die zur Schienenkopfebene parallele Lage der Rad-
satzaxe durch ¢ = — & gekennzeichnet ist,

6) Bei einem positiven Wert von liegt laut Definition der be-

trachtete Bertihrungspunkt tiefer als der Schienenmittelpunkt. Bei
den in Bild 5 festgehaltenen Verhiltnissen ist 3a somit negativ.

gelaufenen Schiene,




ableiten, welche grundsitzlich fiir beide Schienen gelten.
Mit den dadurch ermittelten Werten (y’, 3°) und (p*, 3*) ist
die Lage der beiden Beriihrungspunkte 9(* und 9(* der
Schiene festgelegt.

2.2 Die Beriihrungspunkte des anlaufenden Rades

Zum vollstdndigen Festhalten der Lage des einzelnen
Beriihrungspunktes 9{ sind nicht nur seine Koordinaten g
und f in bezug auf den tiefsten Punkt A seines Kreises c,
sondern auch die Koordinaten r und e dieses Punktes in
bezug auf den Radsatzmittelpunkt E notwendig. Zur Be-
stimmung der beiden Beriihrungspunkte 9* und 9(* des an-
laufenden Rades gehort somit auch die Kenntnis der Gros-
sen e’, r’, e* und r¥*

Setzt man vorldufig die beiden Winkel y* und y* als be-
kannt voraus, so lassen sich zundchst nach Gl. (9) die beiden
Winkel §'g und 6*p und dann nach Gl. (10) die Winkel §° und
8% bestimmen, welche zur Auswertung der Beziehungen (12)
bis (15) notwendig sind. Bringt man das anlaufende Rad
an seine Schiene, so ergeben sich die in Bild 6 gezeigten
Verhiltnisse und damit die Beziehungen

@6) ny=yE—9) F (GF—3)tge sgnyr I |a*sing|
AT) Aale—e*) = b
coso’ (1 + tg2g)
o e 3 ’ 3
(18) A(*—r—py=8—8) _, shg sgny’
cos p” cos (o' — ¢”)

die grundsétzlich fiir beide Réder gelten und in Zusammen-
hang mit den fiir das gegebene Radreifenprofil massgeben-
Verhéltnisse und damit die Beziehungen

@9) rt=1f; (e’)

(20) ¥ =fs(e)
(20)F N rE=—fq((c*)
(22) & = fue?)

zur Ermittlung der vier Grossen e, r’, e* und r* fiihren.

2.21 Die Beriihrungspunkte des anlaufenden Rades im Falle
eines geraden Laufflichen- und Spurkranzprofiles

In diesem Falle sind y° und y* als konstante Grossen
von Anfang an gegeben, so dass von den vier Beziehungen

20

Bild D. 6. Geometrische Zusam-
menhinge zwischen Schiene
und anlaufendem Rad.

(19) bis (22) nur die beiden Beziehungen (19) und (21) in
Betracht zu ziehen sind. Da g geméss Gl (1) unmittelbar
proportional dem Halbmesser r* ist, fiihrt die Einfiihrung
dieser beiden Beziehungen in die Gleichungen (16) bis (18)
zu einem Zweigleichungssystem mit den beiden Unbekann-
ten e’ und e*. Diese konnen somit bestimmt werden und ge-
statten dann, durch ihr Einsetzen in GIl. (19) und (21) eben-
falls r* und r* zu ermitteln.

===

==

S ST
| 7251+
|2 25,0 B0 L 19004996
| D

X
QI*
é 721,05086

Bild D.7. Normales Radreifenprofil der SBB.

Im Falle des SBB-Normalprofiles ergeben sich die Be-
ziehungen (19) und (21) geméss Bild 7 zu

r* — (% e 1,25)

e* — e — 32 —
|tg v |

und
D
= o o (B |
bzw. mit e = 750 mm, tg y° = 0,05 und tg y* = 1,746 zu

D
(23) e* — 7187159 — 0,5727 (r* o T)

und

e’

D
(24) r _7-{-37,5——70



Mit den Ansétzen

ay = (p*—yp) + (3*—3) tgo” sgny*
a*
Glai— ‘ —+ Sine
i b*
Qg = 1. — I‘T
ay = T718,7159 4 0,28635 D
(25) (15:—'——&1,7 e
cosq’ (1 + tg2e)
Gg = =
= cosy’ (1 + ta2p)
- = ay sin ¢’
A7 = —— _——_—— o
cos ¢ cos (¢ — ¢") seh
sin ¢’ .
dg =g ————" Somily*
S B sy —)

schreiben sich die Beziehungen (16), (17), (18) und (23)
einfacher

(16a) Yy = ay + agr*

(17a) A (e —e*) = a3 + agr*
(18a) A,(azr* —r') = a7 — agr*
(23a) e* = a4y — 0,5727r*

Aus den Gleichungen (23a) und (17a) ergibt sich

(a4 + a5) + (ag — 0,572TX,) r*
TR T

(26) e =

Fiihren wir dies in Gleichung (24) ein, dann wird

Na@g + Q5
20 \q

ag — 0,5727 Ny
20 N\q

r¥

@n = (% +37,5) 1

Daraus und aus Gleichung (18a) folgt schliesslich nach Um-
formungen

20\, [a7 S <}2?» . 37,5)] (Nt =)
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Bild D. 8. Abhingigkeit der Grossen e* und (r* —D/5) vom
Anlaufwinkel S.

Alle Beziehungen (1) bis (18) lassen sich unmittelbar
auswerten, sobald ¢ und a gegeben sind. Sodann konnen
die einzelnen durch die Ansdtze (25) definierten Grossen
a4 bis ag ermittelt werden. Ihr Einsetzen in Gl. (28) gestattet
dann, r* zu bestimmen. Mit Hilfe der Gleichungen (1), (2),
(23a), (26) und (27) lassen sich daraufhin die Grossen
a*, b*, e* e und r- ausrechnen, welche zusammen mit r*
fiir die Untersuchung des Kréiftespieles am Radsatz not-
wendig sind.

Wie 8p sind die Grossen e’, r*, e* und r* bei gegebenem
wirklichem Anlaufwinkel 8 von ¢ unabhingig, Ihre Ab-
hingigkeit von g ist genau die gleiche wie von a im Spe-
zialfall ¢ = 0. Die Berechnung wurde fiir diesen Fall mit
Hilfe des elektronischen Rechengerdtes der IBM durchge-
fiihrt; ihre Auswertung fiihrt zu den Kurven der Bilder &
und 9.
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Bild D.9. Abhéngigkeit der Gréssen ¢ und (T —D/») vom
Anlaufwinkel 8 beim anlaufenden Rad.

2.22 Die Beriihrungspunkie des anlaufenden Rades im Falle
eines mnicht geradlinigen Laufflichenprofiles

In diesem Falle ist y* nicht mehr konstant und deshalb
eine Beziehung geméiss GIl. (20) in Betracht zu ziehen. Da
hier fiir die Spurkranzdruckfliche immer noch ein gerad-
liniges Profil vorausgesetzt wird, ist y* bekannt.

Bild D.10. Die verschiedenen Koordinaten der Beriihrungs-
punkte des Radsatzes.

D 21



Die Berechnung kann auf Grund
einer ersten Annahme fiir y+ auf dem
Iterationsweg nach der im ersten Teil
des Flussdiagrammes I angegebenen
Reihenfolge vorgenommen werden.
Fdllt der am Schluss des betrachteten
Rechnungsganges nach Gl. (17) er-
mittelte Wert von {) grosser als der-
jenige nach GI. (16) aus so wurde e’
zu gross angenommen., Die Berech-

nung ist deshalb mit einem entspre-
chend korrigierten e* neu durchzu-
fiihren und muss wiederholt werden,

bis beide Werte von ) Ulbereinstim-
men.

2.23 Die Beritihrungspunkte des an-
laufenden Rades im Falle eines belie-
bigen Radreifenprofiles

Korrigjerter gﬁr - Wert

Kann die Voraussetzung eines ge-
raden Profiles beim Spurkranz nicht
mehr gemacht werden, so ist nebst
Gl (20) ebenfalls eine Beziehung ge-
miass Gl. (22) zu beriicksichtigen.
Die Berechnung kompliziert sich da-
durch, dass jetzt nicht nur y, sondern
auch y* unbekannt ist, Sie kann
grundsétzlich gleich wie im vorheri-
gen Abschnitt durchgefiihrt werden,
jedoch muss innerhalb jedes Itera-
tionsschrittes fiir e eine zusitzliche
Iteration in bezug auf r* gemacht &

werden. Bei dem fiir den betrachteten
Tterationsschritt eingesetzten Wert
von e flihrt eine Anahme iiber r* zu-
néchst zu e* und y* nach Beziehun-
gen (21) und (22). Dann lassen sich
alle im Abschnitt 2.2 angegebenen Be-
rechnungen bis zur Auswertung der
Gleichung (18) durchfiihren, Der auf
diese Weise ermittelte Wert von r#
sollte mit dem angenommenen iibereinstimmen, Trifft dieses
nicht zu, so ist der richtige Wert durch Iteration zu ermitteln.
Mit ihm kann dann der angefangene Iterationsschritt durch
Bestimmung von e* nach Beziehung (21) und durch. Er-
mittlung der beiden h-Werte nach der Beziehung h =1f (r*)
und Gl. (17) fertig durchgerechnet werden. Der ganze Be-
rechungsgang ist zu wiederholen bis beide y-Werte {iiber-
einstimmen.

2.3 Die sich aus den Berihrungspunkten des anlaufenden
Rades ergebende Querlage des Radsatzes

Mit den Grossen y*, a* b*, r+ und e* des Beriihrungs-
punktes 9(* des anlaufenden Rades ist die Querlage des
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I Flussdiagramm zur Bestimmung der Beriihrungspunkte (Kapitel D).

Radsatzes festgelegt. Dieser ist in Bild 10 durch seinen
Mittelpunkt E, seine Axe und beide Kreise ¢’ und c* des
anlaufenden Rades dargestellt, und zwar links im Falle
des Aussen- und rechts im Falle des Innenanlaufes.

Fiir die Querordinate w des Radsatzmittelpunktes E
ergibt sich aus Bild 10 im Falle des dussenanlaufes Jdie Be-
ziehung

cos ¥
cos a

(29) wo =y, + b,

und im Falle des Innenanlaufes die Beziehung

cos ¢
oS w

(30)  w; = yi— by




wobei sich fiir den horizontalen Abstand b, bzw. b; aus Bild 6
oder 10 die Beziehung

(81) b =y* + [(r* —p*)sing cosa — g*sina] sgn y* 4

-+ e* cosgp cosa
ergibt.

Fiihren wir diese Beziehung in die beiden Gl. (29) und
(30) ein, so folgt

(32)
Wy = Ya + [ C?):“a + e*a cosp + gFatga— (¥, —b*,) sinqo] cosy
und
w; = Y — [ cgs*ia + e* cosp — g* tga + (r* —p*) sinw} CoS Y

Die beiden Ordinaten y, und y; legen die Lage der Schienen-
mittelpunkte B, und B; im Moment des Durchlaufens des
Radsatzes fest und ergeben sich aus den Schienendefor-
mationen {, und § und der Ordinate y des betreffenden

Mittelpunktes E; des undeformierten Gleises zu (siehe
Bild 11)

Yo =y —¢€ gosy cos ¢ COS ¢ COS

Ya =Y oS0 — & Y P
(33)

=V & cos ¢ ¢ COS ¢ coS
vi=y coser ! 4 i
%

Bild D.11. Die Querordinaten des Geleises und
des Radsatzes.

Da ¢, ¢y und a nur kleinere Werte aufweisen, konnen ohne
merklichen Einfluss auf die Genauigkeit die Ansitze
(34)

gemacht werden. Damit vereinfachen sich die Beziehungen
(32) und (33) zu

Wa = Ya + [t)*a + CEN afaa—(r% —b*) @l
wi— it =—e f= e N (B85 —h ol

sinvel="toirs—tr s und eosiz —il

(32a) {

und

(332) Yya=y—€—¢a; Yyi=y +e—¢

2.4 Der Aufstandspunkt des freien Rades

Die Distanz b ldsst sich ebenfalls von dem Aufstands-
punkt 9(‘aus ermitteln. Geméss Bild 10 lautet in diesem Fall
ihr Ausdruck

b=y’ (e'cosg 4 r’ singp sgny*) cosa

womit sich die Beziehungen

2 et _ Gi=—=0
(e'jcos @ + r1ising) = oy =

(35) 5t o
" e o — Y  Da
(era cosp—r1', Sing) = osy o

zwischen der Ordinate w des Radsatzes und den Grossen
e, r, y und y des betrachteten Rades ergeben,

Im Falle eines nicht geradlinigen Lauffldchenprofiles ist
der Winkel y* des freien Rades gleich wie beim anlaufenden
Rad nicht bekannt. Seine Ermittlung sowie diejenige von e
und r- kann wiederum am einfachsten nach dem Iterations-
verfahren vorgenommen werden. Entsprechend dem Teil II
des Flussdiagrammes I kann folgender Rechnungsgang be-
schritten werden. Eine erste Annahme fiir e mit

€' = Yi — Wa €'a = Wi — Ya

fiihrt auf Grund der Beziehungen (19) und (20) zunidchst
zu r* und y*. Damit kann durch Auswertung der Gleichung
(13) p' ermittelt werden. Einsetzen von r‘, y* und y* in GL
(35) fiihrt dann zum Wert von e’. Stimmt dieser Wert nicht
mit dem angenommenen Wert iiberein, so ist die Rechnung
mit korrigiertem Ausgangswert neu durchzufiihren. Dieses
ist bis zur Uebereinstimmung zu wiederholen.

Verlduft das Laufflichenprofil geradlinig, ist somit der
Winkel y* bekannt, so kénnen unmittelbar § und p° aus
Gl. (9), (10) und (13) und damit der Wert des linken Gliedes
der massgebenden Beziehung (35) bestimmt werden. Aus
diesem ergeben sich dann r* und e’ nach Einfithrung der
Gl. (19).

Im Falle des SBB-Normalprofiles wird Gl. (19) zu GI.
(24). Ihre Einfiihrung in Gl (35) fiihrt zu den Beziehungen

(36)

(Yi— w) cos a — cos y [(% I 37,5> cos a sin ¢ + U'i]

e =
- cosa cosy (cosp — 0,05 sing)

(W — ya) cosa + cosy [(% -+ 37,5) cos a sin ¢ — );)'a]

€7 =
. cosa cosy (cosg -+ 0,05 sin )

die sich mit den Ansétzen (34) zu

ZAD
Yi—w —pi — (- +37,5) ¢
N (2 +onq
1—0,05¢
(36a) D
W—Ya —Ya + (T = 37v5>‘7’
(SH = £

1+ 0,05¢

vereinfachen. Das Einsetzen obiger Werte fiir e’; und e’, in
Gl. (19) bzw. (24) fiihrt dann schliesslich zu r4 bzw. r',.
Die im Abschnitt 2.23 fiir das anlaufende Rad mit dem
SBB-Normalprofil durchgefiihrte Berechnung wurde fiir das
freie Rad nach obigen Ausfiihrungen ergénzt. Die Ergeb-
nisse sind durch die Kurven des Bildes 12 wiedergegeben.
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Bild D. 12. Abhdngigkeit der Grossen e und (D/g—i“) vom
Anlaufwinkel g beim freien Rad.,
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3. Die Beriihrungspunkte des nicht anlaufenden Radsatzes

Die Querlage des nicht anlaufenden Radsatzes ist nicht
mehr unmittelbar durch die Schienen bestimmt, sondern
ergibt sich aus seinem momentanen Bewegungszustand. Fiir
die Bestimmung seiner beiden Aufstandspunkte hat man
also von seiner Querordinate w auszugehen. Es treten so-
mit an beiden Rédern die gleichen Verh#ltnisse auf, und es
ist deshalb fiir beide gleich vorzugehen wie beim freien Rad
des anlaufenden Radsatzes, wobei y, und y; als bekannt vor-
auszusetzen sind, und ebenfalls eine Iteration in bezug auf
¢ durchzufiihren ist.

4. Die Beriihrungspunkte des Radsatzes bei Einpunktberiih-
rung

Die Lage des Radsatzes ist in diesem Falle beim An-
laufen nicht geometrisch, sondern durch den Gleichgewichts-
zustand gegeben. Die Ermittlung der Beriihrungspunkte hat
daher von der Querordinate auszugehen, und der Radsatz be-
findet sich unter den gleichen Verhéltnissen wie in dem im
Abschnitt 3 behandelten Fall des Nichtanlaufens, wobei der
Beriihrungspunkt des anlaufenden Rades als Aufstandspunkt
I zu betrachten ist. Der Beriihrungspunkt jedes Rades kann
somit nach Teil II des Flussdiagrammes I ermittelt werden.

5. Der sich aus der Schieneniiberh6hung ergebende Nei-
gungswinkel ¢ des Radsatzes

In den bisherigen Ausfiihrungen wurde der Winkel g,
als bekannt vorausgesetzt. Er entspricht ungefihr dem
Neigungswinkel ¢ = — @ der beiden Schienen gemeinsamen
Kopftangente. Genauer betrachtet ist er aber auch von der
Lage beider Aufstandspunkte des Radsatzes abhingig.

Die Verbindungsgerade beider Aufstandspunkte weist
einen Neigungswinkel ¢, auf, fiir dessen Projektion ¢, in
Schienenrichtung die Beziehung

2esin® + (3°i— 3'a)
2ecos®— (i + Y'a)

tgpy’ = —
gilt, die sich unmittelbar aus Bild 5 ableiten ldsst und zu

2esin® 4 (3°i— 3a)

2ecos® — (p'; + ya) s

(37) tgog, = tgy, cosa = —

E. Die Bewegung des Radsatzes

1. Der momentane Drehpunkt £ der Radsatzwendung

In dieser Arbeit soll, wie am Anfang erwéhnt, die Vor-
aussetzung gelten, dass die Mittellinie des in seiner Quer-
neigung @ verédnderlichen Gleises horizontal verlduft. Wiirde
der durch die Ordinate w gekennzeichnete Mittelpunkt E, des
Radsatzes genau der Mittellinie des Gleises folgen, so wiirde
der Radsatz nach dieser Voraussetzung keine Bewegung in
der z-Richtung ausfithren. In Wirklichkeit weist er aber
stets eine gewisse Querverschiebung (w—y) auf, die sich
beim Lauf fortwidhrend &ndern kann. Diese Verschiebung
hat im Zusammenhang mit der Querneigung ® des Gleises
eine Hohenverlagerung

Az = & (w0 —7Y)

des Radsatzes zur Folge. Ausserdem ruft sie eine Verédnde-
rung der beiden Laufkreisdurchmesser und dadurch eine
weitere Hohenverschiebung

r'a—}—ri—21ﬂ1

Aeor— 2

des Radsatzes hervor. Diese beiden Verschiebungen Az; und
Azo bleiben jedoch klein, so dass die entsprechende Ge-

schwindigkeit (Azl |- Azg) ebenfalls sehr klein ist und
gegeniiber der Geschwindigkeit 14 des Radsatzpunktes E,
vernachldssigt werden kann. Wir nehmen deshalb weiterhin
an, dass diese Geschwindigkeit horizontal gerichtet ist,

fiihrt. Zwischen dem Winkel ¢, der beide Punkte 9('; und ‘s
verbindenden Geraden und dem Winkel ¢ der Radsatzaxe be-
steht die Beziehung

(38) 9 =@p—e

wobei der Winkel

(r'a = T'g) + (b — b':\)
ea + €%

nur sehr wenig vom Halbwinkel

(39) e, = arctg

I"a — Y

40 —= arct =i
(40) = nge‘a -

des im néchsten Kapitel behandelten Rollkegels abweicht,
da der Ausdruck (p';j— f'a) praktisch sehr klein bleibt.
Fir den Neigungswinkel der Radsatzaxe folgt dann aus
Gl (37), (38) und (39) die Beziehung
2esin® + (3°'i— 3'a) ]
osa| —
2ecos® — (y'i+ y'a)

(T — r3) - (b))
€'a + €

die sich mit den Ansdtzen (34) fiir ¢, ¢, ¢ 2zu

2ed + (3'1'_‘5'3) N (ra —t4) £ (b4 —0%)

2e— (Y1t va) €a + €}

(41) ¢ = — arctg[

— arctg

(418.) Q= —

vereinfachen ldsst.

Zur Bestimmung der verschiedenen massgebenden
Grossen der einzelnen Beriihrungspunkte wurde in den bis-
herigen Awusfiihrungen der Winkel ¢ als bekannt voraus-
gesetzt. Genau genommen ist dies jedoch nicht von vorn-
herein der Fall, da er sich geméss Gl. (39) aus der Neigung
$ des Gleises und aus der Querlage des Radsatzes ergibt.
Es ist deshalb notwendig, ebenfalls eine Iteration in bezug
auf ¢ vorzunehmen (siehe Flussdiagramm I). Es zeigt sich
jedoch, dass praktisch zwei Rechnungsginge bereits ge-
nligen, wenn man von vornherein von

tgp = — tgd cosa
ausgeht.

Die Bewegung des Radsatzes setzt sich grundsitzlich
aus seiner Drehung um die eigene Axe und aus seiner y-
Drehung um die momentane Kriimmungsaxe p zusammen.
Erstere nennen wir die Rotation 2 und die zweite die Wen-
dung 2, des Radsatzes. Die Winkelgeschwindigkeit der Ro-
tation @ bezeichnen wir mit » und diejenige der Wendung 2,
mit »,, wenn sie, wie beim statischen Lauf, konstant bleibt,

aber auch mit 50',, wenn sie wie beim dynamischen Lauf
verdnderlich ist.

Betrachten wir den in Bild 1 dargestellten Radsatz.
Seine momentane Lage ist durch die beiden Koordinaten x,
und w seines Mittelpunktes E, sowie durch die beiden Win-
kel v, und ¢, gekennzeichnet, wobei ., w und y, durch die
Bewegung des Radsatzes gegeben sind, wihrend ¢, vor
allem durch das Gleis festgelegt ist.

Die Geschwindigkeit 11, kann als die Umfangsgeschwin-
digkeit des Punktes E, angesehen werden, die bei der Wen-
dung des Radsatzes um eine momentane, vertikal stehende

Axe p mit der Winkelgeschwindigkeit x,'br und dem mo-
mentanen Radius p, entsteht. Fiir die Grosse von y, gilt
somit die Beziehung

(1) u, = .Idx"z + w2 = Pr '5!;1‘

bzw.
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U,

(2)  ppr=—
r ‘50;-
und fiir ihren Richtungswinkel B8 die Beziehung
w
@y tgg=-—.
Ly

Da die Geschwindigkeit

(4) X, = %,C0Sy, + wsiny,
des Punktes E, in Richtung der Radsatzléingsaxe senkrecht
zum Hauptradius SN, gerichtet ist, muss die weitere Be-
ziehung

%o

¥r
bestehen. Bezeichnet man die Wendungspoldistanz NE,, d. h.

die Distanz zwischen der Wendungsaxe und der Radsatzaxe
mit p,, so besteht die geometrische Beziehung

(6) D= M tg(B — )

welche sich nach Einfiihrung der Gleichungen (3), (4) und
(B zu

5) h=

) e — w cos Yr — .'x';, sin ¢, - ; Dy
2% Wy COS Yy

dndert. Unter Berlicksichtigung der betreffenden Ansétze
(D 34), vereinfacht sich diese Beziehung zu

(@) e e 388 L
iy gr | X

Aus Gl. (2), (5) und (7) erkennt man, dass bei unverén-

derten Werten von X,, ¢, und w der momentane Radius p,, die
Ordinate h, und die Wendungspoldistanz p, ihr Vorzeichen mit

-,Lr wechseln. Insbesondere ergibt sich bei positivem 5&,. ein
positiver Wert von h,, was laut Definition bedeutet, dass
sich der momentane Drehpunkt 5D auf der rechten Radsatz-
seite befindet (Bild 1, links). Hingegen liegt $ bei nega-
tivem 1/3,, entsprechend einem negativen h, auf der linken
Radsatzseite (Bild 1, rechts). Ein positiver Wert von p,
bedeutet, dass sich der Wendungspol N hinter dem Radsatz
befindet.

Beim statischen Lauf ist p, = R = konstant und ent-
spricht (8 —y,) dem Anlaufwinkel «, so dass sich die
Winkelgeschwindigkeit der Wendung aus Gl (5) zu

W — X, Sinyy

Bild E.1. Die horizontale Bewe-
gung des Radsatzes.

Xy

(e S

[ == 501":

ergibt. Mit p,, h, und p, ist die Lage des momentanen Dreh-
punktes O des Radsatzes festgelegt.

2. Der Rollkegel

Die beiden Aufstandspunkte 9(', und 9(‘; des Radsatzes
legen die beiden Laufkreise c'; und c'; sowie die zugehorigen
Gleiskreise k-, und k- genau fest, Die beiden Laufkreise c-,
und c*; konnen als Kreise eines gemeinsamen Kegels betrach-
tet werden, den wir als Rollkegel bezeichnen. Dieser ist somit
durch die Halbmesser r'; und r dieser Kreise und durch
ihre Abstédnde e’; und e’y vom Radsatzmittelpunkt E, be-
stimmt. Er weist den Halbwinkel ¢ [Gl. (D 38)] auf. Seine
Axe ist in der lotrechten Meridianebene um den Winkel ¢,
[Gl. (D 39)] geneigt und seine Querlage durch die Ordinate
h. des Punktes E, bestimmt. Seine Spitze & hat den horizon-
talen Abstand

rll]
sin e

N— Y il
9) Im = o ya)

COS ¢y = Iy
i I'a — I'i ) COS iy

vom tiefsten Punkte B, des Laufkreises c,, dessen Zentrum
in B, liegt (Bild 2). Der Halbmesser dieses Kreises betrigt

JE == %) I'i€'a + r'ye’
10) rm =145+ ) I Ve g o o
Lt l(%+m)‘ e + €

und der Punkt E, hat die Querordinate

(11) w = w + 1y sing, cosy,

in bezug auf die x-Axe, bzw.

(12) hyp = hy — 1y Sing,
in bezug auf die Wendeaxe p1). Fiir den Beriihrungspunkt
9( des beliebigen Kreises ¢ gilt die Beziehung

1= Zm_ﬁm Gy I) + (Ar —p) sing,

worin Ar den Halbmesserunterschied zwischen dem Kreis
¢ und dem in der gleichen Ebene liegenden Kreis des Roll-
kegels bedeutet und die Grosse

@3) Ar=y—ro—

lo

1) h wird parallel zur lotrechten Meridianebene des Radsatzes ge-
messen.
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Bild E. 2. Die geometrischen Zusammenhinge
beim Rollkegel.

aufweist 2). Fiihren wir diese Beziehung in die obere ein, so
ergibt sich nach Umformungen

Iy
lp + 1o sing,
Mit den Ansdtzen (D 34) vereinfachen sich die Be-
ziehungen (9), (11), (12) und (14) zu
U= y'a)

T —

(14) 1= ( )[lm —hm + 0§+ (r—b) sing,]

(9a) Iy =rn (

(11a) w = w + Tm@r
(12a) Py = by — T'm Pr

(14a) 1= (T—i—loﬁ) [y — T + b+ (r— ) 0]

Es ist nun interessant, denjenigen Kreis co des Roll-
kegels herauszugreifen, der gegeniiber dem zugehdrigen
ideellen Grundkreis kein Lé&ngsgleiten aufweist, der also
tangential an diesem haftet und daher Haftkreis genannt
werden soll. Die in bezug auf den Mittelpunkt £ des Grund-
kreises ko durch h, gekennzeichnete Querlage seines tief-
sten Punktes A, muss somit derart sein, dass jeweils die
Beziehung

(15) @y = ¢rpoCOSay = vl

2) ro ist der Radius des weiter definierten Haftkreises und 1o
seine Rollkegelhohe,

26

Bild E. 3. Die Bewegung des Roll-
kegels.

erfiillt ist. Wie wir spdter sehen werden, hingt die Lage
des Punktes A, vor allem von der durch den Radsatz iiber-
tragenen Léngskraft ab. Beziehen wir sie statt auf die Axe
p des Grundkreises k, auf den tiefsten Punkt E, des mitt-
leren Kreises c, und kennzeichnen sie mit der Ordinate 7,
so ergeben sich rein geometrisch die Beziehungen

(16) ﬂ0 :%m + 7
(17) L =1In+7

und

(s) o —r ( Im +l)

Im

3. Die Teilbewegungen des Radsatzes

Betrachten wir nun in Bild 3 den durch die beiden
Laufkreise ¢, und c; definierten Rollkegel, der sich um die
momentane Axe p mit der Winkelgeschwindigkeit 5le wendet,
Seine Axe weist den Neigungswinkel ¢, auf und liegt im
Abstande p,. vor der lotrechten Axe p. Es ist nun von Inter-
esse, die sich aus den beiden Grundteilbewegungen, der
Rotation @ und der Wendung ,, ergebende Totalbewegung
(2 + Q) in zwei andere Teilbewegungen Q, und Q, zu zer-
legen, deren erste in die tiefste Gerade A,A; des Rollkegels
zu liegen kommt und deren zweite vertikal gerichtet sein
soll. Aus der Gleichheit

(& + Q) = (2 + Q)



folgt die Beziehung

(19) Qg:92+ (Qﬁﬂs)

Da @, und 2, lotrecht gerichtet sind, muss es fiir @ —Q,
auch der Fall sein. Daraus ergeben sich die in Bild 1 an-
gegebenen geometrischen Verhéltnisse zwischen 2., Q, und
2 —Q,. Bezeichnet man die letztgenannte Drehung mit
— Q, setzt man also

(20) Q. =—(Q—Q,)

an, so ergibt sich ihre Grdsse zu

sin e
We =

COS ¢y

bzw. unter Beriicksichtigung von Gl. (9) und (15) zu

= I'm N o . E)
el IR e e

Aus dieser Beziehung folgt, dass Q. derjenigen Drehung
entspricht, die der Rollkegel ausfilhren wiirde, wenn er
nicht zu gleiten hitte. Wir nennen sie deshalb die Roll-
kegelwendung.

Aus GI. (19) und (20) folgt nun
(22) 92,=Q,— Q

womit wir fiir @, die Grosse

(23) wy = v, ( loies hi)

Iy
den Abstand

l
9=——n
0o — ho

(24)

hinter der Radsatzaxe und den Querabstand

(o — To) 22 = (lp — Too) b = ho
Wg

von der Axe p erhalten. Dieses letzte Ergebnis bedeutet,
dass sich die Axe yi der Drehung Q, auf gleicher Quer-
ordinate wie der Punkt A, des Haftkreises c, befindet, was
auch sein soll, da sich dieser Punkt geméss Definition nur
in der Querrichtung bewegt. Da ferner die drei in Gl. (21)
vorkommenden Drehungen vertikal gerichtet sind, muss
die Axe i in der gleichen vertikalen Ebene wie die beiden
Axen 3 und p liegen. Demzufolge muss der Schnittpunkt
M der Axe i mit der horizontalen Ebene des Gleiskreises
ko auf der Geraden liegen, welche die Fusspunkte der Axen
& und p verbindet. Diese Gerade ist die sogenannte Pawelka-
Gerade.

Liegt der Rollkegel entsprechend ¢, = 0 auf einer hori-
zontalen HEbene, so ist Q. horizontal gerichtet, liegt in der
Bertlihrungsebene des Rollkegels und entspricht demnach dem
reinen Rollen des Rollkegels. Seine Gleitung ist dann allein
durch Q, gegeben, Wir bezeichnen deshalb weiterhin @, als
die Rollbewegung und , als die Schwenkung des Rollkegels
bzw. des Radsatzes. Dementsprechend wird 11 die Schwen-
kungaxe, I der Schwenkungspol und ¢g die Schwenkungs-
poldistanz genannt (siehe Bild 3).

Ist hingegen ¢, == 0, dann ergibt sich keine eindeutige
Stiitzflache fiir den Rollkegel, und es lasst sich keine Roll-
und Gleitbewegung unmittelbar aus Q; und Q, ableiten. Der
Bequemlichkeit halber wollen wir aber in diesem Falle
trotzdem diese beiden Teilbewegungen zu Grund legen und
uns an die obigen Bezeichnungen halten.

Sind beide Laufkreisdurchmesser des Radsatzes gleich
gross, so geht der Laufkegel in einen Zylinder iiber bzw.
wandert seine Spitze ins Unendliche. Die Pawelka-Gerade
kommt dabei parallel zur Radsatzaxe zu liegen und stimmt
dann mit dem als Lot vom Bogenmittelpunkt £ auf die
Radsatzldngsaxe definierten Hauptradius iiberein (siehe
Bild 1). Ausserdem liegt dann der Schwenkungspol 9t auf
dem Haupradius und es wird g gleich p, sowie

Wg = Wy
Den Fusspunkt N, des Hauptradius auf der Radsatz-
langsaxe bezeichnen wir als Wendungspol des Radsatzes.
Sein Abstand vom Radsatz ist die bereits definierte Wen-
dungspoldistanz p, (auch Richtarm genannt).

F. Die Geschwindigkeit der Radoberfliche im beliebigen Umrisspunkt 2

Wir betrachten nun in Bild 1 irgend
einen mit der zugehorigen Schiene in Be-
rithrung verbunden sein soll, der aber
nicht auf seiner Mantelfldche zu liegen
braucht. Dieser Kreis kann nur im Um-
risspunkt 9( mit der Schiene in Beriih-
rung kommen,, dessen Lage in der Kreis-
ebene durch die Koordinaten g und p
festgelegt ist. In der horizontalen Ebene
ist seine Lage gegeniiber der Wendungs-
axe p durch die beiden Koordinaten
und f) gegeben. Fir diese lassen sich un-
mittelbar aus den Bildern D 10 und E 1
die geometrischen Beziehungen

1) p=mn-ta

und
@) = e

aufstellen, wobei ¢ den horizontalen
Querabstand zwischen den beiden Punk-
ten 9( und E bedeutet und gemiss Bild ‘Us"%)
E 2 die Grosse I

(3) ¢= (rm—1 + 0)sing, + ecose;

Bild F. 1. Rollkegel und Geschwindigkeiten der Radoberfldche im Punkte 9[.
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hat. Mit den Ansdtzen (D 34) vereinfacht sich diese letzte
Beziehung zu
(3a) ?: (rm— 1 + b)(Pr + e

Aus der Rotation 2 und der Wendung 2, des Radsatzes
ergeben sich fiir den Punkt 9( die Geschwindigkeiten:

in Liangsrichtung
(4)
in Querrichtung
(5)
und in lotrechter Richtung

(6)

Vi= o) —w(r—1D0)
Vg = wg (pr + a) + awsin&p,—

V: = — awCos g,

Daraus ergibt sich fiir die totale Geschwindigkeit y die
Grosse

welche nach Einfiihrung der Gl. (D 1) und (D 2) fiir ¢ und b
und nach verschiedenen Umformungen auf Gl. (D 3) zuriick-
gebracht werden kann. Dies bedeutet, dass die in der Nor-
malebene zur Schiene liegende Komponente der Geschwin-
digkeit y tangential zum Umriss im Punkt 9( gerichtet ist,
dass also die Geschwindigkeit y) die Radoberfliche tangiert.
Dies muss auch so sein, da im Falle der Beriihrung in 9(

keine Normalkomponente der Geschwindigkeit p bestehen
kann.

1. Die Geschwindigkeit im tiefsten Punkt A des Rollkegels

Fiir den tiefsten Punkt A des Rollkegels in der Ebene
des allgemeinen Kreises ¢ sind die drei Grossen g, h und Ar
und damit die drei Faktoren A;, Aq und A, alle null, so dass
die Geschwindigkeit y dieses Punktes und ihre Komponenten
die einfachen Ausdriicke

(7)

Fihren wir Gl. (E13), (E14), (E15) und (E23) in
diese Beziehungen ein, so werden diese nach Umformungen

zu
— : o ho
(8)  vi=wy| (h—ho) — (Ar— ) [ sinp, + ﬁﬁ__>
o Zo—ho/
(9)  vq

:cog[9+a<r0+?25m%)<l ZO;T)]

o — ho
To COS @y Iy

: ) : wga( %0 )(Zo—ho)

Mit Hilfe der Faktoren

(11) M= (Ar—p)(sing, + © L8 e
ry lo—ho | g
T ho sin ¢, 1 i T sin @,
O = o + hosin g, 0 e\ i 0+ hosing,
Tog ZO‘—hO T'o Pr

Tip COS @y 7
EISH N e Bl COL Rl
Tog lo——ho

lassen sich diese Beziehungen auch einfacher

R COS @y
o Pr

V=)vi2 + V2 + v.2 = [Te.)—w (x— 0)12 F [w, (pr T

(19) v = wy (A — hy)
a) + awsing, 12 + (qucos g,)2 (20) vq= w,g
C) =)

22) v=ol| @—T2 + ¢

erhalten. Diese Beziehungen lassen im Zusammenhang mit
Bild 2 erkennen, dass sich die Geschwindigkeit y entspre-

g =
(.Ug \
sm\ — Ao ¢,
\\\\\%\
LR Era—- ;
\9 ’
IS _® e
|
s
<

___pawelka-Gerade—-——"

— -—Hauptradius

Bild F. 2. Der Schwenkungspol 9t und die Geschwindigkeiten
der tiefsten Punkte A, und A; der beiden Rollkreise.

chend der flir die Schwenkung €, ge-
troffenen Definition unmittelbar aus die-
ser am Ende des Strahles A ergibt.

(14) vi = o, [() —ho) + g\l

(Es) e — o Gl

(16) v, = wggxz

und

A7) v =0y J[()—To)2 + 921 +20L(h —ho) M + ghg] + 92 (A2 + A2 + N2)

schreiben. Das Rad kann sich im Beriihrungspunkt 9( als
ganzes nur parallel zur Schiene bewegen. Der Radius p Muss
somit senkrecht zur Schiene stehen, so dass die Wendung 2,
keinen Anteil an die senkrecht zur Schienenaxe gerichtete
Geschwindigkeitskomponente liefern kann., Diese Kompo-
nente wird daher allein durch die Rotation @ erzeugt. Ihre

Zerlegung in lotrechter und in horizontaler Richtung fiihrt
zu Gl. (6) und zu

(18) Vi = wlasing,cosa + (v — h) sina] =

=, L) (, i l”_ [asing,cosa + (y — h) sina]
To \lo—ho

Daraus und aus Gl. (10) erhdlt man fiir den Winkel § die

Beziehung
Ry COS pr l
S
ro Lo — ho
(1 COS ¢y

Vhn (E)( b
oW/ T — Ty
= (r —b)sina

asing,cosa +

)[asingo,cos(x + (r—p) sina]
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Dieser Steahl wird kiinftig mit d bezeich-
net und Schwenkungsarm genannt. Seine
Grosse betrégt geméss Gl. (22)

(23) d=|/(h—ho)2 + g*

2. Die Geschwindigkeit im Aufstandspurkt [

Der Aufstandspunkt 9(°, oder 9('; liegt definitionsgemiss
auf dem Rollkegel, so dass Ar fiir diesen Punkt null ist und
Gl. (11) sich deshalb zu

o
lo pr

vereinfacht. Setzen wir, um die Grossenordnung der Fak-
toren \*;, A*q und \’, zu bestimmen, die vereinfachten Beziehun-
gen (D 1b) und (D 2b) fiir g/y und p/yr in GI. (11), (12) und
(13) ein und berlicksichtigen wir, dass

@1a) xr'= p: (sincpr 1 l—")

To

Dr ( Pr ) ( 1‘0) t
= |l—— || =) = §2@
ho — \ ho Lleeii

ist, so wird

it
(24) M= -5 (tgor + tgr)?



(25) N =— (tgor + tgy) (3o + sinqar)
-0

(26) Nz =~ tgor + tgy

Mit tgy: = 0,05 und den wohl extremen Werten sin ¢ =
0,1, tg a = 0,05 und r/ho = 0,015 ergeben sich fiir diese Fak-
toren die maximalen Werte
0,05

|)\'1 |max :T (0,15)2 = 0,0005625

[N'glmax = 0,15 (0,015 + 0,1) = 0,01725

|)\'z max = 0,15

Die beiden ersten Faktoren fallen so klein aus, dass man sie
vernachléssigen kann. Demnach kénnen fiir die horizontale
Geschwindigkeit im Aufstandspunkt die flir den tiefsten
Punkt A giiltigen Beziehungen (19) und (20) in Betracht

G. Die Gleitverhiltnisse zwischen Rad und Schiene

Die Geschwindigkeit p beim einzelnen Beriihrungspunkt
9( ist allein durch die kinematischen Verhéltnisse am Rad-
satz gegeben. Sie ist vor allem als «absolute Geschwindig-
keity der momentanen Radoberfldche in 9( aufzufassen.
Bleiben im Augenblick des Durchlaufens des Rades die
Querdeformationen der Schiene und des Rades konstant, so
stellt p gleichzeitig auch die Relativgeschwindigkeit bzw.
die Gleitgeschwindigkeit jp des Rades gegeniiber der Schiene
dar.

Beim allgemeinen Lauf &ndert sich aber die zwischen
Rad und Schiene zur Wirkung kommende Fiihrungskraft T
fortwihrend, so dass die von ihr verursachten Querdefor-
mationen bzw. Querverschiebungen ¢, und ¢ der Rad- und
Schienenoberfldche nicht konstant bleiben. Im Awugenblick
des Raddurchlaufens verschiebt sich die Schiene mit der
Quergeschwindigkeit {.. Desgleichen weisen die Elemente
der Radfldche im momentanen Aufstandspunkt eine Quer-
geschwindigkeit ¢, gegeniiber dem Aufstandspunkt des
durch rein kinematische Betrachtungen festgelegten Roll-
kreises ¢ auf. Die absolute Bewegung dieser Fldchenelemente
ist somit nicht mehr allein durch die Geschwindigkeit p des
betrachteten Punktes 9( bestimmt, sondern ergibt sich als
vektorielle Summe

<= ]
hJ—b—(f(fl)

wobei 1; den nach aussen und parallel zur Radsatzaxe ge-
richteten Einheitsvektor bedeutet. Da sich die Schienenober-
flache ihrerseits parallel zur Radsatzaxe um ¢ nach aussen
verschiebt, und sich das Rad bei kleinen Aenderungen seiner
Hohenlage senkrecht zur Radsatzaxe bewegt, muss infolge
der totalen Deformation

1) =&H+&

der Beriihrungspunkt des Rades im Bild 1 von A nach A’
ldngs der Beriihrungslinie a wandern, deren Projektion auf
die senkrechte Meridianebene des Rades in A den Neigungs-
winkel

r—b
I

(2) ?:arctg( )tgy

hat. Die Radoberfliche weist somit gegeniiber der Schiene
eine zusitzliche Relativgeschwindigkeit auf, welche die hori-
zontale bzw. vertikale Komponente

(8) &= ¢ (cosgr — tgysing)
§:z = f (tg?cos% + singy) = §h tg (? + or)

gezogen werden. Fiir v, bleibt weiterhin GI.
gebend.

(16) mass-

3. Die Geschwindigkeit im Spurkranzdruckpunkt [*

Beim normalen Radreifen und Schienenprofil der SBB
liegt der Punkt 9(* der Seitenberiihrung um rd. (1* —rp) ~
9 mm tiefer als der Schienenkopf. \i* kann daher bei kleine-
ren Werten von p,/hg bzw. bei kleineren Anlaufwinkeln einen
grossen Wert annehmen und kann deshalb nicht vernachlis-
sigt werden. Setzen wir in GL. (25) und (26) den Wert tgy* =
1,746 sowie die extremen Werte sing, = 0,1, tga = 0,05 und
"/hg = 0,015 ein, so erhalten wir

[\q*|max = 1,846-0,115 = 0,2123
[N [roae = 1,846

Es ist gleichfalls nicht gut moglich, diese beiden Faktoren
zu vernachlédssigen, so dass fiir den Spurkranzdruckpunkt
A* die Gl. (8) bis (17) massgebend bleiben.

Bild G. 1. Die sich aus der resultierenden Defor-
mation ¢ ergebenden zusdtzlichen Gleitgeschwin-
digkeiten ¢, und {, des Rades gegeniiber der
Schiene.

hat, die beide parallel zur senkrechten Meridianebene des
Rades gerichtet sind. Die horizontale Querkomponente und
die vertikale Komponente der Gleitgeschwindigkeit ergeben
sich demnach zu

(4)  Wq=vVq+
W, =Y.+ tntg (Y + ¢r)
Da g quer gerichtet ist, miissen jy und p die gleiche
Langskomponente aufweisen. Es muss somit die Gleichung
Wil= Vi

gelten. Will man die horizontale Komponente von iy ebenfalls
auf eine Drehung mit der Winkelgeschwindigkeit », um ein

1) Die Ordinate der deformierten Schiene ist gem#ss Gl. (D 33a)
y=y*te—i
Thre Ableitung nach der Zeit wird
Y=y —n
Widhlen wir der Einfachheit halber die az-Richtung derart, dass sie
im betrachteten Zeitpunkt mit der x.-Richtung {ibereinstimmt, dann

entspricht einerseits y der absoluten Geschwiqdigkeit vq des anlau-
fenden Rades, und es kann einerseits y gleich x, tg « gesetzt werden.
Damit ergibt sich aus obiger Beziehung die Gleichung

Vo= Xptg8a—
welche mit der ersten Beziehung (4) zu
Wq = X, tga

fiihrt. Dieses Ergebnis ist logisch, da sich diese Querkomponente wq
der Gleitgeschwindigkeit auch unmittelbar infolge des Schragwin-
kels @ des anlaufenden Rades gegeniiber seiner Schiene ergeben muss.
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Momentanzentrum M zurilickfiihren, so muss sich dieser
Punkt infolge GIl. (2) auf gleicher Hohe wie der Schwenk-

pol 9 befinden, d. h. auf der Hohe T in bezug auf die Wende-
axe p bzw. auf der Hohe 5 in bezug auf den Mittelpunkt E.
Ks ergibt sich somit aus Gl. F (14) die Beziehung

(6) Wi =y [(§h—Fo) + N g]

die sich nach Beriicksichtigung der Gleichungen (E 16) und
(F'2) auch

(6) wWi=ogl(e—mn) + Nyl

schreibt, wobei ¢ durch die Beziehung (F 3) gegeben ist.
Aus Gl. (F15) und der ersten GIl. (4) folgt anderseits

(1) wq= 0,0 (1 + A + &n
Mit dem Ansatz
S

Wy

(8) Af —

lasst sich Gl (7) auch
(9)  wg=0w,[g(1+ Aq) + AL]

schreiben. Daraus ergibt sich, dass der gesuchte Punkt M
gegeniiber 9t um A¢ verschoben ist und im Abstande

(10) ¢=g + At
vom Radsatz liegt (Bild 2).

Bild G. 2. Der Schwenkungspol 9, die Reibungsmittelpunkte
M, und M;, die absoluten Geschwindigkeiten p, und p; und
die Gleitgeschwindigkeiten ip, und i; des Radsatzes.

Die bei beiden Ridern des Radsatzes entstehenden F'iih-
rungskrifte T, und T; sind im allgemeinen voneinander ver-
schieden. Es ergibt sich somit fiir jedes Rad eine besondere
Verschiebung und damit eine besondere Verlagerung A¢ bzw.
ein besonderer Punkt M, bzw. M; mit seiner eigenen Abszisse
(vgl. Bild 1).

(11) & =g+ A& bzw. & =g + AL

Fir den tiefsten, gegebenenfalls mit der Horizontalebene
in Beriihrung kommenden Punkt A fallen die beiden Fak-
toren A; und A\ aus, so dass sich dann fiir w; und w, die ein-
fachen Beziehungen

W1 = wg (AR —hp) und wq = w,¢

ergeben, Man erkennt hieraus, dass der durch die beiden
Koordinaten h, und ¢ gekennzeichnete Punkt M fiir die
Richtung der Gleitgeschwindigkeit jp und der Reibungskraft
im betrachteten Punkt massgebend ist. Wir bezeichnen des-
halp den Punkt M als Gleitpol. Seinen Abstand ¢ von der
Radsatzaxe nennen wir Gleitpoldistanz und den ihn mit dem
Punkte 9( verbindenden Arm MJ[ Gleitarm . Dieser hat die
Grosse

12) g=Jg—T2+e =)G—n2+e
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Aus Gl. (E 23) und (E 24) ergibt sich die Beziehung

(13) Dy

Wy = o

Fihren wir diese in Gleichung (8) ein, dann wird

hn g » i g9
ASH = — b o A i = | —
(‘02)(171') &4 : (mz )(pr)

oder, wenn wir die Winkelgeschwindigkeit der Wendung mit
¥y statt mit o, bezeichnen

(14) Afy = (2)(1%) bzw. A = (%)(zf)

Da ¢ positiv ist, wenn sich der Schwenkpol 9t hinter dem
Radsatz befindet, bedeutet ein positives A¢, dass Punkt M
hinter 9 verlagert wird. Aus Gl. (13) ergibt sich, dass das

Vorzeichen von A¢ von demjenigen der drei Grossen ¢{, v, und
g/p, abhéngt, wobei letztere positiv ist, wenn die Laufkegel-
hohe 7, grosser als der Radius h, der Wendung bleibt (siehe
Bild E 3).

Setzen wir Gleichung (10) in (9) ein, so schreibt sich
diese auch

(15) wq = 0, [£ 4+ N 9]

Desgleichen wird die zweite Gl. (4) unter Beriicksichtigung
von Gl. (8) und F (16) zu

W, = w; [A.9 + At tg (o +?)]

Fir die totale Gleitgeschwindigkeit jp ergibt sich aus den
Gl (3), (15) und (16) der Wert

(16)

A7) W = |og|}/@® + 02 2+ 22 + A.2) + AL2tg2(gr -+ ) +

+2g9Mn() —ho) + A& + AAE tgle, + v)

und fiir ihre horizontale Komponente der Wert

(18) Wi = |og| /@2 + 202 + 22) + 20 [E0g + N1 (h— Foo)]

wobel geméss Gl. (E16) und (F'2) anstelle von (fj— ho)
auch der Ausdruck + (¢ — 5) eingesetzt werden kann.
Mit den Ansétzen

92 [ [ N2+ N2+ A2 A€ + A (h — ho)
bl g +
4 MeAt tg (e + v) A£2 tg2(pr + v)
g 292
und
92 (N2 4 A2 Ae€ + A1 () — Ro)
e g )

lassen sich diese Beziehungen durch die einfacheren

(21) w:|wgql/f+2>\|:(¢,.(z;")q]/1+2>\‘
und

1 — 0 i Dy P T
(22) wn= |0y q T+ 2| = ¢1.( g)qy1+2>\h

ersetzen. Fiihren wir schliesslich Gl. (13) und (21) in die
Gl. (2), (15) und (16) ein, so ergibt sich auch

Dy -
sgn (7 ¢,.)

£+ Mg Pr .
Wqg =W —————— Sgn —5_//1.
q)/1+2x Y

(5 —Ro) + Xig

W] = W
@) |/ = Ty

(23)

und



Az g + Abtg (o +7) (pr : )
—————sgn|— g,
a1+ 2a g

wobei die Faktoren )\, die Reibungsmittelpunktdistanz &, der
Gleitarm ¢ und die Ordinate ) flir jeden Punkt besondere
Werte aufweisen.

Aus beiden senkrecht und parallel zur lotrechten Meri-
dianebene des Rades gerichteten Komponenten w; und w, er-
geben sich die fiir die Bestimmung der u-Werte massgeben-
den, parallel und senkrecht zur Schiene gerichteten Kompo-
nenten w; und w, nach Bild G. 3 zu

(24) w,=w

[wz = WjCoSa + Wqsina
(25)
1wq = Wy COSa — W) Sina

Bild G. 3. Zerlegung der horizon-
talen Komponente der Gleitge-
schwindigkeit parallel und senk-
recht zur Rad- bzw. zur Schie- %
nenaxe,

% ——Radaxe

wahrend w, unverdndert bleibt. Filir den ebenfalls zur Be-
stimmung der pu-Werte massgebenden Schlupf v folgt aus
Gl. 21 und Gl. B12 der Ausdruck

= =[5 orrem

X

bzw. unter Berlicksictigung der Gl. (E 6) der Ausdruck

Pr q
9 pr

q Pr
g

I

(26) v = ‘( )Vﬂﬁ‘ - }( >[/mx.‘

den Aufstandspunkten 9 bei

1. Gleitgeschwindigkeit in
Zweipunktberiithrung

Wie wir im Abschnitt F festgestellt haben, konnen fiir
die Aufstandspunkte 9(,und 9(*; die Faktoren )\; und A\, ver-
nachldssigt werden. Das gleiche gilt fiir den Faktor \,, da die
vertikale Gleitgeschwindigkeit w, sehr klein gegeniiber der

H. Die auf den Radsatz wirkenden dusseren Kriafte

Auf den Radsatz wirken als &dussere Kréfte die Be-
riihrungskrifte zwischen Rad und Schiene, die beiden La-
gerdriicke L, und L; die Lagerquerkraft H, die beiden
Lagerldngskrafte X, und X;, und das Antriebsmoment M;.
Im folgenden sollen die Beriihrungskréfte und die Lager-
driicke niher betrachtet werden, wihrend die iibrigen Kréfte
im n#chsten Kapitel zur Behandlung kommen.

1. Die Kriafte im Berithrungspunkt (Bild 1)

Im Beriihrungspunkt 9( wirken die Normalkraft % und
die von ihr und der Gleitgeschwindigkeit jp hervorgerufene
Reibungskraft . Setzen wir positive Werte des Neigungs-
winkels 8§ der Beriihrungsebene und des Anlaufwinkels «
voraus, so ist die Normalkraft etwas nach aussen und nach
vorn gerichtet, Sie ldsst sich somit, wie dies in Bild 1 oben
gezeigt ist, zerlegen. Im mittleren und unteren Teil des
gleichen Bildes sind die Komponenten der Gleitgeschwindig-
keit §p und der in 9( auf das Rad wirkenden Reibungskraft

horizontalen w; bleibt. Man erhélt somit fiir die Aufstands-
punkte unter Beriicksichtigung von Gl (E 16) und (F 12)
die Beziehungen

(27) W =|ogqa|  Wi=|egqi]

Wiga = Wiy Z'_a sgn <pg1 ¢])
(28) i

T Dy .

Wls, = — W'y n ; €'a sgn (pi‘#r)
(29) t

wy = — wy 2 gen (pl %)

1
und
A A o = =

W = Wy 229 il sz.tg(qu + va) Sem (%%)
(30) : _

Wi = W4 Nig + A&;:ﬁg(% ) sgn (p;gxsbr)

1

wobei fiir die Gleitarme die sich aus Gl. (3) und (12) er-
gebenden Beziehungen

@B g =G —n2+ & und =)+ 02 + e
gelten.
bei

2. Gleitgeschwindigkeit im Spurkranzdruckpunkt 9(*
Zweipunktberiihrung

Fiir den Spurkranzdruckpunkt nehmen die Faktoren A
Aq und A, bedeutend hohere Werte als fiir die Aufstands-
punkte an, so dass eine genauere Untersuchung ihre Beriick-
sichtigung verlangt. Es kommen somit fiir diesen Punkt
grundsitzlich die GL. (F 11) bis (F 13) und Gl (5) oder (6),
(15) und (16) bzw. (23) bis (25) in Frage, wobei zur Bestim-
mung der fiir die Faktoren A massgebenden Grossen g und b
die vereinfachten Beziehungen (D 1a) und (D 2a) oder
(D 1b) und (D 2b) angewendet werden konnen.
Ein-

3. Gleitgeschwindigkeit im Berithrungspunkt 9 bei

punktberiihrung

Da der Beriihrungspunkt iiber die Hohlkehle bis zum
Spurkranz wandern kann, ist die Vernachlissigung der Fak-
toren \ auch hier nicht zuldssig, so dass ebenfalls die Glei-
chungen (5) oder (6), (15) und (16) bzw. (23) bis (25) mass-
gebend sind.

% entsprechend ihren hier zugrundegelegten positiven Rich-
tungen gezeichnet.

Im ersten Abschnitt wurde festgeestellt, dass die Rei-
bungskraft § allgemein nicht in der Gegenrichtung der
Gleitgeschwindigkeit iy liegt und am besten durch ihre drei
Komponenten zu erfassen ist. Fiir diese Komponenten gel-
ten grundsitzlich die Beziehungen (B7) und (B 8), deren
Reibwerte p und p, aus beiden durch Messungen aufzu-
stellenden Polardiagrammen geméss Bild B 8 zu entnehmen
und unter Umstidnden mit Hilfe der Gl. (B 16) zu berechnen
sind. Im Giiltigkeitsfall der Gleichung (B 3) kénnen beide
Polardiagramme durch ein einziges gemiss Bild B6 er-
setzt werden, so dass dann beide Gleichungen (B 15) fiir
w und p, glltig werden.

Die im betreffenden Polardiagramm in Frage kom-
mende Kurve ist durch den Schlupf v gekennzeichnet, dessen
Wert durch Gleichung (G 26) gegeben ist. Auf der diesem
Schlupf entsprechenden Kurve ist der massgebende Punkt
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Bild H.1. Zerlegung der Normalkraft
9t, der Gleitgeschwindigkeit jp und
der Reibungskraft .

Festlegung der positiven Richtung
der betreffenden Komponenten.

durch die Richtung der Gleitgeschwindigkeit festgelegt.
Diese Richtung ergibt sich aus beiden Komponenten w; und
wg, die im allgemeinen Fall nach den Gleichungen (G 23)
und (G 24) und im Falle der Aufstandspunkte nach den
Gleichungen (G 28) und (G 29) zu ermitteln sind1),

Die Normalkraft )t und die Reibungskraft & fiihren
zur Léngskraft

(1) U = (F,cosa — Fysina) + N sin§ sine
zur horizontalen Fuhrungskraft

(2) Y = (Fycosa + F;sina) — N sin § cosa
und zur vertikalen Stitzkraft

(83) V=F,+ Ncossé

Aus den beiden letzteren Kréften Y und V ergibt sich fer-
ner der Anteil am Raddruck Q,

(4)
Q =Vcosg,—Ysing, = F,cos g, — (F,cosa + Fsina) sin g, +
¢ q
+ Ncos§ cosg, + Nsin§ cose sin ¢,

1) Wird zur Vereinfachung angenommen, dass einerseits die Rei-
bungskraft bei gegebenem Schlupf entgegen der Gleitgeschwindigkeit
gerichtet ist und fiir alle Gleitrichtungen gleich gross ist (a = b im
Polardiagramm Bild B 6) und anderseits der Reibwert x entsprechend
der Beziehung (¢ = mwv) linear mit dem Schlupf zunimmt, dann er-
gibt sich die Grosse der Reibungskraft unter Beriicksichtigung von
Gl. (26) zu

EE=ENnyt—

9 hy
womit die Beziehungen (B 7) und (B 8) nach Einfiihrung von GI.
(G138, G 24, G 25) zu

()]

. Pr (f)H_EO) S N g 5
Fi= — Nm (T)_hlﬁ# sgn y,
Pr\ &+ Ng .
Ho— —Nm( g] ) TQSgn‘Z’"
Pr A9 + Af tg(?‘i‘ ‘Pr) 5
F,=— Nm( v ) sh,‘ sgn y,

werden.
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und der Antell

(5)

T =Vsing, 4 Ycos¢p, = F,sing, 4 (Fycosa + Fisina) cosg, +
+ Ncosd sing, — Nsin § cosa cos g,

an der axialen Fiuhrungskraft T,.

Unter Berlicksichtigung der Gleichungen (B7) und (B 8)
dndern sich Gl (1), (2) und (8) in

U=—N (mcosasgnw; — y,Sinasgnw, — sin§ sina)
Y = —N (pggcosasgnw, + usinasgnw,; 4 sin § cosa)
V:-———N(/l.q Wl —cosB)

q

Mit den Ansidtzen

(6) A= — (pcosasgnw, — pu,sinesgnw, — sin § sina)

(7) Ag= — (pqcosasgnw, + w sinasgnw; -+ sin § cosa)
W2z

8 Yl ey —— — ¢osSé

8 A (yq o )

vereinfachen sich die drei letzten Beziehungen zu

(9) U=N4

(10) Y =NA,

(11) V=NA,

womit sich fiir die Anteile T und @ an der axialen Fiih-
rungskraft T, und am Raddruck Q, auch die Beziehungen
(12) T =N (Aqcosgp, + A,cosq,)

und

(183) Q= N (A, cosp, — Agsing,)

ergeben. Fasst man in beiden Gleichungen die zwischen
Klammern stehenden Glieder durch Einfiihrung der Faktoren
(14) Ap = A,sing, + A cosg,

(15) Aq = A COS8@,— AgSing,

zusammen, so lassen sich diese Gleichungen auch einfacher
(16) T = ApN

(17) Q= AqN

schreiben.

Die in diesem Abschnitt aufgestellten Beziehungen sind
allgemein, d.h. sowohl fiir den Spurkranzdruckpunkt 9[(*
als auch fiir die Aufstandspunkte 9(', und 9[; gliltig. Thre
Anwendung setzt aber voraus, dass die betreffenden Winkel
v und @, mit den richtigen Vorzeichen beriicksichtigt wer-
den 2).

2. Die Lagerdriicke

Die beiden Lagerdriicke I, und L; des einzelnen Rad-
satzes sind durch seine Federung in Abh#dngigkeit seiner
relativen Lage zum Fahrgestell bedingt, wobei diese Ab-
hingigkeit genauer durch das System der Radsatzlagerung
festgelegt ist.

In dieser Arbeit soll eine Radsatzlagerung zugrunde
gelegt werden, welche die im Kapitel A erwihnten Voraus-
setzungen erfiillt. Eine solche ist z. B. in Bild 2 gezeigt, wel-
chs nur schematische Bedeutung hat. Bei dieser Anordnung
ergibt sich geméss Bild 3 u. a. die geometrische Beziehung

tg or i
COS (¥ — ve)

zwischen dem Neigungswinkel ¢, des Radsatzes und demjeni-

(18) tge* =

2) Bei Ueberhohung der linken Schiene ist ¢r < 0. Beim Aussen-
rad ist ¥ negativ und beim Innenrad positiv, desgleichen fur é.
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Bild H. 3. Die Zerlegung der Lagerkrifte L, und L.

gen Winkel ¢*, den er bei Beobachtung in Fahrgestell-
Langsrichtung zu haben scheint, ferner die Beziehung

(19)

zwischen dem Léngsausschlag Ax, dem Lagerlingsspiel iy
und den Winkeln ¢, und (¥, — ). Dabei sind s, und s; Fak-
toren, die den Wert + 1, — 1 oder 0 aufweisen, je nachdem
der Radsatz auf der betreffenden Seite das Léngsspiel iy
nach vorn ganz, nach hinten ganz oder weder nach vorn
noch nach hinten ganz ausniitzt (siehe Tabelle). Schliesslich
gilt fiir den Querausschlag bei voller Ausniitzung des Lager-
querspiels iy der Ausdruck

(20)

(5o — s1) ix = r,COS @ 8IN (Yr — Yg) + (5,2 — 52) AX

Ag = — 7¢14COS @, COS (Y — Yg)
Die beiden Lagerdriicke L, und L; wirken in der lot-
rechten Meridianebene des Radsatzes senkrecht zur Rad-
satzaxe. Sie ergeben im Punkte H, die totale Lagerkraft L,
und das fiir den Radsatz massgebende unmittelbare Lager-
druckmoment

@) Ve, =1 (L L)) = 21 AL

bzw. im Punkt E.* das filir das Fahrgestell massgebende
reduzierte Lagerdruckmoment

H

Agq

(22) ;
COS ¢y €OS (Yr — vg)

ML* =2 Iy, AL — Ll.

dessen Komponente My*cos (i — ) dem Stiitzmoment My
des Radsatzes entspricht und dessen andere Komponente
Myp*sin (¢, — ¢g) am Gleichgewichtszustand des Fahrgestells
um seine Queraxe beteiligt ist. Es ist somit

COS @;

(23) Myj = 211, AL, o8 (yj — ve) — Ly (

Die Lagerdriicke L, und L; lassen sich in die drei Komponen-
ten Lising,sin (¥, — ), Lising, cos (¥r — ¢) und Lcos ¢, zer-
legen. Die erste wirkt in Léngsrichtung, die beiden letzteren
wirken in der lotrechten Querebene des Fahrgestells. Sie er-
geben in dieser Ebene auch die weiteren Komponenten

Li = L [cos ¢y €Os g + sin g, cos (¢ — ) sin ggl
und
Lo = L [cos ¢, Sin gz — sin ¢, cos (y¥r — g) COS gg]

wobei Ly senkrecht und L parallel zu den Fiihrungszapfen
des betreffenden Lagers wirkt. Die Komponente Lo tiber-
trégt sich somit unmittelbar auf das Fahrgestell, wédhrend
Ly durch die Tragfeder iibernommen wird und somit der
Federkraft F entspricht. Dabei wird das durch die gegen-
seitige Querverlagerung von F und L, entstehende Moment
ebenfalls unmittelbar durch die Lagerfiihrung dem Fahr-
gestell libergeleitet. Das von den Federn auf das Fahrgestell
Ubertragene Federstiitzmoment

My = rp (F,—Fj)
bedingt somit die Beziehung
Mp = rp (Lyg —Lygi) =
= rp (L — L) [COS @, COS g + Sin ¢ COS (r — ) Sin ]
bzw. die Beziehung
My = 21y AL [COS ¢, COS pg + Sin ¢, €OS (¢, — g) Singpg]

wenn (L, —1L;) durch 2AL ersetzt wird. Dieses Moment
ergibt sich anderseits aus dem Unterschied (siehe Bild 3)

COS @y COS (r — Yg) Sin (gg—aor*)

A =— 2T cosg,*

1 .
der Federeinsenkungen zu > rr (K1, Af 4+ r1:Af), dh. zu

€os p; €os (y¥; — ¥g) sin (pg — @;*) +

(24) MFJ — Iy TR { klj

cos g;*
4oy d [ cosgjcos (¢ — ¥g) sin (pg — ¢;*) 7|
Uag | cos g;* f

und kann somit von den Winkeln ¢,, @z und (fr—yg) aus
bestimmt werden. Aus My, ldsst sich AL nach der Gleichung
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(25 — : x - _
) 2rp [cos @; cos gz + sin g, sin ¢g cos (¥ — ¥g) ]

AL; =

ermitteln, die aus obiger ersten Beziehung fiir My folgt. Da-
mit ergibt sich Gleichung (23) zu

My, rr, cos (¢; — yg)
Ip [COS @; COS o + Sin @; sin gz coS (Yj — e)]

Ag;
Cos ;

(26)

My; =

)

Aus den einzelnen Federstiitzmomenten My; folgt das totale
Federstiitzmoment

n
(27) Mpg = ZMFj
1

und aus den einzelnen Stiitzmomenten das totale Stiitz-
moment

n
(28) My = ZMlj
1

aller Radsétze. Sind einzelne Radsatzfederungen unterein-

ander ausgeglichen, so bleibt Gl. (22) grundsitzlich giiltig,

wenn fiir ¢;* der sich aus dem Ausgleichsystem fiir die ent-

sprechenden Radsétze ergebende Mittelwert eingesetzt wird.
Der totale Lagerdruck

(29) Ly =L, + L

ist durch die Stiitzkraft ¥, der Radsatzfederung nach der
Beziehung

(30) Fr= (F.+ Fy) =
= L, [cos g, cOS gz + Sin ¢, 8in ¢g €08 (Y1 — 1) ]

L. Das Kraftespiel am Radsatz

Um eine Uebersicht zu erhalten, behandeln wir hier
zunéchst unter der Voraussetzung der Zweipunktberiihrung
den allgemeineren Fall des beidseitig anlaufenden Radsatzes,
der praktisch nur bei dessen Verklemmung auftreten kann.

1. Das Kriaftespiel am beidseitig anlaufenden Radsatz im
Falle der Zweipunktberiihrung

Neben den im Kapitel H erwdhnten &Husseren Kréften
wirken noch auf den Radsatz: die Trigheitskréfte m,z, und
m,w bzw. m%X, und m,q, 1), die durch die Trigheitswirkung

entstehenden Drehmomente ©,¢, und O,y,, und das Higen-
gewicht G, (Bild 1). Wie oben erwéahnt, setzen wir hier
voraus, dass beide R#der anlaufen. Die auf Grund dieser
Voraussetzung gewonnenen Beziehungen werden spédter un-
mittelbar dem vorliegenden Fall des freien oder des aussen
oder innen anlaufenden Radsatzes angepasst, indem die in
den Gleichungen vorkommenden und sich auf den Spurkranz-
druckpunkt 9(*, oder 9(*; beziehenden Krifte N*, U¥*,,
Yo, Vit T*, und Q%, bzw. N, U#, ¥* V* T#% und Q%;
fiir das freie Rad null gesetzt werden. Die verschiedenen
Gleichgewichtbedingungen lauten:

fiir die x,-Richtung:

(1)

my X = (Us + U*a) + (U + U%) — (X, +X3) = Up — X
fiir die g,-Richtung:

(2)

m;Qr

L Crsinig: - H = (T4 T%) - (T + T%) =T,
Cos @

1) Die Beziehungen zwischen (xr, w) und (Xr, 4r) werden im
Kapitel K, Abschnitt 5, behandelt,

gegeben. Diese Stiitzkraft ergibt sich ihrerseits aus dem

elastischen Verhalten der gesamten Fahrgestellfederung zu
A1 — A1 + AX;

@D Fy =y | for + fo+ 1 (;ﬁf)]

A1g

wobei entsprechend der in dieser Arbeit gemachten Voraus-
setzungen, die infolge von Querverschiebungen entstehenden
kieinen Hohenverlagerungen der einzelnen Radsitze ver-
nachléssigt werden und die Dimpfungen daher keinen Anteil
an F; liefen. Die in der Beziehung (31) aufgefiihrten Gros-
sen f sind Einfederungen, wobei fo; durch die Einbauverhilt-
nisse im Ruhezustand des Fahrzeuges konstruktiv festgelegt
ist, wéhrend f; und f; infolge der Voraussetzung einer hori-
zontal bleibenden Léngaxe des Fahrgestells als virtuelle
Federeinsenkungen zu betrachten sind. Sie sind beide durch
die Gleichgewichtbedingungen (L 23) und (L 26) bedingt.
Fiir den Lagerdruck L; ergibt sich schliesslich aus Gl. (30)
und (31) die Beziehung

Foyj [fOJ 4+ fs -+ f1 <M)J

QAys

32
=) [cos p; cos ¢g + sin g; sin pg cos (Y; — g) ]

I

die sich mit dem Ansatz

(83) Fouy* = Koy e
[cos g; cos ¢z + sin g; sin gy cos (v; — vg) ]
auch
(B L — ( Kq;* ) [foja1s + fs@1s + f1(a1s — aq; + Ax;)]
COS g; Qs

schreiben 1dsst.

fiir die senkrechte Richtung:

(B)  (Qa+ Q%) + (Qi + Q%) =Ly + G,cosgp,

flir die Drehung um die Radsatzaxe:

(4)

Mg—[r'aU‘a + (r'a + 22) U*,] — [1,U0 + (v + z) U%] —
— (aa@a T 0% Q% + a'iQ'1 + a*i1 Q%) = 0,00

fiir die Drehung um die in der lotrechten Ebene senkrecht
zur Radsatzaxe liegende Axe durch E:

Bild I. 2. Die auf den Radsatz wirkenden Krafte.
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(5)
cosgr [(Uge,+ Ukae*y) — (U e + Utety) — (Xa—X5) 1] —
— [Urara + U*a (r'a + 2a) + Uiy + U (13 4 2)] sin ¢p =
= 0,4,C082¢, 2)
fiir die Drehung um die x,-Axe durch E,:
(6)
O pr — 2ALT; = — (Qaea + Q*ae%) + (Qie + Q¥ e¥) +
= [Toa ¥ = T*al(t o Za)] - [Toyry - T (2 = 2}

1.1 Gleichgewichtbedingung (4)

Betrachten wir zunidchst die Gleichgewichtbedingung
(4). Die Bewegung des Radsatzes ist in jedem Augenblick
durch seine Lage sowie durch seine Rotation 2 und seine
Wendung 2, festgelegt. Bleibt sie eine gleichmdassige, so

fallt in GL. (4) das Glied 0,00 weg und stehen die vom Rad-
satz ausgeilibten Léngskrédfte U-:,, U*,, U4 und U#% in un-
mittelbarer Beziehung mit dem treibenden Moment My. Beim
dynamischen Lauf dndert sich aber diese Bewegung stdndig,
so dass Gl. (4) als Bewegungsgleichung fiir die Rotation
des Radsatzes in Betracht kommt. Das dabei wichtige An-
triebsmoment My héngt bei elektrischem Antrieb von ver-
schiedenen Faktoren, vor allem aber von der Drehzahl des
Motors und seiner Klemmenspannung E ab. Diese Abh&n-
gigkeit ldsst sich durch die bekannten Motorcharakteri-

stiken nur fiir den stationdren Fall (o = 0) festlegen, Im

dynamischen Fall (o =+ 0) entsprechen sie den wirklichen
wesentlich komplizierteren Verhéltnissen nicht mehr, die
sich dann nicht nur durch den Triebmotor allein, son-
dern auch durch sdmtliche Teile des Hauptstromkreises
ergeben konnen. Das HEinbeziehen der massgebenden Ge-
setzméssigkeit fiir My in unsere TUntersuchungen wiirde
somit eine umfangreiche Untersuchung der elektrischen Vor-
génge bedingen, die nicht in den Rahmen dieser Arbeit
passen. Wire es moglich, fiir My eine Funktion F(E, o, @)
aufzustellen, so kénnten in jedem Zeitpunkt bei gegebenen
Py, Py Und o die einzelnen Kréfte U und Q und damit aus

Gl (4) die Drehbeschleunigung o bestimmt werden, welche
durch Integration zum genaueren Wert von o fiihren wiirde.
Wir wollen hier jedoch nicht soweit gehen und deshalb zur
Vereinfachung annehmen, dass der Antrieb dem Radsatz
stets diejenige Winkelgeschwindigkeit o verleiht bzw. den
Haftkreis co auf diejenige Ordinate » bringt, die zur Ueber-
tragung der gewlinschten Zug- oder Bremskraft U, notwen-
dig ist. Dieser Annahme zufolge kann GIl. (4) ausser Be-
tracht gelassen werden.

1.2 Gleichgewichtbedingungen (1) und (5)

Aus den Gleichungen (1) und (5) ergeben sich fiir die
Lagerlangskrédfte unmittelbar die beiden Gleichungen

(7) X=X, + X;= Ur—mrﬁil,
und

G e e 2L On inCOsion,

ry
Aus Gleichung (8) folgt
Q) Xa= X i SUe — 6, yr COS o
2 2 B
und
(10) Xi = E S 2Ue — Or 1//1« COS @y
2 21y,

2) Das fiir diese Bewegungsgleichung massgebende Trégheits-
moment ergibt sich zu
Orz =— Or €OS2¢r + Orgsin2¢r
wobei das Trigheitsmoment ©rp um die Drehaxe bedeutend klei-
ner als Or ausfillt, so dass das letzte Glied obiger Beziehung ver-
nachlidssigt werden kann.

wobei zur Vereinfachung der Schreibweise = Ue entsprechend
dem Ansatz

(11) IUe = (Urae'a + Uae*y) — (Ue + Uted;) —

— [Uara + Ufa(ra 4 2a) +Usiri + U (v + 201 tg o0

das Moment der einzelnen Léangskridfte U in bezug auf den
Radsatzmittelpunkt E, bedeutet.

Ist der Radsatz in Léngsrichtung spiellos im Fahrgestell
gelagert, dann ist stets ¢, = ¢, und die Gleichungen (8), (9)
und (10) gestatten dann, die Lagerldngskrifte zu bestimmen,
wenn man darin 5&, durch ;L'g ersetzt.

Ist Léngsspiel in den Lagerstellen vorhanden, so kann
sich der Radsatz gegebenenfalls in Léngsrichtung unab-
hingig vom Fahrgestell bewegen. Die in diesem Falle auf-
tretenden Verhiltnisse sind im Abschnitt K 3 behandelt.

1.8 Gleichgewichtbedingungen (2), (3) und (6)

Betrachten wir nun die Gleichgewichtbedingungen (2),
(3) und (6), die fiir die in der lotrechten Querebene wirken-
den Kréfte massgebend sind und fiihren wir die Beziehun-
gen (H16) und (H 17) in diese ein, so ergeben sich

Gl (2) zu

(12) N-aA'ta + N¥, A%y 4 Noj Ay + N# A% =
m, g, .
=151 G, sin @,
e oS oy + Gy Px
Gl. (3) zu
(13) N-a A'Qa + N#g A*Qa —+ N*; A'Q‘l - IN*; A*Qi =l + G, cos Qr

und Gl. (6) zu
(14) N-a(ealA'ga—TI'ad'ra) + Na*[€a¥ Aqa* — (I'a + Za) Ara™] —
— N'j (e Aqi + riArmi) — N# [e¥ A*qi + (11 + 2i) A¥mi] =
— 2ALry, — Or
Schliesslich lassen sich die Beziehungen
(15)
(16)

fir die Filihrungskraft T, bzw. T; des anlaufenden Rades
aufstellen. Diese Beziehungen konnen zur einzigen Gleichung

Ny A'ma + N*, Atp, =Ty
Ny Ay 4 N* A%y = T

(A7) Ta (Na' A'ma + N*3 A¥pa) + T (N3 Ay + N* A¥*mi) =

= I‘ﬂ_ Ta -+ 1_‘1 Ti
mit Hilfe der beiden Faktoren I', und TI'; zusammengefasst
werden, fiir welche die Werte 'y, = 1 und Iy = 0 einzu-
setzen sind, wenn der Radsatz aussen, I'; = 0 und I'j = 1
wenn er innen und I'y = 0 und Iy = 0 wenn er nicht an-

lduft. In diesem letzteren Fall verliert GI.
deutung und fallt somit aus.

Bezeichnet man in Gl. (12) bis (14) und (17) die Fak-
toren der einzelnen Kriafte N mit a, b, ¢, d und die rechten
Glieder mit e, so lassen sich diese Gleichungen auch ein-
facher

a1 Ny + b1 N*; + ¢1 N*y + dy N*; = ey

(17) jede Be-

18) 2 Ny + Do N*, 4 coN'; + do N*; = €5
(18) 4y N'a + by N*, + 3N, + ds N*; = e
as Ny + by N*, 4 cgN°; + dy N¥; = ey

schreiben. Wir haben somit ein System von vier Gleichun-
gen mit vier Unbekannten, wovon jedoch, wie wir spéter
sehen werden, jeweils nur drei oder zwei Gleichungen mit
drei oder zwei Unbekannten in Betracht zu ziehen sind, je
nachdem der Radsatz anliuft oder nicht.

Sind die verschiedenen Normalkrifte durch Auflésen
des massgebenden Gleichungssystems bekannt, so lassen sich
mit Hilfe der Gl. (H9) bis (H 12) die Kréfte U, ¥ und V
flir die einzelnen Beriihrungspunkte, die beiden Fiihrungs-
kriafte T, und T; sowie mit Hilfe der Gl. (2) die Lagerquer-

kraft H oder die Querbeschleunigung g, bestimmen, womit
alle massgebenden Grossen bekannt werden.
Bei unseren Untersuchungen ab Kapitel D werden die

Grossen w, y, Pr, @ pry P M, Pg Ly ¥r, hy und h; als bekannt
vorausgesetzt, Mit Ausnahme von n lassen sich alle un-
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mittelbar aus der Lage und aus der Bewegung des Radsatzes
ermitteln. Die Ordinate » hingegen ist nicht einfach gegeben.
Sie ist unmittelbar fiir die Lingskomponenten w; der Gleit-
geschwindigkeit massgebend und muss deshalb derart sein,
dass in Erfiillung der Gl. (4) der Radsatz die richtige Zug-
kraft ausiibt. Bei Anwendung normaler Rechenmittel kann
die Bestimmung von 5 am einfachsten durch Aufstellen der
Kurve U, = F'(5) geschehen, wobei die einzelnen Punkte
dieser Kurve mit Hilfe der Beziehung

(19) Ur=NaA'a + NjAy + Ta N*, A%, + T3 N¥; A%y

zu berechnen sind. Bei Zuhilfenahme eines Rechenautomaten
hingegen ldsst sie sich am besten auf dem Iterationsweg
durchfiihren.

Zur Auswertung der verschiedenen Beziehungen muss
ferner die Gleitpoldistanz ¢ filir jedes Rad bekannt sein.
Diese ergibt sich nach Gl. (G11) u.a. aus der Verlagerung
A¢ des Gleitpoles M gegeniiber dem Schwenkungspol ;.
Diese Verlagerung hingt geméiss Gl (G14) von der Quer-
verschiebung ¢ der betreffenden Schiene ab, die durch die
Flhrungskrafte T, und T; bedingt ist. Die Bestimmung der
Fiihrungskraft T, oder T; des nicht anlarufenden Rades setzt
aber die Kenntnis der betreffenden Gleitpoldistanz ¢ voraus.
Diese Kraft tritt somit gleichzeitig als Ergebnis- und als
Ausgangsgrosse bei der Berechnung auf und muss deshalb
gleich wie n auf dem Weg der Iteration gefunden werden.

Am anlaufenden Rad hingegen ergibt sich die Schienen-
deformation aus der Lage des Radsatzes, im vorliegenden
Falle aus Gl. (D 32) und (D 33) zu

y—w e n*a
= = ) e*, COS
- COS Yr cos a ( ol o
+ a*a tg a — (r*,— [¥*,) sin %‘)
(20)
y— w e b *i
L= = e*; CoSs g, —
i COS ¢y cos ( cos a he ECO8i:
— a*tg a4 (rf—b*) Sin(Pr)

oder, wenn wir zur Vereinfachung die Ansitze (D 34) ein-
fiihren, zu

fa=y—w + t}*a—(e_e*a)+ a*atga— (r*a— [*a) or
(20a)

G =y —w—pk+ (e—e*)— a*itg a— (r¥— H*i) or

Ist die sich vor allem aus den kinematischen Verh&lt-
nissen ergebende Fiihrungskraft T des freien Rades nach
Gl. (H16) und die durch die Lage des Radsatzes festgelegte
Deformation ¢ der angelaufenen Schiene nach Gl. (20) bzw.
(20a) bekannt, so ldsst sich die Fiihrungskraft T des an-
laufenden Rades nach Gl. (C9) und die Deformation ¢ der
freien Schiene nach GIl. (C8) ermitteln.

Beim dynamischen Lauf wird die Bewegung vor allem
durch die iiberwiegenden Fiihrungskriafte der anlaufenden
Réder bestimmt. Diese Kréfte sind nach dem oben Gesagten
durch die Lage der betreffenden Radsitze infolge der sich
daraus ergebenden Schienendeformationen festgelegt. Man
hat in diesem Falle bei der Bestimmung der Normalkrifte
N des anlaufenden Radsatzes von der Fiihrungskraft T des
anlaufenden Rades auszugehen und von beiden Gleichungen
(12) und (17) nur letztere in Betracht zu ziehen. Gl. (12)
ist dann fiir die Bestimmung der Lagerquerkraft H bzw. der

Tragheitskraft m,q, massgebend.

Beim statischen Lauf hingegen ist die Bewegung des
Fahrzeuges als gleichméssige Bewegung festgelegt. Die
Fihrungskraft T jedes anlaufenden Radsatzes muss sich je-
weils der auf diesen wirkenden Lagerquerkraft H anpassen,
so dass in diesem Fall nicht Gl. (17), sondern Gl. (12) mass-
gebend ist. Dabei ist die in den verschiedenen Gleichungen
vorkommende Trigheitskraft m,q, durch die vom Fahr-
gestell erzwungene Bewegung des Radsatzes gegeben und
tritt als bekannte Grosse auf. Ferner ergibt sich bei beiden
Réddern die Schienendeformation als Folge der beiden F'iih-
rungskrifte T, und T;. Schliesslich kann unter der Voraus-
setzung eines gleichméssigen Oberbaues angenommen wer-
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den, dass die einzelnen Querdeformationen ¢ konstant und

daher die Deformationsgeschwindigkeiten ¢ stets null blei-
ben. Es finden somit keine Verlagerungen A¢ statt, so dass
der Gleitpol M mit dem Schwenkungspol 9)} zusammenfallt
und die Gleitpoldistanz ¢ gleich g wird.

Bis jetzt wurde das Kréftespiel flir den Fall des gleich-
zeitig aussen und innen anlaufenden Radsatzes betrachtet.
Dieser Fall tritt praktisch kaum auf, gestattet uns aber die
aufgestellten Beziehungen und Berechnungspline unmittel-
bar auf den Spezialfall zu iibertragen.

2. Das Kriftespiel am einseitig anlaufenden Radsatz im
Falle der Zweipunktberiihrung des anlaufenden Rades

Beim anlaufenden Radsatz kommt praktisch nur ein
Rad zur Fihrung, so dass jeweils N*, oder N*; ausfillt, wo-
bei beim dynamischen Lauf Gl. (17) fiir die Bestimmung
der Normalkrdfte N und Gl (12) fiir die Bestimmung der
Lagerquerkraft H bzw. der Trigheitskraft m,q, massgebend
sind und beim statischen Lauf Gl (12) fiir die Bestimmung
der Normalkrédfte N in Betracht kommt, wahrend GIl. (17)
ausser acht zu lassen ist.

Wird der anlaufende Radsatz im Rahmen des dyna-
mischen Laufes untersucht, so hat man, wie wir bereits fest-
gestellt haben, von der Fiihrungskraft T des anlaufenden
Rades und somit von Gl. (17) auszugehen. Das massgebende
Gleichungssystem ergibt sich dann aus den Gleichungen
(13), (14) und (17) flir den aussen anlaufenden Radsatz zu

aa Ny + ba N*, + coN'y = eo
(21) @3Ny + by N*, - ¢3N'; = e3
y N'a + b4N*a = €4

und fiir den innen anlautfenden Radsatz zu

a2 N'a + coN'| + do N*; = €9

(22) @3Ny + c3N'; + d3 N*; = e3

cy Ny + dy N¥ = ey
Im Flussdiagramm II ist der Weg gezeigt, wie die
Durchfiihrung der Berechnung filir den aussen anlaufenden
Radsatz auf Grund der bisher aufgestellten Beziehungen vor-
genommen werden kann. Aus den gegebenen Grossen lassen
sich zundchst auf Grund einer ersten Annahme fiir ¢, die
verschiedenen geometrischen Grossen der Beriihrungspunkte
des anlaufenden Rades nach Teil I des Flussdiagramms I
ermitteln. Ausserdem gestattet eine weitere Annahme fir
n und T; die Grossen ¥a,, ta, Ta, { und y; zu ermitteln und an-
schliessend die geometrischen Grossen des Aufstandspunktes
des nicht anlaufenden Rades geméss Teil II des Flussdia-
grammes I sowie den Wert von ¢, zu bestimmen. Stimmt
derselbe mit dem Ausgangswert nicht iiberein, so ist die
Berechnung mit korrigiertem Ausgangswert von ¢, zu
wiederholen. Ist eine befriedigende Uebereinstimmung der
p,-Werte erreicht, dann werden die einzelnen Rollkegel-

[T 11

grossen Iy, Iy, ho, lo, 70, vy und g sowie die Ordinaten h*,,
h'a und k' ermittelt. Aus o, folgen ferner Ag, und Af sowie
£, und ¢;. Der weitere Rechnungsschritt fiihrt geméss Teil IT
zu den einzelnen Koeffizienten A und damit zum Gleichungs-
system (21). Seine Auflosung ergibt die Werte der 3 Normal-
krdfte N',, N*¥, und N‘;, aus welchen zunichst die totale
Léangskraft U, und die Fiihrungskraft T; ermittelt werden.
Stimmt der gefundene Wert von U, bzw. von T; mit dem
vorgeschriebenen Wert von U, bzw. mit dem angenommenen
Wert von T; nicht iiberein, dann sind neue, entsprechend
korrigierte Annahmen fiir » und T; zu treffen 3) und die
Rechnung auf Grund dieser korrigierten Ausgangsgrossen
erneut durchzufiihren. Dies muss so lange wiederholt wer-
den, bis sich befriedigende Werte fiir U, und T ergeben. Die
Rechung wird dann fortgesetzt und fiihrt schliesslich zu den
Kriften in den einzelnen Beriihrungspunkten sowie zu ), Ue
und (H + m,d,/cos¢,).

Das fiir den innen anlaufenden Radsatz massgebende
Flussdiagramm lédsst sich durch einfaches Umtauschen der

3) Die Korrektur hat selbstverstindlich in der Weise zu gesche-
hen, dass Konvergenz auftritt.
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II Flussdiagramm zur Untersuchung des Kréftespieles am links (aussen) anlaufenden Radsatz,
allgemeiner Fall des dynamischen Laufes (Abschnitt I1.2).



Indices a und i unmittelbar aus dem Flussdiagramm II ab-
leiten.

Wird der anlaufende Radsatz im Rahmen des statischen
Bogenlaufes untersucht, so besteht das Problem in der Be-
stimmung der verschiedenen Krifte, die sich in den drei
Beriihrungspunkten unter Einwirkung der vom Radsatz zu
Ubernehmenden Lagerquerkraft Hj ergeben. Ausgehend von
dieser Kraft lassen sich die Normalkrifte N aus dem durch
Gl (12), (13) und (14) gegebenen Gleichungssystem

a’lN'a "I‘ blN*a ‘[‘ C1 N‘l = €1
as N’y 4 baN*, 4 coN*; = eq
azN°y 4+ bagN*, + c3N*; = ey

(23)

im Falle des aussen anlaufenden Radsatzes, und aus dem
System

a1 N's + ¢1N*j + dy N*; = g4
CLQN'a += CQN'l S dgN*l — €9

a3N"y + ¢3N's + dyN¥* = e3

(24)

im Falle des Innenanlaufes bestimmen.

Das Flussdiagramm III zeigt, wie die Berechnung im
Falle des aussen anlaufenden Radsatzes durchgefiihrt wer-
den kann. Es ist Zhnlich wie Flussdiagramm II aufgebaut
und unterscheidet sich von ihm durch folgende drei Punkte:

1. Die Deformationen {, und { bleiben konstant, so dass Af,
und A¢ null und daher ¢, sowie ¢ gleich g werden.

2. Es tritt hier das Gleichungssystem (23) auf.

3. Da man mit GL (12) von der Lagerquerkraft H und nicht
mit Gl. (17) von der Fihrungskraft T und damit von den
Schienendeformationen ausgeht, muss zur Bestimmung der
Rollkegelgrossen ebenfalls eine Annahme fiir T, getroffen
und somit eine Iteration mit dieser Grosse durchgefiihrt
werden.

3. Das Kriftespiel am nicht anlaufenden Radsatz

Beim nicht anlaufenden Radsatz entfallen die beiden
Spurkranzdruckpunkte 9(*, und 9(*; und die dort wirkenden
Kréfte. In den Gleichungen (1) bis (13) verschwinden somit
simtliche Glieder mit N#*, Q% U* und T* und die Glei-
chungen werden dadurch wesentlich einfacher. Ferner ist die
Querlage des Radsatzes nicht mehr durch seine Spurkrénze
festgelegt, so dass Gl. (17) keine Bedeutung mehr hat. Zur
Bestimmung der beiden Normalkrifte N, und N*; bleiben
somit GL (18) und (14) massgebend, und das Gleichungs-
system (18) ergibt sich zu

ag N* =
%) onit o= o
bzw. ungekiirzt geschrieben zu
(18a) Na A'qa + NjA'qi = L. + G, cos @r
(14a) N'a(e'aA'qa — I'a A'ra) — N'j (€5 A'gi + 15 A'my) =
= 2r, AL — 0, @1

Daraus folgen fiir die beiden Normalkrifte N, und N;j

die Losungen

N, =

(Ly + Gy cos gr) (€ Aqi + 1 A'mi) + [211,AL — 0, ¢,] A'gs

dynamischen Fall, fiir den die auftretenden Krifte bei ge-
gebener Querlage des Radsatzes bestimmt werden miissen,
massgebend.

Im statischen Fall hingegen muss der Radsatz sich der-
art einstellen, dass er sich bei der von ihm verlangten Lager-
querkraft in Gleichgewicht befindet. Die Untersuchung des
Kriftespieles kann ebenfalls nach Flussdiagramm IV durch-
gefiihrt werden, wobei ¢ = g entsprechend A¢ = 0 zu setzen
und eine Iteration in bezug auf w bis zur Erreichung des
richtigen Wertes von H vorzunehmen ist.

5. Teste zur Bestimmung des Anlauffalles bei Zweipunkt-
berithrung des anlaufenden Rades

Liegt beim anlaufenden Rad Hinpunktberiihrung vor, so
ist die Radsatzberechnung in jedem Fall nach Flussdia-
gramm IV vorzunehmen, wobei die beiden Bezirhungen D. 19
und 20 fiir r* und y* bis zur Spurkranzpartie des Radreifen-
profils zu erstrecken sind. Liegt hingegen Zweipunktberiih-
rung vor, so sind filir die Radsatzberechnung grundsitzlich
drei Félle zu unterscheiden, je nachdem der Radsatz links
oder rechts anliuft oder frei ist.

Soll bei der sich auf das ganze Fahrzeug erstreckenden
Berechnung vom automatischen Rechengerit selbst bestimmt
werden, ob der Radsatz links, rechts oder nicht anlduft,
dann miissen verschiedene Teste eingeschaltet werden. Wie
dabei vorgegangen werden kann, zeigt das Testdiagramm I.
Man hat daher von dem im letzten Integrationsschritt zu-
grunde gelegten Anlauffall auszugehen, wobei die massge-
benden Koordinaten und Kréfte im betrachteten Zeitpunkt
durch Integration als bekannt vorauszusetzen sind.

Fir die Teste konnen folgende sieben Flussmoglich-
keiten auftreten:

1. Der bisher aussen anlaufende Radsatz lduft weiterhin
aussen an; die HErgebnisse der unter der Voraussetzung
W = W, liber den letzten Zeitabschnitt durchgefiihrte Inte-
gration fiihren zu einem positiven Wert von N*,; Testfolge
1-2-7;

2. Der bisher aussenanlaufende Radsatz wird frei; die unter
der Voraussetzung w = w, durchgefiihrte Integration fiihrt
zu einem negativen Wert von N#,; Testfolge 1-2-8;

3. Der bisher innenanlaufende Radsatz lduft weiterhin innen
an; die unter der Voraussetzung w = w; durchgefiihrte In-
tegration fiihrt zu einem positiven Wert von N#*;; Testfolge
1-3-4-9;

4. Der bisher innen anlaufende Radsatz wird frei; die unter
der Voraussetzung w = w; durchgefiihrte Integration fiihrt
zu einem negativen Wert von N¥*;; Testfolge 1-3-4-8;

; J
\7/?‘ lief bisher uussﬂ/%‘i O

(26)

(e'1A’qi + 5 Argy) A'qa + (€aA'qa — T'a A'a) A'gi
(Lir + Gy cos ) (€% A'ga—1"a A'ra) — [271, AL—0; ¢,] A'qa

NG =

(e A%qi + 11 A'mi) A'qa + (e'a A'ga — I'a A'ma) A'gy

Das fiir den dynamischen Lauf massgebende Flussdia-
gramm II vereinfacht sich zum Diagramm TV. Dieses kann
ebenfalls fiir den Fall des statischen Laufes verwendet wer-
den, wenn man entsprechend A¢ = 0 im Teil T die Gleitpol-
distanz ¢ gleich der Schwenkungspoldistanz g sowie H und (o}
als bekannte Grossen einsetzt.

4. Das Kriiftespiel am einseitig anlaufenden Radsatz im Falle
der Einpunktberiihrung des anlaufenden Rades

Wie im Abschnitt D. 4 festgestellt wurde, f&llt in diesem
Falle der Spurkranzdruckpunkt 9(x weg. Jedes Rad weist
jetzt nur einen Berilihrungspunkt 9(* auf, sodass grundsitz-
lich die gleichen Verh&ltnisse wie beim nicht anlaufenden
Radsatz auftreten. Der Flussdiagramm IV bleibt somit im
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R. (auft von nun an

frer /nnen an

R. lauft von nun an
aussen an

Testdiagramm I: Teste zur Bestimmung des Rad-
satz-Anlauffalles.

} R. lauft von nun an

&. Der bisher nicht anlaufende Radsatz bleibt frei; die unter
der Voraussetzung N*, = N*; = 0 durchgefiihrte Integration
fiihrt zu einem Wert von w, der grosser als w, und kleiner
als w; ist; Testfolge 1-3-5-6-8;

6. Der bisher nicht anlaufende Radsatz kommt aussen zum
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Anlauf; die unter der Voraussetzung N*, = N* = 0 durch-
gefiihrte Integration fithrt zu w < w,; Testfolge 1-3-5-T;

7. Der bisher nicht anlaufende Radsatz kommt innen zum
Anlauf; die Integration fiihrt zu w > w;; Testfolge 1-3-5-6-9.

Mit Hilfe der Gl. (2) bzw. (12), die beim dynamischen
Lauf fiir die Bestimmung der Normalkrifte nicht bendtigt
wird, kann nach Ermittlung dieser Normalkrifte je nach

Fall die Lagerquerkraft H oder die Querbeschleunigung ¢,
des Radsatzes bestimmt werden. Bleibt der Radsatz in der
Querrichtung mit dem Fahrgestell starr verbunden, so folgt

er dessen Querbewegung, so dass die Trigheitskraft ml.('ilv
durch das Fahrgestell festgestellt wird und daher Gleichung
(2) bzw. (12) zur Bestimmung der Lagerquerkraft H fiihrt.
Kann hingegen der Radsatz gegeniiber dem Fahrgestell quer-
spielen, dann fiihrt er seine eigene Bewegung aus, fiir welche
dann Gl (12) als Bewegungsgleichung massgebend ist, wie
wir spéter im Abschnitt K sehen werden.

6. Beziehungen zwischen den Kriften T, Q, Y und V

Unseren Untersuchungen in diesem Kapitel wurden bis-
her die beiden T- und Q-Kréfte zugrunde gelegt, welche in
der lotrechten Ebene parallel und senkrecht zur Radaxe
gerichtet sind. Sie stehen grundsétzlich nach Gl. (H4) und
(H5) mit den horizontal und lotrecht gerichteten Kriften
Y und V im Zusammenhang. Aus obigen Gleichungen und
aus Gl (3) ergibt sich u.a. die Beziehung

(27) Y + Lsing, = (T — G,sing,) cosgp,

welche den Uebergang von Y zu T gestattet,

7. Vereinfachte Behandlung des Problems

In den bis jetzt gemachten Untersuchungen wurden die
einzelnen Probleme moglichst weitgehend behandelt, was
zu ziemlich verwickelten Zusammenhéngen und Bezichungen
fiihrte. Daraus ergibt sich, dass zur Bestimmung der am
Radsatz auftretenden Kréfte sehr umfangreiche Berechnun-
gen notwendig sind, die sich praktisch nur mit Hilfe eines
automatischen Rechengerédtes durchfiihren lassen. Die Kom-
plikationen sind vor allem eine Folge der durch die Schienen-
uberhohung bedingten Neigung ¢, der Radsatzaxe und der
Neigung & der Beriihrungsebenen in den einzelnen Beriih-
rungspunkten,

Eine wesentliche Vereinfachung ergibt sich durch fol-
gende Annahmen:

1. Die Reibungskraft ¢ ist der Gleitgeschwindigkeit jpy ent-
gegengerichtet. Thre Grosse F ist bei gegebenem Schlupf un-
abhingig von der Gleitrichtung.

2. Die Radsatzaxe liegt horizontal (¢, = 0).

3. Die beiden Aufstandspunkte weisen eine horizontal lie-
gende Beriihrungsebene auf (§, = §'; = 0).

4. Der Spurkranz iibt nur eine in der horizontalen Schienen-
kopfebene wirkende Querkraft, dieRichikraft P, aus.

5. Beide Laufkreisebenen haben den gleichen Abstand vom
Radsatzmittelpunkt E (e, = e’; =e).
6. Die Ansidtze (D 34) haben Giiltigkeit.

Die erste Annahme entspricht unseren heutigen Kennt-
nissen iiber die Reibung zwischen Rad und Schiene und muss
somit gemacht werden, so lange keine besseren Unterlagen
vorliegen. Sie hat die Vereinfachung der Beziehungen (B 7),
(B8) und (B10) zu (B18), (B19) und (B17) zur Folge.

Die zweite Annahme ist zulédssig, wenn die durch die
Neigung ¢, bedingte Querkomponente

(28) Gr= G,singy

des Radsatzgewichtes besonders beriicksichtigt wird, wenn
man alsowie in Bild 2 die Verhéltnisse des geneigten Radsatzes
auf den horizontalen Radsatz libertragt. Ferner folgt aus
dieser Annahme, dass das letzte Glied in GIl. (E 12a) null
ist und A, gleich h, wird.

Die weiteren Annahmen flihren zu gleichen Verhéltnis-

4) Grundziige der Filihrung der Schienenfahrzeuge, «Elektrische
Bahneny 1950 bis 1953.

Bild I 2. Die in der vertikalen Ebene auf
den Radsatz wirkenden Kriafte: Riickfiih-
rung der wirklichen Verhéltnisse des ge-
neigten Radsatzes auf den Fall des hori-
zontalen Radsatzes.

sen, wie sie an einem Radsatz mit bombierten Rédern, deren
Spurkrédnze durch vertikalaxige Fiihrungsrollen geméiss
Bild 3 ersetzt sind, auftreten. Wie Heumann 4) angegeben
hat, bleibt der durch die Vereinfachung bedingte Fehler
ziemlich klein und wird deshalb 6fters in Kauf genommen.

Mit der weiteren Annahme gleicher Laufkreisdurchmes-
ser (rp, = r;) wiirde sich der Rollkegel mit Iy = co zu einem
Zylinder und daher Gl (E 23) und (E 24) zu

(29)
ergeben. Mit der Rollenfiihrung fallt das geometrische, im Ka-
pitel D behandelte Problem der Beriihrung zwischen Rad und

Schiene dahin, und es ergeben sich dann anstelle von GI.
(D 32) fir w, und w; die einfacheren Beziehungen

(80) wa=yYat+e—a
in welchen ¢ das halbe Spurspiel bedeutet, und anstelle von
GIl. (20) bzw. (20a) die Beziehungen

(31)

und ¢ = p,

Wg = Wz

und w;=yY;—e -+ o

fa=y—w—0o und (=y—w-+to

Infolge obiger Annahmen werden ferner in beiden Auf-
standspunkten N, V und Q einander gleich. Da im Fiihrungs-
punkt auch keine vertikale Kraft mehr wirken soll, entspre-
chen sie dem betreffenden Raddruck V,, und es entsteht
eine Reibungskraft & nur noch in den beiden Aufstands-
punkten. Ferner stimmen in jedem Beriihrungspunkt T und
Y ebenfalls iiberein. Im Fiihrungspunkt entsprechen sie der
Richtkraft P und in den Aufstandspunkten der Querkompo-
nente ¥y der Reibungskraft F°. Diese Querkomponente soll

k 2r‘L {
28 {
et o o
Ly } ’ L
o L G £ H
NS |
SR S
V, V

Bild I.3. Der anlau-
fende Radsatz bei
Rollenfiihrung.
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im Rahmen der vereinfachten Behandlung des Radsatz-
problems kiinftig mit S bezeichnet werden. Demzufolge wer-
den hier die friiheren Bezeichnungen Y' und T* durch S
sowie T#* und Y* durch P ersetzt. Ferner werden fiir beide
Aufstandspunkte q, §, §° und damit die Faktoren A I» Mgy Nz
und \* null, so dass die Beziehungen (G 27) bis (G 31) volle
Giiltigkeit erhalten, wobei €', und e; mit dem Wert e und
die Winkel § und ¢, mit dem Wert 0 einzusetzen sind. Damit
schreiben sich diese Gleichungen auch

(32) Wa = wgQ, Wi = g qi

Woa = Wa ( é“ ) sgn( 2;‘ ,71,1)
(33)

SIS

. (e—n P -

wia = wa (S5 sem (T 5)
34
) e+ Dr .

= (5 ()
(35) Wz = 0 W, =0

(36) B=)e—n2+ & g=]|(e+19)?2+ &2

Fir ¢. = 0 ergeben sich anderseits aus Gl. (H 14) die
Gleichheiten

(37) ATa = Aqa
und aus Gl. (H 15) die Gleichheiten

Am = Ag
(38) AQa = Aza AQi == Azi

die geméss Gl. (H 8) mit § = 0 zu
(39) AQ.a = Aza =1 AQi = Azi =l

werden. Infolge der zur Vereinfachung getroffenen Annahme
bezliglich der Reibungskraft % lassen sich A; und A, unmit-
telbar aus w; und w, zu

W Wi
Aga = — wqd @ (va) Agi = — Tq;ﬂ (vi)
und
W1
Al = — = w (va) Ay = i)

ermitteln. Unter Berlicksichtigung von G (33), (34) und

(37) folgen schliesslich daraus die Beziehungen

il e )

. n+e\ [a Di.x
A“:(*qi )“ (pn)sgn< g ‘”‘)
== (ool

(41)
b=t ()B4

wahrend beide Gleichungen (39) fiir Ag, und Ag; unveréndert
bleiben.

Im weiteren vereinfachen sich die Gleichungen (12),
(13), (14) und (17) zu

(42) ValAga+Pa+ ViAy +Pi=H + G, + S,
(43) Vot Vi=L: + G,
(44) V, (e—raAqa) —Vi(e 4 r; Aqi) =

= (raPs + 11 Pj) + 2rp AL
(45) Ta(ValAga + Pa) 4+ T5 (Vidg + Pj) =T, Y, + IyY;
wobei definitionsgeméss Y, bzw. Y; die totale Querkraft
zwischen dem betreffenden Rad und seiner Schiene, d.h. die

Fiihrungskraft des Rades bedeuten und ¥, entsprechend dem
Ansatz

42

myqgr
COS @y

(46) T, =
die Trégheitskraft des Radsatzes bezeichnet.

Wie die Gleichungen (12) bis (14) und (17) lassen sich
auch Gl. (42) bis (45) durch Einfiihrung der Koeffizienten
a, b, c,d und e

a1 Vy + 03Py + 61V + d1 P = ¢
agva + bgPa -+ CQVI‘ 4+ dQPi €9

G0 I a3 Va + 03Py + ¢3Vi + dsP 6;

a4 Vy + DaPy + ¢4 Vi + dyP; = ey

schreiben. Mit Ausnahme der beiden Richtkrifte P, und P,
die die fritheren Normalkrifte N*, und N#, ersetzen, ist die-
ses Gleichungssystem das gleiche wie das System (18) und
daher gleich zu 16sen. Die Bestimmung der beiden Raddriicke
V, und V; und der in Frage kommenden Richtkraft P ergibt
sich somit je nach Fall aus einem gleichen Gleichungssystem
wie System (21), (22), (23) oder (24) beim anlaufenden
Radsatz und aus einem Gleichungssystem geméss (25) beim
freien Radsatz.

Trotz Vereinfachungen ist es aber zur Losung des Pro-
blems immer noch notwendig, den Weg der Iteration zu be-
schreiten, weil 5 und die Flhrungskraft Y des nicht anlau-
fenden Rades auch hier gleichzeitig als Ausgangs- und als
HErgebnisgrossen auftreten, Der sich ergebende Berechnungs-
gang bleibt grundsdtzlich der gleiche wie bei der genaueren
Behandlung des Problems. Er vereinfacht sich jedoch durch
den Ausfall gewisser Glieder und ist z. B. fiir den aussen an-
laufenden, gleiche Laufkreisdurchmesser aufweisenden Rad-
satz im Flussdiagramm V fiir den Fall des dynamischen Laufes

Vorausgesetzt W=, }Zm_-hr,g=p,,(p,-0 '

GmUr,y,\LGJ?,);,W,w.xr,-i'r,ﬂﬂg.‘/ag.\Lr,\/:n .rx

Bekannt

o ]
S
& (% h=po
Ausgangswerte
£

Y= Y

Einsetzen korrigierter Werte

C N =\
Qg B S U VT UL )
Myj H*zf

V  Flussdiagramm zur Untersuchung des Kréftespieles
am links (aussen) anlaufenden Radsatz, allgemei-
ner Fall des dynamischen Laufes bei vereinfachter
Behandlung (Abschnitt 1.6).
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VI Flussdiagramm zur Untersuchung des Kréfte-
spieles am links (aussen) anlaufenden Radsatz,
allgemeiner Fall des statischen Bogenlaufes bei
vereinfachter Behandlung (Abschnitt 1.6).

und im Diagramm VI fiir den Fall des statistischen Laufes
gehalten.
Aus GI, (B11), (H 10) und (I41) ergibt sich auch

= () (5 4)

a

& Pr .
5= —(gr)meem (54

und aus (B11), (H9) und (I40)

W— (ﬂ_H S ) F. sgn< 1;1 \/,1)

qa
D= (Ei) F;sgn (& ,#1)
gi g
woraus sich die Zerlegung der Reibungskréfte F, und F;

entsprechend Bild 4 ergibt. Die beiden letzten Gleichungen
erlauben bei gegebenen Reibungskréiften F, und F; die vom

(48)

(49)

Bild I.4. Gleitpole M,
und M;, Gleitgeschwin-
digkeiten jp, und jp;, Rei-
bungskrifte F, und F;
und ihre Komponenten
Uy, S, und Ui S;.

betreffenden Rad bei der gegebenen Ordinate  des Gleitpols
M ausgeiibte Léngskraft U, bzw. U; zu bestimmen. Ihre
Kombination fiihrt zur Beziehung
(Us + U) gigasgn (2§, ) + e (i Fa — g F)

qa Fi ‘[‘ qi Fu

mit der es umgekehrt moglich ist, bei gegebenen Reibungs-
kraften F, und F; diejenige Ordinate » zu ermitteln, welche
der vom Radsatz zu entwickelnden totalen Léngskraft (Zug-
oder Bremskraft)

(50) 7=

Ur = Ua, I Ui

entspricht. Die Beziehung (50) ist wertvoll, weil sie im
Laufe der Rechnung geméss den Flussdiagrammen V und VI
gestattet, den genaueren Wert von 5 und damit bei der
Iteration die passende Korrektur in {ibersichtlicher Weise zu
bestimmen.

Im Falle des nicht anlaufenden Radsatzes ergeben sich
an Stelle der Gleichungen (26) die einfacheren Beziehungen

i V. — (Ly + Gy) (e + riAgi) + 2rp AL

2e + (riAgi — raAga)

(81)
Vi — (Lr + Gr) (e—ra Aqa)—ZrLAL
' 2e 4 (riAgi — TaAga)
Mit den Ansitzen
Va—V;
(B2 BAY = e = und V,= V, + Vi

kann man auch fiir beide Raddriicke die einfachen Bezie-
hungen

W AV
(53) V= T‘—{—AV und Vi:Tl»AV
angeben, wobei sich der Radsatzdruck V, und der halbe Rad-
druckunterschied AV aus Gl. (51) zu

(54) Vy=1Ly+ G:
und
(55) AV — Vr (ri Aqi + Ty Aqa) + 41"LAL

4de 4 2 (riAgi — YaAga)

ergeben. Die Flussdiagramme VII und VIII zeigen, wie in
diesem Falle der Rechnungsgang vorgenommen werden kann.

8. Weitere Vereinfachungen

8.1 Vernachldssigung der Raddruckdnderung

Es wird ofters angenommen, dass die beim Lauf entste-
henden Querkrédfte keinen Einfluss auf die Raddruckvertei-
lung haben. Diese Annahme vernachléssigt somit die Gleich-
gewichtbedingung fiir die Drehung um die Lingsaxe und
setzt deshalb stillschweigend voraus, dass alle Horizontal-
krifte in der gleichen Ebene wirken. Dadurch vereinfachen
sich die Gleichungen (51) zu

i 157y GI- 185,
V.= o i o= e AL
(55) L G
T T Iy
Vi=s disgr = 5 o0

Auf die Zuldssigkeit dieser Vereinfachung werden wir spater
noch zuriickkommen.

8.2 Voraussetzung n = 0

Meistens wird auch vorausgesetzt, dass sich der Haft-
kreis in der Mittelebene des Radsatzes befindet, dass somit
7 = 0 ist. Im Falle des statischen Laufes bedeutet diese Vor-
aussetzung, dass bei gleichen Raddriicken der Radsatz keine
Lingskraft U ausiibt. Sie fiilhrt in diesem Falle zur wesent-
lichen Vereinfachung, dass die beiden Réder jetzt den gleich
grossen Gleitarm

(BT ga= qi = €2t =g
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Vorausgesetzt Wy=wy, E ., g-0., (p,-O—|
B0V, Uy o, W00, i b s B e Ta 1,70 ]
h

ki Mg
o AL

Ausgangswerte

—Einsetzen korrigierter Werte

(145 49) (@@.
(S5=%),Us U,(S=Y)
(ED)

7

bl Jr amnteioiroi

—
@ @ GG VLA
My He

Flussdlagramm zur Untersuchung des Krifte-

spieles am nicht anlaufenden Radsatz, allge-

meiner Fall des dynamischen Laufes be1 ver-
einfachter Behandlung (Abschnitt I1.6).

VII

den gleichen Schlupf

(58) va—uv;= 9 — 1e2+52
Pr Pr

den gleichen Reibungskoeffizienten
©) m=m= (L)

pr
die gleiche Reibungskraft

V. q°
F,=F; = 2‘ F(p-)
.

(60)

die gleiche Querkraft

& V, ¢ q
G =S aims = (7)
( ) a, 1 q 5 q w e
und die gleich grosse Liangskraft
e V: e q
82) Uh——U— P — Y5.° (*)
(B2 T i q 2 g "\

haben. In diesen Beziehungen tritt allein ¢ als unabhingige
Grosse auf. Sie konnen somit unmittelbar ausgewertet wer-
den, da beim statischer Lauf ¢ = g ist.

Im Falle des dynamischen Laufes bringt die Vorausset-
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Vorausgesetzt
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Flussdiagramm zur Untersuchung des Krifte-
Spiels am nicht anlaufenden Radsatz, allge-
meiner Fall des statischen Bogenlaufes bei
vereinfachter Behandlung (Abschnitt I.6).

VIII

zung 7 = 0 eine wesentliche Vereinfachung durch das Weg-
fallen der betreffenden Iteration mit sich. Sie fiihrt zu den
gleichen Ergebnissen, d. h. zu den Beziehungen (57) bis (62),
wenn man die Deformationen vernachldssigt und somit weiter
annimmt, dass beide Rédder des Radsatzes den gleichen Rei-
bungsmittelpunkt aufweisen.

8.8 Lineare Abhdngigkeit zwischen Reibungskoeffizient und
Schlupf

Wird angenommen, dass der Reibungskoeffizient statt
nach einer Kurve geméss Bild B 11 nach dem Gesetz

w(v) = mu
verlduft, so ergibt sich die einfache Beziehung

q
= 0 —=
“ Pr
Die Rechnung vereinfacht sich dann dadurch, dass in Gl
(40) und (41) das Glied (1/q) - u (d/py) durch m/p, ersetzt wird
und in Gl (48) und (49) das Glied F/q durch mV/p,.

8.4 Komnstanter Reibungskoeffizient

Bei Annahme eines konstanten Reibungskoeffizienten
eriibrigt sich die Bestimmung des Schlupfes, und es konnen
w und damit F' als gegebene Grossen in die Rechnung einge-
setzt werden.



K. Die Bewegungsgleichungen des Radsatzes

Wenn der Radsatz, als Teil eines Radsatzverbandes, im
gemeinsamen Fahrgestell spicllos gelagert ist, bleibt er bei
seinen Bewegungen in der Lings- und in der Querrichtung
mit ihm verbunden und kann daher fiir diese Bewegungen als
dessen Bestandteil betrachtet werden. Die Koordinaten i,
Wj, Xrj, 4rj Und ,; des Radsatzes entsprechen somit den Koordi-
naten g, vj, Xg, dg (siche Kapitel L) und y, des Fahr-
gestells, und es gelten die Gleichungen (I9) und (I 10 fiir Xia
und X;;, (I8) fiir (Xja—-Xj1). ([11) filir (= Ue);sowie (I112)
fiir die Lagerquerkraft H; bzw. fiir die Trigheitskraft m, ('i,n].

Ist aber der Radsatz in der Quer- oder Lingsrichtung
mit Spiel gelagert, so muss man ihn bei seiner Bewegung
innerhalb des Spiels vom {iibrigen Fahrzeug getrennt be-
trachten und sein dynamisches Verhalten in der betreffenden
Bewegungsrichtung einzeln behandeln, wofiir die Gleichungen
(I1), (I2) und (I5) grundsétzlich als Ausgangsgleichungen
massgebend sind. Die Gleichungen (I3) und (I6) bzw.
(I13), (I14) und (I17) bleiben fiir die Bestimmung der
einzelnen Normalkrifte N giiltig.

1. Verschiedene Beziehungen zwischen den Radsatz- und
Fahrgestellkoordinaten

Im letzten Kapitel wurden als Koordinatenaxen die mit
der Radsatzlingsaxe zusammenfallende x,-Axe und die dazu
senkrecht liegende g,-Axe gewihlt, wodurch eine viel {iber-
sichtlichere Behandlung des Gleichgewichtproblems mog-
lich war. Dieses Koordinatensystem ist aber ein relatives
System, das seinen Nullpunkt in dem sich bewegenden Rad-
satzmittelpunkt E, hat und sich mit dem Winkel Y dreht.
Die Geschwindigkeitskomponenten x, und o:[r oder die Be-

schleunigungskomponenten X, und fj, konnen somit nicht
durch unmittelbare Ableitungen ermittelt werden, sondern

miissen stets aus den Geschwindigkeiten #, und w oder aus
den Beschleunigungen , und % bestimmt werden, die sich
auf das feste («,, w)-Koordinaten-System beziehen. Die hier-
zu massgebenden Beziehungen ergeben sich nach Bild 1 zu
(1) X, = x.co8p; + wsinyg, und §, = wcos Wy — %, Siny,
sowie 1)

(2) X = &,co8y, + wsin Yr und g; = wWeosy — &, siny,
Aus dem oben fiir die Ableitungen erwéihnten Grund diirfen
Integrationen ebenfalls nicht unmittelbar mit (%, und a)
bzw. (X, und g,) vorgenommen werden, sondern miissen stets
tber (&, und w) bzw. (x, und 1) erfolgen. Diese lassen sich
aus (X, und q,) bzw. (X, und ¢,) nach den Beziehungen

(8) @, = X,€08¢, —q,Siny, , W= qycos Yr + X,sin g,

(4) & = X.co8¢, —q,siny, , 0= ¢;Co8y; + X, siny,

ermitteln, die ebenfalls unmittelbar aus Bild 1 abgeleitet wer-
den konnen.

%

Bild K.1. Die Geschwindigkeiten und Beschleunigungen des
Radsatzes.

1) Siehe Fussnote 1) auf Seite 5

>

Bild K. 2. Die Koordinaten- und Krifteverhiltnisse bei der
Radsatzlagerung mit Léngs- und Querspiel.

1.1 Radsatzlagerung mit Quer- und Léngsspiel

Die beiden horizontalen Beschleunigungen X, und g, sind
senkrecht bzw. parallel zur vertikalen Meridianebene des
Radsatzes gerichtet. Wie wir spéter sehen werden, kann es,

wenn Lingsspiel vorhanden ist, interessant sein, z, und w auf
die beiden parallel bzw. senkrecht zur Lingsaxe des Fahr-

gestells gerichteten Beschleunigungen x, und ¢, zuriickzu-
fithren, welche geméss Bild 4 nach den Beziehungen

(5) X =,Co8y¢ + 1WSiN g , §= 1 COS Yy — %,Sin g
(8) @ =Xcospg— qsinyg , W=qCcosy; + X sin y;
mit 2, und w im Zusammenhang stehen. Aus Gl. (2), (4) und
(5) folgen fiir den Zusammenhang zwischen X, und ¢, einer-
seits und x, und g, anderseits die weiteren Bezichungen
(7) ;(1' = k Ccos (5[/1 — Bl/g) + q sin (S—l/l == \//g)

Qr = g €OS (Pr — Pg) — X SN (Yr — )
sowie
(8) X =X,C08 (Yr— ) — dr S (or — &)

q = 0y COS (Yr — ) + Xr SIN (Y1 — Yg)
welche auch unmittelbar aus Bild 5 abgeleitet werden kénnen.
Die relativen Ausschlige Aq; und Ax; des Radsatzmittel-
punktes E,; gegeniiber dem Fahrgestellpunkt E,; ergeben
sich entsprechend Bild 2 zu

(9)  Ag; = (w; — ;) COS g — (o — Fg;) Sin g
(10)  AX;j = (& — %gj) COSYg + (wj — ;) siny,
Die erste Ableitung obiger Gleichungen fiihrt zu
(92) Ag; = AG; — g Ax;
(10a) Ax; = AX; + ygAg;

und ihre zweite Ableitung zu -

(9b)  Aqj=G;—de— (a1, — a1 + A%;) Jig — 2 A%; — ye2Aq;
(10b) ij = ii—ig + (@15 — a1; — AX;) ‘).%2 S zﬁi’gAé.U i ;Lgqu
wenn die relativen Geschwindigkeiten

(11) AQj =0 — g = (W; — ;) COSYg — (&) — ) Sinyg
(12) AX; = X;— Xy = (&g — @gj) COSyg + (W0; — v;) sing,
des Punktes E,; gegeniiber E,; eingefiihrt und Gl (5), (L 12)
und (L 13) beriicksichtigt werden.
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1.2 Radsatzlagerung mit Querspiel allein

Ist die Radsatzlagerung derart, dass sich der Radsatz im
Fahrgestell nur in der Querrichtung bewegen kann, dann ist
sein Stellungswinkel y, stets gleich dem Stellungswinkel y,
des Fahrgestells und es besteht (siehe Bild 3) fiir die Ko-
ordinaten seines Punktes E,; die weitere Beziehung

(18)  (@yj — gj) COSyg + (w; — v;) sinyg, = 0

deren Ableitungen nach Einfiihrung von (9), (9a) und (11)
die Gleichungen

(13a) (i,‘j—n':_gj) COSyg + (wj—q./_*j)siny,g + YgAq; =0

(13b) (@ — i) COS g + (10; —Vj) SiN g + 2 Adj+ PgAa; = 0
ergeben.

Unter Beriicksichtigung von Gl. (2),
schreibt sich GI1. (18b) auch

(14) und (L.12)

(14) Xy = X; = Xgj — 2AQ;95 — PgAQ;

und zeigt in dieser Form, dass die Ldngsbeschleunigung des

Radsatzes nicht mit der Léngsbeschleunigung (X — yjxAq;)
des Fahrgestells im Punkte E,; iibereinstimmt, sondern davon

um die Coriolis-Beschleunigung 2Aq;y, abweicht.
Da bei dieser Art der Radsatzlagerung Ax; und damit

auch A'xj null bleiben, ergeben sich hier aus Gl. (9a) und
(10a) die Gleichheiten

(15) Ag; = Ag;

(16) Ax; = — yAq;

womit Gl. (9b) zu

(A7) by =@ = Ag; + Ug + (@15 — a1)) Y — 52 A,

wird. Aus Gl (9), (10) und (13) folgen ferner die Bezie-
hungen

(18) &y = @gj — (w; — V) tgye

(19) @y = ®z; —Ag;siny,

(20) wj; = v; + Ag;cosy,

die sich auch unmittelbar aus Bild 3 entnehmen lassen und
deren Ableitung unmittelbar zu

(w; — ;)
cos?yg &

(18a) a'a,rj :;gj — ('wj—‘?j)tg‘/’g—*

(192) @r; = Wgj — Ag;Sin Yy — g Ad; COS v
(202) w; = U; + Ag;jCos s — e Ag;siny,

fiihrt. Beide Gleichungen (18) und (18a) gestatten, 2,; und

:i'rj fiir den Fall des sich innerhalb des Querspiels befinden-
den Radsatzes zu ermitteln, wenn nach Durchfiihrung der

Schrittintegrationen die Fahrgestellgrossen x;,-, i) 17] und v;
sowie die Ordinate w; des Radsatzes und die zugehorige Ge-
schwindigkeit w; bekannt sind.
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Bild K. 3. Die Geschwindigkeiten und
Beschleunigungen des Radsatzes und
des zugehorigen Fahrgestellpunktes bei
Radsatzlagerung mit Querspiel allein.

Liegt hingegen nach Ausniitzung des Querspieles iy bzw,
e, der Radsatz am Fahrgestell an, dann sind seine Koordi-

naten «,; und w; sowie die zugehdrigen Geschwindigkeiten
2r; und w; durch letzteres geméss GI. (19), (20), (19a) und
(20a) bedingt. Der relative Ausschlag Ag; ergibt sich dann zu

(21) Kq] = —17q iq COS @j bzw. qu = == ley eqcos<pj
wobei 7q; bzw. 7¢; den Wert — 1 oder + 1 aufweist, je nach-

dem der Radsatz innen oder aussen am Fahrgestell anliegt.
Aus Gl. (21) ergibt sich durch Ableitung

(21a) Ag; = (7q5iq bzw. mejeq) ¢ Sin ¢
(21b) Kq] = (quiq bzw. 'reieq) (lp] sin Pj —l— (;,)7'2 Cos q)]’)

Die Querbeschleunigung qj des Radsatzes ist ebenfalls
durch das Fahrgestell gegeben. Bezeichnen wir sie in diesem
speziellen Falle mit f,;, dann ergibt sich aus Gl. (17) nach

Ersetzen von Aq und Aq durch Aq und ﬁq die Beziehung

(22) Bg =g + (@15 — a1;) g + B0y — Agy yig?

1.8 Radsatzlagerung mit Langsspiel allein

Ist ein Léngsspiel +i, bei jeder Lagerstelle vorhanden,
so kann der Radsatz gegeniiber dem Rahmen in Lingsrich-
tung grundséitzlich jede Lage innerhalb des durch die Hohe
2iy (in Fahrrichtung) und die Breite 2ry; gekennzeichneten
Vierecks einnehmen, indem er sich um Ax; in der Fahrrich-
tung verschiebt und um den Winkel (y,— y,) schrig stellt
(Bild 4). In diesem Falle besteht (siehe Bild 5) die Beziehung

(28)  (w; — ;) COS g — (@yj — &) iDLy = 0

deren erste und zweite Ableitung sich unter Beriicksichti-
gung von Gl. (10) und (10a) zu

(238) (W) — ;) COS g — (@ — i) SIN Y = Y AX;

und

Bild K. 4. Die Einstel-
lung des Radsatzes
innerhalb des Lager-
langsspieles.




(23b) (W; — ;) COS g — (Frj — Bgg) SiNPg = 248K, + P AX;

ergibt. Fihrt man Gl (5), (L. 12) und (L 13) in Gl. (28b) ein,
so wird diese zu

(24) ;= qg + Y (01— @y + AX)) + 28%;,

Da hier Ag; und Ag; null sind, folgen aus Gl (9a) und
(10a) die beiden Gleichheiten

(25) Ag; = Ay,
und
(26) Ax; = Ax;

so dass das letzte Glied der Gleichung (24) der Coriolis-Be-
schleunigung 2ij SLg entspricht und sich aus GIl. (10b) und
(25) die Beziehung

27) ij = §g— (@15 —ay; + AX;) ylgﬂ —I-ij

ergibt, die spiter zur Anwendung kommen wird. Schliesslich
ergeben sich aus Gl. (9), (10) und (23) (vergleiche auch
Bild 4) die Beziehungen

(28) wj =; + (@ —%g) t8 g
(29) ’ij = 'I); -+ ijsin50g
(80) %y = @z + AX;COSyg
deren Ableitungen zu
. . O . (w —E )
(283) W; = Vj -+ (ml»j ’_“ng) tg3[/g —+ 1//g (I_‘;]()T#,:]

(292) w; = v; + AX;sin gy + Y AX; COS Yy

(30a) ;= .Egj + Ax;C08 s — P AX;SIN Yy

werden. Die beiden Gleichungen (28) und (28a) gestatten w;
und w; von z; aus zu ermitteln, wenn letztere im Fall
| Ax | < iy durch Integration, oder im Fall Ax = + i, durch das
Fahrgestell entsprechend Gl. (30) und (30a) gegeben sind. In
letzterem Fall sind ebenfalls w; und 72;]- durch das Fahrgestell
bedingt und konnen daher auch nach GIl. (29) und (29a) be-
stimmt werden.

2. Bewegung des Radsatzes bei einer Lagerung mit freiem
Querspiel allein

Bei dieser Lagerungsart des Radsatzes bleibt dieser in
seiner Léngsbewegung und in seiner y-Drehung mit dem
Fahrgestell verbunden. Es gilt daher die Beziehung (I8)
fiir den Ausdruck (Xja—in).Fﬁr (Xj = X:;a -+ in) gilt eben-
falls die Beziehung (I7). Dieser ist aber die Lédngsbeschleuni-
gung iirj des Radsatzes zugrunde gelegt, welche geméiss

Gl (14 mit der Beschleunigung X, des Fahrgestells im
Zusammenhang steht. Fihrt man Gl. (14), (16) und L (13)
in Gl. (I7) ein, dann wird diese zu

Bild K. 5. Die Geschwindig-
keiten und Beschleunigun-
gen des Radsatzes und des
zugehorigen Fahrgestell-
punktes bei Radsatzlage-
rung mit Léngsspiel allein.

(31) X;=Uj—my [x, — (Gus— @) fi? — 2vgA4; — Adyjs]

wobei Ag; und qu durch die Beziehungen (9) und (11) ge-
geben sind. Aus X; lassen sich X;, und X;; nach GL. (I9) und
(I10) ermitteln, wenn man darin ¢, durch y, ersetzt.

Es konnen bei dieser Lagerungsart grundsidtzlich fol-
gende Moglichkeiten der Radsatzeinstellung innerhalb des
freien Querspiels i auftreten,

2.1 Fall £2) [(v;— [Aq;|cos yg) < w; < (v; + [Aqg;| cosyg)].

Der Radsatz lduft innerhalb des Lagerquerspiels frei und be-
wegt sich unabhingig.

In diesem Fall kann keine Lagerquerkraft entstehen, da
der Radsatz frei vom Gestellrahmen ist. Die Gleichung (I 2)
wird daher

(32) m,q,; = (T; — G,sing;) cos g;

Daraus ergibt sich flir den Radsatz die Querbeschleunigung

(33) T]»~—Grsin<pj

brj = CoS @j

m,
die wir zur Bestimmung des Einstellungsfalls in Betracht
ziehen werden. Da die Koordinate q,; nicht auf ein fest ste-

hendes System bezogen ist und iirj deshalb nicht unmittelbar
integriert werden darf, kommt an Stelle von Gl. (32) die sich
geméss Bild 2 unmittelbar aus den Kriften fiir (y; = ;) er-
gebende Beziehung

(34) mw; = (Y; + Ljsin ¢;) cosy, + (U; — X;) siny,

als Bewegungsgleichung in Betracht. Nach Einfiihrung von
Gl. (31) und (I27) schreibt sich diese auch

(85) m,w; = (T;— G,sin ;) cos p; cos g +

-+ My [._5;5 — (@15 — @15) g2 — 280 g — AQjg ] 810 g

Aus den durch Integration dieser Gleichung ermittelten
Werten von w; und ’bbj ergeben sich dann die Langskoordinate

%,; und die Geschwindigkeit #,; gem#ss Gleichungen (18)
und (18a).

2.2 Fall a [w;=7v;—[Aqgj|cosyg]. Nach voller Ausnutzung
des Lagerquerspiels lduft der Radsatz aussen am Anschlag.

In diesem Falle bleibt der Radsatz bei (Aq; = Ag;) mit
dem Fahrgestell verbunden. Seine Koordinaten ;; und w;
sind dann durch die Beziehungen (19) und (20) und die Ge-

2) Die Bezeichnungen f, a, i fiir die drei Fille sollen unmittelbar
auf den betreffenden Fall — ob frei, aussen oder innen — hinweisen.
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schwindigkeiten a'c,.j und u';j durch die Beziehungen (19a) und
(20a) gegeben, wobei Aq durch Gl. (21) mit Tqj = + 1 fest-
gelegt ist.

Die Querbeschleunigung drj des Radsatzes ist ferner
durch das Fahrgestell bedingt und entspricht der Beschleu-
nigung hg; geméss Gl. (22). Fiihrt man diese Gleichung in
Gl (I2) ein, so erhdlt man fiir die Lagerquerkraft die Be-
ziehung

(36) HS] = Tf == le sin @ ——

= *Cf:% [ds + (@1 — a1p) g+ Bgg— By 2]
in welcher der Index s bei H darauf hinweisen soll, dass
diese Kraft infolge der starren Mitnahme des Radsatzes ent-
steht und die Trégheitskraft desselben durch die Bewegung
des Fahrgestells gegeben ist. Der Fall a bleibt bestehen,
solange die Beschleunigung §,;2) des Radsatzes kleiner als
diejenige b,; des Fahrgestells ist.

2.3 Falli [w; =v; + |qu |cos yel. Nach voller Ausnutzung
des Lagerquerspiels lduft der Radsatz innen am Anschlag.

Der Radsatz bleibt in diesem Falle ebenfalls mit dem
Fahrgestell verbunden, und die Gleichungen (19), (20), (19a),
(20a), (22) und (36) sind daher auch giiltig, wobei jedoch
7q; Mit dem Wert —1 einzusetzen ist. Dieser Fall besteht, so-
lange die Radsatzbeschleunigung [,;3) grosser als die Be-
schleunigung f,; des Fahrgestells bleibt.

2.4 Zusammenfassung der drei Fille £, a und i

Mit dem Faktor r,, der im Fall a den Wert 4+ 1, im
Fall i den Wert —1 und im Fall £ den Wert 0 aufweist,
lésst sich fiir die Lagerquerkraft aus Gl (36) die Beziehung

(37) H] == 'rqj2 {T] — G]-Sin Pj —

—Wx% [ag + (a1s — a1) Y + Dgj — Agj2]
ermitteln, die stets giiltig ist, da im Fall £ der Faktor Tqj und
damit auch H; null wird. Desgleichen ldsst sich aus Gl (35)
unter Beriicksichtigung von Gl. (L 13) und nach Einfiihrung
des weiteren Faktors x die Bewegungsgleichung

(38) xqjm, ib,- = xqj{(Tj—Grsincpj) COS @j COSg -+

+ m, [._’;g‘ (@15 — aq;) ‘/;32 — 2y, Agj — Ag;ye ] sin Ve }

ableiten, die nur im Falle £ mit Xq; = 1 eine Bedeutung hat
und sie fiir die Félle a und i bei xq; = 0 verliert. Fiir %y; und
w; sowie fiir x,; und w; gelten die Gleichungen (19), (20),
(19a) und (20a) in den Féllen i und a und Gleichungen (18)
und (18a) im Fall f. Diese Gleichungen lassen sich eben-
falls fiir alle drei Fille verallgemeinern, wenn man sie unter
Beriicksichtigung von GI. (21)

(39) @y = @g; — Ag;sinyy — xqj (W; — ;) tg vy
(392) &y = g — (Aq;sin g + g Aa;cosyy) —
5 O Aq' 3
— Xaj ':(w] = 'Uj) tglffg = Co;ii}

(40)  7qjw; = 7q; (V; + Ag;cOS )
(408) 74;W; = 7;[0; + qucos g — g Ag;Sin el
schreibt.

Die Gleichungen (37) bis (40a) gelten allgemein bei
Radsatzlagerung mit freiem Querspiel und werden spiter
bei der Betrachtung am Fahrgestell zugrunde gelegt.

3) prs ist hier als diejenige Beschleunigung zu verstehen, die der
Radsatz gemiss Gl. (33) aufweisen wiirde, wenn er frei wire.

48

{ R lag bisher aussen an 3@* l
———— @ R. (ag vorher innen an

bg] =br @

< ws(@j‘f‘AXS/n'\//g-A—qCOS Ve >@W

[
W= (Vj+4 xs;n’\}/gw&ﬁ-qc@‘@—\
(

R. liegt von nun an
aussen an"L'q=+I,Xq=D

R. liegt von nun an
frei: Tq=0, X0

R. liegt von nun an
innen an: Tg=-1,Xq=0

Testdiagramm II: Teste zur Bestimmung der Lage, die der
Radsatz innerhalb des freien Lagerquer-
spieles einnimmt.

Wie fiir die Bestimmung des Anlauffalls im Abschnitt I 11
ldsst sich hier durch eine Reihe von Testen ermitteln, ob der
Fall £, a oder i vorliegt. Das hiefiir massgebende Testdia-
gramm II zeigt grundsétzlich den gleichen Aufbau wie Test-
diagramm I. Auch hier sind sieben verschiedene Fille mog-
lich. Diese sind &hnlich, so dass wir darauf verzichten kon-
nen, auf sie einzeln einzugehen.

Im Flussdiagramm IX ist gezeigt, wie der Radsatz bis
zur Bestimmung seiner Querbeschleunigung ibj und der auf

das Fahrgestell ausgeiibten Léngs- und Querkrifte durchge-
rechnet werden kann.

3. Bewegung des Radsatzes bei elastischer Lagerquerriick-
stellung

Wenn eine elastische Riickstellvorrichtung in der Quer-
lagerung des Radsatzes vorhanden ist, entsteht bei einer
Verschiebung Aq des Radsatzes gegeniiber dem Rahmen eine
Lagerquerkraft Hy;, die innerhalb des elastischen Spiels durch
das elastische Verhalten der Lagerriickstellung gegeben ist
Bezeichnen wir mit Hy die eventuelle Vorspannung und mit
ko die Steifigkeit der Riickstellung, so entsteht innerhalb des
elastischen Spiels die Lagerquerkraft

Aqg;

H,: = Hysgn Aq; - &, - 4

ej 0SEg q7+ 0 COSquCOS (%]—Ebg)

wobei vorausgesetzt wird, dass die Lagerung kein freies
Querspiel iy aufweist. Wire ein solches vorhanden, so wiirde
sich fiir H,; der wesentlich kompliziertere Ausdruck

(41)

AqQ;
42 = i 5 '
) Hy = B e a8
Ag; :
U [ c0S 9} COS(1; — Pg) —lqsgmq’]

ergeben. Ferner wiirden vier Grenzfdlle der gegenseitigen
Lage zwischen Radsatz und Rahmen und drei Zwischen-
bereiche auftreten, was die Untersuchung erheblich ver-
wickeln wiirde. Wir wollen deshalb den Fall einer Lagerriick-
stellung ohne freies Querspiel voraussetzen, der praktisch bei
den modernen Drehgestell-Lokomotiven, insbesondere bei un-
seren schweizerischen Maschinen, allein vorkommt.

Da der Radsatz bei dieser Lagerungsart ebenfalls in der
x-Richtung und in seiner y-Drehung mit dem Fahrgestell
verbunden ist, beiben die Gleichungen (I 31) fiir X;, (I 8) fiir
(Xja— Xji) und (I9) sowie (I10) fiir Xia bzw. X;; giiltig.

Es sind nun vier verschiedene Fille fiir die Radsatzquer-
bewegung festzuhalten, ndmlich:

Fall m [w; = v;]. Infolge der Vorspannung H, bleibt der
Radsatz in seiner mittleren Lage mit dem Gestell verbunden.

Fall a [w; = v; —[Aq;|cosyg]. Nach voller Ausniitzung des
elastischen Spiels e, liegt der Radsatz aussen (bzw. links) am
Gestell und bleibt mit diesem verbunden.



Fall i [w; = v; +[Agj|cosyg]. Nach voller Ausniitzung des
elastischen Spiels e, liegt der Radsatz innen (bzw. rechts)
am Fahrgestell und bleibt mit diesem verbunden.

In diesen drei Féllen fiihrt der Radsatz die gleiche Be-
wegung wie das Fahrgestell aus. Es gelten daher die Bezie-
hungen (19), (20), (19a) und (20a) fiir @, %, w; und wj,
(22) fir Hg; bzw. d,‘j und (36) fiir H;, wenn darin i; durch e,
und rq; durch 7¢; ersetzt werden. Diese Félle horen auf zu be-
stehen: Fall m, sobald die absolute Grosse der nach Gleichung
(36) zu berechnenden Lagerquerkraft grosser als die Vorspan-
nung Hy, und Fille a und i, sobald sie kleiner als (Ho + ko€q)
wird.

Fall £ [(v; —[Aqj|cosyy) < w; < (v; + [Agj|cosyg)]. Der Rad-
satz bewegt sich innerhalb des elastischen Querspiels = eg.

Die Lagerquerkraft H; ergibt sich in diesem Falle zu
H.; geméss Gleichung (41). Wie bei der Radsatzlagerung
mit freiem Querspiel ist es vorteilhafter, die Bewegungs-
gleichung nicht fiir q, sondern unmittelbar fiir w aufzustel-
len. Diese Gleichung ergibt sich auf Grund des Bildes (2) zu

ml.'[(}j» = (Y‘7 -+ L]' sin Qj — H]’ Ccos qjj) COS}[/g -+ (U] —X]) sin SLg
bzw. nach Einfiihrung der Gleichungen (31) und (I27) zu

(43) m,w = (T; — Gysing; — He;j) €os ¢j COSyy +

+ m, [;E-g — (@15 — @1;) Yg2 — 240 5 — Ag; $] sin g

Zusammenfassung aller vier Fdlle

Mit dem weiteren Faktor yej, welcher mit r.; die Werte
[7ej =1, xe; = 0] im Falla, [7e;=0, x¢; = 0] im Fall m,
[7ej = —1, xej = 0] im Fall i und [7,j =0, x¢; = 1] im Fall {
aufweisen, konnen fiir H; und fii)j die Gleichungen

(44). Hj= xejHe; + (1 —xes) Hyj =

Gl _ Ag;
— Xej <H°SgnAq’ T fo m;%) &
. e ~ i
Al {Tj—GrSHUPj_ s [ag + (a1s — a1j) vg +

+ Ag; — Ag; 2] }
und

(45)  xejm, w; = Xej{(T]‘ — G, sing; — Hy;) COS ¢ COSyy +

+ my [ — (a15— a1;) Yg? — 2 Yg AQj— 5 Ag;] sin ‘Pg}

Bekannt am Anfang

des
Integrationsschrittes [U,,ZUE, 1,00, 80, @G Gn 20,20 Tas Yo Bannls I
Integration am Fahrgestell @ o
Yer Pe Ve Vo Ty g U, U o
( { i
uﬁl wrl W
Annahme —— @98 2 ) J
(kan) 'K2/a>
do Ag g
e
Ay Ag
Annahme )(. ,ﬁ £ H
4 D,y Ve
[ B

R lef bisher aussen an 1;=7 R.lief bisher fre E = [; =0 | | R.lief bisher innen an 17 =1

Bestimmung der
Radsatzkrafte

Bestimmung der
Radsatzkrafte

Bestimmung der
Radsatzkrafte

Flussdiagramm T oder ¥ Flussdiagramm IVoder VII Flussdiagramm I oder V
Bestimmung von Wa u 2,
Flussdiagramm 1 Tell I

Testdiagramm I I ,f,

Anlauffall bleibt

Weederholung der Radsatzberechnung mit neuen ]; u [ -

/‘j‘/\//,j, It E:[:ZUQxN;JN/‘:(pr: ¢r: ‘ﬁr,ya:y/:];vr

Ermittlung der Gestellbeschleunigungen
Teil I des FI.0.XI
G
19) @%} @[@ ¥33) (k22
% ol B b
{ = e 1
5

Bestimmung des Stellungsfalles
Testdiagramm I

|
Tq, Xq

I 5y My HL X Ko % T T, 208, NG
Aq, 4, @, ‘ﬁr. ‘,b.r, xr, T, W, W0, Yoy

IX Flussdiagramm zur dynamischen Berechnung des mit

freiem Querspiel gelagerten Radsatzes (Abschnitt K.2).

¥ |

Testdiagramm III: Teste zur Bestimmung der

R. liegt von nun an
innen an: T,=-1, XE-D

R. liegt von nun an
in der Mitte: T, =0, X=0

R. liegt von nun an
aussen an: T,=+1, X,=0

R. liegt von nun an
frei: T, =0, X:I

Lage, die der Radsatz inner-
halb des elastischen Lager-
querspieles einnimmt.

K
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aufgestellt werden, wahrend fiir @,;, 2, w; und w; die Be-
ziehungen (39), (39a), (40) und (40a) giiltig bleiben, wenn
darin der Faktor ry; durch Tejy Xqj AUrch x¢; und i; durch e,
ersetzt wird.

Die zur Bestimmung des vorliegenden Falles m, £, a oder
i durch ein automatisches Rechengerit durchzufiihrenden
Teste sind im Testdiagramm IIT angegeben, wobei, wie bei
Testdiagramm I und II, von dem vor dem betrachteten Zeit-
punkt vorliegenden Fall ausgegangen wird. Wie man aus
diesem Diagramm ersehen kann, ergeben sich jetzt 10 ver-
schiedene Moglichkeiten, welche zu den Testfolgen 1 - 4 - I,
L=4 =TV, 1-2 5T, 1-2-5-TV, 1=2-3-6-1II, 1-2-3 -
6:=IVy 1~2-8 -7 -TI, 1-'2-8=7=8-1, 1-2-8-7-8-09-TIT
und 1-2-3-7-8-9-1IV fiihren.

Der fiur die ganze Durchrechnung des Radsatzes einzu-
schlagende Rechnungsgang geht ebenfalls aus dem Flussdia-
gramm IX hervor, wenn man darin die Faktoren 7q Und xq
durch 7, und x. ersetzt und fiir die Berechnung von w und
H die Gleichungen 44 und 45 statt 35 und 37 sowie das Test-
diagramm IIT statt II beriicksichtigt. Ferner ist die Aus-
rechnung der beiden Beschleunigungen §, und bgj nicht mehr
notwendig.

4. Bewegung des Radsatzes bei freiem Lagerlingsspiel

In diesem Falle der Radsatzlagerung gelten die im Ab-
schnitt 1.3 abgeleiteten Beziehungen (23) bis (30a), Die
Gleichgewichtsbedingungen (I1) und (I2) sind ebenfalls
massgebend und konnen als Bewegungsgleichungen in Be-
tracht gezogen werden, wenn ihre Integration iiber 2, und w
durchgefiihrt wird. Es ist jedoch einfacher, zunichst von den
Bewegungsgleichungen

(46) m.x; = (U;—X;) cos (%;— yg) —
— (Tj;leSinQDj*H]') sin (y; — yg) cos o

(47) m,q; = (U; — X;) sin (yg; — vg) +
+ (T; — Gy sing; — Hj) cos (y; — ) oS g;

auszugehen, welche sich unmittelbar auf Grund des Bildes 2
unter Beriicksichtigung von GIl. (I 27) aufstellen lassen, Die
Querbeschleunigung q7 ist hier stets durch das Fahrgestell
und daher durch GIl. (24) bedingt.

Die Léngsbeschleunigung Si] ist hingegen nur in gewissen
Féllen durch das Fahrgestell gegeben und muss in diesem
Falle der GI. (27) geniigen. In den anderen Fillen ergibt
sie sich aus den Radsatzkraften.

Aus Gleichung (47) folgt

(48) (Tj — G sin ¢; — H;) cosg; =
m, q;
08 (¢ —ye)
womit sich Gleichung (46) nach Umformungen zu

(U; — X)) tg8 (¢ — ¢g)

(49)  (U;—X;) = m, [X; oS (;— yg) + 4 sin (g — vg)]

dndert und in dieser Form mit GI. (I 1) tibereinstimmt.
Ferner folgt aus Gl. (48) fiir die Lagerquerkraft H; unmittel-
bar die Beziehung

(U; —X;) sin (¢ — ) — m, 4
€OS g; COS (¢ — yg)

die allgemeine Giiltigkeit hat und insbesondere auf G (L 2)
zurtickfihrt, wenn kein Lagerlingsspiel vorhanden ist.

Fir die y-Drehung bleibt grundsitzlich Gl, (I 5) giiltig,
die je nach Fall als Bewegungsgleichung auftritt oder nach
Umformung zur Gleichung (I8) fiir die Bestimmung des
Ausdruckes (X;, — X;;) massgebend wird.

Innerhalb und an der Grenze des Lagerldngsspiels kann
der Radsatz insgesamt folgende neun Stellungen einnehmen:

Fallvv [X;, > 0, X;; > 0]. Der Radsatz liegt bei beiden Lager-
stellen vorn an.

(50) Hj=T;— G,sing;

Je nach den sich aus dem letzten Integrationsschritt
ergebenden Werten von X;, und X; geht dieser Fall in
Fall tv bzw. vf liber, wenn X;, bzw. X; negativ wird, in
Fall £f, wenn X;, und X;; beide negativ werden,
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Fall hv [Xj, < 0, Xji > 0]. Der Radsatz liegt links hinten und
rechts vorn an.

Dieser Fall bleibt bestehen, solange X;, und Xji ihr Vor-
zeichen nicht wechseln. Er geht in Fall fv bzw. hf uber, wenn
Xja positiv bzw. X;i negativ wird, und in Fall ff, wenn gleich-
zeitig X, und X;; ihr Vorzeichen wechseln.

Fall vh [X;, >0, X;; < 0]. Der Radsatz liegt rechts hinten
und links vorn an.

Dieser Fall besteht, solange Xja und Xj; ihr Vorzeichen
nicht wechseln. Er geht in Fall th bzw. vf tiber, wenn X;,
negativ bzw. X;; positiv wird, und in Fall ff, wenn gleich-
zeitig X;, und X;; ihr Vorzeichen wechseln.

Fall hh [X;, < 0, X;; < 0]. Der Radsatz liegt bei beiden La-
gerstellen hinten an.

Dieser Fall geht in Fall hf bzw. th lber, wenn X;; bzw.
Xja positiv wird, in Fall ff, wenn Xja und X;; positiv werden,
und bleibt bestehen, wenn Xja und Xj;; negativ bleiben.

Fall fv [0 < 1;sin (Ye—yy) < iy, Xja =0, X;i>0)14). Der
Radsatz liegt links innerhalb des Spiels frei und rechts vorn
an.

Dieser Fall geht bei positiv bleibendem X;i in Fall vv bzw.
in Fall hv tiber, wenn y; > iy, bzw. wenn r; sin (gg—;) >
iy wird, in Fall ff, wenn gleichzeitig die Ungleichheit 0 =
r; sin (¢g—+;) < i, bestehen bleibt und Xji negativ wird,
und in Fall hf, wenn gleichzeitig r;sin (g —y;) > iy und Xii
< 0 werden.

Fall v [0 <rjsin (¢ — ) < iy, Xju > 0, X;;=0]. Der Rad-
satz liegt rechts innerhalb des Spiels frei und links vorn an.

Dieser Fall geht bei positiv bleibendem Xja in Fall vv
bzw. in Fall vh iiber, wenn y, > ¥j bzw. wenn r;sin (y;—y,)
> iy wird, in Fall #f, wenn gleichzeitig X;, negativ wird
und die Ungleichheit 0 < r;8in (y; — yg) <iy bestehen bleibt,
und in Fall fh, wenn gleichzeitig r;sin (5 —1g) > iy und
Xja < 0 werden.

Fall hf [0 < r;sin (Pe—1yy) < i, Xja < 0, X;; =0].DerRad-
satz liegt links hinten an und ist rechts frei.

Dieser Fall geht in Fall hh bhzw. hv iiber, wenn v > Yy
bzw. wenn r; sin (Yg—5) > iy wird, in Fall ff, wenn bei be-
stehender Ungleichheit 0 < rjsin (Yg—;) < iy die Lager-
langskraft X;, positiv wird, und in Fall fv, wenn gleichzeitig
r; sin (g —1;) > iy und Xja > 0 werden.

Fall fh [0 < 1;sin (y; — vg) < iy, Xja = 0, Xj; < 0]. Der Rad-
satz ist links frei und liegt rechts hinten an.

Dieser Fall geht in Fall hh bzw. vh iiber, wenn v < g
bzw. wenn r; sin (y; — ) > iy wird, in Fall £f, wenn bei be-
stehender Ungleichheit 0 < r; sin (y; —yg) < i, die Lager-
langskraft X;; positiv wird, und in Fall vf, wenn gleichzeitig
r;sin (y; —g) > iy und X;i > 0 werden.

'5[/])|) << 1) X]a: X”:O]. Der

Fall £ [(|Ax;| + |r;sin (g
Radsatz ist beidseitig frei.

Bei positivem Ax; geht dieser Fall in Fall fv bzw. vf iiber,
wenn r; sin (yg— ;) > (ix + AX;) bzw. wennr; sin (y; — vg)
> (iy— Ax;) wird und bei negativem Ax in Fall hf bzw. fh,
wenn r; sin (yvg— ;) > (ix + Ax;) bzw.wenn r;sin (5 — ¥g)
> (iy + Ax;) wird. Wenn |Ax;| > i,; wird, geht er ferner bei
positivem Ax; in Fall vv und bei negativem Ax; in Fall hh
tiber. Schliesslich geht er in Fall vh bzw. hv iiber, wenn, bei
AX = 0, 1y sin (¢; — ¢g) bzw. r; sin (Y — ¥;) > ix wird.

Wie man sieht, ist im betrachteten Zeitpunkt zur Be-
stimmung des flir den nédchsten Integrationsschritt mass-
gebenden Falles eine ganze Reihe Teste durchzufiihren. Test-
diagramm IV zeigt, wie diese Teste vorgenommen werden
konnen., Dabei bedeuten s, und s; Faktoren, die je nach dem
im letzten Integrationsschritt vorliegenden Fall geméiss Ta-
belle I den Wert + 1 oder — 1 aufweisen.

4) Geméss Verzeichnis der Bezeichnungen ist rj = I'p,COS ¢j.



Zur ndheren Betrachtung der einzelnen Fille sind diese
in folgende drei Gruppen einzuteilen:

Gruppe a: Der Radsatz liegt beidseitig an, Fille vv, hh, vh
und hv.

Gruppe b: Der Radsatz liegt nur einseitig an, Fille fv, vf,
hf und fh.

Gruppe c: Der Radsatz liegt frei, Fall ff.

4.1 In den Fdllen vv, hv, vh und hh der Gruppe a

liegt der Radsatz beidseitig am Fahrgestell an, fiihrt somit
die gleichen Bewegungen aus, so dass seine Beschleunigungen
und die Lagerldngskréfte X;, und X;; allein durch das Fahr-

5'a+i> §
2 +

(52) X] = Uj— ml{gg— {als—a” + (
\ Vi)

R.lief bisher im falle
vv,hv,vh, hh

R. lief bisher im Falle

vf, hf, fth , fv

SaX>0

S Xi>0
o
Silve

Sl X/ >0
SaXa"‘Sin
s)(«/,,«p,)r,dj

bisher
hh, hv
bisher
vv,hv
Silr>(Sa
bisher

bisher
fv,vf

bisher
vf,fh

Fall Fall
bleibt

gestell bedingt sind. Es gilt somit u. a. % = J/g und daher
Gl (I8) fiir (Xj,— X;i). Ferner sind die Beschleunigungen
ijj und S{j durch GI. (24) und (27) gegeben, wenn man darin
die Beziehung

1 .
(51) ijzi(ga"‘gi)jlx

einfiihrt, aus welcher sich der konstante Wert + i, im Fall
vV, — i, im Fall hh und 0 in den beiden Fillen hv und vh fiir
Ax; ergibt.

Fiihren wir beide Gleichungen (24 und (27) unter Be-
riicksichtigung von Gleichung (51) in GIl. (49) ein, dann
folgt die Beziehung

2

X] ‘;”:2} cos (¥ — ) _ml{é‘l_‘g S [a15~a.]j ST (‘SE‘H)IX] F.”'g}sm (5 — )
/i

Ax=>0

Fall
bleibt

-
B
|
2]
f
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] Testdiagramm IV:

Von nun an
Fall vy

Von nun an
Fall fv

Von nun an
Fall th

Von nun an
Fall vf

Von nun an
Fall hf

Von nun an
Fall hh Fallvh

Von nun an
Fall hv

Von nun an Von nun an Teste zur Bestimmung

fall 1t der Lage, die der Rad-

Sa=-15i=0 Sa=t1S=0 Sa=0,5i=-1 Sa=0,Si=+1 a=+1,Si=+1

Sa=1Si=""1

Sa=#,5i=-1 Sa=-1S;i=+

Sa=0:5;=0 satz innerhalb des

L 10,2541, 220 | |

Lol 0,10 |

freien Lagerldngsspie-
=0,1;=0,1 <1 s 2
L0k j les einnimmt.

flir die totale Léngskraft, aus welcher X;, und X;; nach
Gl (I9) und (I10) sowie nach Gl. (50) ermittelt werden
kénnen.

4.2 In den Fdllen fv, v, hf und fh der Gruppe b

liegt der Radsatz vorn oder hinten einseitig an, so dass die
betreffende Lagerlangskraft und die Radsatzbewegung teils
durch den Radsatz selbst, teils durch das Fahrgestell be-
dingt sind.

Mit den Faktoren s, und s; 1dsst sich fiir den sich in allen
vier Féllen ergebenden geometrischen Zusammenhang zwi-
schen Ax; und (y; — yg) die Beziehung (H 19) aufstellen, die
sich auch

(53)  (sa—si)jix = x;8in (Y —vg) + (52— 52); AX;

schreiben l&sst. r; bleibt in der Grossenordnung von r, und &én-

dert sich somit nur wenig. Die Ableitungen r; und r; kénnen
daher bei jedem Integrationsschritt mit geniligender Genauig-
keit aus den entsprechenden Differenzenquotienten durch
Extrapolation ermittelt werden. Die zweite Ableitung von
Gl. (53) kann somit

(53a) 0 = T;sin (y;— ) + 1jc08 (¥ — ) (% —yg) +
+ 215 (% — i) €OS (Y — ) —
— 1 (5 — ) SIn (g —yg) + (s —s52); Ay
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geschrieben werden und fiihrt nach Einflihrung von Gl. (27)
und nach Umformungen zur Differentialgleichung

(54)

wobel das rechte Glied durch die Beziehung

1;C0S (; — Yg) ¥j + (sa2 — s2)X; = D

(55) Dj =r;lcos (y;—yg) gg + (J5— pe)?sin (g5 — pg)l —
—2 i'] (’:Lj e 30‘1;) cos (y; —yg) — r] sin (y; — ) +
+ (ga24g]2)j[§g_ (als’f alj + ij) \//.g2]

gegeben ist und alle Glieder, ausgenommen diejenigen mit i,»

und ;LJ-, zusammenfasst, die sich in Gl. (53a) nach Ein-
setzen von GIl. (27) ergeben. Die Gl. (54) stellt die Diffe-
rentialgleichung, welche die relative Lage zwischen Radsatz
und Fahrgestell bedingt, dar.

Mit dem weiteren Ansatz

1 [ U;

B8 O = ) |y e 2Rt (B — ek

(56) C;=

o+ a%) fil sin (45 — ¢ |

schreibt sich schliesslich Gl. (49) unter Beriicksichtigung von
Gl. (24) fiir q; auch einfacher

X

4.8 Im Fall £f

sind die Lagerldngskrifte X;, und X;;, null und der Radsatz
fihrt in der Léngsrichtung seine eigene Bewegung nach den
Bewegungsgleichungen (57) und (I5) aus, in welchen die
Glieder mit X;, und X;; ausfallen.

Es gelten somit in diesem Falle die Bewegungsgleichun-
gen

(63) Xy =,
o > :
(64) (‘)ﬂ[/j = 7( U‘e)J
COoS @;

by Zusammenfassung der Fille

Fiir H; gilt Gl. (50) und fiir q, Gl. (24). Mit den drei
Faktoren T,, T, und T, die gemiss Tabelle I den Wert 1
oder 0 haben, lassen sich weiter die Beziehungen (65) bis
(74) angeben, die alle Falle zusammenfassen und einen bes-
seren Ueberblick erlauben. Dabei sind die Beziehungen so
zu verstehen, dass die zwischen Klammern [] stehenden Glie-
der nach dem Einsetzen der betreffenden T-Faktoren die
Nummer der massgebenden Gleichung ergeben, wenn die in
der Klammer vorhandenen T nicht alle null sind. Sind sie
jedoch alle null, so soll vorausgesetzt werden, dass die Be-
ziehung keine Ermittlung der betreffenden Grisse gestattet,
mit Ausnahme der Krifte X;, X;, und X;;, die in diesem Falle

50 X =6— ——— — null sind.
OO H=G— s )
65) X;=XI[T1,(52 T, (60) 1,
Die Gréssen D; und C; sind einerseits mit ¢,; durch das e BRSOy
Gleis bedingt und héingen anderseits von den einzelnen Ko- R
ordinaten und Geschwindigkeiten des Radsatzes und des (66) Xju = Xa[Ta(I9) + Ty, (58)];
Fahrgestells sowie von den Beschleunigungen X, vy und ¢; <. =X, I1 .
ab, die fiir die Vornahme der Schrittintegrationen am Rad- LB i [T, (110) + T, (59)]
satz als bekannt vorauszusetzen sind. 68y ZIT, (61) 4+ Tu(63)]
X: = :
Die Gleichungen (54) und (57) bilden mit Gl. (I8) das > 4 XLSD o 1
hier fiir die Bestimmung der beiden Beschleunigungen 3'(”- (69) ,1/ — 7 ¢ +\,'b. [T, (62) 4 T. (64)];
. - a r D c
und y¢; sowie der beiden Lagerlingskrifte X;, und X; mass- ! 2 ’
gebende Gleichungssystem 5). Seine Auflosung fiihrt zu den (T0) % = % [(Ty + To) (6)1;
Beziehungen rj 1 b c i
_ 0,:Cj + [1r, cos (y; — yg) (EUe); — 6, Dj] (71) @y = @, [(Ta30a)];
(98) K = il 005 (= e) r2 m, cos2 (y; — vg) + Or
8.C; —I[ ( Je) (SUe); — 6, D;] 20 A=l G
O,C; — [ry, cos (¢; — > i — 0, D;
(59) Xji = sii® My COS (Y — yg) ——— 5 — ﬁ;(. e e -
L I CosSilyn=iie § (73)  w; = w [T, (292) + (T, + To) (282)];
und
0.C: 2 52).[rg COS (pi — ) (SUe); — 0, D1  (74) w; = w [T, (29) + (T, + Tc)(28)];
(60) Xj =m, COS('«//]‘—y//g) rj + (5a Si )_7[ L (’;b!] SDg ] o] J a

flir die Lagerldngskrifte und zu den beiden Bewegungsglei-
chungen

_ Cjri2m, cos? (y; — yg) — (522 — 52); [T1, cos (¢ — yg) (ZUe); — 0, Dj]

71"}42 m; cos2 (3[/] — l,bg) + O

Im Flussdiagramm X ist der Weg
veranschaulicht, wie die ganze Radsatz-
berechnung bei dieser Lagerungsart
durchgefiihrt werden kann.

(61) x4 r1.2 m, cos? (Y — yg) + O
und
(62) 1’[}7 = (EUe)j — m, I' 1,COS8 (E[/] I Sbg) [i(sa2 — siz)jcj '—Df]

cos g; [rp2m, cos? (y; — vg) + 0,1

Letztere Gleichung kann unmittelbar zur Integration
herangezogen werden, Gl. (61) hingegen nicht, da x auf ein
bewegliches Koordinatensystem bezogen ist. Wie wir bereits
frither feststellten, muss die Integration von der Léngshe-
schleunigung 5&,‘1» aus vorgenommen werden, welche nach GI.

(6) aus iij [Gl. (61)] und ij] [Gl. (24)] zu ermitteln ist.

Die Querordinate w; und die Geschwindigkeit 'u')j- des Rad-

satzes lassen sich dann aus x,; und 9.0,7- nach GIl. (28) und
(28a) ermitteln.

5) Das System der drei Gleichungen (54), (57) und (I 5) mit den
vier Unbekannten xrj, ¥rj, Xja und X;; kann gelést werden, weil
jeweils X, oder X;i null ist.
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5. Radsatzlagerung mit freiem Quer- und Léngsspiel

In den bisher behandelten Féllen war entweder nur Quer-
oder nur L#ngsspiel in der Radsatzlagerung vorausgesetzt.
Spiel kann aber auch gleichzeitig in beiden Richtungen vor-
handen sein. Die Verhéltnisse werden in einem solchen Falle
wesentlich komplizierter, und die in den einzelnen Abschnit-
ten 2 und 4 oder 3 und 4 festgestellten Zusammenhénge sind
jetzt gemeinsam zu untersuchen. Es ergeben sich 27 verschie-
dene Moglichkeiten der Radsatzeinstellung im Fahrgestell,
je nachdem der Radsatz einerseits die Lage a, i oder f in
Querrichtung und anderseits die Lage vv, hh, vh, hv, vf, hf,
fv, th oder ff in Lingsrichtung einnimmt. Entsprechend den
beiden Gruppen (a, i) und f bei Radsatzlagerung mit Quer-
spiel und den drei Gruppen a (Félle vv, hh, vh und hv),
b (Fille vf, hf, fv und fh) und c (Fall ff) bei Radsatzlage-
rung mit Léngsspiel, lassen sich diese verschiedenen MOg-
lichkeiten in sechs Gruppen I bis VI einteilen.

Steht der Radsatz nach Ausnutzung des Spiels in Lings-
oder in Querrichtung am Fahrgestell an, dann sind die rela-
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tiven Ausschldge Ax; und Aq; durch die Lagerspiele i, und i
festgelegt, nédmlich Ax; nach Gl. (51) und Aq; nach Glei-
chung (H 20).

In diesem Falle gelten somit die sich durch Ableitung
der Gleichungen (51) und (20) ergebenden Beziehungen

(75) Ax; =0
(76) Ax; =0
(77) A'q]- = 7qjiq [‘i’i sin g; cos (¢j — yg) +

L (Bz‘j—‘r,;g) cos g@; sin (y; — yg) ]

K

(78) Aq; = 74;ig {ti;j sin g; €os (y; — yg) +
+ ($j— ) €08 @ sin (Yj — yg) —
— 295 (j — g) Sin g; sin (y; — ) +
+ Lo + ($; — ¥¢)2] cos g; cos (¥ — ¥)|

Ist die Radsatzlagerung mit elastischem Querspiel ver-
sehen, so gelten Gl. (75), (77) und (78) ebenfalls, wenn man
darin 7q; durch 7ej Und iy durch e, ersetzt.

Auf Grund obiger Beziehungen sind wir nun in der Lage,
das Verhalten des Radsatzes in den einzelnen Stellungsgrup-
pen I—VI zu untersuchen, wobei im folgenden Radsatzlage-
rung mit freiem Querspiel vorausgesetzt wird.,

5.1 Der Radsatz befindet sich in Langsrichtung in der Lage
vv, hh, vh oder hv (Gruppe a) und in Querrichtung in der
Lage a oder i: Ty; = 1, 7,2 =1, Xagj = Toj = Te; = 0

Der Radsatz steht hier in beiden Richtungen am Fahr-
gestell an, und es gelten somit die Gleichungen (51) fiir
Axj, (75) und (76) flir Ax; und Ax;, (20) fiir Ag;, (77) fiir Aqg;
und (78) flir A'q,“. Aus GIl. (9b) und (10b) ergeben sich nach
Einflihrung von Gl. (9a), (10a), (51) und (76) die hier fiir qJ
und x, massgebenden Differentialgleichungen

sa 1 si
2

(79) d; = g+ [als—al,-Jr( )1} Vg + Adj —Aq; g
/1

(80)

. e /s 5
X; = xg—v{als—alj—%( a_2’— -

), ix] gt — 20 3 — Ty

Die Beschleunigungen X,; und g,; des Radsatzes ergeben
sich aus diesen beiden Beschleunigungen gemiss Gl. (7). Sie
werden dem Radsatz vom Fahrgestell aufgezwungen und
sind fir die Grosse der totalen Lagerlingskraft X; und der
Lagerquerkraft H; bestimmend. X; ergibt sich daher nach
Gl. (I7) und H; nach der unmittelbar aus Gl. (I2) folgenden
Beziehung

(Bl H = (TG, sy et
’ cos @;

Die y-Bewegung des Radsatzes ist ebenfalls durch das
Fahrgestell bedingt, so dass i; und ¢; in diesem Fall gleich
Jp und ¢, sind. (Xja—Xji), Xja und X;; kénnen somit nach
Gl. (I8), (I9) und (I10) ermittelt werden, wenn darin y;
durch y, ersetzt wird.

Schliesslich gelten fiir die Koordinaten x,; und w; des

Radsatzes die sich aus GL (9) und (10) nach Einfiihrung der
Gl. (21), (51), (Li2) und (L 4) ergebenden Beziehungen

(

(83) w;=v+ [a15——a1j+ ( sa‘_zl_si

sat si

(82) xy=p+ [1115 — aqj - ) ix] cos Y — Aqg; sin g
/i

) ix] sin Y, + Aq;j COS g
i

deren erste Ableitung zu

. B . sa 1 si
(82a) @py=1u;— i I:Chs——alj-f-( 5

) ix“ sin g —
/i

= A._Qj sin g, — Aq; g COS g
und

(83a) 'L'U]- = {7_1_ 32’5 [U’qs— aj + (sa -2*-si

)'ix-l cos g +
/i

+ Aq; S Yz — AQ; g SIN Y
fiihrt.
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5.2 Der Radsatz befindet sich in Lingsrichtung in einer der
vier Lagen der Gruppe a und in Querrichtung in einer Lage f:

Toj =1, X¢j =1, 7 =0 =T; = Tej

Diese Art der Einstellung ist einerseits durch
Ax; = konstant bzw. Ax; = 0 und anderseits durch H; = 0 ge-
kennzeichnet. Aus Gl. (10b) folgt fiir die Lingsbeschleuni-
gung des Radsatzes unmittelbar die Beziehung

(84) X; = X, —[als;alj_(fa;—ﬁ)ljx] a2 —
\ ] -

— 2 YgAd; — g Ag;
Diese Beschleunigung muss von den auf den Radsatz wir-
kenden Kréften und entsprechend der Bewegungsgleichung
(46) hervorgerufen werden. Demzufolge ergibt sich fiir die
totale Lagerlingskraft die Beziehung
(85)

. m, X;
Xj = U;— (Tj — Gysin ¢;) cos ¢; tg (¢j — vg) — ey

Da der Radsatz auch hier in seiner ¢-Drehung mit dem Fahr-
gestell verbunden bleibt und daher y; = i, ist, sind GL (I8),
(I9) und (I10) fiir (Xja —Xj1), Xja und X, wenn man
darin y; durch ¢, ersetzt, giiltig.

Die Querbeschleunigung q] ergibt sich aus den Radsatz-
kréaften gemdiss Gl. (47) zu

s 1
(86) q; = o LU —X;) sin (y; — ) +
+ (Tj — Gy) sin ¢;) cos g cos (¢j — yg) ]

und fiihrt mit x; zu w; gemiss G1. (6).
Daraus lésst sich durch Integration w; ermitteln, mit
welchem sich dann «,; nach der Beziehung

e (sa + si) b s -
(87) &y = Ty + ( > /)ngbg (w; — T;) tZye
ergibt, die aus Gl. (10) unter Beriicksichtigung von Gl. (51)
folgt. Die Ableitung von Gl. (87) fiihrt zu

(o si N . . — 1
( 3 )jlxslngbg_(w]‘vj)]v

(87a) dj =gy + fi cos? g

— (10; — ;) tg Yy

womit ,; ebenfalls bestimmt ist,

5.3 Der Radsatz befindet sich in Langsrichtung in einer der
vier Lagen der Gruppe b und in Querrichtung in der Lage a
oder i:

Tbj =1, ’rqj2 =1, Ta; :ch =i 0

In diesem Falle gilt die Beziehung (53) fiir den geome-
trischen Zusammenhang zwischen Ax; und (¢, — ), GL
(53a) fir die zweite Ableitung von Gl (53), Gl. (10) fiir

Ax;, Gl (10b) fir Ax;, GL (H 20) fiir Ag;, G (77) fiir Aq; und

Gl. (78) fiur &q]—. Setzt man GI. (10b) unter Beriicksichtigung
von Gl. (9a) in Gl. (53a) ein, so erkennt man, dass sich diese
mit dem Ansatz

(88) Dj=r;[cos (y;j—yg) Vg + (45— )2 sin (y; — yg)]
— 21 (5— i) €08 (¥; — ) — T sin (Y — ¥g) +

T (522 —5i2); [ig-— (@15 — @1+ AX;) g2 — ZHl/‘g"X'_Q;i’*
—Aq; el

wiederum zur Gleichung (54) wird, Die durch das Fahr-

gestell bedingte Querbeschleunigung ergibt sich aus Glei-
chung (9b) nach Einfiihrung von Gl. (10a) zu

(89)
q; = ﬁg + (@1s— @1j + AX)) ¥y - 29 AX; + Aq;e? + qu
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Es gelten ferner die beiden Bewegungsgleichungen (46)
und (47) sowie die daraus abgeleitete GL (49). Fiihrt man
Gl (89) in letztere ein, so erhilt man ebenfalls GL (61) fiir
x,, wenn jetzt
(90) C; =

ey (M e e+

+ 28%0g + (a1s— a1y + AX;) Yg + B2 +Agy]

—_——

eingesetzt wird. Betrachtet man schliesslich, wie GI. (58),
(59) und (60) fiir X;,, X;; und X;, Gl (50) fiir H;, GL (61)

fiir X; und Gl (62) fiir 31;, entstanden sind, so erkennt man,
dass auch sie ihre Giiltigkeit hier haben, vorausgesetzt je-
doch, dass D; und C; nach GI. (88) und (90) eingesetzt wer-

den. Aus q; [GL (89)] und X; [GL (61)] ergibt sich dann
a'a:,.j geméss Gl. (6). Aus den durch Integration ermittelten

Werten von aél.j und 2,; lassen sich diejenigen von u),- und
wj nach der sich aus Gl. (9) und (10) ergebenden Beziehung

- ) Aq;
91 = i —Tsi) ]
(91)  w; = v; + (%; — %) t e + OB e
und ihrer Ableitung
(918) w; = v; + (&rj— Tgy) t Pg +
. — e 5 1 A_qj
+ vg [(%j — ;) + Aq; sin ye] o 08 Jg

bestimmen.

5.4 Der Radsatz befindet sich in Ldngsrichtung in einer der
vier Lagen der Gruppe b und in Querrichtung in der Lage f:

Toj =1, x5 =1, Tqj = Taj = Tej =0

Dieser Fall unterscheidet sich vom vorherigen dadurch,
dass jetzt der Radsatz in der Querrichtung frei ist, so dass
seine Lager-Querkraft H null ist und seine beiden Koordi-
naten x,; und w; durch Differentialgleichungen bedingt sind.
Die beiden relativen Ausschlige Ag; und Ax; sind nicht mehr
durch die Lagerspiele i, und i, festgelegt, so dass in Gl. (53a)
die unverénderte Gl. (10b) einzusetzen ist. Damit ergibt sich
das rechte Glied D; der Differentialgleichung (54) ebenfalls
nach GI. (88), wobei geméss obigem der relative Ausschlag
Ag; nicht mehr durch Gl. (H20) und seine Ableitung qu
durch Gl (77) festgelegt, sondern durch die Bewegung des

Radsatzes bedingt sind, und daher Aq und A_q durch Aq und
Aq zu ersetzen sind.

Fiir die Lédngshewegung gilt grundsétzlich Gl. (I1), fiir
die Querbewegung Gl. (I2) und fiir die y-Drehung Gl. (I 8).
Unter Beriicksichtigung von Gl. (8) fiir x; ergibt die Ein-
flihrung dieser drei Gleichungen in Gl. (54) nach Umformun-
gen die drei Beziehungen

[0, [U; — (T; — G, sin ;) cos ¢ tg (% — ve)]

. o— ¢ 2
(92)  Xjo = sja ] 0, + rr2m,
0:D;
i [rL ey ]l
" Oy + riy2 m, I

for ([U; — (T; — G, sin ¢)) cosg; tg (¢ — ye)]
©05) Xy =n| =

L2 0: D,
m, [rL(ZUe)j—iCOS @ =L W)J
K17 (')r‘" I'L2rnz'
und
0, ([U; — (T;—Gysing;) cos g; tg (¢j — ve)l
(94) X;=

Oy + rr2m,
(522 — s2);m; [TL (2Ue);—

Or + I'L2 m;

0r D; J
cos (Y5 — Vvg)

+



deren Einsetzen in Gl. (I5) und (I1) die Differentialglei-
chungen zu

D,
coS (W) — o) __

Y. (2Ue); + rym,

(95) ;=

€os ¢; (0, 4 ri2m,)
— 5By, [U; — (T; — Gy sin ¢;) cos g; tg (y;—ye) ]
e cos ¢; (6, + 112 m,)
und
96) %, — 'PMuU; + 0, (T; — G, sin ¢;) cos g tg (¥ — yve)
rj =

m, (0, + ri2m;)
rr (EUe)j Cos (}//] = ybg) — GPDj

. LSS T
Gt =) 6T roomy) €08 (g5 = ge)

tihrt. Ferner gilt Gleichung (32) fiir ¢,;. Aus %,; und qr; er-
geben sich schliesslich die beiden Beschleunigungen o'c'r,- und 123j

gemiss Gl. (4), aus welchen die Werte von x',]-, Wy, Xrj
und w; durch Integration erhalten werden.

5.6 Der Radsatz befindet sich in Lingsrichtung in der Lage
tf und quer in der Lage a oder i:

Tej =1, 72 =1, xqj =Taj = Tpy = 0

In diesem Falle sind die Lagerlingskrifte null, und es
gilt hier GL. (89) fiir q] und Gl. (50) fiir H;. Flir die Lings-
bewegung lidsst sich geméiss Bild 2 unmittelbar die Bewe-
gungsgleichung

ml.zir:.,.]- = UjCOSHZ/j =+ (HfCOS(pj — Y] — L]‘Sin(p]) sin 1z

angeben, welche nach Einfilhrung von Gl. (50) und (I27) zu
A

cos (¥ — ye) (
wird. Die Integration dieser Gleichung fiihrt zu den Werten

von 3'0,.7- und x,;, aus welchen diejenigen von iuj und w; nach
Gl. (91) und (91a) ermittelt werden konnen. Fiir v gilt die
Bewegungsgleichung (64).

Uj cos g
m,

(97)

.’.l.f,"x’j = — q; sin \‘bj)

5.6 Der Radsatz ist in beiden Richtungen frei:
ch = 1, Xaj = 1, Tqj — Ta]' = T])j =30,

Hs treten hier weder Lagerldngskréifte noch Querkrifte
auf, so dass der Radsatz allein den Schienenreaktionen und
den Lagerdriicken L; ausgesetzt ist. Hs ergeben sich somit
unmittelbar die beiden Differentialgleichungen

(98) ;= o [Ujsin y; + (T; — G, sin ¢;) cos g; cos ;]
:
und
. 1 « :
(99) @ = = [Uj cos ¢j — (T; —G, sin ;) cos ¢; sin ;]
:

wihrend Gl (64) ebenfalls fiir ; massgebend bleibt.

5.7 Zusammenfassung aller Fille

In den Abschnitten 2 bis 4 wurden die fiir jede Einstel-
lungsgruppe aufgestellten massgebenden Beziehungen am
Schluss mit Hilfe der Faktoren 7, x und T zusammengefasst.
Das gleiche ldsst sich auch hier durchfiihren, wenn die in
Betracht gezogenen Ergebnisse mit dem massgebenden Pro-
dukt T - 74 oder T - x, festgehalten werden. Somit ergeben sich
die allgemeineren Beziehungen:

(100) d; = q{re® [Ta(T9) + (Ty + Te) (89)] + XaTa (86) ),
(101) X; = X {r[14(80) + T, (61)] + XaTa (84) ),

(102) Gy = dr {Toxq (32) + 7420 (7)),

GRS sy = {T,,Xq (96) -+ ¢q2fra(7)}j

(104) #y5 = @y {72 [T (6) + Tc (97)] + xq [T (4) + Te (99)1),

K

3

i

(105) w; =16 {xq[Ta(6) + Ty (4) + 1. (98)1}
(108) %y; = @y {Ta [742 (82a) + xq(87a)]}]_
(107) w; = w {7 [Ta(832) + (T + Te) (91a)1}
(108) @y = oy {Ta [742(82) + xq(87)] }]

(109) w; = w {72 [Ta(83) + (1 4Tc) (91)1},
(110) 3

P = ;L{Tb [742(62) + xq(95)] + T, (64)}j + Taj g
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g der falle

Bl My Lo H X X, %, T BT, S0, NG N
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Testdiagramme I u.JIT

XI Flussdiagramm zur dynamischen Berechnung des mit
freiem Léngs- und Querspiel gelagerten Radsatzes (Ab-

schnitt K.5).
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(111) D, =D {T,, (88)},
(112) C; = C {Tyre2 (90)),
H {742 [Ta(81) + (Ty+ Te) (50)1),

(114) X; =X {0, [rg2(I7) + xq(85)]+ Ty, [ (60) + Xa (941},

(113) H; =

d15) X, =X, {Ta(IQ) + 1), [742 (58) + xq (92)]}j

(116) Xji = X, {Ta (I110) + Ty[7q?(59) + xq (93)1},

fiir welche die gleichen Voraussetzungen wie fiir die Bezie-
hungen (65) bis (74) gelten, wobei jedoch ebenfalls die Kraft
H; null ist, wenn in der Beziehung (113) alle Faktoren = und
T null sind. Flussdiagramm XI zeigt, wie die Radsatzberech-
nung in diesem Falle vorgenommen werden kann.

6. Bemerkungen

In diesem Kapitel wurden bisher die verschiedenen Be-
ziehungen mathematisch ohne Vereinfachungen abgeleitet.
Einzelne sind deshalb ziemlich kompliziert ausgefallen, ge-
statten aber eine exakte Kontrolle ihrer Zusammenhinge.
Eine nachtrégliche Vereinfachung kann durch Einfiihrung
der Ansdtze (D 34) erreicht werden. Dies ist insbesondere in
den Abschnitten 4 und 5 fiir den Winkel (Yr — ) zullssig,
der bei dem praktisch nie vorkommenden Lagerldngsspiel

L. Die Bewegung des einfachen Fahrzeuges

e
\\ = D
% \J: )[ g o
Ty = L — Z
S Egi
\ g L 3 = o :
Qt \ s ”
0l qg]. \Q 7
’ZJ"]' %
Zgj .
Zgj

Als einfaches Fahrzeug wollen wir hier ein solches be-
trachten, bei dem alle Radsitze im gleichen Rahmen ge-
lagert sind.

1. Verschiedene Beziehungen zwischen einzelnen Koordina-
ten und ihren Ableitungen

Zwischen den einzelnen Koordinaten v, v, v;, v, %, %,
g, %z, ¢ und y, lassen sich unmittelbar die rein geome-
trisch gegebenen Beziehungen (siehe Bild 1)

(1) V—v =v;—v; = hsing;Cosy,

(2)  v;—v=7;—V = (15— ay;) siny,
(8) @y — 2y = ®yg; — @55 = — h,sin gy sin g,
(4)  @gj— Xy = gj — Xg = (@15— G15) COS g

aufstellen.

Da die von den Radsidtzen auf das Fahrgestell ausge-
iibten Kréifte eine wesentliche Rolle auf das Kréftespiel und
die daraus folgende Bewegung des Fahrzeuges spielen, wer-
den wir in unseren weiteren Untersuchungen vor allem die
durch GI. (1) und (3) bzw. (2) und (4) gegebenen Koordi-
naten (v, x;) bzw. (v;, ®) des Punktes S; bzw, E, der sich
auf der Radsatzhohe befindenden Fahrzeuglédngsaxe in Be-
tracht ziehen und die Koordinaten v und «; des Fahrgestell-

(iy =5 mm) ungefdhr 0,005 betrigt und hierfiir die Werte
cos (yr — ) = 0,9999875 und sin (¥r — ¥g) = 0,004999979
aufweist. Eine weitere Vereinfachung kann vorgenommen
werden, wenn mit Riicksicht auf die kleinen Werte, die die
Lagerspiele i, und i, aufweisen, in den betreffenden Bezie-
hungen die Coriolis-Beschleunigungen 2Axy, 2@,y und
25z:g[\q, die Zentripetalbeschleunigungen ,2Ax und Sz;gQAq und
die Tangentialbeschleunigungen y,Ax und Y Aq vernachlis-
sigt werden,

Tabelle 1
Gruppe a b c
Fall v | hv | vh |hh | fv | vf | hf | fh | ff
sa el e =l or [ S e St [
5 £ [ 55 [ B, 8 S, |5 T, S T )
T, +1|4+1|{42|4+2| 0| 0| 0| 0| 0
Ty 0 0 0 0 [+1|4+1|+1|+1] O
Te 0 0 0 0 0 0 0 0 |+1

Bild L. 1. Die Geschwindigkeiten und Beschleu-
nigungen beim Fahrgestell,

schwerpunktes auf v und #. zurlickfiihren. Fiir die Ge-
schwindigkeiten dieser Punkte ergeben sich durch Ableitung
der betreffenden Gleichungen die Beziehungen

(1a)

—b = u,—'v, = h, (9 COS 9z COS g — yigSiN g Sin )

(28) Vj— 0 = V;— U = (01s — @1;) PCOS Y

= gj — dgj =
= — hg (@g cOs g 8inyYy + eSin g, cosyy)

(3a) g — g

(48)  @g— dgj = Bg—— Tgj = (@15 — ;) YgSINYg

und filir die Beschleunigungen die Beziehungen

(1b) D — D = Uj— V) = Dy [gCOS PgCOS Y — g SIN Pg SN P —
— (952 + ¥¢?) SINggCOS Yy — 2 915 COS pgSinYs]
(2b) Vj— O =V = (@15— @1;) (J5COS g — yp2SiNys)

(3b) Xy — &y = Xgj— Xy = hy [0 COS @ SIN Yy + e SIN gz COS Y,

— (q;g2 + ¢g2) singgsiny, + 2 <pg¢gcos PgCOS Y]

(4b) @y — &gy = xg: = (@15 — @1;) (Pgsiny, + g COS Yg)

Aus beiden Geschwindigkeiten a'ch und vy des allgemei-
nen Gestellpunktes M ergeben sich fiir die Lidngsgeschwindig-
keit

(5)  Xgm = @XgMCOS Yy + Uy Siny,

und die Quergeschwindigkeit
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(6)  dgm = VpmCOS Yg— ).(gM sinyg
womit sich aus Gl. (la) bis (4a) folgende Beziehungen fiir
die Léngs- und Quergeschwindigkeit der Punkte S;, E,; und
E,; ableiten lassen:
(1) ).{g*'ig: >éL:J_ng = hg%;sm@z'
(8) ;';g = W
@) g —qg~qgj dgj = Dg pgCOS g
(10) '—qg q}:]—qg (al‘;——alj)ﬁbb
Aus Gl (8) geht hervor, dass die Léngsgeschwindigkeit

Xy bzw. 'Eg]- fiir alle Punkte Hg; bzw. E;; der Lingsaxe durch
S; bzw. S, die gleiche bleibt. Aus den Beschleunigungen

(0, &) und (v;, ;) der Gestellpunkte S, und Ej; folgen die

Quer- und Langsheschleunigungen 1)
= 1COSYy — &g Sin
(11) %g g }bg
= %zCOoSyy 1+ vSiny,
und
(12) {%J == ”J COSyg Egism‘/’g
Xgj = @gj COSYg + vjsin g

welche fiir die Aufstellung und Umformung der Bewegungs-
gleichungen eine Vereinfachung der Schreibweise ermdog-
lichen, die sich aber gleich wie ql und 5{} (siehe Kapitel K,
Abschnitt 5) nicht auf ein festes Koordinatensystem bezie-
hen. Sie konnen daher nicht unmittelbar zur Integration her-
angezogen werden und sind hiefiir auf v, a, ¢, und J, zu-
riickzufiihren. Dazu miissen wir bei der Umformung der ver-
schiedenen Bewegungsgleichungen zunichst Egj, §g]«, qg und
X, mit Hilfe der sich nach Umformungen aus Gl. (1b) bis
(4b) sowie (11) und (12) ergebenden Beziehungen

(13) {% ‘18 + (@15 — ) g
Xej = Xg— (Q15— a15) e
und
(14) [ (i_.g—‘h [;?;gcos Pg— (q.)gQ i 3b‘g2) sin gg]

Xg= Xz + hg [ SIN g + 2 pg g COS g¢]

auf die Beschleunigungen
= Ycos Vg — wg siny,

(15) {

Xp— g =COS Yy + vsm;,bg

1) Siehe Fussnote auf Seite 5

Bild L. 2. Die horizontale Bewegung des Fahr-
gestelles.

Vgi

des sich auf Radsatzhohe befindenden Punktes S, zuriick-
fiihren.

Nach dem Auflésen des sich fiir gg, v, ('1_'g und ig erge-
benden Gleichungssystems (35) konnen dann die beiden Be-

schleunigungen 2, und v aus gy und X, nach den Beziehungen
acg = xgcos g — qgsm Vg

v — qgcos g Xg siny,

(16) [

ermittelt werden, die sich unmittelbar aus Bild 1 ableiten
lassen.

2. Der momentane Drehpunkt O, der y,-Drehung

Wir haben bei der Behandlung der Radsatzbewegung
festgestellt, dass die momentane Bewegung des Radsatzes
als Drehung um einen momentanen Mittelpunkt, das Wen-
dungszentrum £, angesehen werden kann, Das gleiche gilt
{lir das Fahrgestell. Seine Bewegung in irgend einer horizon-
talen Ebene ist vollstdndig durch die Winkelgeschwindigkeit
seiner y-Drehung und durch die Geschwindigkeit eines seiner
Punkte in dieser Ebene festgelegt, z. B. durch die Geschwin-
digkeit 11, seines Punktes 'S, bzw. durch ihre beiden Lings-

und Querkomponenten xg und qg

Da sich die Geschwindigkeit 11, aus der Drehung des
Strahles ©,S, bzw. des Radius p, ergibt (siehe Bild 2), muss
sie senkrecht zu diesem gerichtet sein. Es gilt somit die Be-
ziehung

T
(A7) pg =%
Ve

aus welcher sich unmittelbar fiir den Hauptradius h; und die
Wendungspoldistanz p, die Beziehungen

@8) Ra——5

Ve
und
(19) Pz = &
Vg

ableiten lassen. Nach Einfiihrung der Gl. (5) und (6) schreibt
sich letztere auch
= v co. . sin Xy v
(19a) py = oL S%_ g0 diat _~s1n¢g)
Ve g COSYg \ Xg J

Die beiden Gréssen h, und p, kennzeichnen die Lage des
Wendungszentrums £, und des Wendungspoles N.. Beide
Punkte sind fiir simtliche Punkte der Lingsaxe durch S,
gliltig. Es ergeben sich somit insbesondere fiir den Punkt Eg;
die einfachen Beziehungen

(20)

Tgy = hg und pg = pg + (a1s— ay;)

Die Wendungspoldistanz fg]-, die wir als Wendungspol-
distanz des Fahrzeuges beim Radsatlz j bezeichnen, stimmt
nur dann mit der Wendungspoldistanz p; des Radsatzes j
iiberein, wenn dieser spiellos im Fahrgestell gelagert ist. Ist
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Bild L. 3. Die Ersatzkrifte und
das Ersatzmoment bei der Pen-
delauthédngung des Kastens,

dies nicht der Fall, dann weisen &, und p, eigene Werte auf,
die nach GL (E5) und (E7) zu ermitteln sind.

Die gleichen Betrachtungen am Punkt S, fiilhren u. a.

zu
X X, _ _

(21) hg= %= "% + h, sing;= hy+ hg singg
Ye Ve

und

(22) pg= & = &g— — hg cos ¢g (ﬂg—) =pg—h; (ﬁ) COS @g
Vs Vg vg g

Diese beiden Gleichungen zeigen, dass sich fiir die auf
Schwerpunkthohe stattfindende Bewegung des Fahrgestells
ein Wendungszentrum £, ergibt, das in gleicher Querlage
wie O, liegt, das ihm aber infolge der sich aus der g-Drehung
ergebenden Quergeschwindigkeit um (hgcosgpg) q'ag/yig vorge-
lagert ist.

Aus Gl (18) und (19) geht hervor, dass k. und p, ihr
Vorzeichen mit ¢, wechseln. Dabei bedeutet wie beim Rad-
satz (vergleiche Kapitel E, Abschnitt 1) ein positiver Wert
von h, dass der Wendungszentrum £, rechts vom Fahr-
zeug liegt, und ein positiver Wert von p,, dass sich der
Wendepol N, hinter dem Schwerpunkt S, befindet.

3. Die Bewegungsgleichungen des einfachen Fahrzeuges

Die Radsdtze iiben auf das Fahrgestell die Lagerlings-
krifte X;, und X;;, die Lagerdriicke Lj, und Ly, die Lager-
querkraft H; sowie das zur Ausiibung der Umfangskraft U;
notwendige Reaktionsmoment 1.DU; aus. Alle diese Krifte
zerlegen sich lotrecht sowie horizontal in Lings- und Quer-
richtung geméiss den in Bild 4 exakt angefiihrten Aus-
driicken. Die Reduktion der beiden Lagerdriicke Lj, und Lj
auf den gegeniiber Ey; um [Ax; + Aq;tg (¢; — ¢z)] nach vorn
verlegten Gestellpunkt E;* ergibt dort das Lagerdruckmoment
My*, dessen Léngskomponente das Stiitzmoment My; geméss
Gl H. 23 ergibt und dessen Querkomponente M;y;tg (v; — v;)
beim Gleichgewicht des Fahrgestelles um seine Queraxe eine
Rolle spielt.

2) «SLM Technische Mitteilungen» November 1958 und Glasers
Analen Mai 1960: Geometrische und mechanische Zusammenhinge
bei der Kastenabstiitzung einer Drehgestell-Lokomotive.

n n

Auf das Gestell wirken weiter noch die ihm eigenen
Krifte C sowie die von der Kastenabstiitzung {ibertragenen
Aktionen des Kastens. Wie wir an anderer Stelle gezeigt
haben 2), lassen sich diese bei Reduktion auf den gemein-
samen Mitnahmepunkt O durch eine Mitnahmequerkraft K,
eine senkrechte Stiitzkraft W und durch ein Moment M er-
fassen, wie dies z. B. in Bild 3 im Falle der Wiegenaufhén-
gung gezeigt wird. Dabei ist zu berlicksichtigen, dass die
Krifte K und W im querverschobenen Mitnahmepunkt O
wirken und das vom Kasten auf das Gestell ausgeiibte Mo-
ment M entsprechend zu ergénzen ist.

Aus der Gesamtheit dieser Krifte ergeben sich zunichst
die folgenden vier Gleichgewichtsbedingungen:
in lotrechter Richtung (vgl. Bild ja)

n n

(23) W + Gg= ) L; cos ¢; + Y. H; sin ¢;
1 1

in Ldngsrichtung (vgl. Bilder 4a und 4b)

n
(24) mgXg= ) X;cos (Pj — vg) —
1

n
— Z (H; cos ¢;—L; sin ®;) Sin (y; — yg) — Zg €OS (g —i)
1

n Querrichtung (vgl. Bild 4b)

n

(25) mgdg =), (E; cos g; — L; sin ¢;) cos (;— g) +
1

n
+ X X sin (g — pe) — (K + Y C)) + Zg sin (g — 1)
al

Von diesen drei Gleichungen sind die beiden letzteren
zugleich Bewegungsgleichungen, wiahrend GI. 23, welcher die
Ausserbetrachtlassung der lotrechten Bewegungen zu Grunde
liegt, die Summe aller Lagerdriicke L; festlegt. Zur Ermitt-
lung der einzelnen Lagerdriicke ist die Gleichgewichtsbedin-
gung um die um ¢, geneigte Queraxe massgebend. Esergeben
sich in diesem Falle die verschiedenen in Bild 5 angefiihrten
Krifte und Momente. Werden die Vereinfachungsansétze D. 34
von Anfang an beriicksichtigt und ferner die Glieder mit den
kleinen Grossen zweiter Ordnung Aq; (pg— @;), @; (¥; — ¥g),
Agj (j—g) und (@gz— ;) (¢j—g) vernachldssigt, dann
ergibt sich diese Gleichgewichtsbedingung zu

n

(26) Z L; (@1s— @15 + A%;) — ) H; [ (9 — 9;) (@15 — a1y + A%;) + (b — ve) hel — 11, Y (Xja — Xjt) (95 — 95) +
1 1 1

n
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D
+ Z My; (Y — vg) — 0xs [W—Kgel + [ag, Rz — E Ci (¢i—a15)] g + (hg+ 7) Z Xj— (hg—hp)Zz =0
1 al
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Bild L. 4. Die auf das Gestell wirkenden Kréfte.



Radsatz ;
Radsatz 1

1 1
S C; 4\{
r—\am*f#\%
S |
5 S- ==
=S L
s T5 |
x & g2 8
$° | = S
< T % S~ ’
S S
- < [}
Q 1%} L5
! Y
akr &%‘ 8
%) 3 9
o e F S — . es e I
Sg P o l
o 9
(&} Q
S0 7, COSf 3 R ‘
0 7ZgCoshg)a— = | SIS
] 8 & 9 g |
2% g S \
= X {

A
Sinfpg-pi )=
[reosgjcos f-yelrdoy * HEB>

L
.c \
Fﬂméﬁ 7 acostly ) |

_ Lpigen e~ 6]
\

Mytg()i-+Jg)cos gg+o DX;feosp; coshlj~pg)cosg, +sing ;sin %/
005y }
Hay |

dejmqug(«{zj-ybg) ‘
b a]]‘—l

Bild L. 5. Die auf das Gestell in den um ¢, geneigten Léngschenen wirkenden Kriifte.

Rotation um die z-Axe (vgl. Bild 4b) 3)

n

n

(27) Ogafe =), (H; cos ¢; — L;jsin g;) cos (y;—yg) (@15 — aq; 4 Ax;) + ) (Hjcos ¢ — Ljsing;) sin (¢ — ¢) (hg sin gz +Aq;) +
1 1

n

n
: ! 1B,
=+ ZX]’ [(am‘alj + AX;) sin (y; — ¢g) — (hg sin g + Aqj) cos (y; — vg) — 5 sin (ij -+ ry, Z (Xja — Xji) cos ®; +
1 il

+ Z Ci (¢i— @15) — M, + Zg (hy — hp) sin g cos (g — 1) — K {aKs— [(hy — hp) sin gz + Do cos ¢l tg (vg— %)}

+ Zg axs sin (Yg — )] — ax, Na

Rotation um die Ldngsaxe (vgl. Abb. jc)

n n

(28) Ogx éo'g: hg{z (Hj sin ¢; + L;j cos ;) sin ¢z + Z (H; cos p; — Ly sin ¢;) cos (y; — i) cos cpg} el
1 i

n

n

; / D \ : :
4L X]{sm (Y — ve) (hgcos P - - o8 q;j) — Ag; tggp; tg(sbj—z//g)]-l- ry Y (Xja — Xji) sing; sin (v — ye) +
1 \ / 1

n

I Z Ci (he; — hg) cospg + Zg sin (pg — i) (hy — hp) cosgy + M — Z My; + W [docosgg + (hg — hg) singg] +
1

+ K [(hg — hg) cos gz — bosineg]

Die vier Differentialgleichungen (24), (25), (27) und
(28) sehen relativ einfach aus, weil sie unabhingig vonein-
ander zu sein scheinen. Dies ist jedoch nicht der Fall, weil

die H- und X-Kriifte von ¢, und X, und deshalb von Gl 5o

3) Das Tragheitsmoment Oy, ergibt sich streng genommen nach
der Beziehung
Ogz = Ogz cos2 ¢g + Ogy sin2 og
aus den Trégheitsmomenten ©g, und Ogy des horizontal entsprechend
(@2 = O) stehenden Fahrgestells. Oz, und Ogy weichen aber praktisch
nicht stark voneinander ab. so dass Og, gleich Ogz gesetzt werden
kann.
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pe und y, abhingig sind. Es ist somit notwendig, diese Glei-
chungen fiir jeden Fall der Radsatzlagerung umzuformen,
wenn man unmittelbar daraus die vier Beschleunigungen des
Fahrgestells ermitteln will. wie dies in den Abschnitten 3.2
und 3.3 durchgefiihrt wird. Diese unmittelbare Bestimmung
der einzelnen Beschleunigungen fiihrt aber zu umfangreichen
Gleichungen, so dass gegebenenfalls der Weg der Iteration,
wie er beispielsweise im Abschnitt 3.4 angegeben wird, vor-
teilhafter ist.

Die Gleichungen 23 und 26 gestatten, die Kréfte L; zu
ermitteln.



3.1  Bestimmung der Lagerdriicke L;

Fiihrt man Gleichung (H. 34) in die beiden Gleichgewichtsbedingungen (23) und (26) ein, so ergibt sich

formung das Gleichungssystem

n KU

n
(a1s — aq; + AX;)
(29 fa Bkt fu Llety
1 1

und

n
1

(a1s — aqj 4 Ax;)2

nach Um-

n

— 2 foik*y
1

n n
(30) fs ). Fe*y; (@gs — aqj 4+ AXy) + f1 ) k¥ ay
1 1 s

n

n
=Ty (Xja — Xji) (pg — @j) — (hg S
1

7)‘1:4)(1—#

n

+ X H; [(pg— @) (@1 — @1j + A%;) + hg (5 — )] — X, Myj (95 — ) —
il all

n
— Y k*y4j foj (@15 — @15 + A%y) + axs [W — 9z K] — 9z @ Ris + g Y. Ci(ci— a1s) + (hy —hp) Zg

i

aus welchem die beiden virtuellen Einfederungen f; und fy
und daraus der Lagerdruck L; nach Gl. (H 34) ermittelt wer-
den konnen.

3.2 Bewegungsgleichungen fiir den Fall der Radsatzlage-
rung mit freiem Querspiel und ohne Ldingsspiel
In diesem durch (Ax; = 0) und (y; = ¢;) gekennzeich-

neten Fall gelten die Gleichungen (K 31), (I9), (I10) und
(K37) flur X; Xj. Xj;; und H;, Nach Einfiihrung der Glei-
chungen (14), (23), (I8), (K31) und (K37) in die Be-
wegungsgleichungen (24), (25), (27) und (28) werden diese
nach Umformungen:

Gl (24) zu:

n

n n n
(81) <mg LN m,v) Xg + <mg hg singg — )" m, qu> Ye=Y U; — Zg cos (Yg — i) + Y. My [(@1a — @17) e + 295A0;]
1 1 1 1

— 2 Mg hy gg g COS g

Gl. (25) zu:

n n n
&2 (mg Y m“) o5 + [Z Tqj2 My (@1 — ali)] e — (Mghgcos gg) g = ), [10;2 (T;  Gysing;) cosp; — Ljsing;]
B 1 7 1 1

n
— mghy (9e2 + Ye?) SiN gy — ) 7q; i My [ (952 + $g2) COS @5 + @ 5in g1 — (K + ) C;) + Zgsin (g — )
1

Gl. (27) zu:

n 5 n n : D .
(33) [ ¥ o2 e — ) :l de - { Oge + ), O, cos? g; + Yo my [7q;2 (15 — @y;)? + Ag; (hgsin gg + 5 Sin g; + Ag;)] } Pg —
il 1

1

—{Z

1

n n

D = 2 i . si 3
m, (hgsingg + - sing; + Aqy)] Xg = ) cosg; (Y Ue);+ ) {(a1s — ayj) [7¢;2 (Tj — G sing;) cos (pj—LJSIDWJJ}_
1 i

n n
] : % . D) o 5 s
— Z Tqjlq My (Q1s — 45) [ (;2 4 ¥2) cos @; + @;sine;] — Z m, (hgsingg + — sin g; 4+ Aq;) [(@1s — 1) g2 + 2 g AQ;] —
1 i

n

— X U; (hgsing, + % sing; + Ag;) + ) Ci (61 — @15) — Mo + Zg [(hg — hp) singgcos (Y — i) + axs Sin (g — yx)1 —
i

-—K{aKS — [(hy — hp) sin . + Ho COS gl tg (Yg — vi) } —oxr N3

und Gl (28) zu:

/ n Nl oo " v i 7
(34) (hg COSQpy qujZ 500 )} E; -+ [hg COS @g qu]ﬂ m, (a5 — alj)] Vg + Ogz g = W Do COS pg K [(ho—hg) COS gz — Do sin npg]
\ i / 1
i " :
-+ cos ¢z 3. Ci (heg—hy) + (hy Gy + hoW) singg + hy cos gz ) [ ;2 (T; — Gy sin ¢;) cos ¢; — L sin g; [ +
1

n
+ Zg sin (g — i) (hg — hp) cos pg — hg COS @g Y, 7qj My ig [(%2 + ¢;2) cos ¢j + @;sin qoj:| 4+ M_—DM;
1
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Die Bewegungsgleichungen (31) bis (34) lassen sich in
der einfachen Form

Xy + 1 —e1
bale -+ Co Ve + dogz= €2
asXg + by s+ s

b4€g‘|‘ Cae+ dagz= €4

(35)
—e3

schreiben. Dabei sind die Faktoren ag, by, ¢, C3, C4, do und ey

bis €4 von Ag, Aq, g, yg @y und ¢, abhiingig. Diese Grossen
sind bei der rein mathematischen Lésung von gleicher
Bedeutung wie §g, ag, ;Lg und ('p'g, so dass das System (35) ein
System von simultanen Differentialgleichungen darstellt,
welches praktisch unlsbar ist. Bei der numerischen Losung
sind sie aber durch die iiber das vorherige Zeitintervall vor-
genommene Schrittintegration bekannt. Desgleichen kénnen
die in den Faktoren es, es und e, auftretenden Kastenkrifte
C;, K und 9t3, die Momente M und M; sowie die einzelnen
Radsatzwinkel g, und ihre Ableitungen ¢; und g; alle auf
Grund der zugehorigen Koordinaten und deren ersten Ablei-
tungen ermittelt werden. Das Gleichungssystem (35) wird
somit ein System von vier linearen Gleichungen, deren vier

Unbekannte §g, Eg, Yz und ¢y auf dem iiblichen Wege er-
mittelt werden konnen. Aus diesen vier Beschleunigungen
lassen sich gy und X, nach Gl (14) und daraus © und %y nach
Gl (11) bestimmen. Mit diesen sowie mit ¢, und ¢, ist dann
die Integration vorzunehmen, welche zu %, v, Yg ¢g %g U,
Yg und g fiihrt.

Zur Durchfiihrung der Radsatzberechnung gemiss Fluss-
diagramm IX ist es unter anderem notwendig, zun&chst den
Lagerdruck L; aus fy, f1 und fs nach Gleichung H. 34 zu er-
mitteln. Wihrend fy als Einbaugrdsse konstruktiv festgelegt
ist, ergeben sich f; und f; aus dem System beider Gleichun-
gen 29 und 30, in welchen die Summen aller Radsatzkrifte
H;, X, Xja und X;; auf der rechten Seite auftreten. Da diese
Kréfte erst am Schluss ermittelt werden konnten, ist es not-

1

wendig, am Anfang der Radsatzberechnungen die beiden
Grossen fy und fs auf Grund einer Extrapolation anzunehmen.
Da f; und fs vor allem durch die Gréssen W, Gg, Zg und X
bedingt sind und daher nur sehr wenig variieren, kann diese
Extrapolation geniigend genau durchgefiihrt werden, so dass
sich eine genauere Bestimmung von f; und fs auf dem Weg
der Iteration voraussichtlich eriibrigt.

Der fir die gesamte Berechnung am Fahrgestell einzu-
schlagende Rechnungsgang ist im Flussdiagramm XII zu-
sammengefasst.

3.3 Bewegungsgleichungen des Fahrzeuges, wenn einzelne
Radsdtze mit freiem Querspiel und die anderen spiellos ge-
lagert sind

Dieser Fall kann unmittelbar auf den im letzten Ab-
schnitt behandelten Fall der Radsatzlagerung mit freiem
Querspiel zurlickgefiihrt werden, wenn man von Anfang an
fiir den Faktor r, der spiellos gelagerten Radsitze den Wert
4+ 1 und fiir das Querspiel iy den Wert 0 einsetzt. Fiir die
Verschubachsen kann 7, ebenfalls von Anfang an, gleich 0
gesetzt werden, wenn das Querspiel i, so gross ist, dass es
bestimmt nicht ausgeniitzt wird. Trifft dies nicht zu, so muss
7q fiir diese Radsétze von Fall zu Fall, wie im Kapitel K ge-
zeigt, bestimmt werden.

Sind insbesondere sdmtliche Radsitze spiellos gelagert,
so gilt fiir alle 7y = 1 und iy = 0.

3.4 Bewegungsgleichungen im Falle der Radsatzlagerung
mit elastischer Riickstellung in der Querrichtung und ohne
Lingsspiel

Sind die Radsitze in der Querrichtung mit elastischer
Riickstellung und in der Langsrichtung spiellos gelagert, so
gilt wie im Abschnitt 3.1, ¢; = y; und Ax; = 0. Es bleiben
ferner Gl. (K31) und (I10) flir X und (X;,— X;) giiltig
Fir die Lagerquerkraft H; ist hingegen nicht mehr G
(K 37), sondern Gleichung (K 44) massgebend.

Nach Einfiihrung der Beziehungen (14), (23), (K 44)
und (I8) wird die Bewegungsgleichung (24) ebenfalls zu
Gl. (30), wahrend sich Gl. (25) zu

n n
(36) lng+-2(1——Xw)nh}§é+-[Z(l——xy)nh(am——au) Vg — [mg hg coses] 9y =
k. 1 |

= Zg sin (g5 — yx) — (K 4+ C;) — mghy (952 + yg2) sin gz —

_+_

»—-Mg

Gl (27) zu

Tej €q My [((z;j2 + Jg2) cos g; + ¢; sin ¢;]

=

n

[(1 —xej) (T; — Gysing;) cos ¢; — Ljsin g;] 4 Y xej [H, cosp; sgn Aq; + o Ag;]
10,

4 D = 2 o
(87) — | Y m, (hgsin Pg 1+ 5 sing; + Agj) |xg + Y (@ — xe) My (@1s — @15) | 9z +
1 J

1

n

@ D -1
=+ { Ogz+ )0y cos2 ¢; + D ot [(1 — xej) (@15 — @17)2 + (hgsin g, + —5 sin @; 4 Ag;) qu]}sbg =
1 1

n

n

n
D
= ), cos g; (ZUe)j — ) Uj (hg sin gg + — sing; 4 Aq;) + X xej [Ho cos g; sgn Ag; + ko Ag;] (ars—- 1) —
al il 1

n

1

+ Zg [(hg—hp) sin gg cos (g

— Ym0, (@15 — @) Tej €q [ (@52 + 62) COS @5 + @7 Sin ;] — Y
1

w0 \

D . i
(hg sin g, + —-sing; + Aq,-) m, [ (@1 — @1;) o2 + 2 vg Ag; | +

\ /

Yk) + Oxs SIn (Yg — i) ] —K{aKs—[(ho—hD) sin pg + Do oS ¢l tg (Yg — vi) } e

n
+ Y (@15 - @1j) [(1 — xej) (Tj — G sin ¢;) cos ¢; — Ly sin ¢;] + Y.Ci (6; — @1s) — Mo — axr Rs
1

und Gl. (28) zu
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n . n
(38) [hg COS pg Z (1 — xeq) mr} dg + I:hg COS @g Z (1 — xe;) my (@15 — alj):| {/jg + Ogr l‘ig e
1 1

n

n

= hgcos g, szej [, cos ¢ sgn Aq; + k, Agy] 4 Y1 —xei) (Ty— Grsin ®j) cosg; — L sin ;] —
1 1

n

— Ym, 7ej ¢ [(9;2 4 fe?) cos g; + o sinwj]} + (Gghg + W hy) sin gz + (Wpocosgs— My + M) +
1

+ K [(ho — hg) cos gy — D, Sin gg| + cos g Y. (hei — hg) C; + Zg sin (g — Y1c) (hg—hp) cos g

I
am Kasten K, W,M, EC,,ME,ERJ,bo,\Z/x
Bekannt {um Fahrgestell (78 ¢g,3bg,x}g,xg,ig,v, v
U an jedem Radsatz | A Ay, 03, @i, @i, T, Uy, 2Ue, Ly, My
Annahme 7
LZe]
Gleichungssystem L35
Yo o e X Qs
/4

T
afwfnnfdf e slelaolits
% bbdd
SO ©eoo

i H

P ﬁz’s“;bs % dg

XII Flussdiagramm zur dynamischen Berechnung des ein-
fachen Fahrzeuges, dessen Radsitze mit freiem Quer-
spiel gelagert sind (Abschnitt L 3.1).

ergeben.

Die Bewegungsgleichungen (31), (36), (37) und (38)
bilden ein Gleichungssystem, das gleich wie das System (35)
geldst werden kann und zu den Werten der Beschleunigun-
gen qg, Xg, vy und g fihrt.

Die bei dieser Art der Radsatzlagerung fiir das Fahr-
gestell durchzufiihrende Berechnung ist dhnlich wie bei der
Radsatzlagerung mit freiem Querspiel. Sie kann somit grund-
sétzlich nach dem Flussdiagramm XII erfolgen, wobei je-
doch 7qj, Xq; und iy durch 7., xo; und e, sowie die Gleichungen

(32), (33) und (34) durch (36), (37) und (38) zu ersetzen
sind.

3.6 Bewegungsgleichungen im Falle der Radsatzlagerung
mit freiem Ldngsspiel und ohne Querspiel

In diesem Falle gelten die Gleichungen (K 66) fiir Xja
(K 67) fiir X;; und (K50) fiir H;. Die Einflihrung dieser Glei-
chungen in die Bewegungsgleichungen (24), (25), (27) und
(28) zwecks unmittelbarer Ermittlung der Beschleunigungen

Xy dg ¥g Und @ aus einem Gleichungssystem gemiss Sy-
stem (35) wiirde zu einem {iberméssig grossen Umfang der
einzelnen Gleichungen fiihren. Es ist deshalb einfacher, hier
den Weg der Iteration einzuschlagen.

Auf Grund von Extrapolationen konnen zunichst die
drei ersten der oben erwdhnten Beschleunigungen angenom-
men und fiir jeden Radsatz am Anfang des dritten Teiles des
Flussdiagrammes IX eingesetzt werden, womit die Grossen
von Hj, X;, X;; und X;; fiir die einzelnen Radsitze mit Hilfe
der Gl. (K 50), (K 65), (K 66) und (X 67) ermittelt
werden konnen, Dags Einsetzen dieser Grossen in Gl. (24),
(25), (27) und (28) gestattet dann, in einer ersten Annéhe-

rung diejenigen Von"xg, 'E]g, '[pg und '{pg zu ermit-

teln, worauf X, und g nach Gl (L 14) bestimmt

werden konnen, Stimmen diese Ergebniswerte
nicht mit den angenommenen Ausgangswerten

tiberein, so ist die Berechnung im Iterationsver-

fahren jeweils mit korrigierten Ausgangswerten
bis zu einer befriedigenden Uebereinstimmung

am Kasten K,W,ZG.MB,M,‘RJ ,bo:\L'k
Bekannt am Fahrgestell (8 (,bg ,’\[/g,\Lg g ig (e ]
an jedemkadsatz | M B0, G, G195, i B L, X e Kt My
£29u30)
Annahme [Z_\ fhkfs
=B
Pz Ve

zu wiederholen.

Der sich fiir dieses Vorgehen ergebende Be-
rechnungsgang geht aus dem Flussdiagramm
XTIIT hervor.

3.6 Andere Fille der Radsatzlagerung

In den bisherigen Abschnitten wurde voraus-
gesetzt dass die Radsétze des Fahrgestells ent-
weder mit Quer- oder mit Léngsspiel gelagert

sind. Es konnen selbstverstédndlich auch Fille in
I Betracht gezogen werden, in welchen die einzel-

Gk alefe | F151]

W nen Radsitze verschieden gelagert sind. Die
hierfiir massgebenden Beziehungen miissen dann
besonders aufgestellt werden und der einzuschla-

14 @

Xer e

(o3 Xe Xg¢ Qg GoGelerle UV

JE A P

-

LA
i 2!
Ly X

gende Berechnungsgang angepasst werden, wo-
bei die bisherigen Darlegungen dieses Kapitels
weitgehend als Leitfaden dienen konnen. Sind

XIII Flussdiagramm zur dynamischen Berech-
nung des einfachen Fahrzeuges, dessen
Radsitze mit Léngsspiel gelagert sind
(Abschnitt L 3.4).
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insbesondere simtliche Radsiitze des Fahrzeuges gleichzeitig
mit frelem Quer- und Léngsspiel gelagert, so lédsst sich die
Berechnung grundsétzlich wie im letzten Abschnitt nach
Flussdiagramm XIII durchfiihren, wobei die Berechnung der
einzelnen Radsétze gemdiss Flussdiagramm XI vorzuneh-
men ist.

M. Die Bewegung der Drehgestell-Lokemotive

Die Drehgestell-Lokomotive besteht aus dem Kasten und
den Triebgestellen. Zwischen Kasten und Triebgestellen
einerseits und zwischen den Triebgestellen anderseits treten
verschiedene gegenseitig wirkende Krifte und Momente auf.
Die Triebgestelle und der Kasten kénnen als einzelne Fahr-
zeuge bzw. KOrper betrachtet werden, wenn man nebst an-
derem diese gegenseitigen Wechselwirkungen in den betref-
fenden Bewegungsgleichungen berlicksichtigt. Als solche
Wirkungen treten insbesondere die Krifte und Momente auf,
die bei der Kastenabstiitzung zwischen Kasten und Trieb-
gestellen entstehen und die sich, wie wir bereits im Kapitel L
feststellten, auf die beiden Krifte W und K sowie auf das
Moment M zuriickfiihren lassen. Bei Vorhandensein einer
Querkupplung wirken ausserdem noch die gegenseitigen
Querkupplungskréfte T, auf die einzelnen Drehgestelle. Z&hlt
man diese zu den dusseren Kriften C;, dann sehen wir, dass
alle obenerw#hnten Wechselwirkungen schon bei der Be-
rechnung des einfachen Fahrzeuges beriicksichtigt werden.

Il
‘:- =] .—'/1
Jl.l"\‘ 7] 5 ,‘A -

.i!?!g"!mggggégggéégggggg,%ﬁ )

: 4M!IE!E,¢“’/~—"“’

SLM
4202

Bild M. 1. Kastenabstiitzung der Schweizerischen CoCo-Lo-
komotive.

1 Kastenldngstriger 6 Feder

2 Drehgestell-Lingstriager 7 Federbund

3 Quertridger 8 Pendel

4 Wiegebalken 9 Unterer Kastenquertriger
5 Federstiitze 10 Drehzapfen

4. Bemerkungen

Wie im Kapitel K wurden hier die verschiedenen Ablei-
tungen ohne irgendwelche Vernachlidssigung durchgefiihrt.
Die im Abschnitt K 6 gemachten Bemerkungen beziiglich der

moglichen Vereinfachungen gelten hier ebenfalls voll und
ganz.

Die dabei angegebenen Beziehungen und Bewegungsgleichun-
gen und der entsprechende Berechnungsplan XII bzw. XIII
sind daher grundsitzlich fiir jedes einzelne Triebgestell der
Lokomotive giiltig. Es ergeben sich somit fiir jedes Trieb-
gestell g vier Bewegungsgleichungen.

SLmMm
4201

Bild M. 2. Kastenabstiitzung der Schweizerischen BoBo-Lo-
komotive,

1 Kastenldngstriger 6 Feder

2 Drehgestell-Liangstriger 7 Federbund

3 Quertridger 8 Pendel

4 Wiegebalken 9 TUnterer Kastenquertriger
5 Federstiitze 10 Drehzapfen

Wird eine Kastenabstiitzung gemiss Bild 1 oder 2, wie
sie bei den modernen schweizerischen Drehgestell-Lokomo-
tiven vorgesehen ist, vorausgesetzt, dann liegen bei jedem
Triebgestell die Mitnahmepunkte D und O des Drehzapfens
und des Wiegebalkens in der gleichen Kastenquerebene. Fer-
ner wirken die Querkréfte K, und i3, senkrecht zur Lings-
axe des Triebgestelles und die Zugkraft Z, parallel zur Ka-
stenléngsaxe. Da sich Kasten und Triebgestell in Lingsrich-

Bild M. 3. Die horizon-
talen Ausschlige des Ka-
stens und die auf ihnwir-
kenden Querkrifte.
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tung im Punkte D gegenseitig halten, muss die Abszisse
(siehe Bild 3)

(1) @ng = [@g + aks cos yg — (hg — hp) sin g sin v, ],
des Triebgestelles bzw. des Drehzapfens mit der Abszisse

(2)  @px = »,_+ dgcos i — dy sin i

des Kastens ibereinstimmen, wobei p, den Abstand

1

W {ng — (4 + dg sin yy)

des Punktes D gegeniiber der Kastenldngsaxe bedeutet und
somit den Ausdruck

!

{[v + axs sin ¢ 4 (hg —hp) sin ¢g cos ¥gl,

— (u +dg sin 1)}
aufweist. Die Bedingung
(4) xpk = 2py

die bei jedem Triebgestell erfiillt sein muss, wird uns ge-
statten, die einzelnen Zugkréfte Z; im Zusammenhang mit
der Zughakenkraft Z; und den Radsatzkriften U, auf dem
spiter angegebenen Weg zu ermitteln.

Desgleichen muss, da die Querverbindung zwischen Ka-
sten und Triebgestell im Punkte 0 stattfindet, die Ordinate

(5)  uy = u + dysin gy + s, sin gy cos Y.

des Kastens der Ordinate

(6) Vo= {v + axs sin g + (hg — hp) sin gz cos vy —

— [(ho — hp) sin gz + D, €OS ¢ (ﬁ%)}
g Yk g9

des Triebgestelles entsprechen. Aus der entsprechenden Be-
dingung

(7) ’l:Lg = Vog
lasst sich der Wiegenbalkenausschlag 9, zu

(8) Doy = (M

e .
COS i COS g /)g [( Ee=inliciiaidos o

+ (v + axs sin ) — (u - d, sin gy + s, sin @i cos ¢k)]
— (ho —hp) tg ¢

ermitteln, der unter Beriicksichtigung der besonderen Ver-
héltnisse bei der Kastenabstiitzung zu den Grdssen K, W,
und M, fiihrt.

Unter Beriicksichtigung obiger Feststellungen lassen sich
dann fiir den Kasten folgende vier Bewegungsgleichungen

2 -2

(9) my 4 = ZKQ cosy, + ZZQ sin i — Zy sin y,
il 1

(10) mk T = Y, Zg cos yx — Y K, Sin y; — Zi COS
1 1
& 2
(11) O Yk = Z(al(r ?Ra)g + Z {Kg [dg cos (‘lbf._ ‘/’k) iy
1 1
g ¥4
+ Sosin (yg— i) sin ‘Pk]g} + X Moy — Y04 Zg —
1 1
— Ufys [dzsin (k — ¥z) — Sk Sin gy cos (i —501)}
g
und

2

(12) Oiz g = ) [(SoK, cos px— M) c0s (Ygg — i) +
il

=+ so Wg sin @] + Zy (so— si) sin (5[’}\ —Sl/z) COS gx

aufstellen.

Diese Gleichungen scheinen beim ersten Anblick einzeln
gelost werden zu konnen. In Wirklichkeit hingen sie aber
voneinander ab, da die Krifte K und s sowie die Momente
Mg und M durch die Variablen u, v und ¢; bedingt sind.
Im Falle einer festen Radsatzlagerung bilden sie mit den
4z Differentialgleichungen der z Triebgestelle ein System
von 4(z + 1) simultanen Differentialgleichungen, welche
sich wesentlich vermehren, wenn die Radsétze infolge freiem
oder elastischem Spiel in ihrer Lagerung eine eigene Bewe-
gung durchfiihren konnen,

Bei der Lokomotive mit zwei Triebgestellen z. B, ergibt
sich demnach ein System von mindestens zwolf simultanen
Gleichungen. Ein solches System ist selbst beim einfachen Auf-
bau der einzelnen Gleichungen praktisch recht schwierig zu
l6sen. In unserem Falle kommen noch die beim Radsatz und
beim Fahrgestell festgestellten Schwierigkeiten gewisser Zu-
sammenhinge hinzu, die sich nicht rein mathematisch er-
fassen bzw. behandeln lassen. Aus all diesen Griinden ldsst
sich das Differentialgleichungssystem nur numerisch lésen.
Das Flussdiagramm XIV zeigt, auf welchem Weg die Rech-
nung filir eine Radsatzlagerung mit freiem Querspiel durch-
gefiihrt werden kann, wenn von den am Anfang des betrach-
teten Zeitintervalles als bekannt vorausgesetzten Groéssen u,
Tk, Yo Pk Lg, V, Y @g und deren ersten Ableitungen ausge-
gangen wird. Dabel wird vorausgesetzt, dass die Hakenzug-
kraft Zx und die von jedem Radsatz ausgelibte Zugkraft U,
feste, vorgeschriebene Werte aufweisen. Da die Lé&ngsbe-
schleunigungen des Kastens und der einzelnen Triebgestelle
infolge der verschiedenen y-Stellungen dieser Fahrzeugteile
etwas voneinander abweichen miissen, konnen die Zugkrifte
Z, nicht unmittelbar aus der Hakenzugkraft Z; und den
Radsatzkrédften U, ermittelt werden. Es ist deshalb notwen-
dig, im Laufe der Berechnung die Zugkréfte Z,; der einzelnen
Triebgestelle anzunehmen und gegebenenfalls im Iterations-
verfahren zu korrigieren, Bei richtiger Annahme dieser Z,-
Werte muss am Ende des Integrationsschrittes bei jedem
Triebgestell die Beziehung (4) erfiillt sein. Trifft dies nicht
zu, dann fiihren die fiir die einzelnen Z, angenommenen

Bekannt am Anfang
des
Integrationsschrittes

[ % &0, 0 G|
[Sl6, Mo M B b el |

Annahme

M1 G
PP il Sl
) D T Z Xy
fkﬁf a ‘PCJ\LJ Pl A
o e )
Integration am einzelnen Fahrgestell

/——(—<'ag,i‘s,v .73,\}@.‘1’@'%,@ g

(Xny)g by (T
A . |

Korrektur der einzelnen Zg

Zusammenhange bei der
Kastenabstitzung

L S

T, F U NV G B 09,0

K, M. M, R g

XIV Flussdiagramm zur dynamischen Berechnung der
Drehgestell-Lokomotive (Kapitel M).
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Werte zu x-Beschleunigungen, die, bei z. B. um §Z, zu klein
eingesetzten Werten fiir den Kasten geméiss GIL. (10) um

2

il
Z 8Z, cos Yy
1

my
zu klein und fiir die Triebgestelle um

el
Mg

874 COS Yy

zu gross sind. Die Integration iiber das Zeitintervall At fiihrt
somit zu x-Werten, die beim Kasten um

&
Y 8Z, cos yy
S = Azt L

(13) 2my

zu Kklein und bei den einzelnen Triebgestellen um

87, cos Yy

(14) T
g

Sxg = A2t

zu gross sind, Da gemiss Gl 1 und 2 die Abszisse xp am Ge-
stell und am Kasten vor allem durch x; und g gegeben ist,
kann der am Mitnahmepunkt D entstehende Fehler

82py = [¥pg — ¥pK]y

der Summe dxy + Sz, gleichgesetzt werden, woraus sich fiir
die Korrektur von Z, das Gleichungssystem

1 1 _ 2 [#p1 — aDK1l
Kg 8Z1 + ?k (le + ..... + SZZ) = T*
(15)
1 ; i 2 [%p, — %Dkz]
e — (041 +— ..... o)t e e e e h
o 0+ o 0% o 07 =

ergibt. Aus diesem lassen sich die Werte der einzelnen §Z,

N. Der statische Bogenlauf des Schienenfahrzeuges

Der statische Bogenlauf ist, wie wir bereits festgestellt
haben, dadurch gekennzeichnet, dass ausser den sich kon-
tinuierlich &ndernden Koordinaten s&mtliche Grossen einen
konstanten Wert beibehalten. Dies trifft insbesondere fiir den
Kriimmungsmittelpunkt, den Kriimmungsradius sowie fiir
die verschiedenen Geschwindigkeiten und Kréfte zu. Wie
sich die einzelnen Verhiltnisse gegeniiber denjenigen beim
dynamischen Lauf vereinfachen, wurde jeweils im Ab-
schnitt I 6 festgehalten., In diesem Kapitel wird nun der Bo-
genlauf der Drehgestell-Lokomotive unter Annahme der im
Abschnitt I6 erwdhnten Vereinfachungen n#her untersucht.

1. Der statische Bogenlauf des einfachen Fahrzeuges

Als einfaches Fahrzeug soll ein solches definiert werden,
bei dem alle Radsétze im Fahrgestell ohne Léngsspiel ge-
lagert sind. Egs ist daher dadurch gekennzeichnet, dass alle
seine Radsitze den Beziehungen

Vi =g

und p; = pg + (@15 — @1j) = P1 — QAuj

AX,‘ = 0,

geniigen, und, wenn ihr Querausschlag gegeniiber dem Fahr-
gestell null ist, die gleiche Ldngsaxe, den gleichen Haupt-
radius und den gleichen Wendungspol N aufweisen. Ferner
soll vorausgesetzt werden, dass alle Radsétze den gleichen
Winkel ¢, aufweisen.

Ein solches Fahrzeug mit » Radsétzen ist in Bild 1 sche-
matisch angedeutet, Oben sind die Radsétze und unten ist der
Rahmen mit den massgebenden Kréften und Distanzgrossen
angegeben, die alle im Verzeichnis der Bezeichnungen defi-
niert sind.

Die im Abschnitt I 6 gemachte Annahme (¢, = 0) setzt
voraus, dass wie beim Radsatz die durch die effektiv vor-
handene Querneigung des Gleises gegebene Querkomponente

ermitteln, die es dann gestatten, die Annahmen fiir die ein-
zelnen Z, im Iterationsverfahren zu korrigieren.

Bei Verbindung der Triebgestelle durch Querkupplungen
sind die entsprechenden Querkupplungskréfte als T-Kréfte
in den Bewegungsgleichungen (L 24), (L. 25) und (L 27) der
Triebgestelle zu beriicksichtigen. Ihre Grossen koénnen aus
dem elastischen Verhalten der Querkupplungen ermittelt
werden, wenn diese elastisch spielen. Bleiben diese hingegen
starr, so ergeben sich die Kupplungskréfte jeweils derart,
dass die betreffenden Kupplungspunkte gegenseitig {iiber-
einstimmen. Die Kréfte konnen in diesem Falle durch Itera-
tion bestimmt werden, indem ihre Werte zundchst ange-
nommen, in die betreffenden Bewegungsgleichungen einge-
fiihrt und schrittweise verbessert werden.

Bemerkungen:

Die Notwendigkeit der Iteration in bezug auf Z, ergibt
sich durch die Beriicksichtigung der Bewegungsgleichungen
fiir die x-Richtung, die vor allem, um die genauen Bezie-
hungen fiir die einzelnen Querbewegungen am Radsatz und
am Fahrgestell aufstellen zu konnen, in die Berechnung mit
aufgenommen wurden, Diese Iteration erstreckt sich jedoch
nur iiber den ersten Teil des Flussdiagrammes XIV und be-
trifft somit lediglich die Berechnung der einzelnen Beschleu-
nigungen und deren Integration. Sie bedingt daher keinen
grossen Mehraufwand bei der Durchrechnung,

Wird fiir die Fahrgeschwindigkeit Beharrungsfahrt vor-
ausgesetzt, dann kann man sich mit grosser Anndherung mit
den Annahmen

2 7
(16) Z, = () Uy, :?“
1

begniigen und die Bedingung (4) ausser Betracht lassen. Im
Ubrigen konnen in sdmtlichen Beziehungen dieses Kapitels
die Ansétze (D 34) beriicksichtigt werden.

(1) Gy = Ggsing, ~ Gz o
des Fahrgestellgewichtes besonders beriicksichtigt wird. Da

sie durch alle Lagerdruckquerkomponenten kompensiert wer-

"
den muss, kann in Gl. (L 26) der Ausdruck Z L; sin ¢; durch
i

©g ersetzt werden. Ferner fillt in Gl. (L 27) das Glied

n
Z Lj sin (pj(a15~a1j + AX:")
it

aus, da laut obiger Voraussetzung g¢; fiir alle Radsétze den
gleichen Wert ¢, aufweist und die Resultierende aller Lager-
driicke L; am Schwerpunkt des Fahrgestells wirken muss.

Anderseits entspricht in Gl (L 26) das linke Glied mgq, der

Zentrifugalkraft mgh.y,2 des Fahrgestells, die wir weiterhin,
entsprechend dem Ansatz

(2) Fg=my ‘.l.g
als Tragheitskraft I, bezeichnen werden. Schliesslich ist in-
folge konstanter Winkelgeschwindigkeit Sl./g bzw. », der Wen-

dung die Winkelbeschleunigung »jfg: 0, so dass einerseits das
linke Glied der Gleichung (L 27) verschwindet und ander-
seits GI. (I 8) und (I11), da y; = ¢ ist, zur Beziehung

ry (X —Xji) = e (Uja— Uj)
fiihren. Damit schreiben sich die Gleichungen (L 25) und
(L 27) hier

n
(3) Y H—(Ge+I) — (K4 C)=0
1

und
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Bild N. 1. Die auf das Fahrzeug wirkenden Kréifte.

n n
(4) Y Hj(as—aq;) +e ) (Ujy—Uj) —ags K
al; 1

n
D
+ X (6i—a13) O — Mo — ), X; Agy — Zg (5qox~+hwg> =
1

Nach Multiplikation mit (p; — a1s) geht Gleichung (3) auch
in

n

(38.) (pl— a15) [Z H;’ — (@g + %g) —(K + Z Ci)

=10
al 8

iiber. Fiigen wir die Kraft K zu den allgemeinen Kriften C;
sowie das letzte Glied der Gl. (4) zum Moment My hinzu, und
beriicksichtigen wir, dass fiir ohne Lingsspiel gelagerte Rad-
sitze (p1— a1; = p;) ist, so ergibt sich aus der Addition
dieser Beziehung mit der Vorletzten die Gleichung

n n
(5) Yo Hj— (G + Te) (P1 — a1s) — ), X; Agj—
1 1

— Y C; (p1—o) +e) (Ujp—TUj) —Mo =0

Diese neue Gleichung entspricht der Gleichgewichtsbedingung
Z M = 0 in bezug auf den Wendungspol N.

Unter Beriicksichtigung der Gleichungen (I 28)
(I46) schreibt sich Gl. (I2) auch

Hj = o2 [T; — (G + )1

wobei rq; die gleiche Bedeutung hat wie im Abschnitt K und
insbesondere null ist, wenn der Radsatz innerhalb seines
Lagerungsquerspieles frei vom Fahrgestell bleibt.

Ersetzen wir nach Abschnitt I6 die Fiihrungskraft T;
durch die Summe der Richtkraft P;1) des Radsatzes und der
sich aus den beiden Querkomponenten S; = AgF, und

und

Si = Ay F; der Reibungskrédfte F, und F; ergebenden Quer-
kraft S;, so schreibt sich diese Beziehung auch

(6) H; = 72[P; +8; — (G5 + )]

Nach Einfiihrung von Gl. (6) in GIl. (3) und (5) wird

(7)
n " n

Y Ci+ (Gx+ Tp) = L P+ L7 8 — L 7o? (6 + Zp)
1 1 1

und

n n n
(8) Mo=) 720 P; + X 7oiD;S;— ) a2 Py (G + L) —
1 1 1
n
— Y X;jAq;— Y, Ci(pr— ) — (Gg + ) (p1— 1) +
1

n
te ) (Up—Un)
i
Die Multiplikation der Gleichung (7) mit p; ergibt
"
(9) p1 Y, T2P; = p1(Gg + Tp) +P1ZCL‘—
i1
n g
—py Y 70?8 + P1 Y o2 (G + Fj)
b 1

Das erste Glied dieser Gleichung kann entsprechend der Be-
ziehung

n n
P1 Y, 742 Pj = p17qa2P1 + ), 74201 P
1 2
aufgespalten werden, wobei sich das Glied pi7¢12Py in &hn-

licher Weise

1) Bei positivem Wert entspricht P der Richtkraft P. des Aus-
senrades und bei negativem der Richtkraft P; des Innenrades.
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n n

P17q1®Py = ) ri2p;P; — ) 7q2p; P
1 2

schreiben ldsst. Aus diesen beiden Beziehungen folgt

n n n
P1 Z 742 P; = Z 792 pj Py -+ Z (P1 — pj) 742 P,
1 if} 2

womit Gl. (9) nach Ersetzen von (p1— p;) durch ay; zu
n n

L 70?0 P+ ) o201 = p1 (G + Tg) + 01 Y. Ci—

1 2

n n
— 11 ) 72 S; 4 p1 Y 142 (G + T)
1 1

wird. Aus dieser Beziehung und Gl. (8) ergibt sich schliess-
lich nach gewissen Umformungen:

(10)

n n
g'rqﬂau (€ + Tp) — L 70 Pja; + a1s (G + Te) +, 6:Ci —
2

n n n
—Mo—p1 ) 7285 =), XjAqj—e ) (Uja — Uj) — ) 70 B; S
st 1 1

In dieser Gleichung stellen ay; (in den beiden ersten Glie-
dern), ais (im dritten) und ¢; (im vierten) die Hebelarme der
betreffenden Kréfte in bezug auf den ersten Radsatz dar.
Alle Krifte §;, @, T, Ty und P; spielen somit, mit Aus-
nahme der Richtkraft Py, genau die gleiche Rolle fiir die
Gleichgewichtsbedingungen am Fahrzeug wie die auf das
Fahrgestell wirkenden Krifte ;. Zusammen mit diesen kon-
nen sie daher als allgemeine Hussere Krifte betrachtet wer-
den, die auf das ganze Fahrzeug wirken und als solche mit
T; bezeichnet werden, wihrend die Hebelarme aij, @ys und
¢; im gleichen Sinne die Bezeichnung #; erhalten.

Die flinf ersten Glieder der Gleichung (10) konnen daher
zu einem einzigen Glied M zusammengefasst werden, das ent-
sprechend der Beziehung

mn
(11) M= Y T;t;— My = Y, 6;Ci + Y. rq204; (G5 + )1 —
1

n
— X 76203 P; + 015 (Gg + To) — Mo
2

allein durch die dusseren Einwirkungen auf das Fahrzeug
gegeben ist.
Wir bezeichnen nun mit

n n
(12) M=—e ) (Ua—TUpy) — Y ry2p; S,
1 ak

das Moment der Reibungskrifte F in bezug auf den Wen-
dungspol N, und mit

n
(13) D =—py Y 7428,
1

das Moment, welches von dem durch die Querkomponenten
S; der Reibungskréifte gegebenen Anteil der Richtkraft Py
in bezug auf N ausgeiibt wird.

Fihrt man die drei obigen Beziehungen in GI. (10) ein,
so wird einfacher

n
(14) M=M+ D— ) X;Aq;
il
Mit der Bezeichnung
n n
(15) B=M—D=—e) (Up—TUp) + ) ry2ay;S;
1 il
schreibt sich Gl. (12) auch
n
(16) 8 =M—) X;Aq;
1

Auf diese beiden Gleichungen (14) und (16) bauen sich

n

unter Vernachlédssigung des Ausdruckes ZXj Aqj die in Bild 2
1

dargestellten graphischen Verfahren zur Bestimmung der
Lage des Wendungspols N beziehungsweise seiner Wendungs-
poldistanz p; auf. Links in dieser Abbildung sehen wir das
sich aus Gleichung (12) ergebende Verfahren, das wir )iD-
Verfahren nennen., Bei diesem werden die zwei Kurven M
und © gezeichnet, wobei erstere aus dem Minimumverfahren
von Heumann wohl bekannt ist. Dabei ergibt sich die Wen-
dungspoldistanz dadurch, dass diese beiden Kurven an der ge-
suchten Stelle um den durch die dusseren Krifte gegebenen
Betrag M voneinander liegemn.

Rechts in Bild 2 ist das §)t3-Verfahren angegeben, wel-
ches sich auf die GI. (16) aufbaut. Bei diesem Verfahren ist
zur Bestimmung der Lage des Poles N lediglich die 3-Kurve
notwendig. Sie liefert die gesuchte Wendungspoldistanz P
dort, wo sie die Ordinate M aufweist. Zur Bestimmung der
Kréfte muss jedoch die )i-Kurve ebenfalls gezeichnet werden,
so dass beide Verfahren etwa den gleichen Arbeitsaufwand
erfordern.

Unter den fiir den fiihrenden ersten Radsatz
gliltigen Voraussetzung 7,42 =1 lésst sich Glei-
chung (8) auch wie folgt schreiben:

n n
A7) P2 Py + Y 7020 Py — ) mg2 9 (G5 + ) —
2 il
— ), (P1 — ) Ci— (D1 — @1) (G + Tp) =
n n n
=—e) (Up—Uj) — ) 742 8; + Mo + ) X;Aq;
1 1 1

Daraus wird unter Beriicksichtigung von GI, (12)
und nach Ersetzen von p; durch (py — ay;)

(18)
M+ Mo + ), X;jAd; = p1 Py + Y. (6i—p1) C; +

Bild N. 2. Die graphischen )®- und M3-Ver-
fahren zur Bestimmung der Gleichgewichtslage
des Fahrzeuges.
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n
+ (a1s— p1) (G + ) — Y. 742 (a1; — 1) Pj +
2

n
+ ) 742 (@1 —p1) (€ + Z5)
al

Wir erkennen, dass hier die Kréfte §;, G I
Ty und P mit Ausnahme von P; wiederum die

gleiche Rolle spielen wie die Kréfte C;. Wir kon-
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Bild N. 3. Aufbau und Rolle der einzelnen Kréifte im Lichte des J)}®-Verfahrens.

nen sie somit, wie friiher, alle als allgemeine Kréifte T, be-
zeichnen und schreiben
(19)

Y Ti(ti—p1) = ), (61— ;) Ci + (01— D31) (Gg + ) —
—g 7452 (@15 —p;) P; + if, 7q;2 (@15 —p1) (€ + )
Damit wird obige Gleichung
(20) p1Py+ ) Ti(ti—p;) = M + Mo+§xj Ag;

Die einzelnen Glieder dieser Gleichung sind in Bild 3
links aufgetragen. Daraus folgt, dass sich die Richtkraft, wie
bekannt, aus dem Tangentenwinkel zwischen dem letzten
Seilstrang der dusseren Krifte T; und dem Strahl zur )i}-
Kurve ergibt.

Fasst man in Gl. (7) die Krifte C;, €, Cg Ty, Ty, sO-
wie die Richtkrédfte P; mit Ausnahme von P; wiederum als
dussere Krifte T; zusammen, so schreibt sich diese Gleichung
einfacher

n
@l Bi=Y My N 728,
1
bzw. unter Berlicksichtigung von GI. (13)

2N E = N p—@l

Diese Beziehung zeigt den Aufbau der Richtkraft Pj.
Wie in Bild 3 rechts angedeutet ist, ist ein Anteil durch die
Reibungskréifte (Tangentenwinkel iiber der horizontalen
Linie) und der andere durch die dusseren Krifte T; (Tangen-
tenwinkel unter der horizontalen Linie) gegeben. Die Fiih-
rungskraft Y, des ersten Radsatzes ist

¥ = RS,
Fiihrt man dies in Gleichung (20) ein, so wird

n
p1 Y1+ YT (hi—p1) = (M + 21S1) + Mo + Y X;Aq;
1
was mit dem Ansatz
n n
(23) D1=M+p1S1=—e) (Up—Uj) — ¥ r2p; S
1 2
auch zu

n

(24) p1Y1+ ) Ti(ti—p1) = D1+ My + ), X; Ag;
i

flihrt. Der Vergleich dieser Gleichung mit Gl. (20) zeigt, dass
die Fiihrungskraft Yy grundsétzlich gleich wie die Richtkraft

b

2T(t-p, ) Yp,

Bild N.4. Das ergénzte IMMDY-
Verfahren.

bestimmt werden kann, indem man anstelle der Kurve )
eine neue Kurve 91 beriicksichtigt, welche um | P18y |
tiefer liegt (fir py > 0 ist nach Definition Sy < 0 und damit
p1S; < 0) Bild 4).

1.1 Der statische Bogenlauf des einfachen Fahrzeuges unter
Beriicksichtigung der Raddruckdnderungen infolge der Quer-
krdfte

Die verschiedenen in diesem Abschnitt aufgestellten Be-
ziehungen, insbesondere diejenigen fiir 9, ®, 3 und 9) gehen
von den Léngs- und Querkomponenten U und S der ein-
zelnen Reibungskriafte F, und F; aus. Diese Krifte sind
somit flir jeden Radsatz zu bestimmen, wie wir dies im
Abschnitt I5 gesehen haben, Hierzu miissen zunéichst
die Raddriicke durch Auflosung des Gleichungssystemes
(L47) bestimmt werden. Der Koeffizient ez dieses Systems,
d. h. der rechte Teil der Gleichung (I 44), enthilt als Haupt-
glied das Moment 2rpAL;, fiir welches sich geméss Gl. (H 25)
mit (¢, = y,) die Beziehung

I
(25) 2rpAL; = TL My,
i)

ergibt.

Das Federstiitzmoment My, wird durch die Federung ent-
sprechend Gl. (H 24) bestimmt. Unter Beriicksichtigung der
Ansétze (D 34) vereinfacht sich diese Gleichung fiir den sta-
tischen Fall zu

(26) Mpy; = rprykyj (9g — @)

Anderseits muss das sich hier geméss Gl (H 26, H 27 und
H 28) zu

n n

15y,
(27) My =) My; = Ty Mg ). LjAq; ?)
1 il

ergebende totale Stlitzmoment der Gleichgewichtbedingung
(L: 28) genligen. In dieser Gleichung ist das erste Glied null,
da hier statischer Zustand vorausgesetzt wird., Nach Einfiih-
rung der Gl. (L.23) und (L 25) sowie der Ansitze (D 34)
geht sie damit in

(28) Miz= hy(m.qz + ¢.Gy) + K (ho— dogg) +
+ W (hopg + o) + M4+ ) Cih,;

2) Laut Voraussetzung ist der Winkel ¢ flir alle Radsétze gleich.
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liber, Fiihren wir die Seitenkraft
(29)
ein, so wird My auch
Mlg: (Gghg -+ WhO) (‘Pg*‘pr) -+ hg(@g —+ zg) +
+ hoGr* + K (ho—dopg) + ). Cihe + M + oW

Die Eliminierung von (¢, — ¢,) aus dieser Gleichung und
aus Gl. (27) fiihrt schliesslich zur Beziehung

Cr* = Wsing, ~ ¢, Gy*

[he (Gg + Te) + hoGr* + K (ho— dope) + ), Cihei

(30) Mpy=

cher aber ) T; alle Richtkrifte P; ausser Py einschliesst.
Will man, wie oben, auch die Richtkraft P, daraus ausschlies-
sen und bezeichnet dementsprechend

(36)

n—1

i n
LTi=)Ci4 Y (€ + ) + (G + Ty) — Y ro2P;
i 2

n n
+ M + poW + ) Lj Aqg;] rLre ) Kij
1 1

n
ry? Z F1j— Gghg —
1

mit welcher My, allein durch die auf das Gestell wirkenden
Krifte gegeben ist.

Aus My, ergibt sich das fiir die Bestimmung des Koeffi-
zienten ez im Gleichungssystem (I47) massgebende Teil-
moment

Teq s
(31) Mpj = Mgg 1;
k1 = Z klj
1
welches geméss Gl. (H 25) zur Lagerdruckinderung
Mpy; k1; Mg
32 Alni= I — 1 E
( ) Z 2 rL kl D 'L,
fiihrt.

Aus dem Gleichungssystem (I47) geht unmittelbar her-
vor, dass die Richtkraft P; einen unmittelbaren Einfluss auf
die Raddriicke des betreffenden Radsatzes hat. In weiterer
Folge hat sie ebenfalls einen Einfluss auf die Reibungs-
kréfte des Radsatzes beziehunsweise auf dessen Anteil an
den M-, D-, 3- und P);-Grossen. Wenn somit nach einer
frither gemachten Feststellung die Richtkrifte P; (P; ausge-
nommen) als dussere, auf das Fahrzeug wirkende T; ange-
sehen werden konnen, so spielen sie jedoch jetzt am Aufbau
der 9i-, -, 3- und Y)i-Kurven als Krifte, die den Radsétzen
eigen sind, eine Rolle.

Bei den Drehgestellen unserer Drehgestell-Lokomotiven
kann angenommen werden, dass die beiden extremen Rad-
sdtze spiellos gelagert sind und bei den praktisch vorkom-
menden Radstdnden und Kurvenradien allein aussen oder
innen zum Anlauf kommen. Somit kann neben Py nur P, als
weitere Richtkraft auftreten. Entsprechend der spiellosen
Lagerung des letzten Radsatzes ist der Faktor =2 gleich wie
7q12 mit dem Wert 4 1 einzusetzen. Bei gegebenen Husseren
Kraften wird der filir die vom Fahrzeug eingenommene Stel-
lung im Gleis notwendige Gleichgewichtszustand durch die
Richtkraft P, hergestellt. Somit gehdrt zu jeder Gruppe
dusserer Krifte ein ganz eindeutiger Zusammenhang zwi-
schen der Richtkraft P, und der Distanz py

Hebt man in GI. (11) diese Richtkraft aus dem Aus-
druck Z T;t; der allgemeinen dusseren Kréafte heraus, so wird

3

(33) M= ) Tit;— a1,Pn— My
E3

wobei Z T;t; die Richtkraft P, nicht einschliesst und somit
folgende Zusammensetzung aufweist:

*® n
(84) Y Titi= ) 6:Ci+ Y 7q;201; (G + ;) —
!

n—1

— 2 Tqi2 i Py 4+ a15 (Gg + )
2

Aus GI. (31) folgt, unter Beriicksichtigung von GIl. (16)

n

*
e Tit;— 83— Mo — ) X; Ag;
(35) P, = Y Titi— 3 % 8

A1n

Fiir die Richtkraft Py gilt grundsétzlich die Gl. (22), in wel-
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so ergibt sich

(87) Pi= Y Ti—P,+ 2
P1

Aus Py und P, lassen sich die zugehdrigen Fiihrungs-
krifte Y4 und Y, nach der Beziehung

ermitteln. Fir die nicht anlaufenden Zwischenradsitze
(1 < j <m) gelten die einfachen Beziehungen

(39) P;=0 und Y;=S8§;

Gemdéss Gl. (35) und (22) bzw. (37) sind zur Bestimmung
der beiden Richtkréfte P; und P, die 3- und ©-Werte not-
wendig. Diese ergeben sich aus der im Abschnitt 1) ange-
gebenen und bei den einzelnen Radsétzen entsprechend Fluss-
diagramm VI durchzufiihrenden Berechnung. Hierzu muss
bei jedem anlaufenden Radsatz die Lagerquerkraft H; zur
Auswertung des Gleichungssystemes (I42) bis (I44) als
bekannt vorausgesetzt werden. Diese Lagerquerkraft steht
aber nach der aus Gl. (I2) unter Beriicksichtigung der An-
sdtze (I28) und (I46) folgenden Beziehung

(40) H;=P; -+ 8;—(C; -+ %)

mit der Richtkraft P; im Zusammenhang und tritt somit so-
wohl als Ausgangs- wie als Ergebnisgrosse auf. Es ist daher
nicht moglich, die beiden Richtkréfte Py und P, explizit zu
bestimmen und es muss deshalb wiederum der Weg der Ite-
ration eingeschlagen werden, wobei in jedem neuen Berech-
nungsgang die neuen Anfangswerte von Py und P, nach den
letzten Ergebnissen zu verbessern sind. Dementsprechend er-

Ausgangswerte

Berechnung des
Radsatzes n
nach Fl. Diagr 71

Uni: Snl ’ SnarUna

Berechnung des
Radsaizes 1
nach Fl Diagr-¥I ||nach FI.Diagr ¥

Berechnung des
Radsatzes j

Ulilshlsla'Ula U‘;‘,S'/,S

Terwr e oxly o

jas U'a

Einsetzen korrigierter Ausgangswerte

oD 3

XV Flussdiagramm zur Bestimmung
der M-, -, Z- und 9);-Werte



gibt sich fiir die Bestimmung von 9, ®, 3 und 9y fir jeden
Wert von p; ein Rechnungsgang gemiss Flussdiagramm
XV.

Als Anwendungsbeispiele der obigen Ausfiihrungen wur-
den unter Zuhilfenahme eines IBM-Magnettrommel-Rechners,
Typ 650, unter anderem die Triebgestelle der beiden elek-
trischen Lokomotiven Ae 6/6 der SBB und Ae 4/4 der BLS
fiir verschiedene Kurvenradien und verschiedene Zugkrifte
untersucht. Dabei wurde vorausgesetzt, dass bei jedem Rad-
satz beide Réder den gleichen Laufdurchmesser aufweisen
und deshalb ¢; = p; ist. Ferner wurde flir den Reibungskoef-
fizienten p die durch die Kurve der Abbildung B 11 ange-
gebene Abhédngigkeit px(v) zu Grunde gelegt. Als Hussere
Kréfte wurden angenommen:

— eine am Schwerpunkt des ganzen Fahrzeuges wir-
kende, nach aussen gerichtete und der Summe

Sg =1 3

]

=P

der Tréagheitskréifte entsprechende Kraft T, und
— eine hinten angreifende und nach aussen wirkende
Kraft T, (Querkupplung).

M - Kurven

D), - Kurven

Die fiir die Berechnung massgebenden Daten dieser Dreh-
gestelle sind:

Lok. Ae 6/6 Lok. Ae 4/4
Raddurchmesser D 1260 mm 1260 mm
Mittl. Raddruck 10 000 kg 10 000 kg
Radstand 2a 43 m 3,25 m
Abstand ayq 2,15 m 1,625 m
Spur 2e 15 m 1,5 m
Querkraft Ty 5000 kg 4000 kg
Querkraft T, 0 und 5000 kg 0 und 4000 kg
Hohe hg 0,395 m 0,300 m
Héhe h, 0,435 m 0,436 m
Hebelarm ¢, der 6,5 m 5,75 m
Querkupplung

Die fiir die angegebenen Fille ermittelten 9}- und D1~
Kurven sind in den Bildern 5 und 6 fiir die drei Krimmungs-
radien 50, 300 und 1000 m sowie fiir U = 0 angegeben,

Zur Kldrung der Frage, ob die Berlicksichtigung des Ein-
flusses der Querkréfte auf die Raddruckverteilung von gros-
ser Bedeutung fiir die Ergebnisse ist, sind in diesen Abbil-
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Bild N. 5. Die sich fiir das dreiachsige Triebgestell der Ae 6/6-
Lokomotive ergebenden 9fi- und ¥);-Kurven:

bei unverdnderlichen Raddriicken (9i* und 9);).

— — — — bei Beriicksichtigung der Raddruckinderungen im
Fall T, = 0 und U = 0.
bei Beriicksichtigung der Raddruckinderungen im
Falle T, = 5000 kg und U = 0.
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Bild N. 6. Die sich fiir das dreiachsige Triebgestell der Ae 4/4-Lokomotive ergebenden 9i- und 9);-Kurven:

bei unverénderlichen Raddriicken (9}* und 2)1*).
— ——— bei Beriicksichtigung der Raddruckidnderungen im

Falle T, = 0 und U = 0.

bei Beriicksichtigung der Raddruckinderungen im

Falle T, = 4000 kg und U = 0.

ESERT

dungen auch die Kurven )}* und 9)1* eingezeichnet, die sich
bei Annahme unveridnderlicher Raddriicke V, und V; und
unter der Voraussetzung eines dank geniigendem Spurspiel
hinten frei laufenden Gestelles, ergeben. Der Vergleich zeigt,
dass sich die *- und P1*-Kurven praktisch mit den 9}- und
J)-Kurven fiir T, = 0 decken und eine gewisse Abweichung
nur gegeniiber denjenigen fiir T, = 4000 bzw. 5000 kg auf-
weisen. Dabei fillt diese Abweichung allgemein um so gros-
ser aus, je kleiner der Kriimmungsradius ist. Sie ist ferner
am grossten in der Néhe des hinteren Radsatzes, so dass der
maximale Fehler, der infolge der obigen Annahmen fiir die
Ermittlung der 9)i*- und P1*-Kurven entstehen kann, auf
Grund des besonderen Falles p; = aq; beurteilt werden kann.

S\ ——— Ae% —Triebgestell

400
______ Ae % —Triebgestell

200 \N\\ ——————
\‘“‘ ~~~~~~~~ \ —————————
~~~~~~~~~~~~~~ e
100 \ ~~~~~~~~~~~~~~~~~~ e
=

w
o
o
7 = L A o 7z
/ - / = -

500 . Kurvenradius R in m 800

Bild N. 7. Der fiir die Richtkraft P; durch die Vernachlidssi-
gung der Raddruckinderungen entstehende Fehler AP;.
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Die sich hierfiir ergebende maximale Abweichung

MH — M

Q1n

AP =

der Richtkraft Py ist im Bild 7 fiir die beiden erwdhnten
Drehgestelle in Abhéngigkeit des Krimmungsradius R fir
verschiedene Werte der Querkupplungskraft T, dargestellt.

Aus diesem Bild erkennt man, dass bei einer Minimal-
kurve von 114 m und einer Querkupplungskraft T, von
4000 kg beim Triebgestell der Ae-6/6-Lokomotive, bzw. von
3000 kg bei der Ae-4/4-Lokomotive eine Abweichung von
280 kg bzw. 223 kg fiir Py entsteht, wihrend =sie sich bei
einer 300-m-Kurve auf 170 kg bzw. 123 kg reduziert. Diese
Werte sind nicht so gross, dass man ihnen eine praktische
Bedeutung zuschreiben kann. Weitere Untersuchungen zei-
gen, dass fiir den Fall U == 0 die auftretenden Abweichungen
noch kleiner ausfallen.

Aus diesen Feststellungen ldsst sich die Folgerung zie-
hen, dass man fiir die Bestimmung der beim statischen Bo-
genlauf auftretenden Richitkrifte den Einfluss der Querkrdfte
auf die Raddruckverteilung ohne Bedenken vernachldssigen
und somit konstant bleibende Raddricke V, und V; an-
nehmen kann.

1.2 Der statische Bogenlauf des einfachen Fahrzeuges bei
Annahme konstant bleibender Raddriicke

Wie wir gesehen haben, fiihrt die Annahme konstant
bleibender Raddriicke nun zu praktisch unbedeutenden Ab-
weichungen der Richtkrifte. Sie bringt aber die wesentliche
Vereinfachung, dass die Raddriicke unmittelbar auf Grund
der Gl. (I56) ermittelt werden kénnen, so dass in den mass-
gebenden Flussdiagrammen VI und VIII jeweils der Teil I
ausfillt,

Auch vereinfacht sich im Flussdiagramm XV die Be-
rechnung am Fahrzeug, indem die Iteration in bezug auf die
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Bild N.8. Die 9-, 3- und
91-Kurven des Triebgestel-
les der Ae4/4-Lokomotive
im Falle U = 0 und bei Ver-
nachldssigung der Rad-
druckénderungen.

Bild N.9. Die -, 3- und
91-Kurven des Triebgestel-
les der Ae 4/4-Lokomotive
im Falle U = 3000 kg und
bei Vernachldssigung der
Raddruckéanderungen,
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8 Kurven

Bild N. 10. Die )¢-, 3- und 1-Kurven des Triebgestelles der Ae 6/6-Lokomotive im Falle U = 0 und bei
Vernachlissigung der Raddruckédnderungen.
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Bild N.11. Die )ii-, 3- und 9);-Kurven des Triebgestelles der Ae 6/6-Lokomotive im Falle U = 3000 kg und

bei Vernachldssigung der Raddruckénderungen.

beiden Richtkréfte Py und P, nicht mehr notwendig ist, so
dass sich die Werte fiir 9, ©, 3 und )3 nach einer Durch-
fiihrung der Radsatzberechnung ergeben.

Als Anwendungsheispiele wurden die bereits erwdhnten
Triebgestelle der BLS-Ae-4/4- und der SBB-Ae-6/6-Lokomo-
tiven fiir verschiedene Kriimmungsradien und fiir verschie-
dene Zugkrifte nach der Annahme konstanter Raddriicke
untersucht, wobei fiir den Reibungskoeffizienten die Kurve
u (v) von Bild B 11 zugrunde gelegt wurde. Einige Ergebnisse
dieser Untersuchung sind in den Bildern 8 bis 11 angegeben,
wobei sich die Bilder 8 und 10 auf den Fall U = 0 und Bilder
9 und 11 auf den Fall U = 3000 kg beziehen, Die in diesen

Bildern angegebenen Kurven zeigen deutlich die Abnahme
der angefiihrten Grossen, wenn der Kriimmungsradius R und
die Zugkraft U zunehmen.

Bild 12 stellt die Kurven des C-Gestells der Ae-6/6-Loko-
motiven fiir den Fall, dass die mittlere Achse nicht fest, son-
dern als Verschiebeachse ausgefiihrt ware, dar, wobei U = 0
vorausgesetzt wird. In diesem Fall stiitzt sich der mittlere
Radsatz unmitelbar am Gleis ab und weist keine Lagerquer-
kraft H auf. Sein Faktor 7, ist somit mit dem Wert 0
einzusetzen, wahrend 7412 und 7432 den Wert 4 1 auf-
weisen. Demzufolge ergibt sich fiir diesen speziellen Fall
aus Gl. (12), (13), (15) und (23):
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3- und 9);-Kurven des Triebgestelles der Ae 6/6-Lokomotive bei Ausfiihrung der mitt-

leren Achse als Verschiebeachse und U = 0 sowie bei Vernachlissigung der Raddruckénderungen.

3

(41) M=e), (Ui—Uja) — (p1S1 + p3Sa)
al

(42) © = — p (S + Sy)

3
(43) 8 =e) (Ujy—TUj) + a13Ss
1

3
(44) 91=e) (Uji — Uja) —p3Ss
i

Unter der Voraussetzung, dass keine dusseren Krifte auf
das Gestell wirken, ist M = 0. Damit wird die Poldistanz D;
entsprechend der dann 3 =0 lautenden Bedingung (16)
durch den Schnittpunkt der betreffenden 3-Kurve mit der
Abszissenaxe gegeben. Die sich dabei ergebenden Werte fiir
die Richtkraft Py und das fiir die Spurkranzabniitzung mass-
gebende und deshalb als Verschleisskennwert bezeichnete
Produkt Pjaey sind fiir das Gestell der Ae-6/6-Lokomotive in
Bild 13 in Abhingigkeit des Kriimmungsradius fiir verschie-
dene Werte der vom einzelnen Radsatz ausgeiibten Zug-
kraft U angegeben. Dabei wurde angenommen, dass bei jeder
Kriimmung ein zur freien Einstellung des hinteren Radsatzes
geniligendes Spurspiel vorhanden ist.
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Bild 13 1dsst deutlich den Einfluss der Zugkraft (geméiss
der zu Grunde gelegten p-Kurve betridgt die héchstmogliche
Zugkraft 4130 kg) und des Kriimmungsradius erkennen.
Dieser beeinflusst besonders stark den Verschleisskennwert,
der z.B. beim Uebergehen von einer 100-m-Kurve auf eine
solche von 300 m bzw. 600 m auf rd. 30 % bzw. 12 9, ver-
ringert wird. Aus diesem Grunde fillt die Frage der Spur-
kranz- und Schienenabniitzung um so mehr ins Gewicht, je
kleiner die Kurven der betrachteten Bahnlinie sind.

In Bild 14 sind fiir verschiedene Triebgestelle ausge-
fiihrter schweizerischer Lokomotiven die fiir U = 0 sich er-
gebenden Pi-, Pya;- und Y;-Kurven angegeben, wobei der
Fall des frei laufenden hinteren Radsatzes vorausgesetzt
wurde. Diese Kurven zeigen, dass die zweiachsigen Gestelle
am gilinstigsten ausfallen, wdhrend das untersuchte drei-
achsige Gestell, selbst im Falle einer mittleren Verschiebe-
achse, die grosseren Werte liefert. Die angegebenen Werte
gelten fiir den Fall des allein fahrenden Gestells. Wie wir im
folgenden Abschnitt sehen werden, lassen sie sich bei Loko-
motiven durch Anwendung einer passenden Querkupplung
zwischen den Gestellen wesentlich herabsetzen.



2. Der statische Bogenlauf der Drehgestell-Lokomotive

Wie beim dynamischen Lauf, so konnen auch hier die
einzelnen Drehgestelle als einfache Fahrzeuge angesehen
werden, wenn die vom Kasten und den anderen Drehgestel-
len auf sie wirkenden Kréfte als &ussere Krifte beriick-
sichtigt werden. Die Untersuchung an der Lokomotive wird
somit auf die Untersuchung an den einzelnen Triebgestellen
zuriickgefiihrt, wobel die erwédhnten gegenseitigen Wirkun-
gen zu bestimmen und richtig einzusetzen sind. Als solche

wollen wir vor allem die in der Zeichenzusammenstellung
definierten Kréfte K und T, sowie das Moment M festhalten.

Im Falle einer Lokomotive ohne Querkupplungen zwi-
schen den Triebgestellen treten einzig die Krifte K und die
Momente M auf. Diese lassen sich beim statischen Lauf ver-
hiltnisméssig einfach bestimmen, so dass sich die Unter-
suchung am einzelnen Triebgestell unmittelbar entsprechend
Abschnitt b. durchfiihren ldsst. Sind aber Querkupplungen
vorhanden, so ist es notwendig, die Querkupplungskrifte T,
zu ermitteln. Diese sind dadurch bestimmt, dass unter ihrer

Bild N. 13. Die P1(R)- und Pya;(R)-

Kurven filir das Triebgestell der
Ae 6/6-Lokomotive bei verschiedenen
I = Zugkréaften.
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Einwirkung die einzelnen Triebgestelle eine bei den Quer-
kupplungspunkten {ibereinstimmende Stellung einnehmen. Es
ist somit grundsétzlich notwendig, bei jeder Querkupplung
den Verlauf des Ausschiages ) des einzelnen Triebgestells
in Abhéngigkeit der Querkupplungskrifte zu ermitteln.

Selbstverstdndlich ergeben sich bei der Lokomotive mit
zwei Triebgestellen die einfachsten Verhiltnisse, weil in die-
sem Falle nur eine Querkupplung vorhanden ist und damit
nur eine Querkupplungskraft T, als Parameter auftritt. Sind
aber mehr als zwei Triebgestelle vorhanden, so tritt fiir jedes
weitere Triebgestell eine weitere Querkupplungskraft als
Parameter auf, wodurch die Verh&ltnisse wesentlich kompli-
zierter werden. Im Falle der Bo-Bo-Bo-Lokomotive z. B. wir-
ken die Querkupplungskrifte T, und Tges, die beide die
Lage des mittleren Triebgestells beeinflussen.

Im folgenden soll der Fall der Zweigestell- sowie der-
jenige der Dreigestell-Lokomotive behandelt werden, wobei
wir als Anwendung unsere schweizerischen Lokomotiven un-
tersuchen.

2.1 Der statische Bogenlauf der Zweigestell-Lokomotive mit
Querkupplung

Die Querkupplung der beiden Triebgestelle kann auf
verschiedene Arten verwirklicht werden, z. B. mit einer stei-
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Bild N. 15. Verschiedene Anordnungen
der Drehgestell-Querkupplungen bei
einer Zweigestell-Lokomotive.

fen oder elastischen Stange, welche die beiden diagonal
gegeniiberliegenden Gestellecken verbindet, wie dies in
Bild 15 oben schematisch angegeben ist. Im mittleren Bild
ist die Anordnung der Querkupplung bei unseren schweize-
rischen Lokomotiven gezeigt und im unteren Bild die An-
ordnung, die sich aufzwingt, wenn der Raum zwischen den
beiden Triebgestellen ganz verbaut ist, wie es ofters bei
einer Diesellokomotive mit ihrem zentral angeordneten
Brennstoffbehélter der Fall ist.

211 Der statische Bogenlauf der Zweigestell-Lokomotive
mit unmittelbarer Querkupplung der beiden Triebgestelle

Die beiden oberen Varianten von Bild 15 weisen eine
unmittelbare Querverbindung zwischen den beiden Trieb-
gestellen auf und lassen sich grundsitzlich gleich unter-
suchen. Im folgenden soll die zweite Anordnung vorausge-
setzt werden, die im Falle der SBB-Ae-6/6-Lokomotive in
Bild 16 gezeigt ist.

Wie die Ausschlagkurven y der Kupplungspunkte erhal-
ten werden und wie sie iliber den ganzen T,-Bereich verlau-
fen, wurde bereits an anderer Stelle 3) berichtet, so dass wir
nicht mehr auf Einzelheiten zuriickzukommen brauchen., Wir
beschrinken uns somit darauf, hier auf die wichtigsten Er-
gebnisse hinzuweisen. In Bild 17 ist der Fall der mit einer
vorgespannten elastischen Querkupplung versehenen Ae-4/4-
BLS-Lokomotive fiir eine 300-m-Kurve und fiir U = 0 behan-
delt. Es sind dort unten die 93- und 3-Kurven und oben die
verschiedenen Hinstellungen im Gleis angegeben, und zwar
links fiir das hintere und rechts fiir das vordere Triebgestell.

3) Betrachtungen iiber einzelne Probleme des Kurvenlaufes der
Eisenbahnfahrzeuge «Schweizerische Technische Zeitschrifty 1944.
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Bild N. 17, Das graphische Verfahren zur Bestimmung der Kurveneinstellung der Ae 4/4-Lokomotive der BLS.
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In der Mitte oben sind die beiden Ausschlagkurven ho und yp
gezeichnet. Sie weisen verschiedene Unstetigkeitspunkte I
bis VI auf, welche den Uebergang eines Einstellungsbe-
reiches zum anderen kennzeichnen. Diese Bereiche sind kurz
gefasst folgende:

Das vordere Gestell 15uft:

1 vorn aussen und hinten innen an (Spiessgang),
I bis IT vorn aussen an und hinten frei,
II vorn und hinten aussen an.

Das hintere Gestell 1duft:

IIT vorn aussen und hinten innen an (Spiessgang),
IIT bis IV vorn aussen an und hinten frei,
IV bis V vorn und hinten frei und wird lediglich durch die
Querkupplung gefiihrt,
V bis VI vorn frei und hinten innen an,
VI vorn und hinten innen an.

Der sich aus den beiden Ausschlagkurven ergebende Un-
terschied Ay = (Yn — 9») ist in der Mitte von Bild 17 unten
angegeben. Im Falle einer starren und spiellosen Querkupp-
lung miissen beide Gestelle genau den gleichen Ausschlag
aufweisen. Somit muss Ap null sein. Sind aber Spiel und
Elastizitit in der Querkupplung vorhanden, so kann Ap nicht
mehr null bleiben, sondern verliuft nach einer Kennlinie
Ap (T,y), die durch die Charakteristiken der Querkupplung
gegeben ist. In Bild 17 sind z. B, drei solcher Kennlinien an-
gegeben, welche durch folgende Merkmale gezeichnet sind:

Kennlinie b): Spiel 0 mm, Vorspannung in der Querkupp-
lung 1500 kg, Steifigkeit 150 kg/mm

Kennlinie c¢): Spiel 10 mm, Vorspannung 1500 kg, Steifigkeit
150 kg/mm

Kennlinie d):
150 kg/mm
Die Betriebspunkte B, C und D entsprechen folgenden

Einstellungen der Drehgestelle:

B: ITI und IV bis V, d.h. das vordere Gestell lduft
vorn und hinten aussen an, das hintere vorn und
hinten frei.

I bis IT und III bis IV, d.h. beide Triebgestelle
laufen vorn aussen an und hinten frei.
Der durch das Spiel 0 und die Stei-
figkeit oo gekennzeichnete Betriebspunkt
A entspricht dem Schnittpunkt der bei-
den Awusschlagkurven, Die zugehorige

Spiel 10 mm, Vorspannung 0, Steifigkeit

C und D:

Zur Kldrung des Einflusses der Querkupplung auf die
Richtkrédfte Py, die Fiihrungskraft Y, und die Verschleiss-
kennwerte P;a; wurden die schweizerischen Lokomotiven
Ae 6/6, Ae 4/4 und Re 4/4 unter den gleichen Voraussetzungen
wie im Abschnitt b, sowie unter Annahme einer steifen und
spiellosen Querkupplung untersucht. Die sich dabei ergeben-
den Werte von Py, Y; und Py a1 sind durch die Kurven des
Bildes 19 gegeben, Der Vergleich dieser Kurven mit denjenigen
von Bild 13 zeigt, dass Py und P; a1 merklich durch die Quer-
kupplung vermindert werden, wihrend die Filihrungskraft Yy
jetzt negativ und etwas grosser wird. So verringert sich z. B.
bei einer 300-m-Kurve der Wert von P; von 6380 kg auf
2320 kg bei der Ae-6/6-Lokomotive mit festem mittlerem
Radsatz, von 4600 kg auf 1820 kg bei der Ae-4/4-Lokomotive
und von 3340 kg auf 1290 kg bei der Re-4/4-Lokomotive. Des-
gleichen fallt der Wert von P;yay von 85,5 kg auf 16,5 kg
bei der Ae-6/6-, von 53,5 kg auf 10 kg bei der Ae-4/4- und

25=30mm

25=20mm

T

2s=10mm

-

i

Bild N. 18, Der Verlauf der Ausschlagkurven bei
verschiedenen Werten des Spurspieles.

Einstellung der Drehgestelle ist dhnlich
wie beim Punkt B, das hintere Gestell
stellt sich jedoch weiter innen ein, Diese

|

Pa in kg
P&Y in kg

Einstellung, insbesondere diejenige des
deren Gestells, wird bei den meisten Un-
tersuchungen zugrunde gelegt. Sie

stimmt aber nur, so lange sich der Be-
triebspunkt auf der An-Kurve unterhalb
des Punktes II befindet, was eine genii-

100 400E\§§Y

/

gend steife und spiellose Querkupplung ga00
bedingt.

ﬁ
Alle in Bild 17 angedeuteten Einstell-  splon50 &

Ae % mit Seitenspiel bei Achsen 285
Ae %5 ohne Seitenspiel

bereiche des hinteren Triebgestells tre- = \/L:\\

ten nur bei einem geniligend grossen | \7L‘;4/\_ B
Spurspiel auf. Bei kleiner werdendem 1000 = e L\\\ i
Spurspiel verschwinden allmihlich die © A \ de % T
Abschnitt IIT und IV bis V, wie dies in &EEA /- .

Bild 18 grundsétzlich gezeigt ist. Dabei %) [—— Rey-Kurven
bleibt der Schnittpunkt der beiden Aus- /

schlagkurven immer auf dem rechts Y- Kurven
vom Punkte II liegenden horizontalen

Ast. Somit stellt sich das vordere Ge-

stell im Falle einer steifen und spiellosen J

Querkupplung bei jedem Spurspiel stets 7000 200003000 400 500 (600N 7000 ——= Kurerradils R inm

vorn und hinten anlaufend. Diese Fest-
stellung gilt allerdings nur fiir den Fall
einer symetrischen Drehgestellanord-

nung. Querkupplung.
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Bild N. 19. Die P;(R)-, P1a;(R)- und Y;(R)-Kurven des vorlaufenden Trieb-
gestelles der Ae 6/6-, Ae 4/4- und Re 4/4-Lokomotiven bei Vorhandensein einer



Bild N.20. Die Einstellung

von 36,5 kg auf 6,5 kg bei der Re-4/4-Lokomotive. Die Quer-
kupplung verringert somit die Richtkraft auf etwa 40 ¢, und
den Verschleisskennwert auf etwa 19 2.

Als weiteres Beispiel ist in Bild 20 der Fall der Ae-6/6-
Lokomotive der SBB fiir die Fahrt durch eine 300-m-Kurve
bei Zugkraft 0 dargestellt, wobei nur die Schlussergebnisse
angegeben sind. Dabei beziehen sich die vollausgezogenen
Linienzilige auf die wirklichen Verhiltnisse der Lokomotive
mit lauter festen Achsen, wdhrend die gestrichelten Linien
flir den Fall gelten, bei dem die mittleren Achsen als Ver-
schiebeachsen ausgebildet wiren.

Es ist dabei hervorzuheben, dass die Anwendung einer
mittleren Verschiebeachse bei Vorhandensein einer Quer-
kupplung keine Verminderung, sondern im Gegenteil eine
gewisse Vergrosserung der Pi- und Pgaei-Werte mit sich
bringt. Der Grund hierfiir liegt darin, dass einerseits die zur
Fiihrung des hinteren Triebgestells notwendige Querkupp-
lungskraft T, beim Gestell mit mittlerer Verschiebeachse
kleiner als beim Gestell mit festen Radsédtzen ist, wie dies in
Bild 20 deutlich zum Awusdruck kommt. Damit ergibt sich
eine tiefere Lage des Punktes Zs;. Ausserdem weist das vorn
und hinten aussen anlaufende vordere Triebgestell in bei-

it ;
—/d=b)(gs
K Me) =T <) ()
M@= T x X

Bild N. 21, Die vom Kasten {iibertragenen Kréfte bei der in
in Bild 15 unten gezeigten Anordnung.

der Querrichtung bei spiel-
loser und bei freier Lage-
rung der mittleren Achsen
2 und 5.

den Féllen den gleichen Punkt Z; auf. Es ergibt sich hieraus
eine grossere Neigung des beide Punkte Z3; und Z; verbin-
denden Strahls, d. h. eine grossere Richtkraft Py.

2.12 Der statische Bogenlauf der Zweigestell-Lokomotive,
deren Triebgestelle iiber den Kasten quergekuppelt sind

Bei dieser in Bild 15 unten gezeigten Anordnung nimmt
der Kasten am ganzen Spiel teil und muss somit bei der
Untersuchung herangezogen werden. Die durch den Kasten
tibertragenen Krifte sind in Bild 21 angegeben. Es sind dies
zunidchst die beiden von der Uebertragungswelle ilibernom-
menen Kupplungskrifte T,, und T, welche bei gleicher
Hebelldnge die gleiche Grosse T, haben. Sie bilden ein Kréfte-
paar 2bT, zu dessen Aufhebung sich der Kasten gegen die
Gestelle mit der Kraft

b

(45) K=T,
stiitzt. Auf jedes Triebgestell wirken also die beiden Kréfte
T, und K. Beide zusammen ergeben bei der Stelle x das Mo-
ment

d—Db
d

(46) M(x) :Tq( >(d+x)

Dieses ist gleich demjenigen einer Kraft

‘d—D
(47) T*:Tq( d)

die in der Mitte der Lokomotive wirken wiirde. Fiir die Un-
tersuchung an den Drehgestellen kénnen somit T und K
durch diese Kraft T# ersetzt werden. Wie die Untersuchung
vorgenommen werden kann, zeigt Bild 22. Es wird jedes
Triebgestell unter der Einwirkung der BErsatzkraft T* fiir
sich untersucht. Diesmal miissen aber zwei Ausschlagkurven
aufgestellt werden: die eine entspricht dem Ausschlag y)q des
Drehzapfens und die andere dem Ausschlag yy des Kupp-
lungspunktes. Da die beiden Kupplungspunkte im gleichen
horizontalen Abstand von der Uebertragungswelle liegen
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miissen, soll ihre Verbindungslinie parallel zur Kastenlangs-
axe liegen. Mit anderen Worten, es muss die Bedingung

al i
a (Dav — Yan) = D (l)kv = t)kh)

erfiillt sein. Tragen wir somit jedes Glied dieser Bedingung
als Kurve in Abhéngigkeit der Kupplungskraft T#* auf, so
ergeben sich zwei Kurven, welche die Losung durch den
Schnittpunkt ihrer zugehorigen Abschnitte liefern, In dem mit
© = 0,2 untersuchten Fall wiirden sich fiir die ungekuppelten
Triebgestelle eine Richtkraft Py von 2660 kg und ein Ver-
schleisskennwert Py ay von 70,5 kg ergeben. Durch den Hin-
bau der Querkupplung werden diese Werte auf 940 bzw.
12,03 kg verringert.

2.13 Der statische Bogenlauf der Zweigestell-Lokomotive,
deren Triebgestelle durch ein pnewmatisch oder hydraulisch
erzeugtes Riickstellmoment entlastet werden

Die Triebgestelle konnen, ausser durch Querkupplung,
auch dadurch entlastet werden, dass man auf jedes ein pneu-
matisch oder hydraulisch erzeugtes Moment M, vom Kasten
aus wirken ldsst, welches sich in Abh#ngigkeit der gegen-
seitigen Lage beider Triebgestelle in Richtung und Grosse
aufbaut. Zur Auslibung dieses Momentes muss sich der
Kasten beim vorderen Drehzapfen nach aussen und beim
hinteren nach innen mit der Querkraft

2 M,

2d
auf das Triebgestell abstiitzen. Wie man sich leicht davon
iiberzeugen kann, haben K und M, zusammen genau die
gleiche Wirkung auf das einzelne Triebgestell wie die Stiitz-

K=

Bild N.23. Querkupplungsan-
ordnungen einer Dreigestell-
Lokomotive.

kraft K, wenn diese allein in der Mitte der Lokomotive auf-
treten wiirde. Es treten hier somit genau die gleichen Ver-
hiltnisse wie bei der reinen Querkupplung auf.

2.2 Der statische Bogenlauf der Dreigestell-Lokomotive mit
Querkupplungen

Unter den vielen Moglichkeiten, die sich fiir die An-
ordnung der Querkupplungen zwischen den einzelnen Trieb-
gestellen der Dreigestell-Lokomotiven ergeben, seien hier die
in Bild 23 schematisch dargestellten festgehalten. Bei der
oben gezeigten Anordnung sind jeweils aufeinanderfolgende
Gestelle, also die Gestelle I und II einerseits und die Ge-
stelle II und III anderseits, unmittelhar durch eine Quer-
kupplung entsprechend Bild 16 miteinander verbunden.
Jedes Gestell wird somit von zwei anderen beeinflusst und
kann keine Quer- oder Drehbewegung ohne Riickwirkung
auf diese zwei ausfiihren. Bei der unten dargestellten Anord-
nung hingegen wird das vordere Triebgestell mit dem
hinteren iiber eine Welle quergekuppelt, die im Mittelgestel)
gelagert ist und auf dieses nur ein Moment M, iibertrigt.
Dieses Gestell kann sich dadurch in der Querrichtung ganz
unabhingig bewegen und hat nur durch seine Schriglage
eine Rickwirkung auf die beiden anderen.

2.21 Der Bogenlauf der Dreigestell-Lokomotive mit zwei
@Querkupplungen gemdss Bild 23a

Bei dieser Anordnung treten die beiden Querkupplungs-
krifte T,, und Ty als unbekannte Grossen auf, deren Be-
stimmung das erste Ziel der Untersuchung ist. Sie ergeben
sich dadurch, dass die sich unter ihrer Einwirkung einstel-
lenden Triebgestelle bei den Querkupplungen die richtige
gegenseitige Lage einnehmen. Hierzu miissen die Queraus-
schldge p ihrer Mitnahmepunkte bei der vorderen Quer-
kupplung die Bedingung

(48) I)Ih + 5,SgN Tqu = I)IIv
und gleichzeitig bei der hinteren Querkupplung die Bedin-
gung
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(49)  Yun + spsgn T g = Y

erfiillen. Auf das vordere Triebgestell wirkt allein die Quer-
kupplungskraft T,,, so dass sich fiir den Querausschlag Hin
eine eindeutige Abhingigkeit hin = £ (Tyy) ergibt, die durch
eine entsprechende Kurve dargestellt werden kann. Desglei-
chen wirkt auf das hintere Triebgestell nur T,n und es ergibt
sich fiir dieses eine eindeutige Abhédngigkeit P = £ (Tgn).
Auf das mittlere Triebgestell wirken hingegen beide Krifte
Ty und T, Seine Querausschlige Yy und prp; sind daher
nicht mehr durch eine einzige Kurve Yo = £(Tgp) bzw.
Y = £(Ty,) festzuhalten, sondern miissen durch eine Kur-
venschar dargestellt werden, wobei die eine oder die andere
der beiden Kupplungskréfte als Parameter gewihlt werden
kann.

Die Untersuchung kann grundsitzlich in der Weise
durchgefiihrt werden, dass man zundchst das gegenseitige
Verhalten der beiden vorderen Triebgestelle bei verschiedenen
Werten der als Parameter betrachteten Kupplungskraft Tyn
untersucht. Die sich.fiir einen bestimmten Wert von Ton
ergebende Einstellung dieser Triebgestelle entspricht dem-
Jjenigen Wert von Ty, bei dem die Bedingung (46) erfiillt
wird, bei dem also die Kurve

PYin = 8y 8gnTy, = £ (Tyy)
die entsprechende Kurve
I)II'U =f (Tqv, th - kOnSt)

schneidet.

Fiir jeden in Betracht gezogenen Wert der hinteren
Kupplungskraft T, ergibt sich eine ganz bestimmte Ein-
stellung der beiden vorderen Triebgestelle bei einem ganz
bestimmten Wert der vorderen Kupplungskraft Ty, Diese
Kraft entsteht daher in Abhéngigkeit der hinteren Kupp-
lungskraft T, so dass es durch diese gleichzeitige Betrach-
tung an beiden Triebgestellen mdglich wird, den Ausschlag
hrn durch eine einzige Kurve P = £ (Ty,)darzustellen. Diese
gestattet nun im Zusammenhang mit der Kurve Y =
f(Tyr) bzw. mit der Kurve (Y1110 + SusgnTyy) =1 (Tqn)
die Bedingung (49) zu kontrollieren, bzw. den massgebenden
Wert von Ty zu bestimmen. Aus diesem lisst sich dann in-
folge der oben genannnten Abhingigkeit auch T,, ermitteln,
womit die beiden Unbekannten des Problems bestimmt sind.

Bild 24 zeigt eine solche Untersuchung fiir die Ge-6/6-
Lokomotive der Rhétischen Bahn bei Fahrt durch eine 100-
m-Kurve, wobei vorausgesetzt wird, dass der Reibungskoef-
fizient p nach der Kurve p(v) von Bild B 11 verlduft und
dass ferner in jeder Querkupplung ein Spiel von 5 mm vor-
handen ist. Die sich dabei ergebenden Ausschlagkurven
hn = £ (Tgp) und yr, = £ (Tyy, Typ = konst) sind im Bild 24
oben rechts angegeben. Da ein Spiel von 5 mm in der Quer-
kupplung vorausgesetzt wird, lautet die Bedingung (48)

Yrre = Y + 5 mm

und wird durch die Schnittpunkte der Ausschlagkurve
(9n + & mm) = £(T,,) mit den verschiedenen hr,-Kurven
erfiillt.

Die sich entsprechend diesen Schnittpunkten ergebenden
Einstellungen des mittleren Triebgestells fiihren zur Kurve
(9 + 5 mm) = £ (Ty), die im Bild links oben angegeben
ist. In Erfiillung der Bedingung (49) schneidet diese Kurve
die ebenfalls dort angegebene Kurve Yo = £ (Ty,) bei Ty =
1840 kg. Die diesem Wert entsprechende Kurve schneidet
im Bild rechts die Kurve (yy, +5 mm) = f(T,, = Ty =
425 kg. Durch Einfiihrung dieser Werte fiir beide Kupplungs-
kréfte ldsst sich jedes Triebgestell als einfaches Fahrzeug
behandeln, was zu den in Bild 24 angegebenen Verh#ltnissen
fiihrt. Man erkennt unter anderem, dass beim vorderen
Triebgestell eine Richtkraft P; = 2520 kg, ein Anlauf-
winkel ay = 0,0249 und damit ein Verschleisskennwert Piay =
62,8 kg entstehen. Da bei einer Ausfiihrung ohne Querkupp-
lung entsprechend den im Bild 24 beim vorderen Triebgestell
gestrichelt angegebenen Linien eine Richtkraft Py = 2685 kg,
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ein Anlaufwinkel «y = 0,0272 und ein Kennwert Piag =
73,3 kg entstehen wiirden, bringt der Einbau der beiden
Querkupplungen keine wesentliche Verbesserung. Der Haupt-
grund hierzu liegt in der Tatsache, dass sich die Triebgestelle
bei einem kleinen Wert der vorderen Querkupplungskraft
einstellen, welche deshalb nur wenig Einfluss auf die Ver-
héltnisse beim vorderen Triebgestell hat.

2.22 Der Bogenlauf der Dreigestell-Lokomotive mit einer
Quer-Kupplung gemdss Bild 23b

Wie wir bereits erwédhnt haben, werden bei dieser An-
ordnung die beiden &usseren Triebgestelle durch eine im
mittleren Triebgestell gelagerte Welle quergekuppelt. Die
vom vorderen Gestell auf den Angriffspunkt des vorderen
Hebels der Uebertragungswelle ausgeiibte Querkraft Ty, wird
von dieser auf das hintere Triebgestell {ibertragen, indem sie
auf dieses mit der Querkraft Ty, wirkt. Sind die Hebelldngen
vorn und hinten gleich gross und ist die Welle reibungslos
gelagert, so haben T,, und T, die gleiche Grosse. Diese bei-
den Krifte konnen dann auch mit T, bezeichnet werden,

Dank dieser Anordnung werden die Querausschlige des
mittleren Gestells durch die Husseren Gestelle nicht beein-
flusst, da sie von der Uebertragungswelle nur durch Drehung
iitbernommen werden. Eine Abhingigkeit besteht einzig in sei-
nen Winkelausschldgen, da, wenn wir die drei Gestelle von
oben betrachten, die Mitnahmepunkte der beiden #usseren
Gestelle auf einer Geraden liegen miissen, die bei spielloser
Ausfiihrung der Querkupplung parallel zur Uebertragungs-
welle verlduft. Da diese parallel zur Lingsaxe des mittleren
Triebgestelles liegt, muss die Bedingung

(D1r — Yrre) = (Yrre — Dran)

erfiillt werden.

Die Untersuchung lédsst sich viel einfacher als bei der er-
sten Anordnung durchfiihren, da vorn und hinten die Kupp-
lungskraft in gleicher Grésse auftritt. Fiir jeden Wert der
Kupplungskraft T, konnen die Querausschlige Y und Yo,
sowie der Winkelausschlag (yrm, — Yrir») eindeutig bestimmt
werden. Es lassen sich somit die verschiedenen Kurven hm =
£(Tq); P1re=1(Tq) und (Y1, — Yrrre) b2W. (Yrro — Yrm) = £(T,)
ohne Schwierigkeiten konstruieren. Diese ergeben dann
entsprechend der Bedingung (50) die Losung durch ihren
Schnittpunkt, der den massgebenden Wert von T, bestimmt.

In Bild 25 ist die entsprechende Untersuchung fiir die
Ge-6/6-Lokomotive der Rhitischen Bahn angegeben. Dabei
wird wie im Abschnitt 2.1 die Fahrt durch eine 100-m-Kurve
und Giltigkeit der in Bild B 11 angegebenen Kurve p(v) vor-
ausgesetzt. Im Bild oben rechtsist die Kurve Ym = £(T,) bzw.
hre = £ (Ty) und im Bild oben links die Kurve Y = £ (Ty)
bzw. Y, = £ (T,) voll ausgezogen bzw. gestrichelt angegeben.
Die sich daraus ergebenden Kurven (Y1n — Y1110) = £(T) Und
(Y10 — 1) = £ (T,) sind in der Mitte dargestellt und ergeben
T, = 1400 kg. Diese Kraft fiihrt unter anderem beim vorde-
ren Triebgestell zu Py = 1325 kg, oy = 0,0128 und Piay =
17kg und beim mittleren Gestell zu Py = 1370 kg, ay =
0,0228 und Py ay = 31,2 kg. Beim hinteren Gestell ist Py = 0
und deshalb auch Pyay = 0.

Vergleicht man diese Ergebnisse mit denjenigen des vor-
herigen Abschnittes, so erkennt man, dass jetzt das mittlere
Gestell auch zum Anlaufen bzw. zur Fiihrung kommt und
dass gegeniiber der Anordnung ohne Querkupplung das Pro-
dukt Pyay beim vorderen Gestell eine Verringerung um 76,8 %
(von 73,3 auf 17 kg) und bheim mittleren eine solche um
57,4 9% (von 73,3 auf 31,2 kg) erfédhrt. Diese Anordnung der
Querkupplung bietet somit einen deutlichen Vorteil.

Es ist noch zu bemerken, dass bei dieser Unter-
suchung keine Querkréfte zwischen dem Kasten und den
Triebgestellen berilicksichtigt wurden. In Wirklichkeit wird
aber infolge der Riickstellung bei der Kastenabstiitzung das
mittlere Gestell vom Kasten nach innen und die beiden &us-
seren um den halben Betrag nach aussen gezogen. Py und
P;aq werden daher beim mittleren Gestell kleiner und beim
vorderen etwas grosser. Es ergibt sich dadurch ein besserer
Ausgleich dieser Grossen zwischen den beiden Gestellen, der
notigenfalls durch passende Verlagerung der Angriffspunkte
noch verbessert werden kann.



0. Anlauf eines Schienenfahrzeuges

Mit den bisherigen Ausfiihrungen wurden die theoreti-
schen Grundlagen aufgestellt, die es erlauben, den Fahr-
zeuglauf durch numerische Behandlung genauer zu unter-
suchen. Insbesondere sollen sie gestatten, den Lauf eines
Schienenfahrzeuges im allgemeineren Fall der Radsatzlage-
rung mit oder ohne Spiel und eines in der Grundebene und
in der Querneigung unregelméssigen Gleises zu behandeln.

Ein besonders interessanter Fall ist der Anlaufvorgang
des Fahrzeuges gegen die Schiene, der hier als Anwendungs-
beispiel behandelt werden soll.

1. Der Anlaufvorgang bei einem einfachen Massensystem

Das Schienenfahrzeug ist infolge der zwischen den Ré&-
dern und Schienen auftretenden Reibungskrifte wesentlich
komplizierteren Verhéltnissen unterworfen als ein einfacher
Korper. Gewisse Feststellungen, die an einem solchen ge-
macht werden konnen, lassen sich aber auch zum Teil auf
das Fahrzeug iibertragen.

Eines anschaulichen Bildes wegen wird der Stossvor-
gang zundchst an einem einfachen Massensystem ndher be-
trachtet.

1.1 Zentrischer Anlauf einer Masse iiber eine vorgespannte
Feder

Es soll hier angenommen werden, dass sich die Masse m
geméss Bild 1 mit der Geschwindigkeit v in z-Richtung be-

eV

]

e o ;
L < y(t)

Bild O. 1. Zentrischer Anlauf einer Masse iiber eine vor-
gespannte Feder,

wegt und iber eine vorgespannte Feder mit dem Anlauf-
winkel oy gegen eine mit dem Radius R im Kreis gebogene
Schiene anliuft, deren Kurve bei kleinen Werten von dy/dx
geniigend genau durch die Gleichung

22
(1) VAR = xtgao—[—ﬁ

gegeben ist. Wird die Zeit von dem Zeitpunkt aus gezihlt,
bei dem 2 = 0 ist, so kann in dieser Gleichung « durch v er-
setzt werden, womit sich GIl. (1) zu

(vit)2
2R

2) y(@) = tvtgao) +

ergibt. Wird ferner angenommen, dass beim Stossbeginn bzw.
zur Zeit Null die Federeinsenkung und die Ordinate w der
Masse null sind, so gilt fiir die Federeinsenkung f die Be-
ziehung

t)2
3) f=y @) —w=t(vtga) +%RL_

Daraus ergibt sich die Federkraft, d.1i. die Stosskraft zu

(vit)2
2R _w}

(4) F=F,Lk [(v tgag) t +

wobei k die Steifigkeit und F( die Vorspannung der Feder
bezeichnen. Diese Federkraft fiihrt zur Bewegungsgleichung

(vt)2
—w

mw="Fo + % | (V tgao) ¢+~

die sich mit den Ansédtzen

k
) =
und
_Fo
@) fo=—2
auch
s t)2
T % + so2w = g2 [fo + (vtgao) £+ ) }

schreiben ldsst. Unter Beriicksichtigung der Anfangsbedin-

gungen w (0) = 0 und w (0) = 0 lautet die Liosung dieser Dif-
ferentialgleichung

(8) : i ’
w = vtgao (t—-s—my()t) + (fo—

v2
702 R

(vi)2
2R

) (1—coswot) +

70
Damit wird Gl. (3) zu

v2

sin o t
11()2 R

(9) [f=vtga B ) (1 — coswgt)

/

,_('fo_

\

und Gl. (4) zu

(10)

m v2 /

F =2+ (vtga J/km') sin »ot + (Fo =

mv2 :
COSy,
R 0

Letztere Beziehung ldsst sich vektoriell geméss Bild 2 dar-

& 5
t Cd
o
& [
a
vigefkem

Bild O. 2. Vektordiagramm fiir die Anlaufkraft des Massen-
systems geméss Bild 1.

stellen, woraus sich der maximale Wert von F unmittelbar zu

mv2 D / mv2\ 2
(11) Fhyax = SR aF l/(v tgap)? km + (FO_ R >

ableiten ldsst. Desgleichen ergibt sich aus Gl. (9) unmittelbar
die Beziehung

mv?2

tgao)? 212
(12)  fmax= (W_fo\) + ,TLgaO) mv )

T o= (fo—>ﬁ

fiir die maximale Federeinsenkung.

Es sei nun der spezielle Fall einer geraden Schiene be-
sonders betrachtet. Entsprechend (R = co0) ergibt sich aus
GL (12)

(122) f:l/% (Vtgao)2 + fo2 —fo
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und aus Gl (11)

(118) Frax = [/km (vtgao)? + Fo?

Die Eliminierung von f, bzw. Fy aus diesen beiden Gleichun-
gen fiihrt zu

)2
(i) B S VIRl
anlax

und die Eliminierung von k zu

K fmax
2

m (v tgag)?2

(11c) Fmax = 0

flTlELK

Jede dieser Gleichungen stellt eine Kurvenschar Fy ., =

B (fmax) mit dem Parameter k bzw. Fy dar, welche den in
Bild 3 angegebenen Verlauf aufweist.

Frmox

0 G fmax

Bild O. 3. Die Abhéngigkeit der maximalen Stosskraft von
der Vorspannung H,, der Steifigkeit k, und der maximalen
Hinfederung fpax-

Aus diesen Kurven kann man nun unmittelbar folgende
Feststellungen machen:

a) Bei gleicher Steifigkeit k fiihrt eine Erhthung der Vor-
spannung Fj, zu einer Erhdhung der maximalen Stosskraft
und zu einer Verkleinerung des maximalen Ausschlages fuax
(Kurvenabschnitt AB).

b) Bei gleicher Vorspannung F, fiihrt eine Erhohung der
Steifigkeit k ebenfalls zu einer Vergrosserung der maxi-
malen Stosskraft und zu einer Verkleinerung des maximalen
Ausschlages f.x (Kurvenabschnitt AC).

c¢) Um den gleichen Ausschlag f,... zu erhalten, muss man
bei einer Aenderung der Vorspannung F, die Steifigkeit k im
umgekehrten Sinne &ndern, wobei eine Vergrosserung dieser
Vorspannung zu einer Verkleinerung der maximalen Stoss-
kraft fiihrt (Kurvenabschnitt AD).

d) Der minimale Wert von F,, ergibt sich zu Fy, wenn die
Steifigkeit £ = 0 und

m (v tgaop)2

Fy =
0 ey

gesetzt werden.

Es darf wohl angenommen werden, dass sich diese Fest-
stellungen sinngem&ss auch fiir den Fall eines mit quer-
elastisch gelagerten Radsédtzen versehenen Schienenfahr-
zeuges libertragen lassen, weshalb sie besonders interessant
sind.

1.2 Zentrischer Anlauf einer Masse viber eine durch trockene
Reibung geddmpfte Feder

Man kann sich leicht davon iiberzeugen, dass bis zur Zeit
tmax, bei welcher der maximale Ausschlag der Feder erreicht
wird, die trockene Reibung I' genau die gleiche Wirkung wie
die im Unterabschnitt 1.1 betrachtete Federvorspannung F,
hat. Daher bleiben die dort angegebenen Beziehungen und
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gemachten Feststellungen fiir die Zeit 0 <<t < ty., giiltig.
Dies trifft insbesondere auch fir fup.c und Fp.,. zu.

1.8 Zenirischer Anlauf einer Masse iiber eine der Geschwin-
digkeit proportional geddmpfte Feder

Unter Beriicksichtigung der Didmpfung r lautet die Be-
wegungsgleichung in diesem Fall

(;”122 —w] + r [vtgao - %—w]

STt {(vtgao) ¢4

Nach Einfiihrung der beiden Anfangsbedingungen

w (0) =0 und w (0) = 0 sowie der Abklingkonstanten

(13) 25= ",
m

der Eigenfrequenz », gemiss Ansatz 5 und der Frequenz

(14) s = |/no2 — 82

lautet die allgemeine Losung dieser Differentialgleichung

= / V23§ sinyst v2
(15) w=e st [( PR v tga()) —_ J°R cosmst] —
v2 (vi)2
= 4+ vtgaot + o

Beschrinken wir uns der Uebersichtlichkeit halber auf
den Fall der geraden Schiene, so wird entsprechend R = o0
einfacher

(16) w = vtgao {t—e*St Slnmst]
0

Daraus ergibt sich die Einfederung zu

A7) f = vtgag e Ot (ﬂﬂ>
)

und die Stosskraft zu

o2 — 208

2
(18) F:mvtgaoe—“( siny5t+28005u5t>

VV02 o

Wird statt 8 die dimensionslose Ddmpfungszahl

oy D S

o 2)km

eingefiihrt und die Stosskraft F' entsprechend dem Ansatz
B

(20) \p=———
JEm v tgag

auf die maximale Stosskraft bezogen, die im Falle einer
ungeddmpften und unvorgespannten Feder [vergleiche GI.
(11a)] auftreten wiirde, so wird GIl. (18) zu

1= oip2
(21) Ap=e—DProt [ 272" gin st 4+ 2Dcoswst
J1—Dz2

Diese Beziehung ist im Bild 4 links im Vektordiagramm und
rechts im \-Zeit-Diagramm dargestellt.

Aus diesen beiden Diagrammen erkennt man, dass Apmax
bei D = 0 den Wert 1 hat, bei zunehmender Ddmpfung zu-
néchst etwas abnimmt, dann wieder zunimmt, um bei D = 0,5
zur Zeit ¢t = 0 den Wert 1 zu erreichen, dass ferner sofort
eine Stosskraft auftritt, die entsprechend Ay = 2D mit der
Diampfung zunimmt und ab D = 0,5 als maximale Stosskraft
auftritt 1).

Im Bereiche 0 < D < 0,5 ergibt sich der maximale Wert
der Stosskraft bei dem der Bedingung 9Agr/ot = 0 entspre-
chenden Winkel

vt 1 et (1-4D2) /1 —D2
Ji-D2 |J1-D2 D (3 — 4D2)

(22) pot=

1) Bel D > 0,5 tritt Fmax im theoretischen Bereich »5¢ < 0 auf.



ar
D-0,7

- N
() (=)

5 6

Bild O. 4. Verlauf des Kraftfaktors Ap im Vektor- und im A-Zeit-Diagramm.

Bei diesem Winkel nimmt der Klammerausdruck der Gl. (21)
den Wert 1 an. Damit ergibt sich fiir Apna.x die einfache Be-
ziehung

(23) — Drotmax

AFmax = €
in welche entsprechend GI. (22)

(1—-4D2) /1 - D2
D (3 —4D2)

(24) arctg

70 tmax =

J1—D2

einzusetzen ist. Im Bild 5 ist die Kurve Apmax = £(D) aufge-

— Vi

\ :/{Fmax -

06

04

\<UO tmax

02

0 01 02 03 04 05 0685550

Bild O.5. Abhdngigkeit des Kraftfaktors Apmax vom
Dampfungsfaktor D.

tragen. Bis D = 0,5 folgt sie der Gleichung (23) und ver-
lduft, wie wir bereits festgestellt haben, bei grosseren Werten
von D nach der Geraden Ap = 2D. Aus dieser Kurve geht her-
vor, dass die minimalen Werte der Stosskraft im Bereiche
D = 0,22 bis 0,3 auftreten.

In dieser Abbildung sind ferner zwei Kurven (»ot)o und
(vot)max €ingezeichnet. Die erste stellt den Winkel »ot dar,
bei dem die Stosskraft wieder null wird, wéhrend die zweite

dem Winkel »ot entspricht, bei dem die Stosskraft ihr Maxi-
mum erreicht,

1.4 Euxzentrischer Anlauf eines Korpers tiber eine vorge-
spannte ungedimpfte Feder

Auf den in Bild 6 schematisch dargestellten Korper
wirkt im Stosspunkt A die elastische Kraft F und im
Schwerpunkt S die durch die Schieneniiberhdhung bedingte
Kraft (§2). Diese beiden Kréfte rufen die Beschleunigungen

Bild O.6. Exzentrischer
Anlauf eines Korpers.

aF
m i2

V=

Er_n-_@‘ und 3(/:

hervor, womit filir den Stosspunkt A die Beschleunigung

m

(25) a}:'«}+a¢:%(i?;“2) ¢

folgt. Die Stosskraft F ergibt sich ebenfalls nach Gl. (4).

Damit wird die Beschleunigung 1w zu

(vt)2
2R w}_

K <12+a2

G
T\ 2 m

)[%Jr (vtgao)  +

Mit den Ansatzen

B i2 L &
(26) f():TO, mred:m< ),V02: undb: %

2 4- a? Miyeq

fiihrt diese Beziehung zur Differentialgleichung

= (vt)2
(2T) 1 4 vo2 W = 52 [fo+(vtgao)t+ e ]~b

deren Losung nach Einfihrung der Anfangsbedingungen
w (0) = 0 und w(0) =0:

2) Gemiss Definition wirkt (§ infolge des positiven Vorzeichens
des Winkels ¢r bei positivem Wert nach aussen bzw. nach links.

89



(28) w = vtgao(t = SH;”‘“) o
\ 0
1 /v2 t)2
105 (e + b)] (1~ cosrgt) + 22

lautet. Nach Umformungen ergibt sich daraus fiir die Kraft
F' die Beziehung

(29) F=vtgao|/kmeq sinrgt +

2

= [FU — Myeq ( ‘]; + 0 )] COS v T + Myeq (*‘g’ + 0 /)

/

welche sich vektoriell durch ein #hnliches Diagramm wie in
Bild 2 darstellen ldsst. Hine solche Darstellung ldsst sofort
erkennen, dass F nach der Zeit

Bl e -+ b>

al: 0 red (

(30) tmax = — l — aI‘Ctg —_— ii =
Yo 2 v tgaO Vk Myeq

den maximalen Wert

v2 )
(81) Fmax = Myeq (ﬁ o b) ol

25 ] v2 2
9 V(V tgag)2 k myeq + I:F() — Myeq (? +0b ):l

erreicht. Ist das Gleis mit seiner Ueberhdhung genau fiir die
Geschwindigkeit v ausgeglichen, so gilt

so dass sich im Fall (Fy = 0) Gl. (29) zu

(29a) F = vtg ap [/kMyeq sin »ot

vereinfacht. Diese Beziehung ldsst erkennen, dass die Stoss-
kraft F nicht unmittelbar vom Trigheitsmoment, sondern
von der reduzierten Masse m,.q des Korpers abhéingt. Bei aus-
gleichender Ueberhthung und bei Fy = 0 ergeben somit zwei
Korper, welche gleiche reduzierte Massen aufweisen, bzw.
welche der Bedingung

e 1
(32) &—(;2) ot asm) = 1+(]§L)

me i
geniigen, grundsitzlich die gleiche Stosskraft. Diese Fest-
stellung ist bei der Beurteilung verschiedener Schienenfahr-
zeuge, obwohl die Verhiltnisse dort erheblich verwickeiter
sind, interessant.

In Bild 7 ist der fiir die Grosse der Stosskraft wich-
tige Faktor [/mrcd/m in Abhingigkeit der Verhiltniszahl
a/i dargestellt. Bei einem normalen Triebgestell liegt /i
praktisch zwischen 1,1 und 1,5, so dass |/ m,.q/m zwischen
0,67 und 0,55 liegt.

Bild O. 7. Verlauf des Ver-
hiltnisses m;eq/m und d 1

|/ myeq/m in Abhingigkeit 09 \\

des Faktors a/i. 08

o\
o\

03 2
5 ’/&o
04
03
2.
02 2%
o1
a
0 1 2 3 i
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2. Zentrischer Anlauf eines Zweimassensystems gemiss
Bild 11

Im vorhergehenden Abschnitt wurde festgestellt, dass mit
Hilfe der durch den betreffenden Ansatz (26) definierten
reduzierten Masse m,.y der Fall des exzentrischen Anlaufes
eines Korpers auf denjenigen des zentrischen Anlaufes ver-
einfacht werden kann. Dies gilt grundsétzlich fiir den Anlauf
eines einfachen Fahrzeuges, wenn man annimmt, dass Fiih-
rungskréfte Y nur beim anlaufenden Radsatz auftreten,
wenn man also die bei den anderen Ridern vor allem durch
die Reibung zwischen Rad und Schiene entstehenden Fiih-
rungskrifte vernachléssigt.

Um die dynamischen Fiihrungskrifte zu verringern, wur-
den Lokomotiven mit einer elastischen Querhaltung der Rad-
sétze versehen. Die entsprechende Vorrichtung wird entweder
im Achslager selbst (Bilder 8 und 9) oder zwischen Achslager
und Fahrzeugrahmen (Bild 10) angeordnet, Gewdhnlich wird
eine Vorspannung bestimmter Grésse in der Riickstellvor-
richtung des Radsatzes vorgesehen, so dass diese praktisch
nur beim ersten Radsatz spielt, da die Lagerquerkrifte H
der anderen Radsétze meistens bedeutend Kkleiner als die
Vorspannung ausfallen. Somit gestattet obige Annahme, das
Fahrzeug anniherungsweise durch das Massensystem von
Bild 11 zu ersetzen, Dabei entsprechen

m der Masse des anlaufenden Radsatzes,
M der reduzierten Masse m,., des iibrigen Fahr-
zeugteils,
Ic der Steifigkeit der angelaufenen Schiene ein-
schliesslich derjenigen des anlaufenden Rades,
ko bzw. Hy der Steifigkeit bzw. der Vorspannung der Rad-
satzriickstellung.

Beim Anlaufvorgang wird das innere, nicht fiihrende
Rad des anlaufenden Radsatzes querverschoben, wodurch
eine Querreibungskraft S; entsteht, die der Querbewegung
des Radsatzes entgegenwirkt. Die Grosse dieser Kraft ist
genauer durch die Beziehung (I 48) gegeben. Sie wird vor
allem durch den Reibungskoeffizienten u bestimmt, der selbst,
wie wir frither gesehen haben, vom Schlupf v abhéingt.

In dieser Untersuchung wollen wir, um die mathema-
tische Behandlung des Problems zu ermoglichen, annehmen,
dass die Abhingigkeit p(v) durch die Beziehung

uw=kKyv

gegeben ist und dass sich die innere Schiene nicht defor-
miert. Da in diesem Fall der Schlupf der Querbewegung
des inneren Rades gleich w/v gesetzt werden kann, er-
gibt sich die als Ddmpfungskraft wirkende Querkraft S; zu

w
Si=—uVi=—k, —Vi
Vv
bzw. wenn der Raddruck V; konstant angenommen wird zu

(33) S;=—rw
Rt [ Ky \ .
wobei  dem Ausdruck (T Vi) entspricht.

Solange die zwischen den beiden Massen wirkende
Kraft H kleiner als die Vorspannung H, bleibt, bewegen
sich beide Massen miteinander und verhalten sich wie
eine einzelne Masse. Sie folgen somit einer einzigen Bewe-
gungsgleichung., Wird aber H > H,, dann fiihrt jede Masse
ihre eigene Bewegung aus und folgt ihrer eigenen Bewe-
gungsgleichung., Der Anlaufvorgang erfolgt somit in zwei
Phasen. Die erste Phase beginnt zur Zeit ¢ = 0 und endet zur
Zeit 1y beim Zustand H = H,. Die anschliessende zweite
Phase tibernimmt die Endbedingungen der ersten Phase als
Anfangsbedingungen und bleibt solange bestehen, als
H = H, ist.

In der erstem Phase wirkt die durch die Steifigkeit k
gegebene Stosskraft

(34) Y =k(y—w)



a b

Bild O. 8. Achslager mit elastischer Querhaltung der Achse,
Ausfiihrungen mit Rollenlagern bei den Ae 6/6-Lokomotiven
der SBB:

a) Ausfihrung mit Zylinderrollenlagern: Uebernahme
Seitenbewegungen durch die Lager selbst (Lok.
10412).

b) Ausfiihrung mit Pendelrollenlagern:

Seitenbewegungen durch Gummielemente
10403—10411 und 10413—10450).

der
Nr.

der
Nr.

Uebernahme
(Lok.

Bild O. 9. Achslager mit elastischer Querhaltung der Achse,

Ausfiihrungen mit Gleitlagern:

a) Ausfiihrung SLM bei den BoBo-Lokomotiven Nr.9001
und 9002 der SNCF.

b) Ausfiihrung Alsthom bei den CoCo-Lokomotiven der

hervor. Mit den Ansdtzen

5 k . .- & .
(35) »o2 ———— 28 = ﬁﬁ )

m+ M’ = [ — 22

ergibt sich aus dieser Gleichung fiir den Anlauf gegen eine
gerade Schiene mit (y = vtgapt) die Differentialgleichung
(36) W 28w + 2w = re2vigagt

Ihre allgemeine Losung lautet:

(37) w = e~ St [Cysinrst 4+ Cocosrst] + vigao <t = 28)
vo2

LS

Bild O.11. Anlauf eines Zweimassensystems.

wobei die Konstanten C; und C, aus den Anfangsbedingun-

gen zu bestimmen sind und mit w (0) = 0 und w(0) =0 zu

(38) w = vtgagt +

Vtgao [

0 A\
0 sinmt) _23]
140} J

282 — py?
=0 (2acosV5t+'
\ v§
fithren. Die Masse M steht unter der Wirkung der Kraft H
allein, und diese muss somit mit der Trégheitskraft Mw im
Gleichgewicht sein, Aus Gleichung (37) folgt

SNCEF.
< in vst
w :Vtgaoe‘at 1’02 S Z6)
g
e womit wir flir H die Beziehung
S I b
S~ "Eﬁ“]la " ] Mvtgagr? st .
N2 | 4 Nl b Ay \ (39) H = S s e sin pg ¢
+ —v—Tif R e — e erhalten, Die erste Phase hoért auf, so-
’ N bald H gleich H, wird. Die betreffende
NN 77 N N 7 NN S| NN N . o . ! A o
Z QAN _ ‘l ily'&:“.;%\\ j 7 "%iﬁ‘ Zeit tq ist somit durch die Gleichung
f \ \,,\/\\, e \ \ = ?’72/,/”//“
\\ = N SN mm (40) e Stl sin voty = vé HO
i
V/\VA‘IIAVAV ] N/ M v tgag vo2?
2 7
i T p A festgelegt und gestattet, die Grenzbedin-
S gungen am Ende der ersten Phase bzw.
a b c die Anfangsbedingungen der zweiten

Bild O.10. HElastisch oder mit Pendeln im Rahmen quergefiihrte Achslager:

a,) Ausfiihrung Timken,

b) Ausfiihrung SLM: Gasturbinenlokomo-
tive der British Railways.

¢) Ausfiihrung mit Pendelrollenlagern.

auf beide Massen und ruft somit unter Mitwirkung der
Dampfungskraft rw die Beschleunigung

1

= e
m - M

[k(y—«w) o m‘u]

Phase aus Gl, (37) und ihren Ableitun-
gen zu bestimmen,

In der zweiten Phase wirkt auf die Masse M die Kraft
(41) H = Hp + ko(w —v)

und auf die Masse m nebst H die Kraft Y gemiss Gl. (34)

sowie die Dadmpfungskraft raw. Daraus ergeben sich die bei-
den Bewegungsgleichungen

MY = Hy + ko (w—v)
und
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N
(w-v) mm

2
S
5000
4000
3000
2000
Bild O.12. Verlauf der Stosskraft Y 7900
und der Federung (w—wv) beim
Zweimassensystem fiir die Fille = 0,
1905, 2905 und co kg und ko = 0, 0
2000 und 4000 kg/cm. 0 002

mw =k (vtgagt — w) — [Ho+ ko (w — v)] — 70,

welche mit den Ansédtzen

42 2= o2l —
(42) 7 2
zu den Differentialgleichungen

(43) U+ 320 — v32w = pg2 fy

und

(44) W +28W + (712 + 792) W — 292V = py2 Vigaot — o2 fo

flihren. Die Eliminierung von w aus den beiden Gleichungen

ergibt die Differentialgleichung vierten Grades

(45) U 4280 + (712 4 792 + 152) B - 28 9320 + 912 9320 =
= 112732 (Vigao t + fo)

deren Losung in der Form

(46) v = Aseb1 4 Ayobaf Agels + Ayehd t vigayt +
/ 28vt

o =Tt
Vo=

\

geschrieben werden kann. Dabei bedeuten 1, fo, pg und pug
die vier Wurzeln der charakteristischen Gleichung

B A28 4B 4 (112 + vo% + 132) p2 + 28932 p + 142932 = 0

und sind die vier Konstanten Aj, A,, Az und A, aus den
Anfangsbedingungen der hier betrachteten zweiten Phase
zu bestimmen.

Die vier Wurzeln p lassen sich nicht unmittelbar formel-
méssig angeben und miissen in jedem konkreten Fall nach
einem geeigneten Verfahren bestimmt werden3). Wir ver-
zichten darauf, hier auf die Bestimmung dieser Wurzeln so-
wie der Konstanten A fiir die einzelnen untersuchten Fille
naher einzugehen und beschrénken uns auf die Angabe der
uns vor allem interessierenden Ergebnisse, nimlich der Grés-
sen Y, H und (vtgeot — w).

Bei der genaueren Behandlung des Amnlaufvorganges
wird u. a. derjenige des Triebgestells der Ae-6/6-Lokomotive
untersucht werden. Es ist deshalb interessant, unsere jetzige
Untersuchung ebenfalls auf dieses Triebgestell bei gleicher
Anlaufgeschwindigkeit und fiir die gleichen Fille zu erstrek-
ken. Wir setzen deshalb

3) Siehe Hiitte, 28. Auflage, Band I, Seite 64, oder R. Zurmiihl:
Praktische Mathematik fiir Ingenieure und Physiker, Springer 1953,
Seite 55 und folgende.
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0,08 0,1 012 — ¢ sek

0,04 006
vtgay = 17 emy/s k = 9525 kgem-1
m = 2,56 kgem-1s2 r = 120 kgem-1g

M = 12,7 kgem-1s2 Hy = 0, 1848 und 2905 kg
ko = 0, 2000, 4000 und 20 000 kgecm-1

ein, wobei der Wert von r auf Grund unserer spéteren ge-
naueren Untersuchungen geschitzt wurde.

Die Ergebnisse der mit dem IBM-Rechengerit durchge-
fiihrten Auswertungen sind in Bild 12 oben fiir die Anlauf-
kraft F' und unten fiir den relativen Anschlag (w—v) dar-
gestellt. Aus diesen Ergebnissen lisst sich u. a. folgendes
feststellen:

a) Die verschiedenen Grossen ergeben sich in der zweiten
Phase des Anlaufvorganges aus der Summe zweier geddmpf-
ter Schwingungen, welche vor allem durch die beiden
Schwingungssysteme [m, (k -~ ko), r] und [M, ko, r] gege-
ben sind. Die erste ist entsprechend der kleineren Masse und
der grosseren Steifigkeit schneller als die zweite, weist aber
deutlich kleinere Ausschlige auf. Ihre vorwiegend durch
(ke + ko) bedingte Frequenz hingt relativ wenig von der
gegeniiber k viel kleineren Steifigkeit ab, wihrend die-
jenige der zweiten annihernd mit |k, zunimmt.

b) Der erste Maximalwert der Stosskraft F fallt um so
grosser aus, je grosser die Vorspannung H, ist. Dafiir wird
der Relativausschlag (w—wv) um so kleiner.

c) Bei gleicher Vorspannung H, fiihrt eine Vergrosserung
der Steifigkeit ko zu einer Vergrdsserung der Stosskraft F
und zu einer Verkleinerung des Relativausschlages (w —v).

Obwohl der Anlaufvorgang hier verwickelter ist, stim-
men die beiden letzten Feststellungen mit den Ergebnissen
fiir die iiber eine vorgespannte Feder anlaufende Masse
liberein,

3. Der Anlaufvorgang beim Schienenfahrzeug

Diese Arbeit hat zum Ziele, vor allem den Fall der
Drehgestell-Lokomotive zu behandeln. Da eine solche Loko-
motive Triebgestelle aufweist, welche unter Beriicksichti-
gung der Einwirkungen der anderen Teile als Einzelfahr-
zeuge zu behandeln sind, sei zuerst ein solches betrachtet.

3.1 Der Anlauf des einfachen Rahmenfahrzeuges

Der Fall des Anlaufes stellt eine bestimmte Phase des
allgemeinen Falles des dynamischen Laufes dar und ist durch
die Kurve y (x) des Gleises sowie durch die Anfangsbedin-
gungen gegeben. Die in den Kapiteln I, K und L fiir den Rad-
satz und das einfache Fahrzeug festgelegten theoretischen
Grundlagen haben somit hier volle Giiltigkeit, und die abge-
leiteten Beziehungen kénnen unmittelbar angewendet werden.
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Bild O.13. Anlauf deseinfachen Fahrzeuges.

Setzt man voraus, dass der Anlauf des Fahrzeuges bei
der Einfahrt aus der Geraden in die Kurve erfolgt, so er-
geben sich die in Bild 13 dargestellten Verh&ltnisse, wobei
die Zeit ¢ vom Zeitpunkt des Anlaufbeginns des ersten Rad-
satzes und die Abszisse x vom Ort des Kurvenbeginns ge-
z&dhlt werden. Fiir positive Werte von x weist die Kurve eine
Ordinate auf, die durch das massgebende Gesetz y = f(x)
festgelegt ist. Fiir negative x hingegen bleibt y null. Es ist
somit bei jedem Radsatz zu unterscheiden, ob seine Abszisse
x; positiv oder negativ ist.

Fiir diese gilt die Beziehung

(47) @ = 21 — aqjco8 g = 21(0) + Vi — ay; COS Yy

sodass sich der Fall y; = 0 oder y; = f(x;) ergibt, je nach-
dem ay;cOSy, grosser oder Kleiner als oy bzw. [%1(0) + v£] ist,

Aus der Ordinate y der Mittellinie des Gleises ergibt sich
diejenige des dusseren bzw. des inneren Schienenstranges zu

(48) ya=y— €. bzw. yi=y -+ €&

Ist die Kurve durch einen Kreishogen mit dem Radius R
gegeben, so gilt flir den ersten Radsatz mit geniigender Ge-
nauigkeit die Beziehung

(vt)?

#2) 2R

y1 (t) = y1(0) + vt tgaps +

und fiir den Radsatz j bei positivem «;, d. h. bei
(21 > a1j cos Yg)

(50) y; () = y1(0) + (vt — ay; cos yg) tgag* +

+ 2R

Dabei entspricht tgap* der Neigung y4'(0) der Gleiskurve
beim ersten Radsatz im Augenblick des Anlaufens und steht
nach der Beziehung

(51)  ao¥* = ag + yg

mit dem Anlaufwinkel des ersten Radsatzes im Zusammen-
hang. Zwischen y;1(0) und 21(0) besteht die einfache Bezie-
hung

2y1(0)

(52) 21(0) = VW = tgao*

Wenn sich, im Spezialfall, der erste Radsatz bei Anlauf-
beginn mit seinem Mittelpunkt auf der x-Axe befindet, so
ergibt sich y1(0) zu o und damit u. a. die Gleichung

Vi — @17 COSLg)2
Vi (2) = o + (VI — a1 cos yg) tgap* + (2#

(53)
Im Falle einer geraden Ablenkung um den Winkel ap* ver-
einfachen sich die obigen Beziehungen (49), (50) und (53)
durch das Wegfallen der rechts stehenden quadratischen
Glieder.

Es kann angenommen werden, dass im ersten Augenblick des
Anlaufens der anlaufende Radsatz in seiner urspriinglichen
Richtung weiter fahrt, so dass sich die angelaufene Schiene

um [}E,.l(O) tg el t deformieren muss. Somit kann unter Ver-

(VL - aq; COS g)2

nachléssigung der Reibungskrifte 4¢) die Beziehung

(54) Tycospr =k [%:4(0) tgaol t

tiir die unmittelbar nach dem Anlauf entstehende Fiihrungs-
kraft T; des ersten Radsatzes aufgestellt werden, wobei 1/k
der totalen Nachgiebigkeit (1/k. 4 1/kg + 1/kg) entspricht.

Ferner kann vorausgesetzt werden, dass die Lagerquer-
kraft Hy im ersten Augenblick des Anlaufens klein bleibt, so
dass auch im Falle einer elastischen Lagerquerhaltung mit
Vorspannung das Fahrgestell fest mit dem ersten Radsatz
gebunden bleibt und seiner Bewegung folgt. Aus Ty und aus
der im Schwerpunkt des Triebgestells wirkenden Querkraft
G0t entsteht die resultierende in der v-Richtung wirkende
Kraft

n
Ty cos @1 cos Y1 — (g cos vy — Z &; cos y;
1

die sich einfacher zu (Ti— @it) ergibt, wenn man cose,,
cosy, und cosy, gleich 1 setzt und fiir alle Radsitze den
gleichen Winkel ¢ annimmt. Es gelten somit beim Anlauf-
beginn die beiden Bewegungsgleichungen

e 1 .
v=——[kx:1(0) tgagt — Giot]
Mot

(55) -
a [erl(O) tga’o] t

Oz tot

e =

deren Integrationen zu

. . 12 .
= [lc %r1(0) tgao o — G t] + 5(0)
(56) ,
k x,.1(0) t, 12 5
g:W 3 ?+¢g(0)
sowie zu
il O e C&‘“tﬂ+a}(0)t+v(o)
mtotl_ 6 2
(57)
%,:1(0) tga :
pe=ak 0 BN 4 0)t 4y (0)

fiihren. Setzen wir diese Ausdrlicke in die Gleichungen
(L 21) und (L 22) ein, so erhalten wir unter Beriicksichti-
gung von Gl (L5) und (L6) flir ¢ = 0 die angendherten
Beziehungen

20t0tX,1(0)

(58) : -
akxy(0)tgagt? 4 26.t0t yllg(o)

he(0) =

und

k,Ot t2_2 ot 9 O.O
(59) Pg(O):(ez“’t)[ %:1(0) tgao Got? + 2miot v( )}_

Mot ak X1 (0)tgaot® + 260,101 w5 (0)

[ [afx:1(0)tgaot? + 6010t [¥e(0)t + & (0)] }X @
=22 5 = ri
| 3 lake(0)tgaot? + 26201 45(0)]

Im Spezialfall, bei dem die Anfangsbedingungen v(0),

v(0),¢(0) und y,(0) null sind, ergeben sich diese Beziehun-
gen einfacher zu

s zeztot
(60 e 0= aktgagt?
und
6')ztot 2@t0t g t
61 0) = 1-— 5 =)=
(B () amm[ kX1-1(0)tgaot] (03

4) Diese sind beim Anlaufbeginn praktisch null. Eine Ausnahme je-
doch macht die Kraft Fya., deren Querkomponente bereits durch die
Fiihrungskraft Ty. beriicksichtigt ist und deshalb nicht in die Rech-
nung einzufithren ist.
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Daraus folgen zur Zeit 0 die Werte h, = co und Pg = 00, wenn
Gtot 5= 0 bZW. Dg = B0t/ @ Miot = 240t /@, Wenn G = 0. Im
letzteren Fall stimmt somit der Wendepol des Fahrzeuges
mit seinem Stossmittelpunkt iiberein. Aus p, und h, lassen
sich pg und k. nach den Beziehungen (L 21) und (L 22) er-
mitteln.

3.11 Anwendungsbeispiele

Im folgenden soll nun als praktische Anwendung der bis-
herigen theoretischen Betrachtungen der Anlaufvorgang der
Triebgestelle der Ae-4/4-Lokomotiven der BLS sowie der
Re-4/4- und Ae-6/6-Lokomotiven der SBB in verschiedenen
Fallen nach dem im Abschnitt I5 erwidhnten vereinfachten
Verfahren untersucht werden, wobei eine Radsatzlagerung
ohne Léngsspiel vorausgesetzt wird, Die fiir unsere Unter-
suchungen massgebenden Gréssen dieser Lokomotiven sind in
der am Schluss dieses Kapitels gegebenen Tabelle 2 zusam-
mengestellt.

Das fiir die Berechnung mit dem IBM-Magnettrommel-
Rechner Typ 650 vorbereitete Programm gestattet am Ende
jedes Integrationsschrittes die Angabe der Grossen:

{b‘gy ‘;Lgv ‘Pg; '(F;gr "Pg: '2:4] 5y 'Jv a Ps M], Pg, Ej, wj, Yjar Yji, Nj» gjav gjiy ALjv
Via Viis Pj, Yja, Y1, Sjar Sji, Uja und Uy,

3.111 Der Anlaufvorgang des Triebgestells der Ae-4/}-Loko-
motive der BLS (Bild 14) bei der Einfahrt in eine Kurve

Als erstes Beispiel soll hier der Anlauf des Triebgestells
der Ae-4/4-Lokomotive unter Zugrundelegung folgender Vor-
aussetzungen untersucht werden:

Bild O. 14. Triebgestell der Ae 4/4-Lokomotive der BLS.

Binfahrt in eine kreisbogenférmige Kurve mit R =
500 m, ¢ =6,25 mm, V =72 km/h beziehungsweise v =
20 m/s, tgap = 0,005. Spielfreie Haltung der Radsatz-
lager. Starre Haltung der Lager. Der Reibwert p verliuft
nach der in Bild 11 angegebenen Kurve. Das Gleis ist in
der Kurve genau fiir V = 72 km/h ausgeglichen, Die ent-
sprechenden Querkomponenten (¢ der einzelnen Gewichte
betragen daher ¢, =E,2 = 263 kg und G, = 1192 kg.
Es wird eine Steifigkeit k¥ = 9525 kg/cm entsprechend
(For+ Kg)/(kpkg) = 10 000 kg/em und kg = 200 000 kg/em vor-

Bild O.15. Anlaufkrifte,
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ausgesetzt. Zur Vereinfachung der Behandlung wird ange-
nommen, dass das Gleis auch im geraden Abschnitt unmittel-
bar vor der Kurve mit der gleichen Ueberhthung wie in der
Kurve verlegt ist, Die erwadhnten Krafte (§ wirken somit auch
dort, Unmittelbar vor dem Anlaufen 1duft das Drehgestell ent-
sprechend v(0) = 0, ¥(0) =0, v(0) =0 und ¥4(0) =0 ge-
rade und genau auf der x-Axe. Der Anlaufwinkel «( betrigt
daher 0,005 = }/20/R.

Die wichtigeren Rechnungsergebnisse sind in Bild 15
veranschaulicht, wobei im oberen Bild die Krafte Py, Y14,
Yli; Y4, Hy, V4, Yo, Ho und Vo und im unteren Bild die Ko-

ordinaten wy, ws, v und ay,, die Geschwindigkeiten v und
ay,, die Wendungspoldistanz p,, die beiden Gleitpoldistanzen
&1, und &; sowie der Radius p; der Wendung in Abhingigkeit
der Zeit dargestellt sind. Als interessantere Feststellungen
sind folgende besonders hervorzuheben:

1. Der momentane Radius pg féllt von oo auf ein Mini-
mum von 382 m zuriick und schwingt dann um den Radius
(R = 500 m) der Kurve, dem er sich mit kleiner werdenden
Amplituden allméhlich néhert.

2. Die Wendungspoldistanz p, fingt ebenfalls mit dem
Wert «o an und pendelt sich auf den Wert 349,5 cm des
statischen Laufes ein 5).

3. Die Richtkraft Py, die Fihrungskrifte Yy, und Yy
und die Lagerkraft Hy erreichen ihre extremen Werte prak-
tisch gleichzeitig,

4. Die Richtkraft Py weist gegeniiber der Fiihrungskraft
Y,, einen Mehrbetrag auf, der durch die Seitenkomponente
S1, der Reibungskraft Fy, gegeben ist und bei Anlaufbeginn
den minimalen Wert von 1600 kg und beim ersten Maximum
den maximalen Wert von 1960 kg aufweist.

5. Der der Trigheitskraft des Radsatzes entsprechende
Unterschied zwischen der Fihrungskraft Y; des Radsatzes
und der Lagerquerkraft Hy betrdgt im Maximum 600 kg.

6. Die Periode der Yy,-Schwingung betrdgt rund 0,197 s
bei Messung zwischen den beiden ersten Maxima und rund
0,1995 s bei Messung zwischen den beiden ersten Minima. Der
maximale Wert der Fiihrungskraft Y, betrdgt 3830 kg und
tritt bei £ = 0,0675 s auf.

7. Die Raddruckdnderung AV; hat ihre beiden ersten
Maxima praktisch gleichzeitig wie die Fiihrungskraft Yi,
und betrdgt + 997 kg beim ersten Maximum und + 583 kg
beim zweiten. Die Raddruckidnderung AVe weist ebenfalls
ihre beiden ersten Maxima gleichzeitig wie die Fiihrungskraft
Y, auf, Thr Wert ist jedoch mit 500 kg beim zweiten Maxi-
mum grosser als beim ersten.

8. Die &5~ und die £-Kurven schneiden die p,-Kurve in
denjenigen Zeitpunkten, in denen die betreffende Fiihrungs-
kraft Yi, bzw. Yy; ein Extrem aufweist 6).

Ersetzt man zur Vereinfachung den Anlaufvorgang des
wirklichen Triebgestells durch den im Abschnitt 1.4 behan-

Bild O.16. Triebgestell der Ae 6/6-
Lokomotive der SBB.

delten Fall des exzentrischen Anlaufes eines Korpers und
setzt in Gl. (21a) die hier in Betracht zu ziehenden Werte

Myeq = 9,585 Kg 5%/em, K = 9525Kg/em,  Xr1(0)tgao = 10cm/s

ein, so ergibt sich fiir F' der maximale Wert Fp,x = 3023 kg,
der nach 0,0498 s erreicht wird. Der Vergleich zwischen die-
sen Werten und den oben erwéhnten zeigt, dass die hier ein-
geschlagene Vereinfachung nicht zuldssig ist.

3.112 Der Anlaufvorgang des Triebgestells der Ae-6/6-Loko-
motive der SBB (Bild 16) bei der Einfahrt in eine Ablenkung

Als zweites Beispiel wird der Anlauf des Triebge-
stells der Ae-6/6-Lokomotive behandelt. Dabei sollen folgende
Voraussetzungen zugrunde gelegt werden:

Hinfahrt in eine Ablenkung mit v = 20 m/s, tgag = 0,0050
und ¢ = 6,256 mm, Das Gleis weist keine Ueberhdhung auf.
Es ist somit ® = 0 und daher § = 0. Sonst gleiche Voraus-
setzungen wie im Beispiel 3.111.

Einen Teil der Rechnungsergebnisse zeigen die ver-
schiedenen Kurven von Bild 17. Aus diesen geht u. a. hervor:

1. Die Fiihrungskraft Yi, und die Raddruckinderung AVy
weisen bei ¢ = 0,08 s ihr erstes Maximum von der Grosse
4475 kg bzw. 15645 kg auf.

2. Die maximale Raddruckénderung tritt bei jedem Radsatz
gleichzeitig wie der maximale Wert der Fiihrungskraft Y;
auf. Sie betrdgt etwa +1545kg beim ersten Radsatz,
—690 kg beim mitteleren und +820 kg beim letzten.

3. Bei Anlaufbeginn ist der Radius p der Wendung unendlich
gross. BEr fallt rasch ab und erreicht sein Minimum von 693 m
zur Zeit t = 0,115 s. Er wichst dann wieder bis zu einem
maximalen Wert von 5700 m, den er zur Zeit t = 0,260 s er-
reicht, Betrachtet man die (a‘,'bg)-Kurve, so erkennt man, dass
zu diesem Zeitpunkt ay, ein Minimum aufweist, was geméiss
Gl (L.10) das Entstehen des Maximums von p, zur Folge
hat.

4. Entsprechend der am Schluss des Abschnittes 3.1 aufge-
stellten Beziehung (37) fangt die Wendungspoldistanz pg mit
dem Wert 382 cm an. Sie steigt zunéchst ein wenig, nimmt
wieder bis zum minimalen Wert 327 cm ab und steigt wieder
bis zum maximalen Wert 495 cm, den sie ebenfalls zur Zeit
t ~ 0,26 s erreicht.

5. Gleich wie beim Drehgestell der Ae-4/4-Lokomotive
weisen die Gleitpoldistanzen ¢ betréchtliche Abweichungen
von den betreffenden Wendungspoldistanzen auf.

5) Aus Bild N 8 ergibt sich fiir R = 500 mm die Wendungspol-
distanz pg zu 1,075 - 2a bzw. 1,075 . 3,26 ~ 349,56 cm.

6) Begriindung: Beim Auftreten des Extrems ist die Geschwin-
digkeit { der Schienendeformation null. Es entsteht deshalb in die-
sem Zeitpunkt keine Verlagerung ¢ des Schwenkungspoles 117, sodass
¢ gleich p wird.
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Bild O. 17. Anlaufkrifte, Ausschlige und diverse Gréssen bei der Einfahrt
des Triebgestelles der Ae 6/6-Lokomotive in eine Ablenkung mit V =

72 km/h und tgap = 0,0085,



Bild O. 18, Triebgestell der Re 4/4-Lokomotive der SBB.

6. Der der Triagheitskraft m,w des ersten Radsatzes entspre-
chende Unterschied (Y;—H;) betrdgt im Maximum 370 kg.
Er fallt somit deutlich kleiner als beim Ae-4/4-Drehgestell
aus, was auf die Beschleunigung 1 zuriickzufiihren ist, die
infolge der grosseren m;, und 0.y, kleiner ist.

Wiirde man diesen Anlauffall zur Vereinfachung mit
Hilfe der reduzierten Masse nach Abschnitt 1.4 untersuchen,
so wiirde sich die maximale Stosskraft wie im vorherigen
Beispiel zu 3023 kg nach 0,0498 s statt zu 4475 kg nach 0,08 s
ergeben. Die Anwendung dieses vereinfachten Verfahrens ist
somit flir die Bestimmung der Grosse und desg Zeitverlaufs
der Anlaufkraft hier ebenfalls unzuldssig.

3.113 Der Anlaufvorgang der Triebgestelle der Ae-4/4-Loko-
motive der BLS sowie (Bild 18) der Re-4/}- und Ae-6/6-Lolko-
motive der SBB bei der Einfahrt in eine Ablenkung

Um zwischen den oben erwahnten Lokomotiven einen
Vergleich ziehen zu konnen, wurde der Anlaufvorgang ihrer
Triebgestelle unter folgenden Voraussetzungen untersucht:

Einfahrt in eine Ablenkung mit v =20 m/s, tgap =
0.0085 und o = 1,08375 cm. Das Gleis ist horizontal: ® =0
und ¢ = 0. Sonst gleiche Voraussetzungen wie im Beispiel
3.111. Es wird keine Lédngskraft U entwickelt.

In Bild 19 sind die Rechnungsergebnisse fiir die Flih-
rungskraft Y, sowie flir die Raddruckerhdhung AVy des an-
laufenden Rades angegeben. Wie die betreffenden Kurven
zeigen, betriagt der maximale Wert der Fiihrungskraft 7355 kg
bei der Ae-6/6-, 5790 kg bei der Ae-4/4- und 4555 kg bei
der Re-4/4-Lokomotive. Sie betridgt somit bei der Ae-6/6-
Lokomotive das 1,275-fache und bei der Re-4/4-Lokomotive
das 0,793-fache des Wertes der Ae-4/4-Lokomotive. Aus den
in Tabelle 2 angegebenen Werten von m,eq ergeben sich fiir
das Verh#ltnis der reduzierten Masse der betreffenden Lo-

komotive zur reduzierten Masse der Ae-4/4-Lokomotive die
Wierte 1,261 und 0,810. Diese Werte weichen um 1,1 bzw.
2,1 9, von den oberen ab, so dass es offenbar moglich ist,
verschiedene Fahrzeuge anhand ihrer Massen m,.q zu ver-
gleichen, obwohl, wie in den beiden letzten Abschnitten fest-
gestellt wurde, die vereinfachte Untersuchung mit Hilfe die-
ser Masse keine befriedigende Bestimmung der Anlaufkrifte
selbst gestattet.

Um den Einfluss der Zugkraft zu iiberblicken, wurde
ferner fiir das Triebgestell der Ae-4/4-Lokomotive der An-
laufvorgang bei Entwicklung einer Zugkraft U = 3000 kg
jedes Radsatzes untersucht. Die sich dabei ergebenden Yq,-
und AVy{-Werte sind im gleichen Bild durch die gestrichelten
Kurven gezeigt. Man erkennt, dass die Ausiibung dieser Zug-
kraft den maximalen Wert der Filihrungskraft ¥, um etwa
400 kg verkleinert und den betreffenden Zeitpunkt um rd.
0,008 s vorverschiebt. Hingegen wird dadurch der maximale
Wert der Raddruckdnderung AVy praktisch nicht geédndert,
einzig der betreffende Zeitpunkt wird vorverschoben.

3.114 Der Anlaufvorgang des Triebgestells der SBB-Ae-6/6-
Lokomotive bei der Einfahrt in eine Ablenkung im Falle
einer elastischen Lagerquerhaltung

Mit Ausnahme der beiden ersten Nummern 11401 und

11402 wurden die Ae-6/6-Lokomotiven bei ihren Achsen Nr. 1,
3, 4 und 6 mit einer elastischen Querhaltung ihrer Lager ver-
sehen, Die Bilder 20 u. 21 zeigen, wie sich diese Vorrichtung
bei verschiedener Grosse ihrer Vorspannung H, und ihrer
Steifigkeit auswirkt. Aus diesenBildernergibtsich folgendes:
1. Eine Erhshung der Vorspannung H, bringt bei gleichblei-
bender Steifigkeit k, eine Vergrosserung der maximalen
Fiihrungskraft Y;, und der Raddruckidnderung AVy sowie
eine Verkleinerung des elastischen Ausschlages in der Lager-
flihrung mit sich.
2. Bine Verkleinerung der Steifigkeit ko hat bei gleichblei-
bender Vorspannung eine Verkleinerung der maximalen F'iih-
rungskraft Yy, und der Raddruckénderung AV bei gleich-
zeitiger Vergrosserung des elastischen Ausschlages (wy — V1)
zur Folge.

Diese Feststellungen stimmen mit denjenigen des Ab-
schnittes 1.1 iiberein. Eine Verkleinerung der maximalen
Fithrungskraft kann somit sowohl durch eine Verkleinerung
der Vorspannung wie durch eine Verkleinerung der Steifig-
keit erreicht werden. Es ist aber zu beachten, dass dabei
stets eine Vergrosserung des Ausschlages (wy—wv;) ent-
steht. Dieser sollte aber kleiner als das vorhandene totale
Spiel e, bleiben, wodurch eine Einschrédnkung gegeben ist.

Die Yq,-Kurven zeigen ferner, dass die Verkleinerung der
Fiithrungskraft Yy, durch eine Ausstreckung der betreffenden
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Bild O.20. Fithrungskrifte,
Lagerquerkrifte, Raddruck-
dnderungen und Ausschlige
desTriebgestelles der Ae 6/6-
Lokomotive mit elastischer
Lagerquerhaltung bei der
HEinfahrt in eine Ablenkung
mit tgap = 0,0085, V = 72
km/h, H, = 1850 kg und
folgenden Werten von ky:

k() = o0
— ——— ko = 4000 kg/cm
——+— ko = 2000 kg/cm
——— ko =0
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Bild O.21. Fihrungskrifte
Lagerquerkrifte, Raddruck-
dnderungen und Ausschlédge
des Triebgestelles der Ae6/6-
Lokomotive mit elastischer
Lagerquerhaltung bei der
Einfahrt in eine Ablenkung
mit tgag = 0,0085, V = 72
km/h, Hy = 2905 kg und fol-
genden Werten von kg:
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ko = 4000 kg/cm
ko = 2000 kg/cm
——— ko =20
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Bild O.22. Fiihrungskrifte, Lagerquerkrifte, Raddruckinderungen und Ausschlage des Triebgestelles
der Ae4/4-Lokomotive mit elastischer Lagerquerhaltung bei der Einfahrt in eine Ablenkung mit
tgao = 0,0085, V=72 km/h, H, = 1420 kg und folgenden Werten von kg:

— = 9 — —— ko = 4000 kg/cm

Wirkungszeit erkauft wird, Dies muss auch so sein, da die

Bewegungsgrosse vigaom, durch den Impuls fF‘dt aufge-
bracht werden muss.

Der Vergleich der Bilder 20 und 21 mit Bild 12 ldsst er-
kennen, dass die Kurven von Bild 12 dem Charakter nach
wohl den &hnlichen Einfluss der elastischen Lagerhaltung
aufweisen, dass sie aber kein gentigend genaues Bild geben.
Der Ersatz des Triebgestells durch seine reduzierte Masse ist
somit wiederum fiir die Bestimmung der Anlaufkrifte nicht
zuldssig.

3.115 Der Anlaufvorgang des Triebgestells der BLS-Ae-4/4-
Lokomotive mit elastischer Lagerquerhaltung bei Fahrt in
eine Ablenkung

Um abzuklédren, ob die elastische Lagerquerhaltung bei
einem zweiachsigen Gestell ebenfalls eine merkliche Ver-
kleinerung der Seitenkréfte zur Folge hat, wurde der Anlauf
des Triebgestells der BLS-Ae-4/4 unter den gleichen Voraus-
setzungen wie im Abschnitt 3.113 untersucht. Die Haupt-
ergebnisse sind im Bild 22 festgehalten. Sie lassen erkennen,
dass hier ebenfalls durch den Hinbau einer elastischen
Lagerquerhaltung die Seitenkréfte verkleinert werden kon-
nen, und zwar prozentual mehr als beim dreiachsigen Trieb-
gestell. Dies kann dadurch erkldrt werden, dass das Ver-

100

——— ko = 2000 kg/cm

héltnis m,.q/m beim dreiachsigen kleiner als beim zweiachsi-
gen Triebgestell (0,557 bei der Ae-6/6- und 0,643 bei der
Ae-4/4-Lokomotive) ist.

3.2 Der Anlauf der Drehgestell-Lokomotive

Gleich wie fiir das einfache Fahrzeug ist bei der Dreh-
gestell-Lokomotive der Fall des Anlaufes als Sonderfall des
dynamischen Laufes zu betrachten. Er ist daher geméss
Kapitel M zu behandeln, wobei alle anfangs des Abschnittes
3.1 gemachten Feststellungen grundsétzlich giiltig bleiben.

3.21 Anwendungsbeispiele

Die numerische Behandlung des Problems ist nicht viel
schwieriger als beim einfachen Fahrzeug, da das Berech-
nungsprogramm fiir jedes Triebgestell grundsédtzlich das
gleiche bleibt und die Bewegungsgleichungen (M 1) bis (M 3)
des Kastens einfach sind. Sie nimmt aber einen wesentlich
grosseren Umfang ein, beansprucht eine bedeutend grossere
Anzahl Speicherstellen des Rechengeriites und ist deshalb
umfangmaéssig je nach Rechengerit durch dessen Speicher-
kapazitdt begrenzt. Dies ist der Fall beim IBM-Rechner
650; die Berechnung konnte daher fiir die Zwei-Gestell-
Lokomotive nur unter der Voraussetzung durchgefiihrt wer-
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Bild O.23. Ae 4/4-Lokomotive der BLS.

den, dass das hintere Triebgestell unmittelbar vor dem An-
laufen die Anfangsbedingungen

Ygn(0) = 0 und g, (0) = 0

aufweist. Diese Anfangsbedingungen haben zur Folge, dass
das hintere Triebgestell, solange es selbst noch nicht
zum Anlaufen kommt, vom Kasten her ohne p-Drehung quer-
verschoben wird und sich seine Radsitze gegeniiber dem Gleis
alle gleich verhalten. Diese konnen somit zusammengefasst
werden. Die dadurch entstehende Ersparnis an Speicherstel-
len erlaubte uns, nun die Berechnung durchzufiihren, dies
allerdings nur bis zum Anlaufen des hinteren Triebgestells.

3.211 Der Anlaufvorgang der Ae-4/4-Lokomotive der BLS
(Bild 23) bei der Einfahrt in eine Kurve

Um den Einfluss des Kastens auf den Anlaufvorgang
festzustellen, wurden fiir dieses Beispiel genau die gleichen
Voraussetzungen wie fiir den im Abschnitt 3.111 behandelten
Fall des einzelnen Triebgestells zu Grunde gelegt. Fiir die
Triebgestelle gelten somit die gleichen, aus Tabelle 2 zu ent-
nehmenden Kenngrdssen. Diejenigen des Kastens sind eben-
falls in Tabelle 2 aufgefiihrt und die der Pendelwiegenauf-
héngung in Bild 24.

S
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Bild O. 24. Kenngrossen der Pendelwiegenaufhidngung bei der
Ae 4/4-Lokomotive der BLS.
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Tabelle 2

Lok. Ae 6/6 Ae 4/4 Re 4/4 Einheit
a 215 162,5 150 cm
die 215 325 300 cm
a3 430 — — cm
Qg 215 162,5 150 cm

a 435 412,5 390 cm

i 100 99,5 97,5 cm

rp 100 99,5 97,5 cm
. 39,5 14 8 cm
hy —b5,66 —33 —24 cm

h, 63 62,5 50 cm
hy 153 137,56 128 cm

So 158,66 170,5 152 cm

Sk 111 95 75 cm
ey 5765 7700 5450 kgem-1
k11 2400 3850 2725 kgem-1
Fo1o 965 3850 2725 kgem-1
k13 2400 — — kgem-1
mg 27,30 14,90 10,31 kgem-1s2
my 2,488 3,288 al (Gl kgem-1s2
mey 2,620 3,288 1,672 kgem-1s2
mg 2,488 — — kgem-1s2
Myt 34,90 21,47 13,65 kgem-1s2
Myeq 15,21 9,585 6,29 kgem-1s2
my 52,40 40,70 31,60 kgem-1s2
Ogz 111 600 105 000 30 700 kgems?2
Ogz 1018 500 285 000 186 800 kgems?2
(5} 223,4 183 109,8 kgems?2
O 180,6 183 109,8 kgems?
O3 223,4 — == kgems?2
Otot 1250 600 457 000 262 300 kgems?2
Ocre 542 800 518 900 372 700 kgems?2
Oz 8151 200 5 454 000 3 468 200 kgems?2
Gg 26 780 14 610 10 110 kg
Gy 2441 3225 1640 kg
Go 2573 3225 1640 kg
G 2441 o= — kg
Got 34 236 21 060 13 390 kg
Gy 51 540 39 880 31 120 kg
Q1 20 000 20 500 14 500 kg
Q2 20 000 20 500 14 500 kg
Qs 20 000 — — kg

D 126 125 104 cm
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Die wichtigsten Ergebnisse sind in Bild 25 zusammen-
gefasst. Vergleicht man die massgebenden Kurven mit denen
von Bild 17, so erkennt man u.a. dass sich die einzelnen
Kréfte des anlaufenden Triebgestells in der ersten Phase des
Anlaufvorganges infolge des Kastens nur unwesentlich &n-
dern. Die maximalen Werte der Richtkraft Py und der Fiih-
rungskréfte Yy, und Yy werden beim ersten Ausschlag héch-
stens um etwa 100 kg grosser, treten aber deutlich spiter
auf. Beim zweiten Ausschlag sind sie hingegen um rd. 180
bis 230 kg kleiner und treten praktisch gleichzeitig auf. Die
Mitnahmequerkraft K der vorderen Kastenabstiitzung er-
reicht nach rd. 0,12 s den positiven Maximalwert von rd.
600 kg, um nachher schwingungsartig mit einer Periode von
rd. 0,2 s wieder abzunehmen. Beim hinteren Triebgestell ist
die Mitnahmekraft hingegen negativ und nimmt im unter-
suchten Zeitbereich stdndig zu, dies einerseits infolge der
beim Anlauf entstehenden ¢-Drehung des Kastens und ander-
erseits infolge der vorausgesetzten Ueberhshung des Gleises,

P. Ueber einige Versuchsergebnisse

Besonders wichtig fiir die Beurteilung der Laufgiite einer
Lokomotive sind die von ihr auf das Gleis ausgeiibten Seiten-
kréfte. Diese sind beim einzelnen Radsatz seine Richtkraft P,
seine Flihrungskraft Y sowie die Fiihrungskrifte Y, und Y;
seiner beiden Rader.

Die Richtkraft P wird bei der hier vorausgesetzten Zwei-
punktberiihrung zwischen Spurkranz und Schiene ausgeiibt
und ist allein fiir die Spurkranz- und Schienenabniitzung
massgebend. Sie kann praktisch nicht gemessen werden.

Die Filhrungskraft Y des Radsatzes als Summe der
beiden Fiihrunskrafte Y, und Y; belastet den gesamten
Gleisrost und ist somit vor allem fiir dessen Deformationen
wichtig. Die Fiihrungskraft Y, bzw. Y; ist die auf die Aussen-
bzw. Innenschiene wirkende resultierende Querkraft und hat
zusammen mit dem Raddruck Q die Beanspruchung der
Schiene zur Folge. Sie spielt somit hauptsichlich fiir die Be-
urteilung der Schienenbruchgefahr eine Rolle,

Die Fiihrungskraft Y lédsst sich nicht unmittelbar mes-
sen, Sie ergibt sich geméiss GIl. (I142) aus der Lagerquer-
kraft H, aus der Trigheitskraft ¥, und der Gewichtsquer-
komponente §,. Sie kann somit aus diesen drei Einzelkrdften
ermittelt werden, wenn die aufgenommenen Messdiagramme
gestatten, in jedem Zeitpunkt die wirklichen Werte zu be-
stimmen.

Die Messung der Lagerquerkraft H wird bei den Achs-
lagern vorgenommen und kann mit den heute zur Verfiigung
stehenden Messelementen gentigend genau durchgefiihrt wer-
den1). Die Querkraft (5, ergibt sich ohne Schwierigkeit aus
der Gleisneigung @, und die Trigheitskraft ¥, ldsst sich aus
der Querbeschleunigung des Radsatzes berechnen. Diese kann
mit Hilfe eines Beschleunigungsmessers bestimmt werden,
vorausgesetzt, dass dieser die Bewegung des Radsatzes ge-
treu aufnimmt.

Die Fiihrungskraft Y lasst sich u. H. viel einfacher und
genauer durch direkte Messung der beiden Fiihrungskréfte
Y, und Y; ermitteln, besonders dann, wenn diese Messung
elektrisch vor sich geht und die Summe (Y, + Y;) deshalb
unmittelbar angezeigt werden kann.

Zur direkten Messung der Filihrungskraft Y, bzw. Y;
sind in letzter Zeit verschiedene Methoden vorgeschlagen und
angewendet worden 2), die grundsétzlich in zwei Kategorien
eingeteilt werden konnen. Bei der ersten wird {iiber ein
Uebertragungselement (z.B. Biegebalken) die Kraft gemes-
sen, die von der Schiene auf ihre Unterlage ausgeiibt wird 3).
Diese Art Messung kann nur dann zu zutreffenden Ergeb-
nigsen filihren, wenn beim Durchfahren des Versuchsfahr-
zeuges die Schienen keine besonderen Querverschiebungen in-
folge der Messeinrichtung erfahren. Ferner muss die Steifig-
keit k¢ der Gleisrostbefestigung gleichméssig und derart
sein, dass die Kraftanzeige tatsichlich den vom betrachteten

die von Anfang an eine Querverschiebung des Kastens nach
Innen hervorruft.

3.212 Der Anlaufvorgang der Ae-4/4-Lokomotive der BLS
bei der Einfahrt in eine Ablenkung

Als letztes Beispiel wurde der Anlaufvorgang der Ae-4/4-
Lokomotive unter den gleichen Voraussetzungen wie im Ab-
schnitt 3.113 untersucht. Einige Ergebnisse sind durch die
Kurven des Bildes 26 festgehalten. Vergleicht man die Y,-
Kurve mit der entsprechenden Kurve von Bild 19, so erkennt
man, dass der Kasten in diesem Fall eine Vergrdsserung
des maximalen Yi,-Wertes von rd. 290 kg, d.h. von etwa
5 %, zur Folge hat. Es ist ferner hervorzuheben, dass in
diesem Anlauffall das vordere Triebgestell bei t = 0,182 s und

t = 0,207 s die Winkelgeschwindigkeit % null aufweist und
infolgedessen p., und p., in diesen Zeitpunkten den Wert
+ o0 und dazwischen negative Werte einnehmen.

Radsatz ausgelibten Krdften entspricht und von den benach-
barten Radsétzen nicht beeinflusst wird.

Bei der zweiten Kategorie wird die Fiihrungskraft so
nahe wie moglich an ihrem Entstehungsort gemessen, indem
der Beanspruchungszustand der Schiene (SBB) oder des
Radkorpers (Schwedische Staatsbahn) mit Hilfe von Deh-
nungsmesstreifen aufgenommen wird. Die Messung an der
Schiene bietet den Vorteil, verschiedene Triebfahrzeuge mit
der gleichen Anlage messen zu konnen, bleibt aber ortlich ge-
bunden und verlangt fiir eine geniligend feine Messung die
Einrichtung von vielen Messtellen. Umgekehrt gestattet die
Messung am Rad, die Versuche auf einer beliebigen Strecke
durchzufiihren und iiber einen l&ngeren Zeitabschnitt den
genauen Zeitverlauf der Fiihrungskraft aufzunehmen. Sie be-
schrénkt aber diese Versuche auf die eingerichtete Lokomo-
tive.

Die Messung an der Schiene ist von den SBB bereits vor
einigen Jahren 4), die Messung am Rad hingegen, wenn wir
richtig orientiert sind, erst kiirzlich vorgeschlagen worden.
Beide Messmethoden stehen heute in der Entwicklung, und
es ist nur zur hoffen, dass ihre «mise au point» méglich sein
wird, da u. E. keine andere Methode eine unmittelbarere und
deshalb einwandfreiere Ermittlung der Filihrungskraft des
einzelnen Rades gestattet.

Im Rahmen der Versuche zur Erprobung und Vervoll-
kommnung ihrer Messmethode haben die SBB Versuchs-
fahrten mit verschiedenen Lokomotiven durchgefiihrt. Im
folgenden seien kurz einige Versuchsergebnisse flir die Ae-
6/6- und Re-4/4-Lokomotiven der SBB sowie fiir die Ae-4/4-
Lokomotive der BLS erwahnt.

Die Versuche wurden auf der Gotthardstrecke in der
Néhe von Giornico in einer 300-m-Kurve mit 150 mm Ueber-
hoéhung durchgefiihrt, welche zur besseren Verdeutlichung
des dynamischen Verhaltens der einzelnen untersuchten Lo-
komotiven iiber 25 m geméss Bild 1 deformiert wurde. Wie
dort deutlich zum Ausdruck kommt, bestand die Deforma-
tion des Gleises grundsétzlich in einer Abflachung der Kurve

1) Siehe z. B. M. Mauzin: Les Appareils 4 quartz piezoélectrique,
«Revue Générale des Chemins de fery, 1953.

2) Siehe H. H. Weber: Zur direkten Messung der Krifte zwi-
schen Rad und Schiene. «HElektrische Bahneny, Mai 1961.

3) Siehe z. B. P. E. Olson und S. Johnson: Seitenkrifte zwischen
Rad und Schiene. «Glasers Annaleny, Mai 1959.

4) U. Schlumpf: Le rail de chemin de fer, objet a ausculter et
instrument & mésurer des forces: Réunion internationale des labora-
toires d’essais sur les matériaux et les constructions, Octobre 1955,
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Bild P. 1. Geometrie des fiir die Versuche deformierten Gleises
beim km 122,1 der Gotthardstrecke.

oben: Abweichung des deformierten Gleises vom genauen
Kreisbogen.

unten: Verlauf des Gleises im idealen und im deformierten
Zustand.

kurve zu gestatten. Sie wurden daher durch gerade Linien-
striche verbunden. Die sich dadurch ergebenden gebrochenen
Linien kénnen nur einen groben Ueberblick liber die Abhén-
gigkeit der gemessenen Kréfte von der Fahrgeschwindigkeit
geben. Insbesondere gestatten sie nicht, eventuelle kritische
Bereiche zu erkennen. Sie zeigen immerhin deutlich an, dass
bei grosseren Fahrgeschwindigkeiten alle drei Lokomotiven
grossere Krifte bei der Fahrrichtung S—N als bei der Rich-
tung N—S ausiiben. Dies ist dadurch zu erkldren, dass sich
infolge der vorgenommenen unsymmetrischen Deformation
des Gleises verschiedene Anlaufverhéltnisse fiir beide Fahr-
richtungen ergeben.

Die durch diese Deformation gegebene Unstetigkeit in
der Linienfiihrung des Gleises blieb raumlich fiir alle unter-
suchten Lokomotiven die gleiche. Diese haben aber eigene
geometrische, statische und dynamische Merkmale und ver-
hielten sich auf dem deformierten Gleisabschnitt bestimmt
nicht gleich. Ihre Stellungsverhéltnisse waren daher bei ihrer
Anlaufstelle voraussichtlich verschieden, insbesondere der
massgebende Anlaufwinkel.

Der im Abschnitt 3.113 gemachte Vergleich setzte fiir
alle untersuchten Triebgestelle die gleichen Anfangsbedin-
gungen, insbesondere den gleichen Anlaufwinkel ag voraus.
Hs war daher mdglich, nach Gl. (O 21) bzw. (O 21a) im ver-
einfachten Verfahren den Vergleich auf Grund der reduzier-
ten Masse allein zu ziehen. In unserem jetzigen Fall sollte
nicht nur die Verschiedenheit der reduzierten Massen, son-
dern auch diejenige des massgebenden Anlaufwinkels be-
riicksichtigt werden. Dieser ist aber unbekannt. Ein Ver-

Die ndhere Betrachtung der GIl. (23) ldsst erkennen,
dass die Anlaufkraft, bei der vereinfachten Behandlung des
Problems, fiir den hier eher in Frage kommenden Fall des
Anlaufens gegen einen Kreisbogen zur Hauptsache durch
die beiden Glieder

v2 (Vlf mred)2

Myed 5 = —

— e v tgag [/Myea

bedingt ist. Sie kann daher als Funktion von vl/rm betrach-
tet werden. Es ist deshalb interessant, die Versuchsergeb-
nisse statt in Abhingigkeit der Fahrgeschwindigkeit v, wie
in Bild 2, in Abhingigkeit der Kenngrosse v ]/Hfr; darzustel-
len, wie dies in Bild 3 fiir die Fahrrichtung S—N und in
Bild 4 fiir die Fahrrichtung N—S gemacht wurde. In beiden
Bildern sind die Linienziige oberhalb der zwischen 60 und 70
km/h gemesssenen Punkte (d.h. oberhalb der in der N&he
der durch die Schieneniiberhéhung ausgeglichenen Fahrge-
schwindigkeit), dick ausgezogen. In Bild 3 liegen diese dicken
Linienziige ziemlich eng beieinander und lassen eine ziemlich
eindeutige Abhangigkeit

Y = £(v|/Mreq)
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Bild P.3. Maximal auftretende Fiuhrungskréifte Y
in Funktion der Grosse v]/Myeq (v in km/h, myeq in
kgem-1sek?). Richtung SN. Ae 6/6 Nr.11402; Ae4/4;
Re 4/4.
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Bild P.4. Maximal auftretende Fiih-
rungskréfte Y in Funktion der Grosse
V]/Myeq (v in km/h myeq in kgem-lsek?).
Richtung NS. Ae 6/6 Nr.11402; Ae 4/4;
Re 4/4.

erkennen, Fiir die N—S-Fahrrichtung egibt sich hingegen
eine grossere Streuung, obwohl der Charakter der obigen
Abhéngigkeit ebenfalls zum Ausdruck kommt. Die Erkli-
rung dafiir, dass die Linien bei Fahrrichtung S—N besser
Ubereinstimmen, ist vielleicht darin zu suchen, dass sich die
Triebgestelle l&ings der Abflachung besser an das Gleis an-
passen konnen und deshalb alle unter dhnlichen Verhiltnis-
sen am engen Bogen bzw. an der Stoss-Stelle ankommen. In
der anderen Fahrrichtung hingegen befinden sich die Trieb-
gestelle vor einem «Loch». Man kann sich vorstellen, dass
sich das dreiachsige Triebgestell der Ae-6/6-Lokomotive in
diesem Falle nicht so leicht an das Gleis anschmiegt, deshalb
mit gréosserem Anlaufwinkel die Stosstelle trifft und bei glei-

cher Grésse von v)/m,.q gréssere Stosskrifte ergibt.

Wenn nach obigen Ausfiihrungen die Darstellung gemiss
den Bildern 3 und 4 bis zu einem gewissen Grade eine ge-
meinsame Gesetzméssigkeit fiir die drei hier untersuchten
Lokomotien erkennen lisst, so darf immerhin nicht iiber-
sehen werden, dass es sich dabei um Lokomotiven handelt,
die abgesehen von der Anzahl der Radsitze grundsétzlich
den gleichen Aufbau in der Feder- und in der Kastenaufhin-

Schlusshemerkungen

In dieser Arbeit haben wir uns zum Ziel gesetzt, einer-
seits die verschiedenen geometrischen, statischen und dy-
namischen Zusammenhénge, die beim Laufverhalten eines
Schienentriebfahrzeuges eine Rolle spielen, in einheitlicher
und zusammenhingender Form darzustellen und anderseits
ohne die iiblichen Vereinfachungen die verschiedenen Bezie-
hungen und Bewegungsgleichungen aufzustellen, die zur Un-
tersuchung der von einer Drehgestell-Lokomotive auf einem
gegebenen Gleis ausgefiihrten Bewegungen notwendig sind.
Wir hegen damit keinen Anspruch auf eine vollstdndige und
abgeschlossene Behandlung des gestellten Problems. Diese
Studie ist vielmehr ein Versuch und soll vor allem fiir die
interessierten Fachleser eine Anregung zu weiteren Unter-
suchungen sein.

Da es ohne wesentliche Vereinfachungen nicht méglich
ist, das Problem rein mathematisch durch Lésen von Diffe-
rentialgleichungen zu behandeln, wurde der Weg der nume-
rischen Behandlung gewzhlt. Dieser verlangt viele umfang-
reiche Berechnungen, die friiher nicht in Betracht gezogen
werden konnten, die aber heute dank den elektronischen
Rechengerédten moglich sind.

Zur Durchfiihrung der notwendigen Berechnungen fiir
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gung aufweisen. Beim Vergleich mit Lokomotiven anderer
Art wiirden sich voraussichtlich wesentlich grossere Ab-
weichungen ergeben.

In den Abschnitten 02, 03.114 und 03.115 wurde in
ganz bestimmten Anlauffillen der Einfluss einer Elastizitit
in der Lagerquerhaltung untersucht und gezeigt, dass da-
durch unter Umstédnden eine merkliche Verkleinerung der
Anlaufkréfte erreicht werden kann. Eine solche Elastizitit
wurde bei den Ae-6/6-Lokomotiven ab Lokomotivnummer
11403 eingefiihrt,

In Bild 5 sind die an der Lokomotive Nr. 11403 gemes-
senen Fihrungskrifte mit denjenigen der Lokomotive Ae-6/6
Nr. 11402 der SBB und Ae 4/4 der BLS bei starrer Lagerhal-
tung in Vergleich gezogen. Man erkennt, dass durch den Ein-
bau einer solchen Elastizitit die Fiihrungskrifte erheblich
verringert werden und die Ae-6/6-Lokomotive dadurch fast
auf die Giite der Ae-4/4-Lokomotive mit starrer Querlager-
haltung gebracht wird.

_Ae %5 Nr 11402 -

. YAe %5 Nr: 11403
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Bild P.5. Maximal auftretende Fiihrungskrifte Y in
Funktion der Fahrgeschwindigkeit. Vergleich Ae 6/6
Nr. 11402, Ae 6/6 Nr.11403 und Ae 4/4. Richtung SN;
Richtung NS.

die verschiedenen Auswertungen und Anwendungsbeispiele
wurde der JBM-Magnettrommel-Rechner Typ 650 zu Hilfe
genommen. Leider musste festgestellt werden, dass seine
2000 Speicherstellen zur unverkiirzten Behandlung des ge-
stellten Problemes nicht geniigen, so dass nur besondere
Félle durchgerechnet werden konnten. Ferner erwiesen sich
die Berechnungen als sehr lang, dies besonders infolge der
bei gewissen Berechnungsgingen vorzunehmenden Iteratio-
nen, deren Korrekturen mit Riicksicht auf moglichst rasche
Konvergenz sorgféltiz gewihlt werden miissen. So betrug
z.B. bei den im Kapitel O behandelten Anlauffillen die Be-
rechnungszeit fiir jeden sich jeweils {iber 0,01 Sekunde er-
streckenden Integrationsschritt 8 bis 11 Minuten. Mit einem
moderneren, mehr Speicherstellen aufweisenden und rascher
arbeitenden Gerét, z. B. mit dem JBM-Rechner Typ 7070,
sollte es gelingen, das gestellte Problem in unverkiirztem
Umfang und in einer verniinftigeren Zeitspanne zu behan-
deln. Erst dann wird es moglich sein, den Einfluss gewisser
Vereinfachungen zu erkennen und zu beurteilen, welche zur
Verkiirzung der gesamten Berechnung ohne merklichen Ein-
fluss auf die Genauigkeit der Ergebnisse verantwortet wer-
den konnen.
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2.22 Die Beriihrungspunkte des anlaufenden
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2. Die Lagerdriicke
Das Kraftespiel am Radsatz

1. Das Kréftespiel am beidseitig anlaufenden Rad-
satz im Falle der Zweipunktberiihrung

1.1 Gleichgewichtsbedingung (4)
1.2 Gleichgewichtsbedingungen (1) und (5)
1.3 Gleichgewichtsbedingungen (2), (3) und (6)

2. Das Kréftespiel am einseitig anlaufenden Rad-
satz im Falle der Zweipunktberiihrung des an-
laufenden Rades

3. Das Kréftespiel am nicht anlaufenden Radsatz

4. Das Kréftespie]l am einseitig anlaufenden Rad-
satz im Falle der Einpunktberiihrung des anlau-
fenden Rades

5. Teste zur Bestimmung des Anlauffalles bei
Zweipunktberiihrung des anlaufenden Rades

6. Beziehungen zwischen T, @, Y und V

7. Vereinfachte Behandlung des Problemes

8. Weitere Vereinfachungen
8.1 Vernachlédssigung der Raddruckinderung
8.2 Voraussetzung » = 0

8.3 Lineare Abhiéngigkeit zwischen Reibungs-
koeffizient und Schlupf

8.4 Konstanter Reibungskoeffizient

. Die Bewegungsgleichungen des Radsalzes

1. Verschiedene Beziehungen zwischen den Rad-
satz- und Fahrgestellkoordinaten

1.1 Radsatzlagerung mit Quer- und L&ngsspiel
1.2 Radsatzlagerung mit Querspiel allein
1.3 Radsatzlagerung mit Léngsspiel allein
2. Bewegung des Radsatzes bei einer Lagerung mit
freiem Querspiel allein
21 Fall £
2.2 Fall a
2.3 Fall i
2.4 Zusammenfassung der drei Fille f, a und i

3. Bewegung des Radsatzes bei elastischer Lager-
querriickstellung

4. Bewegung des Radsatzes bei freiem Lagerldngs-
spiel
4.1 Fille vv, hh, vh und hv der Gruppe a
4.2 Fille fv, vf, hf und fh der Gruppe b
4.3 Fall ff
4.4 Zusammenfassung der neun Félle
5. Bewegung des Radsatzes bei Lagerung mit
freiem Quer- und Lingsspiel
5.1 Der Radsatz befindet sich in Léngsrichtung
in der Lage vv, hh, vh und hv (Gruppe a)
und in der Querrichtung in der Lage a oder i
5.2 Der Radsatz befindet sich in Langsrichtung
in einer der vier Liagen der Gruppe a und in
der Querrichtung in der Lage f

5.3 Der Radsatz befindet sich in Léngsrichtung
in einer der vier Lagen der Gruppe b und
in Querrichtung in der Lage a oder i

5.4 Der Radsatz befindet sich in Léngsrichtung
in einer der vier Lagen der Gruppe b und
in Querrichtung in der Lage f

5.5 Der Radsatz befindet sich in Langsrichtung
in der Lage ff und quer in der Lage a oder i

5.6 Der Radsatz ist in beiden Richtungen frei

5.7 Zusammenfassung aller Félle

6. Bemerkungen
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Die Bewegung des einfachen Fahrzeuges

1. Verschiedene Beziehungen zwischen einzelnen
Koordinaten und ihren Ableitungen

2. Der momentane Drehpunkt £ der y.-Drehung

3. Die Bewegungsgleichungen des einfachen Fahr-
zeuges

3.1 Bestimmung der Lagerdriicke L;

3.2 Bewegungsgleichungen fiir den Fall der
Radsatzlagerung mit freiem Querspiel und
ohne Léngsspiel

3.3 Bewegungsgleichungen des Fahrzeuges,
wenn einzelne Radsétze mit freiem Querspiel
und die anderen spiellos gelagert sind

3.4 Bewegungsgleichungen im Falle der Rad-
satzlagerung mit elastischer Riickstellung
in der Querrichtung und ohne L&angsspiel

3.5 Bewegugnsgleichungen fiir den Fall der
Radsatzlagerung mit freiem L&ngsspiel und
ohne Querspiel

3.6 Andere Félle der Radsatzlagerung

4. Bemerkungen

. Die Bewegung der Drehgestell-Lokomotive

Der statische Bogenlauf des Schienenfahrzeuges

1. Der statische Bogenlauf des einfachen Fahr-
zeuges
1.1 Der statische Bogenlauf des einfachen Fahr-
zeuges unter Beriicksichtigung der Rad-
druckénderungen infolge der Querkrifte
1.2 Der statische Bogenlauf des einfachen Fahr-
zeuges bei Annahme konstant bleibender
Raddriicke
2. Der statische Bogenlauf der Drehgestell-Loko-
motivao
2.1 Der statische Bogenlauf der Zweigestell-Lo-
komotive mit Querkupplung
2.11 Der statische Bogenlauf der Zweige-
stell - Lokomotive mit unmittelbarer
Querkupplung der beiden Triebgestelle

2.12 Der statische Bogenlauf der Zweige-
stell - Lokomotive, deren Triebgestelle
iiber den Kasten quergekuppelt sind

2.13 Der statische Bogenlauf der Zweige-
stell - Lokomotive, deren Triebgestelle
durch ein pneumatisch oder hydrau-
lisch erzeugtes Riickstellmoment ent-
lastet werden

2.2 Der statische Bogenlauf der Dreigestell-

Lokomotive mit Querkupplungen

2.21 Der Bogenlauf der Dreigestell-Lokomo-
tive mit zwei Querkupplungen geméss
Bild 23a
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2.22 Der Bogenlauf der Dreigestell-Lokomo-
tive mit einer Querkupplung geméiss
Bild 23b

0. Anlouf eines Schienenfahrzeuges

1. Der Anlaufvorgang bei einem einfachen Massen-

system

1.1 Zentrischer Anlauf einer Masse iiber eine
vorgespannte Feder

1.2 Zentrischer Anlauf einer Masse iiber eine
durch trockene Reibung gedimpfte Feder

1.3 Zentrischer Anlauf einer Masse iiber eine
der Geschwindigkeit proportional gedimpfte
Feder

1.4 Exzentrischer Anlauf eines Korpers iiber
eine vorgespannte ungedidmpfte Feder

2. Zentrischer Anlauf eines Zweimassensystemes
geméss Bild 11

3. Der Anlaufvorgang beim Schienenfahrzeug

3.1 Der Anlauf des einfachen Rahmenfahrzeuges
3.11 Anwendungsbeispiele
3.111 Der Anlaufvorgang des Triebge-
stelles der Ae 4/4-Lokomotive der
BLS beider Einfahrtin eine Kurve
3.112 Der Anlaufvorgang des Triebge-
stelles der Ae 6/6-Lokomotive der
SBB bei der Einfahrt in eine Ab-
lenkung
3.113 Der Anlaufvorgang der Triebge-
stelle der Ae 4/4-Lokomotive der
BLS sowie der Re4/4- und Ae
6/6-Lokomotive der SBB bei der
Einfahrt in eine Ablenkung
3.114 Der Anlaufvorgang des Triebge-
stelles der SBB-Ace 6/6-Lokomo-
tive bei der Einfahrt in eine Ab-
lenkung im Falle einer elastischen
Lagerquerhaltung
3.115 Der Anlaufvorgang des Triebge-
stelles der BLS-Ae 4/4-Lokomo-
tive mit elastischer Lagerquer-
haltung bei Fahrt in eine Ablen-
kung
3.2 Der Anlauf der Drehgestell-Lokomotive
3.21 Anwendungsbeispiele
3.211 Der Anlaufvorgang der BLS-Ae
4/4-Lokomotive bei der Einfahrt
in eine Kurve
3.212 Der Anlaufvorgang der BLS-Ae
4/4-Lokomotive bei der Einfahrt
in eine Ablenkung

P. Ueber ewnige Versuchsergebnisse
Schlussbemerkungen
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