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en vertu des nouvelles normes fédérales, comme si ’ancienne
concession n’existait plus,

2) calculer la redevance de l'ancien aménagement selon les
nouvelles normes fédérales,

3) faire la différence entre les deux montants ainsi obtenus;
enfin

4) ajouter a la différence ainsi trouvée le montant résultant
de 'ancienne concession.

4. Calcul des redevances lorsque L'usine a €té en service pen-
dant une partie de année seulement

Comment faut-il procéder lorsqu’il s’agit de déterminer
la redevance maximum quand celle-ci n’est due que pour une
partie de l'année seulement? C’est le cas notamment pour
toute nouvelle usine, puisqu’il est bien rare que celle-ci com-
mence son exploitation le premier janvier.

I1 faut alors commencer par établir la courbe de durée
de 'aménagement en question pour toute 'année considérée,
comme si I'usine avait été mise en service le 1er janvier de

Die Berechnung der Flutwellen bei Bruch von Talsperren

celle-ci. Cette courbe donne les débits caractéristiques: Q 3
mois, Q 8 mois, 34 Q. On établit ensuite la courbe de durée
pour la seule période astreinte & redevance, et ce sont alors
les valeurs trouvées précédemment pour Q 3 mois, Q 8 mois
et 3 Q qui déterminent les zones de cette deuxiéme courbe
auxquelles s’appliquent les taux de 10, 8 et éventuellement
6 fr. par cheval théorique.

A noter que si les arréts dans la marche de 'usine ne
devaient pas étre dus & celle-ci, mais & des raisons affé-
rentes au cours d’eau utilisé, par exemple & un manque com-
plet de débits utilisables pendant une partie de l'année, le
mode de faire ci-dessus ne serait guére applicable sans
autre. Il faudrait alors rechercher plutét une solution s’ins-
pirant des principes sur lesquels a été fondée la nouvelle
réglementation.

Adresse de l'auteur: Ing. F. Chavaz, sous-directeur du Service
fédéral des eaux, Bollwerk 27, Berne,

DK 627.891

Von Andreas Wackernagel, dipl. Ing. ETH, im Ingenieurbureau Gebriider Gruner, Basel

1. Einleitung

Die wachsende Zahl grosser Speicherbecken, die ober-
halb bewohnter Gebiete angelegt sind, erfordert einerseits
eine hohe Sicherheit und anderseits die stindige Ueber-
wachung der Talsperren im Betrieb. Es ist daher zur Selbst-
versténdlichkeit geworden, dass in grossere Talsperren aus-
gedehnte Messanlagen eingebaut werden, um in jedem Be-
triebszustand des Bauwerkes das Kréaftespiel und die Ver-
formungen zu iiberpriifen. Beim Ergreifen dieser Mass-
nahmen, welche unzuldssige Bewegungen und Spannungen
des Bauwerkes rechtzeitig erkennen lassen, und unter der
Voraussetzung, dass die iibliche Sorgfalt bei der Bauaus-
flihrung eingehalten werde, sind Staumauerbriiche in Frie-
denszeiten so gut wie ausgeschlossen. Immerhin kann es an-
gezeigt sein, sich Rechenschaft liber die Auswirkungen eines
Talsperrenbruches zu geben, Ein derartiges Ereignis riickt
in Kriegszeiten in den Bereich der Moglichkeit.

Talsperre

Bild 1.

Ueberschwemmungsplan infolge Bruch einer Talsperre

Bei totalem Bruch grosser Talsperren konnen Abfluss-
mengen bis zu mehreren 100 000 m3/s an der Sperrstelle ent-
stehen, welche dann im Unterlauf auf einen Bruchteil dieser
Grosse geddmpft werden. Eine Kenntnis der Gefahrenzone
infolge der entstehenden Flutwelle ermoglicht es, Vorrats-
lager, Schutzraume und Verbindungswege so anzulegen, dass
sie bei Zerstorung einer Talsperre nicht geféhrdet werden.
Diesbeziigliche Studien sind in letzter Zeit in der Schweiz
(Bild 1) auf Veranlassung und in Zusammenarbeit mit dem
Eidg. Amt flir Wasserwirtschaft durchgefiihrt worden.

2. Berechnung der Flutwelle

Zur Berechnung der Flutwelle gehort einerseits die Be-
stimmung des Awusflusses aus dem Stausee in Funktion der
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Zeit und anderseits die Bestimmung des raumzeitlichen Ver-
laufes der Flutwelle im Flusstal unterhalb der Sperre.

Die Berechnung des Ausflusses aus einem Stausee bei
plotzlichem Bruch einer Talsperre kann nach der Methode
von Frank ausgefiihrt werden. Dabei ist eine gewisse ILdeali-
sierung der Form des Staubeckens erforderlich [1]. Der
Verlauf der Flutwelle kann nach der Methode De Marchi be-
rechnet werden, die nach verschiedenen Vereinfachungen aus
den allgemeinen Gleichungen hervorgeht [2].

Nicht permanente Abfliisse des Wassers in einem
schwach geneigten, fast geradlinigen Kanal mit freiem Was-
serspiegel werden durch folgende Differentialgleichungen be-
schrieben

o/ v2 1 ov 2 i
&) W(\h+ﬁ)+jﬁ+k72-m/3”']8
oF -v oF
2 - L =
(2) ox o ot g

Darin bedeuten:

die Wassertiefe
die Querschnittsfldche
die Wassergeschwindigkeit
den Reibungskoeffizienten nach Strickler
den Hydraulischen Radius

Js das Sohlengefélle

Es sind die Gleichungen von de Saint-Venant, wobei (1)
die dynamische Gleichung und (2) die Kontinuitdtsgleichung
darstellt. Diese Gleichungen filihren zu ziemlich verwickelten
Rechnungen. De Marchi hat daher die Gleichungen so ver-
einfacht, dass fiir den praktischen Gebrauch ein einfaches
Berechnungsschema entsteht. Ein Flusstal wird als fast
geradliniger Kanal mit gleichméssigem Gefédlle aufgefasst,
also ohne starke Gefédllsbriiche, Einengungen und Auswei-
tungen. In der dynamischen Gleichung werden die beiden
ersten Glieder vernachldssigt, wihrend in der Kontinuitéts-
gleichung ein Riickstaufaktor C eingefiihrt wird, der der na-
tiirlichen Form eines Flusstales Rechnung trigt und der von
De Marchi experimentell zu C = 1,4 bestimmt wurde. Damit
sehen die beiden Gleichungen wie folgt aus:

Sy

2 v2
®) R =
oF - v oF
— 4+ 0 =
() 0% i ot 9

Diese Gleichungen werden numerisch mit endlichen Dif-
ferenzen integriert. Das Flusstal wird durch Querprofile in
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ungeféhr gleich lange Abschnitte eingeteilt. Der Ausfluss aus
einem Talabschnitt in Funktion der Wassertiefe ist durch
Gleichung (3) gegeben. Mit Hilfe der Gleichung (4) wird
dann aus dem gegebenen Zufluss der Ausfluss in Funktion
der Zeit berechnet. Der Ausfluss aus einem Talabschnitt ist
gleichzeitig der Zufluss zum n#chstfolgenden Abschnitt. In
dieser Weise wird von oben nach unten fiir jedes Querprofil
der Abfluss in Funktion der Zeit bestimmt. Die Differenzen-
gleichungen sehen wie folgt aus:

(5) Qni1=Fnyq k- R2B-J1/2

ot t+At t t+AE
1,( Q?L+1+Qn+l L Qn+Qn
AT S : ¥~ 2 y

(6) " @nt1 )+

2 2

L (pt+at t =
o CE (‘Fn-H _Fn-H) =10
Die Gleichung (5) ist der Abfluss in Funktion der Wasser-
tiefe am unteren Ende des Talabschnittes und Gleichung
(6) die Kontinuitdtsgleichung filir den Talabschnitt.
Diese Gleichungen konnen wie folgt umgeformt werden:

Aw - Fy o4 [ LRI
v v

Az
At g n+1- S 12+ 20 At

Ag - R t+ At ¢
(8) Qg:flt i 2B L= G s ) = QT

Ax . Ft
w1

2.0

s A
Auf der linken Seite beider Gleichungen steht der gleiche
Ausdruck, der eine Funktion der Wassertiefe ist und der mit

A, .1 bezeichnet werden soll, — Es gilt dann:
) ¢ tHAE At vy tat
& 77 Q'n+1 T 2C M

In dieser Gleichung sind alle Glieder auf der linken Seite be-

kannt. Die Grosse Aflﬁ_Af, die eine Funktion von h,,q ist,
lasst sich damit berechnen, Aus 4,.; muss dann noch das
zugehorige h,.y und Q,.; bestimmt werden. Dies geschieht
praktisch, indem fiir jedes Querprofil ein Diagramm oder
eine Tabelle erstellt wird, in denen die Querschnittsfliche F,
die Wassermenge @ und der Ausdruck 4 in Funktion der
Wassertiefe 7 aufgetragen werden. Ist dann eine der Gros-
sen bekannt, so konnen alle anderen leicht abgelesen werden.

Betreffend die Fortpflanzungsgeschwindigkeit der Welle
wird angenommen, dass die Wellenstirn mit der Maximal-
geschwindigkeit des Wellenscheitels vor diesem hergeschoben
wird., Auf diese Annahme soll weiter unten zuriickgekommen
werden.

3. Eigenschaften der Wellen

Das raumszeitliche Diagramm einer Flutwellenberech-
nung ist in Bild 2 dargestellt. Dort ist der Verlauf der
Wassermenge in Funktion der Zeit fiir jedes Profil aufge-
tragen. Dabei nimmt die grosste Wassermenge von einem
Profil zum folgenden ab. Jede Kurve stellt gleichzeitig den
Abfluss aus einem Talabschnitt und den Zufluss zum nichst-

4 Abflussmenge Q

t+At t
n+ _Fn+1

al=c(F

Zeit t

Bild 2. Raumzeitliches Diagramm der Welle
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folgenden dar. Der Flidcheninhalt der Kurve ist gleich dem
Volumen des ausfliessenden Stausees. Die zwischen den
Kurven eingeschlossene Fliche bedeutet dabei jederzeit das
im betreffenden Talabschnitt riickgestaute Wasservolumen.
Vor Erreichen der grossten Wassermenge am unteren Ende
des Talabschnittes ist der Zufluss grosser als der Ab-
fluss, und das rilickgestaute Wasservolumen nimmt zu. Nach
dem Ueberchreiten der gréssten Wassermenge am unteren
Ende ist der Abfluss grosser als der Zufluss und das riick-
gestaute Wasservolumen nimmt wieder ab. Im Zeitpunkt des
grossten Abflusses ist auch die riickgestaute Wassermenge
am grossten und gleich C F,,,, Ax. Es ergibt sich daher
als charakteristisches Bild derartiger Diagramme, dass der
Scheitelpunkt jeder Kurve auf dem absteigenden Ast der vor-
hergehenden Kurve liegt und dass sich die Kurven in diesem
Punkte schneiden. Denn in diesem Zeitpunkt beginnt das
riickgestaute Wasservolumen abzunehmen.

Aus diesem Sachverhalt kénnen wichtige Folgerungen
fir den Grad der Dampfung der Flutwelle gezogen werden.
Als Dampfung wird die relative Abnahme der maximalen
Wassermengen von einem Profil zum folgenden bezeichnet.
Je grosser das Verhiltnis der zwischen den Kurven einge-
schlossenen Fldche zur gesamten Inhaltsfliche der Kurven
ist, d. h. je grOsser das Verhéiltnis des in einem Talabschnitt
riickgestauten Wasservolumens zum Gesamtvolumen des
ausfliessenden Stausees ist, desto stirker ist die D&mpfung
der Flutwelle. Die Dadmpfung wird also mit zunehmendem
Volumen des ausfliessenden Staubeckens schwicher.

Das riickgestaute Wasservolumen ist von der Grésse des
Rickstaufaktors C abhingig. Dieser wird bei nahezu prisma-
tischer Talform geméiss experimentellen Ermittlungen zu
C = 1,4 angenommen, Bei starken Einengungen oder bei
Rickstau in Seitentfiler muss er aber im Verhiltnis der
Querschnittsfliche am unteren Ende des Talabschnittes zur
Querschnittsfliche des Riickstaubeckens vergrossert werden.
Die Dédmpfung wird also mit zunehmendem Faktor C ver-
starkt.

Der Grad der Ddmpfung wird ferner von der Fliessge-
schwindigkeit des Wassers beeinflusst. Bei wachsender Fliess-
geschwindigkeit vermindert sich die Querschnittsfliche und
somit der Riickstau. Die Didmpfung wird daher bei grossen
Geschwindigkeiten schwécher sein als bei kleinen Geschwin-
digkeiten.

4. Abschitzung des Anwendungsbereiches der Methode
De Marchi

Die Gleichung (3) gibt die Geschwindigkeit am unteren
Ende eines Talabschnittes in Funktion der Wassertiefe. Die
anderen Glieder der dynamischen Gleichung, in denen Aende-
rung der EnergielinienhShe und die Tragheitskrifte beriick-
sichtigt sind, werden vernachlidssigt. Es modge im folgenden
gepriift werden, unter welchen Bedingungen diese in der
Methode De Marchi angenommenen Vereinfachungen zulés-
sig sind.

Die Funktion der Wassergeschwindigkeit ohne Verein-
fachung kann auch wie folgt angeschrieben werden

. 9 / 2 1 ov
(10) 22 = k2-R43 [fo e (\h+ 2,§)~ . 7&,]
R T e
Es muss nun festgestellt werden, ob in gewissen Fillen
die Glieder II und III gegen Glied I vernachlidssigbar sind.
Die Untersuchung bezieht sich auf den Bereich der Wellen-
stirn. Zu diesem Zweck wird als Abschitzung eine sinus-
formige Verteilung der Wassertiefe und der Geschwindigkeit
auf der Stirnseite der Flutwelle angenommen. Dabei wird
der Einfachheit halber im Wellenscheitel die Wasserge-
schwindigkeit gleich der Wellengeschwindigkeit gesetzt. Die
Funktionen fiir Wassertiefe  und Geschwindigkeit v lauten
dann wie folgt (Bild 3):

a1 h :Hsin%(x—Vt)

a

(12) v = V sin Jf (x — Vi)
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v
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v & X
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Sperrstelle

Rild 3. Annahme einer sinusférmigen Verteilung der Wassertiefen
und Geschwindigkeiten in der Wellenstirn

wobei H  die Wassertiefe im Wellenscheitel

V  die Wassergeschwindigkeit im Wellenscheitel

1 die Lédnge der Flutwelle bezeichnen
HEs ergeben sich dann in der Mitte der Wellenstirn fiir
(x— Vt) = 3/4 1 folgende Werte:

el Hew 1
W T
0 V2 V2T
(24 W(ﬁ)_*igz
v _ V2 1
(8 e R

und man erhilt folgenden Ausdruck fiir die Geschwindigkeit
in der Mitte der Wellenstirn:

(16) 'u:k,RQ/s.J]/z]/l_,_[H_{_VQ(VZ‘I)Ji
g

|28 T
4
175 —
v
Vv Grosste Geschwindigkeit
der Welle
1,50
1250 e e | ,
Geschwindigkeit
| in der Mitte der
: Wellenstirn
1,00 |
[
|
075 "
1 Annahme einer sinusformigen
| Verteilung der Wassertiefen
050 | und Geschwindigkeiten
|
|
025 t f i | a a : >
0,25 0,50 0,75 1,00 1,25 1,50 1,75
{H (V21 )\ﬂ} 1
9 lJs
Bild 4. Vergleich der wirklichen Geschwindigkeit mit der grossten

gerechneten Geschwindigkeit V gemiss Normalabfluss
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Dies bedeutet, dass die Fliessgeschwindigkeit des Was-
sers an der Wellenstirn grésser wird. Die Vergrosserung der
Geschwindigkeit in der Wellenstirn und im Wellenscheitel
im Verhéltnis zur Geschwindigkeit am Scheitel nach der
Formel von Strickler ist in Bild 4 dargestelit. Sie hingt vom
Wert einer Funktion ab, die auf der horizontalen Axe auf-
getragen ist. In dieser Funktion figurieren die Wassertiefe,
die Geschwindigkeitshéhe, die Wellenldnge und das Sohlen-
gefille.

Die Vergrosserung der Fliessgeschwindigkeit der Welle
bedeutet eine Verminderung der durchflossenen Querschnitts-
flache, somit eine Verminderung des Riickstaues und eine
Abschwichung der Dampfung. Um noch brauchbare Resul-
tate zu erhalten, mége im Hinblick darauf, dass auch der
Reibungsbeiwert und der Riickstaufaktor geschiitzte Werte
sind, die in weiten Grenzen variieren kdnnen, eine Vergrosse-
rung der gerechneten Geschwindigkeit um 20 bis 40 9, zuge-
lassen werden, Es ergibt sich dann als Kriterium fiir die
Zuldssigkeit der Methode De Marchi folgende Ungleichung:

H + 0,82 (V2/2g)

1 ]

<Js

Es muss also das Verhéltnis der Wassertiefe vergrossert um
das 0,8-fache der Geschwindigkeitshohe zur Linge der Flut-
welle geringer sein als die Neigung der Flussohle, Dies ist bei
den meisten vorkommenden Flutwellen der Fall. Falls diese
Ungleichung nicht erfiillt ist, sind die wirklich auftretenden
Geschwindigkeiten in zu starkem Mass verschieden von den
nach der Forme] von Strickler gerechneten. Die Maxima der
Geschwindigkeit, der Abflussmenge und der Wassertiefe
fallen nicht mehr zusammen wie in der Methode De Marchi,
sondern folgen aufeinander. Zuerst kommt die grosste Ge-
schwindigkeit, sodann folgt die grodsste Abflussmenge und
schliesslich die grosste Wassertiefe (Bild 5). Im Augenblick
des Durchganges der griossten Wassermenge ist also der
Wasserspiegel noch geneigt und somit die Geschwindigkeit
auch im Bereich der grossten Wassermenge grésser als bei
Normalabfluss nach der Formel von Strickler.

Die Methode De Marchi trédgt der erhohten Geschwin-
digkeit in der Wellenstirn einzig dadurch Rechnung, dass
flir die Wellenstirn die gleiche Geschwindigkeit angenom-
men wird wie fiir den Wellenscheitel. Fiir Flutwellen, die der
obigen Ungleichung nicht gentigen, konnte die erhohte Fliess-
geschwindigkeit durch Erhohung des Reibungsbeiwertes K
beriicksichtigt werden. Ob derartige Anpassungen die An-
wendbarkeit der Methode De Marchi erweitern, miisste durch
Modellversuche abgeklidrt werden. Andernfalls miisste zu den
weit langwierigeren Methoden von Favre [5] und Craya
[3], [4] geschritten werden. Jedenfalls hat die Methode De
Marchi sich in Vergleichen mit Modell und Wirklichkeit gut
bewahrt, liefert also brauchbare Resultate. In vielen prak-
tischen Fédllen wird auch nur die Kenntnis einer Grossen-
ordnung der Wassermengen geniigen. Beispielsweise verur-
sachen in breiten Flusstélern starke Unterschiede in den
Wassermengen nur geringe Unterschiede in der Wasser-
tiefe. Umgekehrt sind die Verh&ltnisse am Wellenriicken.
Hier werden die Geschwindigkeiten gegeniiber der Formel
von Strickler vermindert. Da jedoch die Ankunftszeit der

Q v
Ad
m3/s r m/s ik ircher Verlauf vonv fhm

Gerechneter Verlauf von v

Wirklicher Verlauf von h
20,0

Gerechneter Verlaufvon h
+15,0

10,0

+50

Il |
5000" 6000"

|
10000"

| I 1 L
4000" 7000"  8000" QOIOO" 11000" ts

Bild 5. Wirkliche und gerechnete Werte von Wassertiefe und Ge-
schwindigkeit
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Welle und die maximale Ueberschwemmungstiefe im Vorder-
grund des Interesses steht, braucht iiber die Verhéltnisse
am Wellenriicken nicht weiter gesprochen werden.

5. Programmierung fiir elektronische Rechenautomaten

Die schrittweise Integration der Differenzengleichungen
nach der Methode De Marchi eignet sich gut zur Program-
mierung fiir die Berechnung auf elektronischen Rechenauto-
maten. Es muss die Anlaufkurve an der Sperrstelle oder
in einem beliebigen Profil bekannt sein. Sodann wird profil-
weise der zeitliche Verlauf der Flutwelle berechnet. Folgende
Grossen miissen in die Maschine eingegeben werden:

1. Anfangswerte:

@nmar Maximale Wassermenge im vorhergehenden Profil
F,, . maximale Querschnittsflache im vorhergehenden

Profil
Q, konstante Wassermenge im Flussbett
T, Anfangszeit der Anlaufkurve

2. Profilfestwerte:
Ax Abstand zum vorhergehenden Profil
k Reibungskoeffizient nach Strickler
C Riickstaufaktor nach De Marchi im Talabschnitt
J; Sohlengefdlle im Talabschnitt
At Zeitintervall, das filir die Berechnung anzuwenden ist.

3. Variable Profilwerte:

R, he, Rz .... = Wassertiefen
Fy,Fo, F3 ... = zugehorige Querschnittsflachen
P4, Py, Py ... = zugehorige benetzte Umfinge

4. Anlaufkurve:
Tty U2y Tndon -

= Zeiten
111! ‘n21 Qn3 Sl =

zugehorige Wassermengen im vor-
hergehenden Profil

Das Programm ist so aufgestellt, dass zuerst die An-
fangswerte und die Profilfestwerte eingelesen und gespei-
chert werden, Nachher werden die Wassertiefen mit den zu-
gehorigen Querschnittsflichen und den zugehorigen benetz-
ten Umféngen eingelesen und die zugehorigen Wassermengen
und Funktionen A berechnet. Alle fiinf Werte werden in Ta-
bellenform mit zunehmender Wassertiefe gespeichert, So-
dann wird die Anlaufkurve im vorhergehenden Profil
schrittweise eingelesen und mit Hilfe der Gleichung (9) die
Funktion A berechnet. Durch Tabellenlesen wird die zuge-
horige Wassertiefe und Wassermenge am unteren Ende des
Talabschnittes bestimmt. Als Kontrolle wird im Programm
die Inhaltsfliche des zeitlichen Diagrammes der Wasser-
menge bestimmt, die immer gleich dem Volumen der aus
dem Stausee ausgeflossenen Wassermenge sein muss. Am
Schluss sind folgende Resultate verfiigbar:

1. Zeitlicher Verlauf der Wassermenge am unteren Ende
des Talabschnittes.

t1n+1, t2n+1, t3n+1 ... Zeiten
Qlpi1, @21, @3,,1. zugehorige Wassermengen am un-
tern Ende des Talabschnittes

2. Maximalwerte am unteren Ende des Talabschnittes.

grosste Wassermenge

grosste Querschnittsfliche

grosste Geschwindigkeit

Eyit1ymar grosste Energielinienhche

J Inhaltsflédche des zeitlichen Diagrammes
(Volumen der ausgeflossenen Wassermenge)

Qn+1yma:c
Fn +1r max
Vn+1: maz

Diese Resultate werden wieder als Eingabewerte fiir das
nichstfolgende Profil verwendet. Im néchstfolgenden Profil
miissen dann die neuen Profilfestwerte und variablen Profil-
werte gegeben werden. In dieser Weise wird mit der Berech-
nung von einem Profil zum n#chsten fortgeschritten,

6. Topographische Vorarbeiten und Auswertung

Zur Vorbereitung <der Berechnung miissen die Quer-
profile ausgewdhlt werden. Die Abstdnde zwischen ihnen
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werden zu 1 bis 3 km festgelegt, lédnger bei grossen Fliess-
geschwindigkeiten und kiirzer bei kleinen. Die Hauptarbeit
ist das Aufzeichnen der Querprofile aus geeigneten topo-
graphischen Karten und die Bestimmung der Querschnitts-
flichen und benetzten Umféinge in Funktion der Wassertiefe.
Es hat sich gezeigt, dass diese Arbeit mit Vorteil mit Hand-
rechnung ausgefiihrt wird, um den Besonderheiten der Topo-
graphie jedes einzelnen Querprofiles Rechnung tragen zu
konnen, Es muss insbesondere festgestellt werden, ob starke
Geféllsbriiche, Einengungen und Ausweitungen des Tal-
querschnittes vorhanden sind, die die Anwendbarkeit der
Methode einschrinken. Der Reibungskoeffizient nach Strick-
ler wird zu k = 20 bis 30 angenommen.

Wie oben erwédhnt, ist die wirkliche Wassergeschwindig-
keit grosser als die berechnete. Wenn das Verhiltnis der
Wasserspiegelneigung zur Sohlenneigung ein gewisses Mass
iiberschreitet, so sollte der wirklichen Wassergeschwindig-
keit durch Vergrosserung des Reibungsbeiwertes nach Strick-
ler Rechnung getragen werden.

Der Riickstaufaktor nach De Marchi wird bei ungeféhr
prismatischer Talform zu C = 1,4 angenommen, muss aber
bei starken Ausweitungen oder Verengungen des Flusstales
den ortlichen Verhdltnissen angepasst werden, Starke Aus-
weitungen und Verengungen des Talquerschnittes sowie
starke Geféllsbriiche bedingen eine Abweichung der Wasser-
spiegel vom Normalabfluss in einem prismatischen Gerinne.
In solchen Fdllen ist es angezeigt, in einem zweiten Be-
rechnungsgang in die Formel das Energieliniengefélle statt
des Sohlengefilles einzusetzen. Im Grenzfall kann eine HEin-
engung oder ein Gefdllsbruch so stark sein, dass als Aus-
flussfunktion am unteren Ende des Talabschnittes die Formel
fiir vollkommenen Ueberfall eingesetzt werden muss. Dies ist
aber ein Ausnahmefall.

Sind alle diese Fragen abgekliart, so kann auf dem
Rechenautomaten der zeitliche Verlauf der Wassermenge be-
rechnet werden. Nachher konnen die gerechneten Wasser-
tiefen, Geschwindigkeiten und Ankunftszeiten der Welle in
die Querprofile und topographischen Karten -eingetragen
werden.

KEs zeigt sich also, dass trotz Verwendung von Rechen-
automaten der menschliche Arbeitsaufwand noch gross
bleibt und nur die reine routinemdissige Rechnung vom
Automaten libernommen werden kann.

7. Zusammenfassung

Zur Planung der notigen Sicherheitsvorkehrungen ist bei
grossen Talsperren die Kenntnis der Folgen eines Bruches
wertvoll. Die entstehenden Flutwellen konnen nach der Me-
thode von De Marchi berechnet werden, wobei fiir deren
Giiltigkeitsbereich als Faustregel gilt, dass das Verhiltnis
der Energielinienh6he zur Wellenlinge kleiner sein soll als
das Sohlengefille des Flusstales, Dabei ist es von vornherein
klar, dass die Methode ein N&herungsverfahren darstellen
muss, da die genaue Geldndeform und die Ver#inderung in
der Sohle infolge des mitgefiihrten Geschiebes nicht erfasst
werden konnen. Die Methode eignet sich zur Programmie-
rung auf elektronischen Rechenautomaten, wobei allerdings
die Vorbereitungen und Auswertungen noch einen betrécht-
lichen Arbeitsaufwand bedingen.

Adresse des Verfassers: Andreas Wackernagel, dipl. Ing. ETH,
bei Gebr. Gruner, Nauenstr. 7, Basel.
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