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80. Jahrgang Heft 19 SCHWEIZERISCHE BAUZEITUNG 10. Mai 1962

MMN, DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE 6.E.P.

Lineare Ungleichungen in der Baustatik
Von Prof. William Prager, Brown University, Providence, R. I., USA *)

DK 624.04:539.374

I. Einleitung
Lineare Ansätze, aus denen Superpositionsprinzipien

folgen, sind die Regel in der mathematischen Analyse
technischer Probleme. So führt zum Beispiel das Ohmsche
Gesetz auf ein lineares Gleichungssystem für die Verteilung
der Stromstärke in einem elektrischen Leitungsnetz. In
Anbetracht der grossen Erfolge linearer Ansätze in der
mathematischen Physik und im Ingenieurwesen ist es ganz natürlich,

dass man sich wiederum solcher Ansätze bediente, als
man volkswirtschaftliche Probleme mathematisch zu erfassen
begann. Es zeigte sich jedoch bald, dass dieses Vorgehen nicht
von Erfolg begleitet war, und es ist das Verdienst Johann
von Neumanns, auf die wichtige Rolle hingewiesen zu haben,
welche Ungleichungen in diesem Gebiete spielen können.
In vielen Fällen kann man diese Ungleichungen linearfsieren,
und das typische Problem erfordert dann die Ermittlung des
Maximums oder Minimums einer linearen Punktion, deren
Veränderliche linearen Ungleichungen unterworfen sind.

Viele Aufgaben der Planung in Industrie und Volkswirtschaft

lassen sich auf dieses Grundproblem der sogenannten
linearen Optimieru/ng zurückführen. Obwohl allgemeine
Methoden zur Lösung dieses Problems erst vor kurzem im Rahmen

der Planungsforschung entwickelt wurden, findet sich
das erste Beispiel einer linearen Optimierung in einer Arbeit,
die Fourier im Jahre 1823 in der Histoire de rAcademie
veröffentlicht hat (Werke, Bd. II, S. 32-1). In dieser Arbeit stellt
sich Pourier die folgende Aufgabe. Eine starre quadratische
Platte ruht in horizontaler Lage auf vier Stützen an ihren
Ecken. Keine der Stützen kann eine Druckkraft aufnehmen,
die grösser als die Krafteinheit ist. Man bestimme die grösste
vertikale Last, die an einem gegebenen Punkt der Platte wirken

kann, ohne zum Versagen der Konstruktion zu führen.
Pourier bemerkt, dass die Prinzipien der Statik unmittelbar
drei Gleichungen für die vier Stützkräfte liefern, zu denen

i) Vortrag, gehalten auf Einladung der S. I. A.-Fachgruppe für
Brückenbau und Hochbau und des Schwelzerischen Verbandes für
die Materialprüfungen der Technik am 13. Jan. 1962 In der ETH,
Zürich.
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man für jede Stütze noch zwei Ungleichungen fügen muss,
welche ausdrücken, dass die Druckkraft in der Stütze positiv
und kleiner als die Krafteinheit sein muss. Ohne auf
mathematische Einzelheiten einzugehen, gibt Fourier die Lösung
der Aufgabe und stellt fest, dass sie nicht durch einen
analytischen Ausdruck dargestellt ist. In der Tat, bei gegebener
Lastintensität ist der Angriffspunkt der Last auf das Innere
eines gewissen Polygons beschränkt, wenn die Konstruktion
nicht versagen soll. Bild 1 zeigt einige dieser Polygone und
die zugehörigen Lastintensitäten.

Fouriers Arbeit erschien einige Jahre vor Cauchys
grundlegenden Untersuchungen zur Elastizitätstheorie. Es
ist 'daher kaum verwunderlich, dass Fourier ein statisch
unbestimmtes Problem behandelt, ohne die Spannungs-Deh-
nungsbeziehungen für die Stützen zu verwenden. Die
Erddrucktheorie, die zu Fouriers Zeit schon weit entwickelt war,
geht in ähnlicher Weise vor, indem sie zu den Gleichgewichtsbedingungen

eine Ungleichung hi__zufügt, der zu Folge die in
einem beliebigen Flächenelement übertragene Schubspannung

nicht einen bestimmten Prozentsatz der Normalspannung
in diesem Element überschreiten kann.

Da jedoch Fouriers Analyse zu einer eindeutigen Lösung
führt, setzt sie ein bestimmtes mechanisches Verhalten der
Stützen voraus. In der Tat, damit Fourders Analyse berechtigt

ist, muss die Beziehung zwischen der Verkürzung ui der
Stütze und der zugehörigen Druckkraft Ri durch das
Diagramm Bild 2 dargestellt werden. Der Zweig OAB dieses
Diagramms stellt das elastische Verhalten mit nachfolgendem
plastischem Fliessen der Stütze dar, und der Zweig OG
entspricht dem Abheben der Platte von der Stütze. Wenn man
will, kann man diesen Zweig als plastisches Fliessen unter
verschwindender Zugkraft deuten. Fouriers Problem kann
daher als ein Problem der plastischen Traglastbestimmung
angesehen werden.

Um grundlegende Lehrsätze des plastischen
Traglastverfahrens zu erläutern, wollen wir Fouriers Problem
abändern, indem wir das Diagramm Bild 2 durch dasjenige von
Bild 3 ersetzen: Die Platte kann sich nicht mehr von den
Stützen abheben; die Stützen verhalten sich elastisch-idealplastisch

unter Druck, aber unbegrenzt elastisch unter Zug.
Die Möglichkeit, dass die vier Stützen verschiedene Druck-
fliessgrenzen besitzen, soll nicht ausgeschlossen werden.

Wir wählen einen festen Angriffspunkt für die Last und
lassen ihre Intensität vS; null an stetig zunehmen. Unter
genügend kleiner Last verhalten sich alle Stützen elastisch,
und zur Berechnung der vier Stützkräfte stehen uns drei
Gleichgewichtsbedingungen und eine Verträglichkeitsbedin-
gung zur Verfügung. Die letztere sagt aus, dass, infolge der
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Bild 1 Bild 2
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Schweiz. Bauzeitung ¦ 80. Jahrgang Heft 19 • 10. Mai 1962 315



vorausgesetzten Starrheit der Platte, die Längenänderungen
von drei Stützen die Längenänderung der vierten Stütze
eindeutig bestimmen. Das völlig elastische Verhalten, während

dessen die Stützkräfte proportional zur Last wachsen,
endet, wenn eine der Stützkräfte die zugehörige Fliessgrenze
erreicht. Da diese Stützkraft nicht weiter wachsen kann,
verteilt sich jeder weitere Zuwachs der Last in statisch
bestimmter Weise auf die drei anderen Stützen. Solange diese
Stützen sich elastisch verhalten, hat die plastische Verkürzung

der vierten Stütze elastische Grössenordnung. Dieses
elastisch-plastische Verhalten mit beschränkter plastischer
Verformung endet, wenn eine weitere Stütze ihre
Fliessgrenze erreicht. Infolge des Flies^is der beiden plastischen
Stützen unter konstanter Last beginnt sich die Platte um
die Gerade zu drehen, welche die Stützpunkte der noch
elasti^jEhen Stützen verbindet. Die zugehörige Last stellt die
Tragfähigkeit der Konstruktion für den gewählten
Lastangriffspunkt dar.

Wir bemerken, dass im elastischen Gebiete die Verteilung

der Last auf die vier Stützen sich nicht ändert, wenn
man den Elastizitätsmodul einer jeden Stütze mit dem selben
Faktor multipliziert. Indem wir uns diesen Faktor sehr
gross gewählt denken, können wir die elastisch-plastischen
Stützen durch starr-plastische Stützen ersetzen, deren
mechanisches Verhalten durch das Diagramm G'A'B in Bild 3

dargestellt wird. Um dieses Diagramm mathematisch zu
beschreiben, benützen wir die Druckkraft Ri an der Stütze
und die Geschwindigkeit vt, mit der sich diese Stütze
verkürzt.

Einer beliebigen positiven Geschwindigkeit Vi entspricht
die Druckfliesskraift F{, während einer beliebigen Stützkraft
unterhalb der Fliessgrenze F. die Geschwindigkeit vl 0

entspricht. Die Leistung der Stützkraft ist daher

(1) L=FiVi für ,(>0
Negative Geschwindigkeiten vi sind nicht zulässig.

Solange die Last unterhalb der Traglast P bleibt,
verhält sich die Konstruktion starr. Plastisches Fliessen karan
nur unter der Einwirkung der Traglast P auiaapten. Während

dieses Fliessens seien v und vi die Vertikalgeschwindigkeiten
des Lastangriffspunkts und der vier Ecken der Platte,

und Ri die zugehörigen Stützkräfte. Diese Grössen sind den
folgenden Bedingungen unterworfen:

1. Die Gleichgewichtsbedingungen für die Last P und die
Stützkräfte Ri (drei Gleichungen);

2. die Verträglichkeitsbeddngungen für die Geschwindigkeiten

v und v{ (zwei Gleichungen);
3. die Plastizitätsibedingungen, welche Stützkräfte Ri

oberhalb der zugehörigen Fliessgrenze Ft- aussehldessen (vier
Ungleichungen); und

4. die Fliessregeln, welche fordern, dass die Geschwindigkeit

Vi nichtnegativ ist oder verschwindet, je nach dem
die Stützkraft __; ihren Grösstwert Fi annimmt oder nicht.

Aus der Fliessregel ergibt sich leicht eine wichtige
Beziehung. Für einen zulässigen, das heisst nichtnegativen Wert
von vt, soll Ri den tatsächlichen Wert der Stützkraft
bedeuten und Ri* einen fiktiven Wert dieser Stützkraft, der die
Plastizitätsbedingung __{* 5? Ft erfüllt. Maai bestätigt ohne
Schwierigkeit, dass

(2) (Ri - R^) vt>0
ist. In der Tat, für positives vi hat man R{ — Fit so dass der
Klammerausdruck in (2) nicht negativ ist. Für v. 0 ist
(2) mit dem Gleichheitszeichen erfüllt, und negative Werte
von Vi sind ausgeschlossen.

Wir betrachten nun einerseits die Traglast P und
entsprechende Werte der Stützkräfte Ri und der Gescnwhidrg-
:keiten Vi, und andererseits einen beliebigen Lastwert P*, der
im GlsMjgewicht mit Stützkräften _.,•* ist, welche die Plasti-
zitätsbedingungen erfüllen. Nach dem Prinzip der virtuellen
Geschwindigkeiten hat man dann

4
(3)j (P — P*)v= £ {Ri-Ri*)Vi

i l

Da die Geschwindigkeit v nichtnegativen Werten der
Geschwindigkeiten vi entspricht, ist sie selbst nichtnegativ, und
Einsetzen der Ungleichung (2) in die Beziehung (3) ergibt

(4) P>p*
Die Traglast ist somit die grösste Last, die mit

Stützkräften ins Gleichgewicht gesetzt werden kann, welche die
Plastizitätsbedingungen erfüllen.

Dieses statische Prinzip führt unmittelbar auf ein
Problem der linearen Optimierung. In der Tat, durch den
gewählten Lastangriffspunkt ziehen wir Parallelen zur x-
und _/-Axe (Bild 1) und verlangen, dass die Summe der
Momente der Stützkräfte mit Bezug auf eine jede dieser Axen
verschwindet. Dies gibt zwei lineare Gleichungen für die
Stützkräfte i.,, denen wir noch vier Ungleichungen hinzufügen

müssen, welche die Plastizitätsbedingungen für die
Stützkräfte ausdrücken. Um die Traglast P zu finden, müssen

wir die Unbekannten Rx, Rz, R3, i_4 so bestimmen, dass
diese Gleichgewichts- und Plastizitätsibedingungen erfüllt
sind, während die lineare Form

(5) P Rt + R2 + R3 + R4

ihren Grösstwert annimmt. Mit den Bezeichnungen von Bild 1

ist 'diese lineare Optimierungsaufgabe durch die Tafel I
dargestellt.

Die Einträge in der ersten Kolonne dieser Tafel werden
später erklärt werden. Die Einträge in den nächsten sechs
Kolonnen sind die Koeffizienten von Rt bis _?_, die Gleich-
hedts- oder Ungleichheitszeichen, und die rechten Seiten
unserer Beziehungen. Die ersten zwei Zeilen der Tafel I sind
die Gleichgewichtsbedingungen und die folgenden vier Zeilen
die Plastizitätsbedingungen. Die letzte Zeile schliesslich sagt
aus, dass die Traglast P dem Grösstwert der Summe der
Stützkräfte Rt bis R± entspricht. Da die beiden
Gleichgewichtsbedingungen die Gesamtheit der Stützkräfte auf eine
zweiparametrige Schar reduzieren, ist zu erwarten, dass in
der Lösung unseres Problems das Gleichheitszeichen in
wenigstens zwei der Plastizitätsbedingungen gilt.

Eine andere lineare Optimierungsaufgabe, deren Lösung
die Traglast liefert, wird wie folgt erhalten. Wir betrachten
einerseits die Traglast P und entsprechende Werte der
Stützkräfte Ri und der Geschwindigkeiten v und vit und andererseits

nichtnegative Geschwindigkeiten v** und _>i**, welche
die Verträglichkeitsbedingungen erfüllen, und Stützkräfte
Ri**, die zusammen mit den Geschwindigkeiten vt** die
Fliessregeln erfüllen. Nach dem Prinzip der virtuellen
Geschwindigkeiten hat man

(6) P v**
4

£ RiVi**
1

In Anbetracht der Beziehung (2) kann (6) wie (folgt
geschrieben werden:

4
(7) P v** < £ Ri** Vi**

i=l

Tafel I
Veränder- 5° Zeichen

CO

Rt _?2 -^3 _n_4 «

H^ l Oly

—(a-y)
— (a-x)

—(a-y) a+y
a+x a-\-x -

a+y
-(a—x)

0

0

i_.0

v\
v2
Vs

Vi

1

1

1
1 IIA

IIA

IIA

IIA Fi
E2
P3
F4

Zeichen 1 ¦ >

Konst. 1 1 1 1 < ¦ P
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Da Rf die Leistung der Stützkraft Ri** an der
Geschwindigkeit vt*
und (7), dass

ihres Angriffspunktes ist, folgt aus (1)

(8)

ist.

P V** :

4
£ Fi Vi**

Wir bezeichnen nun mit P** die fiktive Traglast, welche
durch Gleichsetzen der äusseren Leistung p**v** un<_ der
inneren Leistung

4

_] FiVi**
.=1

erhalten wird. Da die Geschwindigkeit v** als nichtnegativ
vorausgesetzt wurde, zeigt die Ungleichung (8), dass
p g p* * iSt.

Die tatsächliche Traglast ist daher die kleinste der
betrachteten fiktiven Traglasten.

Wir wenden nun dieses kinematische Prinzip auf die
Bestimmung der Traglast an. Ein System von Geschwindigkeiten

v* vt" v2* Va* v4**, das die Verträglichkeitsbedingungen

erfüllt, kann durch Superposition der folgenden
drei Bewegungen erhalten werden: Eine vertikale Translation

der Platte und Drehungen um Parallelen zur x- und _/-

Axe durch den Lastangriffspunkt. Wir bezeichnen die
Winkelgeschwindigkeiten dieser Drehungen mit ux und ay, und
kommen überein, dass eine positive Winkelgeschwindigkeit
der Ecke 1 (Bild 1) eine nach unten gerichtete Geschwindigkeit

erteilen soll. Da unsere Beziehungen homogen in den
Geschwindigkeiten sein werden, hat der Geschwindigkeitsmasstab

keinerlei Bedeutung, und wir können die Geschwindigkeit

der vertikalen Translation der Platte als
Geschwindigkeitseinheit wählen. Wir erhalten somit die Gleichung

(9) Vt — 1 + <>>x (a - y) +oiy (a - x)

und ähnliche Gleichungen für die Geschwindigkeiten der
anderen Ecken. Wir bemerken, dass wir sowohl diese
Gleichungen als auch die lineare Form, deren Minimum die Traglast

ist, aus den Kolonnen der Teufel I erhalten können, wobei
die Elemente e^rar Kolonne als Koeffizienten der am linken
Rande aufgeführten Grössen gedeutet werden müssen.

Die beiden linearen Optimierungsaufgaben, die durch die
Tafel I dargestellt sind, werden als einander dual zugeordnet
bezeichnet. Die folgenderi^pgenschaften der hier betrachteten
Aufgaben gelten ganz allgemein für duale lineare Optimierungen.

Den Ungleichungen einer Aufgabe entsprechen nicht-
negative Veränderliche der dualen Aufgabe, während die den
Gleichungen einer Aufgabe entsprechendenVeränderliche der
dualen Aufgabe keinerlei Vorzeichei-beschränkungen
unterliegen. Wenn eine Ungleichung 'eäfier Aufgabe als Ungleichung

im engeren Sinn erfüllt ist, so verschwindet die
entsprechende Veränderliche der dualen Aufgabe.

Tafel II
Veränder-

>
=__0 Zeichen

-fr-
OS

S

V ax Oly Vt v2 v3 Vi i*.

Rt 1 a-y a—x —1 0

>
<0<

_n.2

R$

1 a-y -
l-(a+y)-

¦ (a+x)
¦ (a+x)

—1

—1 1
0
0

R4. l-(a+y) a—x —1 _= 0

Et 1 < h

-_.0'
E2
Es
F4

1

1

1 IIA

IIA

IIA h
h
h

Zeichen > > > > >

Kons t. P 0 0 0 0 0 0 < G

Im bisher betrachteten Problem waren die Fliessgren-
zen der vier Stützen gegeben, und der Grenzwert der Last,
die an einem vorgegebenen Angriffspunkt wirken kann, war
gesucht. Von dieser Aufgabe der plastischen Analyse wollen
wir uns nun einer Aufgabe der plastischen Bemessung
zuwenden. Um ein nicht völlig triviales Problem zu erhalten,
setzen wir voraus, dass die vier Stützen verschiedene Längen
h, h, -3, h besitzen können. 5pr nehmen an, dass der Preis
einer Stütze mit der Länge li und der Fliessgrenze F. dem
Produkt hFi proportional ist. Bei vorgeschriebener Lastin-
tensität und gegebenem Angriffspunkt sollen die vier Stützen
so bemessen werden, dass ihr Gesamtpreis möglichst klein
ausfällt.

Die Kolonnen der Tafel II geben die Beziehungen, welche
die Stützkräfte und die Fliessgrenzen erfüllen müssen. Die
ersten drei Kolonnen entsprechen den Gleichgewichtsbedingungen

und die darauf folgenden vier den Plastizitätsbedingungen.

Die letzte Kolonne schliesslich gibt die lineare Form
C, welche dem Gesamtpreis C proportional ist, und die man
zu einem. Minimum, machen will. Wir haben gesehen, dass
für gegebene Fhessgrenzen die Traglast die grösste aller
Lasten ist, die mit Stützkräften ins Gleichgewicht gesetzt
werden kann, welche die Plastizitätsibedingungen erfüllen.
Eine Last, die mit solchen Stützkräften im Gleichgewicht
steht, kann daher die Traglast nicht überschreiten. Ein jedes
System von Stützkräften und Fhessgrenzen, welches die
durch die ersten sieben Kolonnen der Tafel II gegebenen
Beziehungen erfüllt, stellt daher eine zulässige Bemessung dar.
Die letzte Kolonne der Tafel II verlangt, dass man unter
allen diesen Bemessungen die mit dem kleinsten Preis sucht.

Die Tafel II wurde kolonnenweise geschrieben, damit das
Unglelchheitszeichen über der rechten unteren Ecke den
selben Sinn hat wie in der Tafel I.

Aus der Tafel II kann man das duale Problem wie folgt
ablesen: Man finde nichtnegative Geschwindigkeiten v und
«i bis Vi, welche den Verträglichkeitsbedingungen und den
Ungleichungen

(10) Vi li (i 1, 2, 3, 4)

genügen und das Produkt Pv und somit v möglichst gross
machen. Da.die Geschwindigkeiten v. nur der einzigen Ver-
träglichkeltsbedingung

(11) Vt + «3 — 1*2 — Vi 0

unterliegen, kann man diese Geschwindigkeiten so wählen,
dass das Gleichheitszeichen in mindestens drei der
Ungleichungen (10) gilt. Wenn zum Beispiel die Stützen 1,
2 und 3 die gleiche Länge L haben, während die vierte Stütze
eine grössere Länge L + l besitzt, so sind solche
Geschwindigkeitssysteme durch

1 Vt V2 V3 Vi L

oder

2 vt L, v2 _= __ — l, v3 L, Vi L + l

gegeben. Im ersten Falle hat man Vi < li und somit F4 0.

Im zweiten Falle ist v2 < fa und daher F2 0. In jedem Fall
wird also eine der Stützen fortgelassen, und die Last
verteilt sich in statisch ibestimmter Weise auf 'die drei verbleibenden

Stützen, wobei die Wirkungslinie der Last im
Inneren oder auf der Oberfläche des dreieckigen Prismas
liegen muss, 'das die Axen der Stützen zu Kanten hat. Die
optimale Bemessung entspricht daher einer statisch
bestimmten Konstruktion.

Aus dem Obigen folgt, dass der Mindestpreis dem
Ausdruck

(12) G Fth
EtVt +

f- E2l2
PtVt-]

- E3l3 + FJ,i
E3v3 + FAVi

proportional ist, weil nämlich vi — li sein muss, wenn Fi nicht
verschwindet. Für die Konstruktion optimaler Bemessung
exisiert also ein System von verträglichen Geschwindigkeiten,
für welches die Dissipationsleistung je Einheitspreis eines
Bauelements für alle Elemente den gleichen Wert hat. Man
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kann dieses Ergebnis als das Prinzip der gleichförmigen
Ausnutzung des Materials bezeichnen.

Bei der Anwendung unserer Ergebnisse auf die
plastische Bemessung von Balken oder Rahmen gebrauchen wir
ähnliche Vereinfachungen wie bei der Behandlung des Fou-
rierschen Problems. Wir vernachlässigen die elastischen
Formänderungen und setzen voraus, dass sich die plastischen
Formänderungen unter konstanter Spannung vollziehen. Ein
Balkenelement bleibt daher starr oder wirkt als plastisches
Gelenk, je nachdem der Absolutwert des Biegemoments
unterhalb eines kritischen Wertes, dem sogenannten
Fliessmoment, bleibt oder ihm gleichkommt.

Als Beispiel wollen wir
die zweiparametrige Be- D

messung des Rahmens in
Bild 4 behandeln. Wir set- „
zen voraus, dass das Fliess-
moment des Balkens den
konstanten Wert F2 hat.
Wir setzen weiter voraus,
dass der Preis je Längeneinheit

eines Balkens mit
genügender Genauigkeit
durch

(13) ßF
Bild 4

gegeben ist, wo F das Fliessmoment ist und a und ß
Konstanten sind, welche die zur Verfügung stehenden Balkenprofile

charakterisieren. Infolgedessen ist ah + ßh (Fx + F2)/2
der Preis einer Säule und 2 al + 2 ßlF2 der Preis des Balkens.
Da a und ß Festwerte sind, entspricht die optimale Bemessung

dem Minimum der linearen Form

(14) G hFt + (h + 21) F2

die als der veränderliche Anteil des Preises bezeichnet werden

soll.
Je nach seiner Bemessung könnte der betrachtete Rahmen

gemäss eines der in Bild 5 angedeuteten Fliessmeeha-
nismen versagen..: Nach unserem kinematischen Prinzip muss
man die Fliessmomente so wählen, dass für jeden dieser
Fliessmechanismen die Dissipationsleistung in den plastischen

Gelenken der Leistung der gegebenen Last
gleichkommt oder sie übertrifft. Man erhält so die durch die
Kolonnen der Tafel III dargestellte lineare Optimierungsaufgabe.

Bild 5

Wir wollen diese Aufgabe lösen, ohne spezielle Werte
für die nichtnegativen Grössen h, l, H und P vorauszusetzen.
Da die durch die ersten drei Kolonnen der Tafel III
dargestellten Beziehungen nur zwfei* Unbekannte enthalten, wird
mindestens eine der drei Beziehungen als Ungleichung im
engeren Sinn erfüllt sein. Wir nehmen zunächst an, dass dies
die erste dieser Beziehungen ist. Indem wir das Gleichheits-

Tafel III
Verändergo Zeichenliche <h e2 c3

2

2

0 2

4 4 IIA

IIA h
h + 2l

Zeichen All > > All

Konstante H-h PI H-h+P-l IIA c

zeichen in den beiden anderen Beziehungen gebrauchen,
erhalten wir die Fliessmomente

(15) Fi Hh/2, F2 — Plji
welche die erste Beziehung für alle Werte von H und P
erfüllen. Um den Gültigkeitsbereich der Bemessung (15) zu
bestimmen, betrachten wir das duale Problem, das durch die
Zeilen der Tabelle III angegeben ist. Da die erste Beziehung
des ursprünglichen Problems als Ungleichung im engeren
Sinne erfüllt ist, muss die entsprechende Veränderliche c_
des dualen Problems verschwinden. Da weiterhin die Bemessung

(15) positive Werte für Fi und F2 liefert, muss das
Gleichheitszeichen in den entsprechenden Beziehungen des
dualen Problems gelten. Man erhält so

(16) c2 (21 — Ä)/4, c3 h/2

Da diese Veränderlichen nichtnegativ sein müssen, ist die
Bemessung (15) nur möglich, wenn

(17) l\h > 1/2

ist.
Wir nehmen dann an, dass die zweite Beziehung des

ursprünglichen Problems als Ungleichung im engeren .Sann

erfüllt ist. Gebrauch des Gleichheitszeichens in den beiden
anderen Beziehungen liefert

(18) Fi (Hh — Pl)/2, F2=Pl/2
Da Fi nicht negativ sein kann, ist diese Bemessung nur möglich,

wenn

(19) Pl/Hh < 1

ist. Mit c2 0 'liefert das duale Problem die Werte

(20) ci (h — 2Z)/2, c3 l
die nichtnegativ sind für

(21) l/h < 1/2

Die Bemessung (18) ist somit den Bedingungen (19) und
(21) unterworfen.

Wenn man die ersten beiden Beziehungen des ursprünglichen

Problems als Gleichungen schreibt, findet man, dass
ihre Lösung die dritte Beziehung nicht erfüllt. Wir nehmen
daher an, dass die beiden ersten Beziehungen des ursprünglichen

Problems als Ungleichungen im engeren Sinn erfüllt
sind, so dass die entsprechenden Veränderlichen Ci und c2 des
dualen Problems verschwinden. Die zwei Beziehungen des

dualen Problems können dann nicht beide Gleichungen sein.
Wenn das Gleichheitszeichen in der zweiten güt.^St die erste
eine Ungleichung im engeren Sinn für

(22) l/h < 1/2

und die entsprechende Veränderliche des ursprünglichen
Problems verschwindet. Da die dritte Beziehung dieses Problems
als Gleichung vorausgesetzt wurde, hat man

(23) Fi 0, F2 (PI + Hh)/i
Die beiden erstem Beziehungen des ursprünglichen Problems
sind dann Ungleichungen im engeren Sinn, wenn

(24) Pl/Hh > 1

ist. Die Bemessung (23) ist
somit den Bedingungen (22)
und (24) unterworfen. Die
drei betrachteten Bemessungen

und ihre Gültigkeitsbereiche

sind in Bild 6 dargestellt.

Wir bemerken noch, dass
die Veränderlichen c%, c2 und
c3 des dualen Problems
nichtnegative Koeffizienten einer
linearen Kombination der drei
in Bild 4 dargestellten Mecha-

____
Hh

c.
II

¦c

+

F. Hh
F,- —
'2 if

<C

1
c\|

5^ CM

<c u~

0,5
H

Bild 6
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nismen, sind, welche den durch das Prinzip der gleichförmigen

Ausnützung des Materials geforderten Mechanismus
liefert. Dieses Prinzip gilt jedoch nur, solange man es mit
einer__seinzigen Lastsystem zu tun hat.

Um dies zu beweisen,

betrachten wir
einen Balken der
Länge l, der am einen
Ende eingespannt und
am anderen gelenkig
gelagert ist unddurch
eine Last der Intensität

P beansprucht
wird, die entweder in
der Mitte der Spannweite

oder im
Abstand Z/4 von einem
oder dem anderen
Ende wirkt. Wir
untersuchen die vier-
parametrige Bemessung,

welche durch die
Fliessmomente Fi bis
Fi in den Viertelspunkten

der Spannweite

bestimmt ist
(siehe Bild 7), wobei
das Fliessmoment sich
in linearer Weise vom
einen zum nächsten
dieser Punkte verändert

und am gelenkig
gestützten Ende
verschwindet. Bild 7 zeigt
sechs Fliesmechanismen,

deren jeder zwei
plastische Gelenke
aufweist. Drei dieser
Mechanismen entsprechen

der Laststellung
1, zwei der Stellung 2,
und einer der Stellung
3. Für einen jeden
dieser Mechanismen
muss die Dissipationsleistung in den plastischen Gelenken
der Leistung der Last gleich sein oder diese überschreiten.
Man erhält so die lineare Optimierungsaufgabe, welche durch
die Kolonnen der Tafel IV dargestellt ist.

Die für diesen Vortrag angesetzte Zeit schliesst eine
detaillierte Besprechung dieser und der zu ihr dualen
Aufgabe aus. Man findet

Bild

5$g
20

15

to

5

0

- /
1 '' 3 4

Bild 8

(25) Fi=32-PZ, Fa=4gP* M 32 PI, Fi MPl
(26) et 0, c2 Z/6, c3 0, c4 Z/12 e5 ce Z/16

Bild 8 zeigt den Verlauf des FliesSfoments für die optimale
Bemessung.

Wir bemerken, dass die relative Winkelgeschwindigkeit
am Gelenk 3 für den zweiten und vierten FUessmech^Etismus

Tafel IV

Veränderi_;o
Zeichen Konst.liche

m -2 C3 Ci cs ce

^o-

Et
E2
E3

Ei

2
1

3.2

1
4/3

3/2 1

1I 1
4/3

1 IIA

IIA

IIA

IIA Vi
Vi
Vi
Vs

Zeichen >- > >- _> > _> >

Konstante M P-hi P-Z/.P-Z/.P-Z/. P-h < c

von Bild 6 negativ ist, aber positiv für den sechsten. Infolgedessen

kann die dritte Beziehung des dualen Problems, nämlich

die Gleichung

(27) V2C2 + Ci + i/sca Z/4

nicht als die Forderung eines Fliessmechanismus interpretiert

werden, für den die relative Winkelgeschwindigkeit am
Gelenk 3 den Wert Z/4 hat. Das Prinzip der gleichförmigen
Ausnützung des Materials verliert daher seine Gültigkeit,
wenn man es'mit .mehrfachen Lastsystemen zu tun hat.

Indem man die Anzahl der betrachteten Laststöllungen
vergrössert, kann man die numerischen Methoden der linearen

Optimierung benutzen, um sich der Bemessung für
bewegliche Lasten anzunähern. Allgemeine Methoden zur
direkten Lösung dieses Problems liegen jedoch zurzeit noch
nicht vor.

Wir haben gezeigt, wie ein jedes einer Reihe von
Problemen der plastischen Analyse und Bemessung von
Tragwerken als eine lineare Optimierungsaufgabe formuliert
werden kann. Das Anziehende dieser Formulierung ist, dass
dadurch ein und dieselbe numerische Methode auf
verschiedenartige Probleme der Baustatik angewandt werden
kann. Wir wollen nun diese Methode kurz besprechen. Um
die Schreibarbeit gering zu halten, betrachten wir die durch
die Zeilen der Tafel III dargestellte, lineare Optimierungsaufgabe

und nehmen für die Abmessungen des Rahmens und
die auf ihn einwirkenden Lasten die folgenden Werte an:
/. 5 m, Z 4 m, H 1000 kg, P 5000 kg. Unter den
Nebenbedingungen

(28) 2ci
2ci

+ 2c3:
4c2 + 4c3 :

; 5

;i3
für die nichtnegativen Veränderlichen ci, c2, c3 soll dann der
Ausdruck

(29) G 5000ci + 20 000c2 + 25 000c3

zu einem Maximum gemacht werden.
Wir schreiben zunächst die Nebenbedingungen (28) in

der Form

(30) fci —2ci

k2 — —2ci • -4c.

—2c3 + 5 > 0

—4c3 + 13 > 0

wobei kt und k2 durch diese Beziehungen definierte neue
htfehtnegative Veränderliche sind. Die Nebenbedingungen
(30) sind offenbar durch die nichtnegativen Werte

(31) ci c2 c3=0, ki 5, k3 13

erfüllt, für die C 0 wird. Wir trachten nun, den Wert von
C zu vergrössern, indem wir eine der Veränderlichen c±, c2,

c3 auf Kosten von kt und fc2 wachsen lassen. Da im
Ausdruck (29) für G die Veränderliche c3 den grössten Beiwert
hat, soll c3 wachsen, während Ci und c2 den Wert null
beibehalten. Dem Betrag, um den c3 wachsen kann, sind durch die

Nichtnegativität von fci und k2 Schranken gesetzt. Die
Beziehungen (30) zeigen, dass mit ci c2 0 die Veränderliche
fci für c3 5/2 verschwindet und die Veränderliche k2 für c3

13/4. Wenn c3 von null an stetig wächst, so verschwindet
also kt für einen Wert von c3, für den k2 noch positiv
ausfällt.

Wir lösen nun die Definition von fci nach c3 auf und
setzen das Resultat in die Definition von k2 und den
Ausdruck für C ein; wir erhalten so

(32) c3 —et
k2 2ci —4c2
G —20000ci

—V-fcl +5/2 ^ 0

-2?Ci +3 > 0,
|-20000c2 — 12500fei 62500

Die neuen Nebenbedingungen sind durch die Werte
Cl c2 fci 0, c3 5/2, 7_2 1 3 erfüllt, für die G 62 500

wird. Der Uebergang von den Beziehungen (28), (29) zu den

Beziehungen (32) kann als Austausch zw||chen 03 und i-i
charakterisiert werden. In der Tat gingen wir von einer
Lösung der Beziehungen (28) aus, für die Ci c2 c3 0

war, und sind nun zu einer Lösung der ersten zwei Bezie-
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hungern (32) gelangt, für welche ci und c2 immer noch
null sind, aber fci anstelle von c3 verschwindet.

Aus den Vorzeichen im neuen Ausdruck C ergibt sich
infolge der Nichtnegativität von ci, C2 und k±, dass eine
weitere Vergrösserung von C nur durch einen C2 betreffenden

Austausch bewirkt werden kann. Da die erste Beziehung
(28) 'die Veränderliche C2 nicht enthält, kann dieser
Austausch nur durch Auflösen der zweiten Beziehung (28) nach
c3 erhalten werden. Indem man die so gefundene Beziehung
zur unveränderten ersten Beziehung (28) hinzufügt, findet
man die folgenden neuen Nebenibedingungen:

(33) c3- -et
C2 __: 1/2Ci

-Vsfcl +5/2 I 0

-1/_fca -P.-fci +3/t I 0

Einsetzen von (33) in die dritte Beziehung (32) liefert

(34) C — lOOOOci — 5000.-2 — 2500fci + 77500

Da die Beiwerte der nichtnegativen Grössen Ci, k% kt
in (34) negativ sind, entspricht das Maximum von C den
Werten Ci k2 — kt 0 und beträgt somit C — 77 500. Dieser

Maximalwert von G ist aber der gesuchte Minimalwert
des veränderlichen Anteils des Konstruktionspreises. Ueber-
dS_t% ergibt die Beziehung (34) die Fliessmomente Fi und
F2, welche zu diesem Mindestpreis führen. Es zeigt sich
nämlich, dass die negativ genommenen Beiwerte von kt und
k2 im endgültigen Ausdruck (34) für C mit den Fliessmomenten

Fi und F2 der optimalen Bemessung übereinstimmen.
In der Tat bestätigt man leicht, dass die so erhaltenen Werte

Fi 2500, F2 I 5000,

die als mkg zu deuten sind, die Nebenbedingungen der zur
oben betrachteten linearen Optimierungsaufgabe dualen
Aufgabe erfüllen und gleichfalls C jj F^h + F2(h + 21) I 77 500
liefern.

Wir haben hier das sogenannte Austauschverfahren der
linearen Optimierung mit grosser Ausführlichkeit besprochen.
Es versteht sich von selbst, dass man bei der praktischen
Anwendung dieSes Verfahrens nicht die verschiedenen
Beziehungen ausführlich anschreiben, sondern unmittelbar das
Koeffizientenschema umformen wird. Die Zeit erlaubt uns
nicht, auf diese sehr einfache Umformung einzugehen. Eine
besonders übersichtliche Darstellung der Umformung findet
sich in Professor Stiefels vor kurzem erschienenen Einführung

in die numerische Mathematik» (B. G. Teubner Verlag,
Stuttgart 1961).

Zum Schluss noch eine Bemerkung über den Arbeitsaufwand.

Die Anzahl der notwendigen Aus't-auschschritte, die bei

unserem einfachen Rahmen nur zwei betrug, wächst überaus
rasch, wenn man zu mehrstöckigen, mehrfeldrigen Rahmen
übergeht, so dass der Einsatz von Rechenautomaten uner-
lässlich wird. Die Programmbibliotheken grösserer automatischer

Rechenanlagen enthalten fast immer erprobte
Programme zur linearen Optimierung, die ohne weiteres zur
Lösung der hier besprochenen Aufgaben verwandt werden
können.

Adresse des Verfassers: Prof. W. Prager, Division of Applied
Mechanics, Brown "University, Providence 12, R. I., USA

Gasturbinen der Fiatwerke dk 621.43s

Nach Mitteilungen der Fiat Stabilimento Grandi Motori in Turin

Die Fiatwerke stellen ausser Dieselmotoren i) neuerdings

auch Gasturbinen für Energieerzeugung, Verdichtung
von Luft oder Gasen, Schiffsantrieb und andere Zwecke her.
Sie können sowohl mit flüssigen als auch mit gasförmigen
Brennstoffen betrieben werden. Es wurden Einrichtungen
geschaffen, die ein selbsttätiges Umschalten von einem Brennstoff

auf den anderen gestatten. Der Leistungsbereich
erstreckt sich von- 4900 bis 50 000 PS. Die Anlagen für
Leistungen bis etwa 35 000 PS bestehen in der Regel aus einer
einfachen Maschinengruppe, bei der Turbine und Kompressor
auf der gleichen Welle angeordnet sind. Sie arbeiten nach
dem Verfahren mit offenem Kreislauf und werden mit oder
ohne Wärmeaustauscher geliefert. Die Verbrennung erfolgt
in mehreren Brennkammern, die sich coaxial zwischen
Kompressor und Turbine befinden. Dadurch ergibt sich eine
raumsparende Anordnung.

Bis Ende 1961 sind insgesamt 15 Gasturbinenanlagen
von je 6400 kW teils bereits fertiggestellt worden, teils noch
in Ausführung begriffen, wovon elf für Argentinien
bestimmt sind und vier für Algerien. Von diesen zeigt Bild 1
eine Gruppe im thermischen Kraftwerk Haoud El Hamra
in der algerischen Sahara. Sie dient der Energieversorgung
des Erdölzentrums Hassi Messaud sowie der Hauptpumpenstationen

der 670 km langen Oelleitung, die zum Mittelmeer
führt. Die hohen Aussentemperaturen sowie die in dieser
Gegend häufig auftretenden Sandstürme erschweren .be¬

trächtlich die Betriebsbedingungen und erforderten besondere

Vorkehrungen. Die Anlage kam im April 1960 in
Betrieb und hat von Anfang an zufriedenstellend gearbeitet.

i) Ueber Fiat-Grossmotoren wurde in SBZ 1961, Heft 39, S. 671

und Heft 42, S. 737 berichtet.
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Bild 1. Gasturbinenanlage von 6400 kW im thermischen Kraftwerk Haoud El Hamra
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