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80. Jahrgang  Heft 19

SCHWEIZERISCHE BAUZEITUNG

10. Mai 1962

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENGSSISCHEN TECHNISCHEN HOCHSGHULE G.E.P

Lineare Ungleichungen in der Baustatik

Von Prof. William Prager, Brown University, Providence, R. ., USA 1)

1. Einleitung

Lineare Ansétze, aus denen Superpositionsprinzipien fol-
gen, sind die Regel in der mathematischen Analyse tech-
nischer Probleme. So fiihrt zum Beispiel das Ohmsche Ge-
setz auf ein lineares Gleichungssystem fiir die Verteilung
der Stromstdrke in einem elektrischen Leitungsnetz. In An-
betracht der grossen Erfolge linearer Ansitze in der mathe-
matischen Physik und im Ingenieurwesen ist es ganz natiir-
lich, dass man sich wiederum solcher Ansitze bediente, als
man volkswirtschaftliche Probleme mathematisch zu erfassen
begann. Es zeigte sich jedoch bald,dass dieses Vorgehen nicht
von Erfolg begleitet war, und es ist das Verdienst Johann
von Neumanns, auf die wichtige Rolle hingewiesen zu haben,
welche Ungleichungen in diesem Gebiete spielen konnen.
In vielen Fillen kann man diese Ungleichungen linearisieren,
und das typische Problem erfordert dann die Ermittlung des
Maximums oder Minimums einer linearen Funktion, deren
Verdnderliche linearen Ungleichungen unterworfen sind.

Viele Aufgaben der Planung in Industrie und Volkswirt-
schaft lassen sich auf dieses Grundproblem der sogenannten
linearen Optimierung zurlickfiihren, Obwohl allgemeine Me-
thoden zur Losung dieses Problems erst vor kurzem im Rah-
men der Planungsforschung entwickelt wurden, findet sich
das erste Beispiel einer linearen Optimierung in einer Arbeit,
die Fourier im Jahre 1823 in der Histoire de I’Académie ver-
offentlicht hat (Werke, Bd. IT, S. 321). In dieser Arbeit stellt
sich Fourier die folgende Aufgabe. Eine starre quadratische
Platte ruht in horizontaler Lage auf vier Stiitzen an ihren
Ecken. Keine der Stiitzen kann eine Druckkraft aufnehmen,
die grosser als die Krafteinheit ist. Man bestimme die grosste
vertikale Last, die an einem gegebenen Punkt der Platte wir-
ken kann, ohne zum Versagen der Konstruktion zu fiihren.
Fourier bemerkt, dass die Prinzipien der Statik unmittelbar
drei Gleichungen fiir die vier Stiitzkrifte liefern, zu denen

1) Vortrag, gehalten auf Einladung der S.I. A.-Fachgruppe fiir
Briickenbau und Hochbau und des Schweizerischen Verbandes fiir
die Materialpriifungen der Technik am 18, Jan. 1962 in der ETH,
Ziurich.
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man fiir jede Stiitze noch zwei Ungleichungen fligen muss,
welche ausdriicken, dass die Druckkraft in der Stiitze positiv
und kleiner als die Krafteinheit sein muss. Ohne auf mathe-
matische Einzelheiten einzugehen, gibt Fourier die Ldsung
der Aufgabe und stellt fest, dass sie nicht durch einen ana-
lytischen Ausdruck dargestellt ist. In der Tat, bei gegebener
Lastintensitét ist der Angriffspunkt der Last auf das Innere
eines gewissen Polygons beschrinkt, wenn die Konstruktion
nicht versagen soll, Bild 1 zeigt einige dieser Polygone und
die zugehorigen Lastintensititen.

Fouriers Arbeit erschien einige Jahre wvor Cauchys
grundlegenden Untersuchungen zur Elastizitdtstheorie. Es
ist daher kaum verwunderlich, dass Fourier ein statisch un-
bestimmtes Problem behandelt, ohne die Spannungs-Deh-
nungsbeziehungen filir die Stiitzen zu verwenden. Die Erd-
drucktheorie, die zu Fouriers Zeit schon weit entwickelt war,
geht in &hnlicher Weise vor, indem sie zu den Gleichgewichts-
bedingungen eine Ungleichung hinzufligt, der zu Folge die in
einem beliebigen Flichenelement {ibertragene Schubspan-
nung nicht einen bestimmten Prozentsatz der Normalspan-
nung in diesem Element liberschreiten kann.

Da jedoch Fouriers Analyse zu einer eindeutigen Losung
fiihrt, setzt sie ein bestimmtes mechanisches Verhalten der
Stiitzen voraus. In der Tat, damit Fouriers Analyse berech-
tigt ist, muss die Beziehung zwischen der Verkiirzung u; der
Stiitze und der zugehorigen Druckkraft R; durch das Dia-
gramm Bild 2 dargestellt werden. Der Zweig OAB dieses Dia-
gramms stellt das elastische Verhalten mit nachfolgendem
plastischem Fliessen der Stiitze dar, und der Zweig OC ent-
spricht dem Abheben der Platte von der Stiitze. Wenn man
will, kann man diesen Zweig als plastisches Fliessen unter
verschwindender Zugkraft deuten. Fouriers Problem kann da-
her als ein Problem der plastischen Traglastbestimmung an-
gesehen werden.

Um grundlegende Lehrsédtze des plastischen Traglast-
verfahrens zu erldutern, wollen wir Fouriers Problem ab-
dndern, indem wir das Diagramm Bild 2 durch dasjenige von
Bild 3 ersetzen: Die Platte kann sich nicht mehr von den
Stiitzen abheben; die Stilitzen verhalten sich elastisch-ideal-
plastisch unter Druck, aber unbegrenzt elastisch unter Zug.
Die Moglichkeit, dass die vier Stiitzen verschiedene Druck-
fliessgrenzen besitzen soll nicht ausgeschlossen werden.

Wir wahlen einen festen Angriffspunkt fiir die Last und
lassen ihre Intensitdt von null an stetig zunehmen. Unter
geniigend kleiner Last verhalten sich alle Stiitzen elastisch,
und zur Berechnung der vier Stiitzkréfte stehen uns drei
Gleichgewichtsbedingungen und eine Vertraglichkeitsbedin-
gung zur Verfligung, Die letztere sagt aus, dass, infolge der
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vorausgesetzten Starrheit der Platte, die Lingendnderungen
von drei Stiitzen die Léngeninderung der vierten Stiitze
eindeutig bestimmen. Das vollig elastische Verhalten, wih-
rend dessen die Stiitzkrdfte proportional zur Last wachsen,
endet, wenn eine der Stlitzkréfte die zugehorige Fliessgrenze
erreicht. Da diese Stiitzkraft nicht weiter wachsen kann,
verteilt sich jeder weitere Zuwachs der Last in statisch be-
stimmter Weise auf die drei anderen Stiitzen. Solange diese
Stiitzen sich elastisch verhalten, hat die plastische Verkiir-
zung der vierten Stiitze elastische Grossenordnung. Dieses
elastisch-plastische Verhalten mit beschrdnkter plastischer
Verformung endet, wenn eine weitere Stiitze ihre Fliess-
grenze erreicht, Infolge des Fliessens der beiden plastischen
Stiitzen unter konstanter Last beginnt sich die Platte um
die Gerade zu drehen, welche die Stiitzpunkte der noch
elastischen Stiitzen verbindet. Die zugehdrige Last stellt die
Tragfihigkeit der Konstruktion filir den gewédhlten Lastan-
griffspunkt dar.

Wir bemerken, dass im elastischen Gebiete die Vertei-
lung der Last auf die vier Stiitzen sich nicht &ndert, wenn
man den Hlastizitdtsmodul einer jeden Stiitze mit dem selben
Faktor multipliziert. Indem wir uns diesen Faktor sehr
gross gewdhlt denken, kénnen wir die elastisch-plastischen
Stiitzen durch starr-plastische Stiitzen ersetzen, deren me-
chanisches Verhalten durch das Diagramm C’A’'B in Bild 3
dargestellt wird. Um dieses Diagramm mathematisch zu be-
schreiben, beniitzen wir die Druckkraft B; an der Stiitze 4
und die Geschwindigkeit v;, mit der sich diese Stiitze ver-
kiirzt.

Einer beliebigen positiven Geschwindigkeit v; entspricht
die Druckfliesskraft F;, wihrend einer beliebigen Stiitzkraft
unterhalb der Fliessgrenze F; die Geschwindigkeit v; =0
entspricht. Die Leistung der Stiitzkraft ist daher

(1) L=F;v; fir v; =0

Negative Geschwindigkeiten v; sind nicht zul&ssig.

Solange die Last unterhalb der Traglast P bleibt, ver-
hilt sich die Konstruktion starr, Plastisches Fliessen kann
nur unter der Einwirkung der Traglast P auftreten. Wéh-
rend dieses Fliessens seien v und v; die Vertikalgeschwindig-
keiten des Lastangriffspunkts und der vier Ecken der Platte,
und R; die zugehorigen Stiitzkrifte. Diese Grossen sind den
folgenden Bedingungen unterworfen:

1. Die Gleichgewichtsbedingungen fiir die Liast P und die
Stiitzkréfte R; (drei Gleichungen);

2. die Vertrédglichkeitsbedingungen fiir die Geschwindig-
keiten v und v; (zwei Gleichungen);

3. die Plastizitdtsbedingungen, welche Stiitzkrifte R;
oberhalb der zugehorigen Fliessgrenze F; ausschliessen (vier
Ungleichungen); und

4, die Fliessregeln, welche fordern, dass die Geschwin-
digkeit v; nichtnegativ ist oder verschwindet, je nach dem
die Stiitzkraft R; ihren Grosstwert F; annimmt oder nicht.

Aus der Fliessregel ergibt sich leicht eine wichtige Be-
ziehung. Fiir einen zuldssigen, das heisst nichtnegativen Wert
von wv; soll R; den tatsdchlichen Wert der Stiitzkraft be-
deuten und R;* einen fiktiven Wert dieser Stiitzkraft, der die
Plastizitdtsbedingung R* < F; erfiillt. Man bestétigt ohne
Schwierigkeit, dass

(2) (R; — Ri*) v; =0

ist. In der Tat, fiir positives v; hat man R; = F;, so dass der
Klammerausdruck in (2) nicht negativ ist. Fiir v; =0 ist
(2) mit dem Gleichheitszeichen erfiillt, und negative Werte
von v; sind ausgeschlossen.

Wir betrachten nun einerseits die Traglast P und ent-
sprechende Werte der Stiitzkréfte R; und der Geschwindig-
keiten v;, und andererseits einen beliebigen Lastwert P*, der
im Gleichgewicht mit Stiitzkraften R;* ist, welche die Plasti-
zitdtsbedingungen erfiillen. Nach dem Prinzip der virtuellen
Geschwindigkeiten hat man dann

4
(/2 — J2:3)0) = Z
=l

(3)] (R; — Bi*) vy
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Da die Geschwindigkeit v nichtnegativen Werten der Ge-
schwindigkeiten v; entspricht, ist sie selbst nichtnegativ, und
HEinsetzen der Ungleichung (2) in die Beziehung (3) ergibt

(4) P=Px

Die Traglast ist somit die grosste Last, die mit Stiitz-
kriften ins Gleichgewicht gesetzt werden kann, welche die
Plastizitdtsbedingungen erfiillen.

Dieses statische Prinzip fiihrt unmittelbar auf ein Pro-
blem der linearen Optimierung. In der Tat, durch den ge-
wiahlten Lastangriffspunkt ziehen wir Parallelen zur -
und y-Axe (Bild 1) und verlangen, dass die Summe der Mo-
mente der Stlitzkrédfte mit Bezug auf eine jede dieser Axen
verschwindet. Dies gibt zwei lineare Gleichungen fiir die
Stiitzkrédfte R;, denen wir noch vier Ungleichungen hinzu-
fligen miissen, welche die Plastizitdtsbedingungen fiir die
Stiitzkrifte ausdriicken. Um die Traglast P zu finden, miis-
sen wir die Unbekannten R4, Ro, R3, B4 so bestimmen, dass
diese Gleichgewichts- und Plastizitdtsbedingungen erfiillt
sind, wahrend die lineare Form

(5) P=Ri+ Re+ B3+ R4

ihren Grosstwert annimmt. Mit den Bezeichnungen von Bild 1
ist diese lineare Optimierungsaufgabe durch die Tafel I dar-
gestellt.

Die Hintrége in der ersten Kolonne dieser Tafel werden
spater erkldrt werden. Die Eintrdge in den nichsten sechs
Kolonnen sind die Koeffizienten von R; bis R4, die Gleich-
heits- oder Ungleichheitszeichen, und die rechten Seiten un-
serer Beziehungen. Die ersten zwei Zeilen der Tafel I sind
die Gleichgewichtsbedingungen und die folgenden vier Zeilen
die Plastizitdtsbedingungen. Die letzte Zeile schliesslich sagt
aus, dass die Traglast P dem Grosstwert der Summe der
Stiitzkrifte By bis R4 entspricht. Da die beiden Gleichge-
wichtsbedingungen die Gesamtheit der Stiitzkrédfte auf eine
zweiparametrige Schar reduzieren, ist zu erwarten, dass in
der Losung unseres Problems das Gleichheitszeichen in we-
nigstens zwei der Plastizitdtsbedingungen gilt.

Eine andere lineare Optimierungsaufgabe, deren Losung
die Traglast liefert, wird wie folgt erhalten. Wir betrachten
einerseits die Traglast P und entsprechende Werte der Stiitz-
krifte B; und der Geschwindigkeiten v und v;, und anderer-
seits nichtnegative Geschwindigkeiten v** und v;**, welche
die Vertridglichkeitsbedingungen erfiillen, und Stiitzkréfte
R;** die zusammen mit den Geschwindigkeiten v;** die
Fliessregeln erfiillen, Nach dem Prinzip der virtuellen Ge-
schwindigkeiten hat man

4
2 R; vpxk
=

(6) Po¥k =

In Anbetracht der Beziehung (2) kann (6) wie folgt ge-
schrieben werden:

4
(1) Poxk = N1 Rkt ppt
=l
Tafel I
= R
Verdnder- <0 S 2
i S
liche = S
Ry R, R; Ry S S
= { wy | —(a—y) —(a-y) at+y aty | = 0
< ey, | —(m=13) gtz e —(a—z)l| " = 0
T ‘U;l — 1 é Fl
Vy 1 = Fo
é 0 V3 il = B
V4 1 = Fy4
Zeichen = = = = =
Konst. 1 1 1 1 = P
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Da R;**v;** die Leistung der Stiitzkraft R;** an der
Geschwindigkeit v;** ihres Angriffspunktes ist, folgt aus (1)
und (7), dass

4
(8) Pokx < ¥ F;op*
A=l

ist. e

Wir bezeichnen nun mit P** die fiktive Traglast, welche
durch Gleichsetzen der dusseren Leistung P**p** und der
inneren Leistung

4

Z Fi’l)i**
p=1

erhalten wird. Da die Geschwindigkeit v** als nichtnegativ
vorausgesetzt wurde, zeigt die TUngleichung (8), dass
P = P*#* ist.

Die tatsdchliche Traglast ist daher die kleinste der be-
trachteten fiktiven Traglasten.

Wir wenden nun dieses kinematische Prinzip auf die Be-
stimmung der Traglast an. Ein System von Geschwindig-
keiten w**, vi*% vo** wg** wy** das die Vertriglichkeits-
bedingungen erfiillt, kann durch Superposition der folgenden
drei Bewegungen erhalten werden: HEine vertikale Trans-
lation der Platte und Drehungen um Parallelen zur x- und y-
Axe durch den Lastangriffspunkt. Wir bezeichnen die Win-
kelgeschwindigkeiten dieser Drehungen mit w, und «, und
kommen {iberein, dass eine positive Winkelgeschwindigkeit
der Ecke 1 (Bild 1) eine nach unten gerichtete Geschwindig-
keit erteilen soll, Da unsere Beziehungen homogen in den
Geschwindigkeiten sein werden, hat der Geschwindigkeits-
masstab keinerlei Bedeutung, und wir kénnen die Geschwin-
digkeit der vertikalen Translation der Platte als Geschwin-
digkeitseinheit wihlen, Wir erhalten somit die Gleichung

(9) vi=1+4w:(a-—-y) +oyla—2x)

und dhnliche Gleichungen fiir die Geschwindigkeiten der an-
deren Ecken. Wir bemerken, dass wir sowohl diese Glei-
chungen als auch die lineare Form, deren Minimum die Trag-
last ist, aus den Kolonnen der Tafel I erhalten konnen, wobei
die Elemente einer Kolonne als Koeffizienten der am linken
Rande aufgefiihrten Grossen gedeutet werden miissen.

Die beiden linearen Optimierungsaufgaben, die durch die
Tafel I dargestellt sind, werden als einander dual zugeordnet
bezeichnet. Die folgenden Eigenschaften der hier betrachteten
Aufgaben gelten ganz allgemein fiir duale lineare Optimie-
rungen. Den Ungleichungen einer Aufgabe entsprechen nicht-
negative Verénderliche der dualen Aufgabe, widhrend die den
Gleichungen einer Aufgabe entsprechenden Verédnderliche der
dualen Aufgabe keinerlei Vorzeichenbeschridnkungen unter-
liegen. Wenn eine Ungleichung einer Aufgabe als Unglei-
chung im engeren Sinn erfiillt ist, so verschwindet die ent-
sprechende Verdnderliche der dualen Aufgabe.

Tafel IT
> S 3
Verdnder- 2 0 >0 0 *é
liche = A§ S
vV wy V1 Vo Vs Vi | N S}
By |1 o—y a—x |1 = 0
> Ry (1 a—y —(a+tx) —1 = 0
SO\ B |1—(aty)—(a+tn) il L
Ry |1—(at+y) o—2x —1 = 0
Fl 1 é 11
Fo 1 = Iy
; 0 F3 il é 13
F4 1 é 24
Zeichen = — = = = = = >
Konst. /2 0 0 0 0 0 = C
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Im bisher betrachteten Problem waren die Fliessgren-
zen der vier Stiitzen gegeben, und der Grenzwert der Last,
die an einem vorgegebenen Angriffspunkt wirken kann, war
gesucht. Von dieser Aufgabe der plastischen Analyse wollen
wir uns nun einer Aufgabe der plastischen Bemessung zu-
wenden. Um ein nicht vollig triviales Problem zu erhalten,
setzen wir voraus, dass die vier Stiitzen verschiedene Lingen
U, o, I3, 14 besitzen konnen. Wir nehmen an, dass der Preis
einer Stiitze mit der Lénge 7; und der Fliessgrenze F; dem
Produkt L;F; proportional ist. Bei vorgeschriebener Lastin-
tensitat und gegebenem Angriffspunkt sollen die vier Stiitzen
so bemessen werden, dass ihr Gesamtpreis moglichst klein
ausfallt,

Die Kolonnen der Tafel II geben die Beziehungen, welche
die Stiitzkréafte und die Fliessgrenzen erfiillen miissen, Die
ersten drei Kolonnen entsprechen den Gleichgewichtsbedin-
gungen und die darauf folgenden vier den Plastizitdtsbedin-
gungen. Die letzte Kolonne schliesslich gibt die lineare Form
C, welche dem Gesamtpreis C proportional ist, und die man
zu einem Minimum machen will. Wir haben gesehen, dass
flir gegebene Fliessgrenzen die Traglast die grosste aller
Lasten ist, die mit Stilitzkréften ins Gleichgewicht gesetzt
werden kann, welche die Plastizitdtsbedingungen erfillen.
Hine Last, die mit solchen Stiitzkriften im Gleichgewicht
steht, kann daher die Traglast nicht liberschreiten. Ein jedes
System von Stiitzkrédften und Fliessgrenzen, welches die
durch die ersten sieben Kolonnen der Tafel II gegebenen Be-
ziehungen erfiillt, stellt daher eine zulédssige Bemessung dar.
Die letzte Kolonne der Tafel II verlangt, dass man unter
allen diesen Bemessungen die mit dem kleinsten Preis sucht.

Die Tafel IT wurde kolonnenweise geschrieben, damit das
Ungleichheitszeichen iiber der rechten unteren Ecke den
selben Sinn hat wie in der Tafel I.

Aus der Tafel IT kann man das duale Problem wie folgt
ablesen: Man finde nichtnegative Geschwindigkeiten v und
vy bis vy, welche den Vertridglichkeitsbedingungen und den
Ungleichungen

(10)

geniigen und das Produkt Pv und somit v moglichst gross
machen, Da die Geschwindigkeiten v; nur der einzigen Ver-
traglichkeitsbedingung

/U‘i:Zi (1-‘:1y293)4)

(11) vi+vz—v2—v4s=0

unterliegen, kann man diese Geschwindigkeiten so wiéhlen,
dass das Gleichheitszeichen in mindestens drei der Un-
gleichungen (10) gilt. Wenn zum Beispiel die Stiitzen 1,
2 und 3 die gleiche Ldnge L haben, wihrend die vierte Stiitze
eine grossere Linge L + I besitzt, so sind solche Geschwin-
digkeitssysteme durch

1 V) == Vs = Vi =L
oder
2 UlzL,UQZL—l,U3:L,U4:L+l

gegeben, Im ersten Falle hat man vs < Iy und somit F4 = 0.
Im zweiten Falle ist vy < I und daher Fy = 0. In jedem Fall
wird also eine der Stiitzen fortgelassen, und die Last ver-
teilt sich in statisch bestimmter Weise auf die drei verblei-
benden Stiitzen, wobei die Wirkungslinie der Last im In-
neren oder auf der Oberfliche des dreieckigen Prismas
liegen muss, das die Axen der Stiitzen zu Kanten hat. Die
optimale Bemessung entspricht daher einer statisch be-
stimmten Konstruktion.

Aus dem Obigen folgt, dass der Mindestpreis dem Aus-
druck

(12) C = F1ly 4 Fola + F3ls + Faly

= F1v; + Fyv1 + F3vs + Favs

proportional ist, weil ndmlich v; = 7; sein muss, wenn F; nicht
verschwindet. Fiir die Konstruktion optimaler Bemessung
exisiert also ein System von vertréglichen Geschwindigkeiten,
fiir welches die Dissipationsleistung je Einheitspreis eines
Bauelements fiir alle Elemente den gleichen Wert hat. Man
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kann dieses Ergebnis als das Prinzip der gleichformigen Aus-
nutzung des Materials bezeichnen.

Bei der Anwendung unserer Ergebnisse auf die pla-
stische Bemessung von Balken oder Rahmen gebrauchen wir
dhnliche Vereinfachungen wie bei der Behandlung des Fou-
rierschen Problems, Wir vernachlédssigen die -elastischen
Forménderungen und setzen voraus, dass sich die plastischen
Forménderungen unter konstanter Spannung vollziehen. Ein
Balkenelement bleibt daher starr oder wirkt als plastisches
Gelenk, je nachdem der Absolutwert des Biegemoments un-
terhalb eines kritischen Wertes, dem sogenannten Fliess-
moment, bleibt oder ihm gleichkommt.

Als Beispiel wollen wir
die zweiparametrige Be-
messung des Rahmens in
Bild 4 behandeln. Wir set-
zen voraus, dass dasFliess- £ 75 Iz
moment des Balkens den 4 2 H
konstanten Wert Fgo hat.
Wir setzen weiter voraus,
dass der Preis je Lingen-
einheit eines Balkens mit
geniigender  Genauigkeit £ £
durch < 4

Bild 4

N

(183) ¢c=a+ BF

gegeben ist, wo F das Fliessmoment ist und « und 8 Kon-
stanten sind, welche die zur Verfiigung stehenden Balken-
profile charakterisieren. Infolgedessen ist ah 4 Bh (F1+ Fy)/2
der Preis einer Sdule und 2 ol 4 2 B1Fq der Preis des Balkens.
Da a und B Festwerte sind, entspricht die optimale Bemes-
sung dem Minimum der linearen Form

(14) O = hFy + (b + 21) Fs

die als der wverdnderliche Anieil des Preises bezeichnet wer-
den soll.

Je nach seiner Bemessung konnte der betrachtete Rah-
men geméiss eines der in Bild 5 angedeuteten Fliessmecha-
nismen versagen. Nach unserem kinematischen Prinzip muss
man die Fliessmomente so wahlen, dass fiir jeden dieser
Fliessmechanismen die Dissipationsleistung in den plasti-
schen Gelenken der Leistung der gegebenen Last gleich-
kommt oder sie iibertrifft. Man erhdlt so die durch die Ko-
lonnen der Tafel III dargestellte lineare Optimierungsauf-
gabe.

Bild 5

Wir wollen diese Aufgabe l16sen, ohne spezielle Werte
fiir die nichtnegativen Grossen h, I, H und P vorauszusetzen.
Da die durch die ersten drei Kolonnen der Tafel III darge-
stellten Beziechungen nur zwei Unbekannte enthalten, wird
mindestens eine der drei Beziehungen als Ungleichung im
engeren Sinn erfiillt sein, Wir nehmen zunéchst an, dass dies
die erste dieser Beziehungen ist. Indem wir das Gleichheits-

Tafel ITI
i - =0
Ver_ander — Zeichen Konstante
liche @
1 C2 C3

= ol E 2 0 2 = h

="\ 2y 4 = B 2t

Zeichen = | = = =
Konstante | H-h P-1 H-h+P-1l = C
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zeichen in den beiden anderen Beziehungen gebrauchen, er-
halten wir die Fliessmomente

(15)

welche die erste Beziehung fiir alle Werte von H und P er-
fiillen. Um den Giiltigkeitsbereich der Bemessung (15) zu
bestimmen, betrachten wir das duale Problem, das durch die
Zeilen der Tabelle IIT angegeben ist. Da die erste Beziehung
des urspriinglichen Problems als Ungleichung im engeren
Sinne erfiillt ist, muss die entsprechende Ver&dnderliche ¢y
des dualen Problems verschwinden, Da weiterhin die Bemes-
sung (15) positive Werte fiir Fy und Fa liefert, muss das
Gleichheitszeichen in den entsprechenden Beziehungen des
dualen Problems gelten. Man erhilt so

Fy = Hh/2, Fg—= Plj4

(16)

Da diese Verinderlichen nichtnegativ sein miissen, ist die Be-
messung (15) nur moglich, wenn

co = (21— h)/4, c3 = h/2

a7) 1lh=1/2

ist.

Wir nehmen dann an, dass die zweite Beziehung des ur-
spriinglichen Problems als Ungleichung im engeren Sinn er-
fiillt ist. Gebrauch des Gleichheitszeichens in den beiden an-
deren Beziehungen liefert

(18) Fy = (Hh—Pl)/2, Fo = Pl/2

Da Fq nicht negativ sein kann, ist diese Bemessung nur mog-
lich, wenn

(19) PI/Hh <1
ist. Mit ce = 0 liefert das duale Problem die Werte
(20)

die nichtnegativ sind fiir

il = (W ="21)/2,, Fes =11

(21) Yh =1/2

Die Bemessung (18) ist somit den Bedingungen (19) und
(21) unterworfien.

Wenn man die ersten beiden Beziehungen des urspriing-
lichen Problems als Gleichungen schreibt, findet man, dass
ihre Losung die dritte Beziehung nicht erfiillt. Wir nehmen
daher an, dass die beiden ersten Beziehungen des urspring-
lichen Problems als Ungleichungen im engeren Sinn erfiillt
sind, so dass die entsprechenden Verédnderlichen ¢y und cp des
dualen Problems verschwinden. Die zwei Beziehungen des
dualen Problems konnen dann nicht beide Gleichungen sein.
Wenn das Gleichheitszeichen in der zweiten gilt, ist die erste
eine Ungleichung im engeren Sinn fiir

(22) UYh <12

und die entsprechende Verinderliche des urspriinglichen Pro-
blems verschwindet, Da die dritte Beziehung dieses Problems

als Gleichung vorausgesetzt wurde, hat man
(23) Fy = (Pl + Hh)/4

Die beiden ersten Beziehungen des urspriinglichen Problems
sind dann Ungleichungen im engeren Sinn, wenn

Fy=0,

(24) PI/HR >1 =
Pl T
ist. Die Bemessung (23) ist Hh é‘*
somit den Bedingungen (22) S 5o b
und (24) unterworfen. Die oWy T
drei betrachteten Bemessun- 10 G e
gen und ihre Giiltigkeitsbe- 4
reiche sind in Bild 6 darge-
stellt. Y
Wir bemerken noch, dass gé“‘ E\N
die Veridnderlichen ¢y, ce und i i
¢s des dualen Problems nicht- ST
negative Koeffizienten einer 0 e ;
linearen Kombination der drei ! T
in Bild 4 dargestellten Mecha- Bild 6
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nismen, sind, welche den durch das Prinzip der gleichfdr-
migen Ausniitzung des Materials geforderten Mechanismus
liefert. Dieses Prinzip gilt jedoch nur, solange man es mit
einem einzigen Lastsystem zu tun hat.
Um dies zu bewei-

sen, betrachten wir
el.r.Len Balken .‘der e%aF% +%+7§-—>
Lénge I, der am einen 7 2 3

Ende eingespannt und 7@7 £ 2 2

am anderen gelenkig ?
gelagert istund;durch
eine Last der Intensi-
tdét P  beansprucht
wird, die entweder in
der Mitte der Spann-
weite oder im Ab-
stand 7/4 von einem
oder dem anderen
Ende wirkt. Wir un-
tersuchen die vier-
parametrige Bemes-
sung, welche durch die
Fliessmomente Fy bis
F, in den Viertels-
punkten der Spann-
weite bestimmt ist
(siehe Bild 7), wobei
das Fliessmoment sich
in linearer Weise vom Bild 7
einen zum ndchsten
dieser Punkte verén-
dert und am gelenkig
gestiitzten Ende ver-
schwindet. Bild 7 zeigt
sechs Fliesmechanis-
men, deren jeder zwei

NIES

LN
S

&

plastische Gelenke 12
aufweist. Drei dieser 5
Mechanismen entspre-

Q

F als Vielfaches von ?"24—

chen der Laststellung
1, zwei der Stellung 2,
und einer der Stellung
3. Fir einen jeden
dieser Mechanismen
muss die Dissipationsleistung in den plastischen Gelenken
der Leistung der Last gleich sein oder diese iiberschreiten.
Man erhilt so die lineare Optimierungsaufgabe, welche durch
die Kolonnen der Tafel IV dargestellt ist.

Die fiir diesen Vortrag angesetzte Zeit schliesst eine
detaillierte Besprechung dieser und der zu ihr dualen Auf-
gabe aus. Man findet

Bild 8

B i 1 5
(25) Fy= 39 Pl, Fs= EPZ’ F3 = 39 Bl — 54 Pl
(26)MN =08 co—1/6 N ca =0 N c = 112 ¢z =18 ¢g=1/16

Bild 8 zeigt den Verlauf des Fliessmoments fiir die optimale
Bemessung.

Wir bemerken, dass die relative Winkelgeschwindigkeit
am Gelenk 3 fiir den zweiten und vierten Fliessmechanismus

Tafel IV
S
Verdnder- =0 S
liche S Konst.

Cq Co C3 Cyq Cs Ceq g
Fq 2 3/a 43 = U
o F2 ot 3/a il = l/l
=0 Py 1)y i1 4/ = U
Fy /s ey L = Us
Zeichen | = = = = = = =
Konstante P, Pl,Pl, Pl,Pl,Pl, = c
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von Bild 6 negativ ist, aber positiv fiir den sechsten. Infolge-
dessen kann die dritte Beziehung des dualen Problems, ndm-
lich die Gleichung

(27) 1Ysco + cy4 + #/3c6 = 1/4

nicht als die Forderung eines Fliessmechanismus interpre-
tiert werden, flir den die relative Winkelgeschwindigkeit am
Gelenk 3 den Wert 7/4 hat. Das Prinzip der gleichférmigen
Ausniitzung des Materials verliert daher seine Giiltigkeit,
wenn man es mit mehrfachen Lastsystemen zu tun hat.

Indem man die Anzahl der betrachteten Laststellungen
vergrossert, kann man die numerischen Methoden der linea-
ren Optimierung benutzen, um sich der Bemessung fiir be-
wegliche Lasten anzundhern. Allgemeine Methoden zur di-
rekten Losung dieses Problems liegen jedoch zurzeit noch
nicht vor,

Wir haben gezeigt, wie ein jedes einer Reihe von Pro-
blemen der plastischen Analyse und Bemessung von Trag-
werken als eine lineare Optimierungsaufgabe formuliert
werden kann, Das Anziehende dieser Formulierung ist, dass
dadurch ein und dieselbe numerische Methode auf ver-
schiedenartige Probleme der Baustatik angewandt werden
kann. Wir wollen nun diese Methode kurz besprechen. Um
die Schreibarbeit gering zu halten, betrachten wir die durch
die Zeilen der Tafel III dargestellte, lineare Optimierungs-
aufgabe und nehmen fiir die Abmessungen des Rahmens und
die auf ihn einwirkenden Lasten die folgenden Werte an:
h=5m, I=4 m, H=1000 kg, P =5000 kg. Unter den
Nebenbedingungen

(28) 2c¢1 +2c3 = b
201 + 402 + 46‘3 =13

fiir die nichtnegativen Verdnderlichen cy, ¢, ¢3 Soll dann der
Ausdruck

(29) C =5000c; + 20000cs + 25000¢3

zu einem Maximum gemacht werden.
Wir schreiben zuniéchst die Nebenbedingungen (28) in
der Form

(80) Fky=-—2c1 —2c3+ 5=0,
ko = —2¢1 —4cC2 —4c¢3 +13=0,

wobei ky und %k, durch diese Beziehungen definierte neue
nichtnegative Verinderliche sind. Die Nebenbedingungen
(30) sind offenbar durch die nichtnegativen Werte

(38l) ¢c1=ca=¢3=0, k=5 kz=13

erfiillt, fiir die ¢ = 0 wird. Wir trachten nun, den Wert von
C zu vergrossern, indem wir eine der Verdnderlichen ¢y, Co,
¢z auf Kosten von kq und ko wachsen lassen. Da im Aus-
druck (29) fiir C die Verdnderliche c¢s den grossten Beiwert
hat, soll ¢; wachsen, wihrend ¢y und co den Wert null beibe-
halten. Dem Betrag, um den c3 wachsen kann, sind durch die
Nichtnegativitit von ky und ko Schranken gesetzt. Die Be-
ziehungen (30) zeigen, dass mit ¢y = ¢2 =0 die Verdnderliche
oy fiir cs = 5/2 verschwindet und die Verdnderliche ko fiir cs
— 18/4. Wenn ¢z von null an stetig wéchst, so verschwindet
also kq fiir einen Wert von c¢g, fiir den ke noch positiv aus-
fallt.

Wir 16sen nun die Definition von ki nach c¢s auf und
setzen das Resultat in die Definition von ke und den Aus-
druck fiir C ein; wir erhalten so

(32) c3=—¢1 —1/3k1 +5/2 =0,
ICQ = 201 —402 +2k1 —[~3 =0 3
C = —20000cy + 20 000ce — 12500F; + 62500

Die neuen Nebenbedingungen sind durch die Werte
¢1= 0o =Ky =0, c3 =5/2, ko = 3 erfiillt, fiir die C = 62500
wird, Der Uebergang von den Beziehungen (28), (29) zu den
Beziehungen (32) kann als Austausch zwischen cs und Fy
charakterisiert werden, In der Tat gingen wir von einer Lo-
sung der Bezichungen (28) aus, fir die ¢1 =co=c¢3=0
war, und sind nun zu einer Losung der ersten zwei Bezie-
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hungen (32) gelangt, fiir welche ¢y und ¢, immer noch
null sind, aber k4 anstelle von c¢; verschwindet.

Aus den Vorzeichen im neuen Ausdruck C ergibt sich
infolge der Nichtnegativitdt von ¢y, cs und k4, dass eine
weitere Vergrosserung von C nur durch einen ce betreffen-
den Austausch bewirkt werden kann. Da die erste Beziehung
(28) die Verédnderliche c, nicht enthilt, kann dieser Aus-
tausch nur durch Aufldsen der zweiten Beziehung (28) nach
¢s erhalten werden. Indem man die so gefundene Beziehung
zur unverdnderten ersten Beziehung (28) hinzufiigt, findet
man die folgenden neuen Nebenbedingungen:

(383) ¢c3=—cy —1fske1 +5/2 =0,
Cx = 1scy —1uko +1foky +3/4=0.

Einsetzen von (33) in die dritte Beziehung (32) liefert
(34) € =—10000c; — 5000ks — 2500k + 77500

Da die Beiwerte der nichtnegativen Grossen c¢i, ko, ki
in (34) negativ sind, entspricht das Maximum von C den
Werten ¢y = ke = ky = 0 und betrdgt somit ¢ = 77 500. Die-
ser Maximalwert von C ist aber der gesuchte Minimalwert
des verdnderlichen Anteils des Konstruktionspreises. Ueber-
dies ergibt die Beziehung (34) die Fliessmomente Fy; und
F,, welche zu diesem Mindestpreis filihren., Es zeigt sich
némlich, dass die negativ genommenen Beiwerte von k; und
ke im endgiiltigen Ausdruck (34) fiir ¢ mit den Fliessmo-
menten Fy und Fg der optimalen Bemessung {ibereinstimmen.
In der Tat bestétigt man leicht, dass die so erhaltenen Werte

Fy = 2500, Fs = 5000,

die als mkg zu deuten sind, die Nebenbedingungen der zur
oben betrachteten linearen Optimierungsaufgabe dualen Auf-
gabe erfiillen und gleichfalls C = F1h + Fy(h + 21) = 77 500
liefern.

Wir haben hier das sogenannte Austauschverfahren der
linearen Optimierung mit grosser Ausfiihrlichkeit besprochen.
Hs versteht sich von selbst, dass man bei der praktischen
Anwendung dieses Verfahrens nicht die verschiedenen Bezie-
hungen ausfiihrlich anschreiben, sondern unmittelbar das
Koeffizientenschema umformen wird. Die Zeit erlaubt uns
nicht, auf diese sehr einfache Umformung einzugehen. Eine
besonders iibersichtliche Darstellung der Umformung findet
sich in Professor Stiefels vor kurzem erschienenen «Einfiih-
rung in die numerische Mathematiky (B.G. Teubner Verlag,
Stuttgart 1961).

Zum Schluss noch eine Bemerkung iiber den Arbeitsauf-
wand. Die Anzahl der notwendigen Austauschschritte, die bei

unserem einfachen Rahmen nur zwei betrug, wichst iiberaus
rasch, wenn man zu mehrstéckigen, mehrfeldrigen Rahmen
ubergeht, so dass der Einsatz von Rechenautomaten uner-
lasslich wird. Die Programmbibliotheken grésserer automa-
tischer Rechenanlagen enthalten fast immer erprobte Pro-
gramme zur linearen Optimierung, die ohne weiteres zur
Losung der hier besprochenen Aufgaben verwandt werden
konnen.

Adresse des Verfassers: Prof. W. Prager, Division of Applied
Mechanics, Brown University, Providence 12, R. I., USA

Gasturbinen der Fiatwerke DK 621.438

Nach Mitteilungen der Fiat Stabilimento Grandi Motori in Turin

Die Fiatwerke stellen ausser Dieselmotorenl) mneuer-
dings auch Gasturbinen fiir Energieerzeugung, Verdichtung
von Luft oder Gasen, Schiffsantrieb und andere Zwecke her.
Sie konnen sowohl mit fliissigen als auch mit gasférmigen
Brennstoffen betrieben werden. Es wurden Einrichtungen ge-
schaffen, die ein selbsttétiges Umschalten von einem Brenn-
stoff auf den anderen gestatten. Der Leistungsbereich er-
streckt sich von 4900 bis 50 000 PS, Die Anlagen fiir Lei-
stungen bis etwa 35 000 PS bestehen in der Regel aus einer
einfachen Maschinengruppe, bei der Turbine und Kompressor
auf der gleichen Welle angeordnet sind. Sie arbeiten nach
dem Verfahren mit offenem Kreislauf und werden mit oder
ohne Wirmeaustauscher geliefert., Die Verbrennung erfolgt
in mehreren Brennkammern, die sich coaxial zwischen
Kompressor und Turbine befinden. Dadurch ergibt sich eine
raumsparende Anordnung.

Bis Ende 1961 sind insgesamt 15 Gasturbinenanlagen
von je 6400 kW teils bereits fertiggestellt worden, teils noch
in Ausfiihrung begriffen, wovon elf fiir Argentinien be-
stimmt sind und vier flir Algerien. Von diesen zeigt Bild 1
eine Gruppe im thermischen Kraftwerk Haoud El Hamra
in der algerischen Sahara. Sie dient der Energieversorgung
des Erdolzentrums Hassi Messaud sowie der Hauptpumpen-
stationen der 670 km langen Oelleitung, die zum Mittelmeer
fiihrt., Die hohen Aussentemperaturen sowie die in dieser
Gegend haufig auftretenden Sandstlirme erschweren be-
tréchtlich die Betriebsbedingungen und erforderten beson-
dere Vorkehrungen. Die Anlage kam im April 1960 in Be-
trieb und hat von Anfang an zufriedenstellend gearbeitet.

1) Ueber Fiat-Grossmotoren wurde in SBZ 1961, Heft 39, S. 671
und Heft 42, S. 737 berichtet.

Bild 1. Gasturbinenanlage von 6400 kW im thermischen Kraftwerk Haoud El Hamra
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