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79. Jahrgang Heft 48

SCHWEIZERISCHE BAUZEITUNG

30. November 1961

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.1.A. UND DER 6ESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENOSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P.

Grundsitzliches zu den plastischen Berechnungsverfahren

Von Prof. Dr. Bruno Thiirlimann, ETH, Ziirich®)

1. Einleitung

Die Aufgabe des Bauingenieurs ist es, brauchbare und
dsthetisch befriedigende Bauwerke zu schaffen. Dabei ist es
fiir den Ingenieur unerlidsslich, zu wissen, unter welchen
Umstinden die Brauchbarkeit eines Bauwerkes beeintrich-
tigt wird oder ganz verloren geht. Schematisch konnen fol-
gende Fille des Versagens unterschieden werden:

1. Bruch, verursacht durch a) statische Belastung oder b)
Ermiidung unter wiederholter Belastung.

2. Untolerierbare Verformungen, die als a) Durchbiegungen,
b) Schwingungen, c¢) Risse, oder als Kombinationen die-
ser Zustinde auftreten konnen.

Die statische Berechnung und die Ueberwachung der
Bauausfiihrung haben zum Ziel, eine geniigende Sicherheit
in das Tragwerk einzubauen, damit das Eintreten solcher
Zustdnde nach menschlichem Ermessen vermieden wird. Es
ist ganz klar, dass das Mass der Sicherheit durch Unsicher-
heiten beziiglich der Lastannahmen, Materialeigenschaften,
Qualitdt der Ausfiihrung, Vereinfachungen in der statischen
Berechnung usw. wesentlich beeinflusst wird., Erfreulicher-
weise sind neuerdings Bestrebungen im Gange, diesen ganzen
Fragenkomplex statistisch zu bearbeiten (siehe etwa [1],
[21, [312).

Einen ganz wesentlichen Faktor in der rechnerischen
Bestimmung der Sicherheit bildet aber die Berechnung der
statischen Tragfihigkeit einer Konstruktion. Leider muss
festgestellt werden, dass gerade in dieser Beziehung unsere
Klassischen elastischen Methoden sehr wenig leistungsfidhig
sind. Es driangt sich ganz natiirlich das Suchen nach einem
neuen Verfahren auf, mit dem man auf einfache und zu-
verlidssige Weise die Tragfdhigkeit berechnen kann. Es sei
hier deutlich betont, dass die anderen Kriterien beziiglich
der Sicherheit keineswegs ausgeschaltet werden diirfen. Im
Hochbau, fiir den Fall von ruhender Belastung, stellt aber
die statische Tragfihigkeit sicher das wichtigste und mei-
stens auch ausschlaggebende Kriterium dar.

Bevor auf eine Beschreibung dieser neuen Methode ein-
gegangen wird, soll noch auf einige Fille hingewiesen wer-
den, fiir welche die elastischen Berechnungsmethoden keine
befriedigende Antwort geben kdénnen.

2. Unzulinglichkeiten der elastischen Berechnungsmethoden
Als erstes Beispiel sei der Zweifeldtrdger mit konstanter

1) Vortrag, gehalten
an der Fachtagung der
S.I. A.-Fachgruppe fiir
Briickenbau und Hoch-
bau am 12. Nov. 1960.

2) Die Zahlen in ek-
kiger Klammer beziehen
sich auf die Literatur-
angaben am Ende des
Aufsatzes.
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Bild 1. Vergleich eines
Zweifeldtrigers mit ei-
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Biegefestigkeit EI nach Bild 1 betrachtet *). Im Fall (a)
verursacht die gleichmiissig verteilte Belastung g ein mass-
gebendes Stiitzenmoment Mg. Anderseits ist durch ge-
schickte Wahl eines Gelenkes im Fall (b) ein natiirlicher
Momentenausgleich zwischen Stiitzenmoment Mg, und Feld-
moment erreicht worden. Nach der elastischen Theorie ist die
Beanspruchung eines Tragwerkes durch das Eintreten von
Fliessen in der hochst beanspruchten Faser begrenzt. Ist
nun der Biegewiderstand der Tréger in beiden Féllen gleich,
d.h. Mg = Mge, so ergibt sich fiir den Fall (b) eine Er-
héhung der rechnerischen Maximallast um nicht weniger als
46 7. Dieses Resultat widerspricht offensichtlich unserer un-
voreingenommenen Erwartung. Erstens ist der Balken mit
Gelenk weniger steif. Zweitens bedeutet das Zerschneiden
des Trigers und Einsetzen eines Gelenkes doch unzweideutig
eine Schwichung. Die elastische Berechnung fiihrt uns daher
zur paradoxen Antwort, dass eine Schwéchung eines Trag-
werkes zu einer Erhohung seiner Tragfihigkeit fithren soll.

Als Gegenstiick kann sofort ein Beispiel angefiihrt wer-
den, fiir das eine Verstdrkung des Tragwerkes eine Herah-
setzung der Tragfdhigkeit verursachen soll. Bild 2 zeigt
einen einfachen Rechteck-Rahmen, Fiir den Fall (a) sind die
Steifigkeiten der Stiitzen und des Riegels so abgestimmt,
dass Feld- und Eckmoment gleiche Grosse haben. Wird nun
aus irgend einem Grund die Biegesteifigkeit der Stiitzen
verdoppelt, Fall (b), so erhoht sich das elastisch errechnete
Eckmoment. Der Vergleich der beiden Fille fiihrt zu einem
Verhiltnis der Lasten gi/g> = 0,875, also zu einer vermeint-
lichen Verminderung der Tragfidhigkeit. Sicher steht dieses
Resultat ebenfalls im Widerspruch zu unserer Erwartung.
Eine Verstirkung der Stiitzen sollte doch auf keinen Fall
zu einer Verminderung der Tragfihigkeit des gesamten Rah-
mens fiihren.

Zwei folgende Beispiele sollen zeigen, dass bei der
elastischen Berechnung von Tragwerken sehr oft Annahmen
getroffen werden, die dazu fiihren, dass die berechneten
Schnittkrifte oder Spannungen keineswegs mehr den tat-
sichlich auftretenden Grossen entsprechen, sondern nur noch
einen nominellen Wert haben kénnen. Nach Bild 3 wird ein
eingespannter Plattenbalken aus Stahlbeton untersucht. Ent-
sprechend der allgemein iiblichen Annahme wurde zur Be-
rechnung der Schnittkrifte der volle Betonquerschnitt ohne
Stahleinlagen beriicksichtigt, d.h. mit der Biegesteifigkeit
EI = konstant gerechnet. Die angegebenen Armierungs-
gehalte gelten fiir volle Ausniitzung von Stahl und Beton im
Stiitzenquerschnitt und Ausniitzung der Stahlspannung im
Feldquerschnitt, Mit diesen Einlagen sind dann die Steifig-
keiten der gerissenen Querschnitte (Stadium 4) gerechnetund
die entsprechende Verteilung der Biegemomente bestimmt
worden. Das Bild zeigt, dass die beiden Annahmen zu ver-
schiedenen Resultaten mit nicht unbetrdchtlichen Unter-
schieden fiihren. Damit sei festgehalten, dass die Beniitzung
der Biegesteifigkeit EI des Betonquerschnittes wohl zu einer
moglichen, sicher aber nicht zur tatséchlichen Verteilung der
Schnittkréfte fithrt.

In den meisten Fillen werden die Eigenspannungen im
Spannungsnachweis unberiicksichtigt gelassen. In Bild 4 sind
gemessene Eigenspannungen in Axialrichtung eines Walz-
profiles und einer geschweissten Stiitze aufgetragen [4]. Sic
diirfen als durchaus typisch fiir solche Querschnitte ange-
sprochen werden. Im Walztrdger erreichen sie die Hélfte der
Fliesspannung, op, im geschweissten Trager sogar die Fliess-
grenze. Sie entstehen in einem Walzprofil durch die schnelle

#) Entsprechend amerikanischer (und z. T. auch deutscher, s. Ta-
schenbuch Schleicher) Gepflogenheit bezeichnen wir das axiale Tridg-
heitsmoment mit I, sodass J der Bezeichnung des polaren Tréagheits-
momentes vorbehalten bleibt.
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Abkiihlung der Flanschspitzen und des Steges gegeniiber
der massigen Verbindungszone dieser Teile. Die Schrumpfun-
gen der Schweissndhte verursachen in zusammengesetzten
Profilen noch hoéhere Eigenspannungen. In einem Span-
nungsnachweis werden nun diese Eigenspannungen ohne Zo-
gern vernachldssigt. Die Erfahrung hat gezeigt, dass dieses
Vorgehen durchaus gerechtfertigt ist bei Zug- und Biege-
tragern. Im Fall von Druck beeinflussen sie aber die Knick-
last ganz wesentlich im Uebergangsbereich zwischen elasti-
schem Knicken und Fliessen, wie erst kiirzlich sowohl theo-
retisch als auch experimentell nachgewiesen wurde [4], [5].

Die zwei letzten Beispiele zeigen, dass erstens die er-
rechneten Spannungen im allgemeinen nur einen nominellen
Wert haben, der sehr oft von den tatséchlichen Spannungen
abweicht. Zweitens bestétigt uns aber die Erfahrung, dass
trotz dieser Diskrepanz meistens keine schidlichen Folgcen
an den so berechneten Tragwerken auftreten. Es drangt sich
daher ganz natiirlich die Suche nach einer logischen und ein-
fachen Erkldrung dieses Verhaltens auf.

Die praktischen Félle, in denen die Elastizitdtstheorie
mehr oder weniger grob verletzt wird, sind viel haufiger,
als allgemein angenommen wird. Zum Beispiel sind die zu-
ldssigen durchschnittlichen Spannungswerte von Niet-,
Schrauben- und Schweissverbindungen aus Bruchversuchen
hergeleitet. Schon unter Gebrauchslast kénnen Spannungs-
spitzen auftreten, die die Fliessgrenze iiberschreiten. Weiter
soll hier auf die Berechnung von Decken mit unregelméssigen
Auflagerbedingungen und Aussparungen hingewiesen wer-
den. Man darf wohl ruhig behaupten, dass solche Platten in
den wenigsten Féllen nach der elastischen Plattentheorie ge-
rechnet werden. In Fachwerktridgern werden die Nebenspan-
nungen vernachlédssigt, die sich aus der Formédnderung des
Systemnetzes ergeben. In allen diesen Féllen, fiir die die
elastische Theorie keine oder eine unverantwortlich kompli-
zierte Losung liefert, wird sehr grossziigig die sogenannte
«Selbsthilfe» des Materials angerufen. Auf Grund der Tat-
sache, dass praktisch alle Baumaterialien eine betrichtliche
Zshigkeit aufweisen, wird mit Recht angenommen, dass durch
plastische Verformungen die Spannungsspitzen abgebaut
werden. Es ist das Ziel der «plastischen Methoden» 2), diese
«Selbsthilfe» des Materials direkt in Rechnung zu stellen und
sie nicht nur als notwendige Entschuldigung zu gebrauchen.

3. Biegewiderstand von Stahl- und Stahlbetontrigern

Im folgenden soll die Auswirkung der Beriicksichtigung
der plastischen Verformungen auf den Widerstand und die
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Forméidnderungen von Biegetridgern dargestellt werden. In
Bild 5 sind die Spannungs-Dehnungs-Kurven verschiedener
Stahlsorten masstédblich aufgetragen und zwar flir (1) nor-
malen Baustahl ST 37, (2) naturharten, hochwertigen Bau-
und Armierungsstahl ST 52, (3) kaltgereckten Armierungs-
stahl, (4) Sonderstahl USS T-1 amerikanischer Herkunft und
(5) gezogenen patentierten Vorspanndraht. Zu beachten ist,
dass alle diese Stédhle eine sehr bedeutende plastische Deh-
nung zeigen. Dabei ist im Bild die Dehnung nur bis zu 2 %
aufgetragen. Stahl (1) und (2) zeigen eine scharfe Fliess-
grenze, oy, anschliessend einen ausgesprochenen Fliessbereich,
wobei die Dehnung von der Fliessdehnung ep bis zum Ver-
festigungsbereich ;- unter konstanter Fliesspannung um
etwa das 10- bis 15fache zunimmt. Im Verfestigungshbereich
nimmt die Spanung nochmals zu, wobei aber der anfingliche
Tangentenmodul im Verfestigungsbereich, Ey = do/de, etwa
30mal kleiner als der Elastizitdtsmodul E ist. Schliesslich
wird die Zerreissfestigkeit 8, erreicht. Der Bruch erfolgt bei
einer Dehnung von liber 25 9, gemessen iiber eine Messldnge
von 5mal dem Durchmesser des Probestiickes.

3) Terminologisch ist der Ausdruck «plastische Methode» eine
Abkiirzung fiir «Methode, die das plastische Materialverhalten be-
riicksichtigt». Im englischen Sprachgebrauch hat sich «Plastic
Design» eingeblirgert.

6 | kg/mm?
e
5
0 1 8, A%
M -St37 37 25
120

(2 -sts2 52 25
(3) -Kalt 45
100 1 (&) -USS Tl 80 20
(5) - Spann 170 6

80
4
60 A
1 g———
40 /V' 5
1
20 A
0 v v - - T - . v —
0 1 210° €
Bild 5. Spannungdehnungsdiagramme verschiedener Bau-

und Armierungsstihle

Schweiz. Bauzeitung - 79, Jahrgang Heft 48 - 30. November 1961




Y 3
e kg /em diagramm von Beton
400 A
(=320
4 00—
B=200
20 S ————
100 +
Bild 7 (rechts).
ment eines I-Profils
0 v v — £
0 1 2 310°

In den plastischen Berechnungsverfahren wird im allge-
meinen nur der Fliessbereich beriicksichtigt, dagegen der
Verfestigungsbereich aus folgenden Griinden vernachléssigt:
1. Die Verformungen sind beim Erreichen des Verfestigungs-
bereiches schon recht gross.

2. Die Querschnittabmessungen normaler Stahlprofile (im
speziellen Flanschbreite zu Flanschdicke und Steghdhe zu
Stegdicke) sind so, dass es nicht moglich ist, diese Profile
wesentlich iiber &y hinaus zu beanspruchen, ohne dass lokales
Ausbeulen oder Auskippen eintreten wird [5], [6].

3. In Stahlbeton-Querschnitten erfolgt bei den iiblichen
Armierungsgehalten die Stauchung der Betondruckzone, bevor
der Verfestigungsbereich des Armierungsstahls erreicht ist.

Zur Interpretation von Versuchsresultaten ist es hin-
gegen oft notig, den Verfestigungsbereich zu beriicksich-
tigen, um eine befriedigende Erkldrung des Verhaltens zu
erzielen.

Beton zeigt unter Druck ein plastisches Verformungs-
vermogen, wie es in Bild 6 dargestellt ist. Die zwei Kurven
flir die beiden Prismafestigkeiten g = 200 kg/cm2 und
B = 320 kg/cm? sind in Kurzzeit-Versuchen bestimmt wor-
den. Somit sind sie nicht durch Schwinden und Kriechen ent-
stellt. Die maximale Bruchstauchung unter exzentrischem
Druck hetrédgt etwa 3/1000. Fiir axialen Druck reduziert sich
dieser Wert auf etwa 2/1000.

Es sollen nun der Biegewiderstand eines I-Querschnittes
und eines Stahlbetonbalkens untersucht werden. Dabei wer-
den die zwei Voraussetzungen getroffen, dass die Dehnungen
proportional zum Abstand von der neutralen Axe sind
(Hypothese von Navier-Bernoulli) und die Beziehung zwi-
schen Spannung und Dehnung gleich wie im Axialversuch
ist, d. h. aus Bild 5 und 6 entnommen werden kann. In einem
Walzprofil ohne Eigenspannungen verursacht ein Biege-
moment kein Fliessen, bis das Fliessmoment My = Woyp er-
reicht ist (Bild 7). Die entsprechende Dehnung der Rand-
faser betrdgt & und die zugehdrige Kriimmung, d.h. der
Verdrehungswinkel pro Lé&ngeneinheit, ®p. Wird die Be-
anspruchung weiter gesteigert, so wachsen wohl die Rand-
dehnung und die Kriimmung, die Randspannung oy hingegen
bleibt konstant und Fliessen pflanzt sich vom Rand her
gegen die neutrale Axe fort. Als Grenzwert wird schliesslich
nahezu volles Fliessen sowohl der Druck- als auch der Zug-
zone erreicht, wenn man beriicksichtigt, dass erst fiir
¢y ~ 15 ep Verfestigung der Randzone eintritt, Das resul-

Bild 6 (links). Spannungsdehnungs-

My=fWG:
Plastisches Mo- S

tierende Moment im Zustand der vollen Plastifizierung des
Querschnittes ist gleich dem «Plastischen Moment» oder

(1) My, =fWop = fMp= Zop
wobei: W = Widerstandsmoment, or = Fliesspannung, f =
Formfaktor, Z = plastisches Widerstandsmoment.

Der Formfaktor f hingt nur von der Querschnittsform
ab. Er gibt direkt das Verhdltnis M,/Mp an. In Tabelle 1
ist der Wert von f fiir einige Querschnitte zusammengestelit,

Tabelle 1

Rechteck,
I-Profil Kreis

Parallelo-

I-Profil Rohr gramm

_I,_ ,@._

Formfaktor f : I 1135 I 127 I 150 I 1,70 | 2,00

Querschnitt ©

Bild 8 gibt den Zusammenhang zwischen Moment M und
Kriimmung ¢ fiir einen I-Querschnitt in normierter Dar-
stellung. Das Moment I ist durch das plastische Moment
M, und die Kriimmung ¢ durch die Bezugskrimmung
¢, = M,/EI dividiert. Der Vorteil dieser Darstellung ist
offensichtlich, da er fiir beliebige I-Querschnitte und beson-
ders auch fiir beliebige Fliesspannungen gilt. Hervorzu-
heben ist die Ausrundung der Kurve durch die Beriick-
sichtigung der Eigenspannungen im Bereich von &/®, = 1.
Unelastisches Verhalten tritt ein, wenn die Summe der Last-
spannung und der Eigenspannung gleich der Fliesspannung
wird. Das entsprechende Moment ist im Bild mit Mz be-
zeichnet. Nach Erreichen des Verfestigungsbereiches, @y ~
15 ¢, wichst das Biegemoment wieder langsam an mit einer
rund 30fach kleineren Steigung gegeniiber dem elastischen
Bereich. Die zwei Parameter k; und ke sind fiir die spitere
Beniitzung ebenfalls eingetragen. Dabei ist %y gleich der
schraffierten Fléche, also ein Mass fiir die Ausrundung der
M — @-Kurve infolge Eigenspannungen; ko dagegen ist der
Schwerpunktsabstand dieser Fldche. Durchschnittliche Werte
sind etwa ky = 1/5, ko = 9/10.

Die Verhéltnisse fiir einen Stahlbetonquerschnitt sind in
Bild 9 dargestellt, Wird die Beanspruchung iiber die Fliess-
dehnung op des Stahles hinaus gesteigert, so bleibt die
Stahlspannung konstant gleich o¢p. Gleichzeitig riickt aber

b
M/M, [ (3) Vereinfocht Bild 8 (links). Beziehung zwi- == . -
= (2) Ohne Eigenspannungen sche: . = —] —
(1) Mit Eigenspunnungan / s(}h(.n Momu}.t m?d K1 um{nung ’ { \J ¥
10 | - eines I-Profils in normierter h \ N
' A l Darstellung ‘ ™ ’T\\\
M/My— I\ ] o\ o-H \
4 \‘U’¢ e s € L N
I\ € 3€r
/ \\ ! Fe=pbh ,
4 | o L
M : DT S
1 | / \
| : 2 - M6
| b Mp=bhiu &, (1- 5-3F)
0,2 ‘ ®D=MD/EI . . ?F- &
. o - e Bild 9 (rechts). Plastisches Mo-
0 T T j T - 3 . e ment eines Stahlbetonquer-
0 2 10 ~15 *%p schnittes
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die neutrale Axe ndher an den Druckrand heran und die
Verteilung der Betonspannungen bleibt nicht mehr linear. Als
Grenzzustand bildet sich eine nahezu rechteckige Verteilung
der Druckspannungen aus. Dass eine solche Annahme durch-
aus geniigend genaue Resultate liefert, haben neulich noch
einmal ausfiihrliche statistische Untersuchungen von 1600
Versuchsresultaten gezeigt [7]. Aus den Gleichgewichts-
bedingungen ergibt sich der Wert des «plastischen Mo-
mentes» 4):

om)
(2)  M,=ubh2op(1- "zﬁi)
Die Beziehung zwischen Moment und Kriimmung ist auch in
diesem Fall sehr dhnlich zu jener eines Walzprofiles (Bild 8).
Es bildet sich ebenfalls im Stahlbeton-Trager ein plastisches
Gelenk aus, wenn keine iibertriebene Armierung zu einer
vorzeitigen Stauchung der Betondruckzone fiihrt. Bild 10
zeigt eine normierte Darstellung der Durchbiegung verschie-
dener Versuchstrdger. Dabei ist die Last P durch die maxi-
male Versuchslast P,,,. und die Durchbiegung § durch die
Bezugsdurchbiegung §' dividiert worden. Der Wert von §’
wurde aus dem Schnittpunkt zwischen Anfangstangente und
Horizontale durch P, bestimmt, wie aus dem Bild ersicht-
lich ist. Der Vorteil dieser Darstellungsart besteht wieder in
der Moglichkeit, Resultate verschiedener Versuchstriger
miteinander vergleichen zu konnen. Wie das Bild zeigt,
ndhert sich die Last asymptotisch der Maximallast. Vor
allem ist die grosse plastische Verformbarkeit bis zum Bruch
ersichtlich, was indirekt die progressive Ausbildung eines
plastischen Gelenkes bestatigt.

Schliesslich soll noch etwas ausfiihrlicher auf die Be-
sonderheit im Falle der Belastung durch eine konzentrierte
Einzellast hingewiesen werden, In Bild 11 ist angenommen,
dass die Last P bereits einen Wert P > P, erreicht habe, so
dass das entsprechende Moment in Feldmitte M,, grosser als
das plastische Moment M, ist. Um die Durchbiegung nach
der Analogie von Mohr zu berechnen, sind unter dem Mo-
mentendiagramm die entsprechenden Kriimmungen abge-
tragen worden. Diese Kriimmungen konnen einer Darstellung
wie etwa Bild 8 entnommen werden. Es werden folgende
Beziehungen eingefiihrt:

B = Mn/M,>1
b, = M,/EI

Py = a([)p

(M, - Mp)/Ez'I = (B“‘l)(pr/Ev

E, = Verfestigungsmodul

k; = Ausrundungsfldche im M- Diagramm
in normierter Darstellung (Bild 8)
ks = Schwerpunktsabstand von ky

4) Die als «<KEMPA-Formel» bekannte Gleichung (2) ist von G. v.
Kazinczy auf Seite 1169 und von M. Ro§ auf Seite 1179 in [8] ange-
fithrt. F'. Stiissi hat in [9] eine sehr allgemeine Darstellung der un-
elastischen Biegung gegeben.

1 M, 1

C=9 M, 28
1

b=

l
g 0=y (B-D

Diese Grossen sind ebenfalls in Bild 11 eingetragen. Die
Krimmung im Verfestigungsbereich wurde durch die Be-
ziehung (M,, — M,)/E,I angendhert. Da die Kurve fiir ¢ in
Bild 11 #hnlich der Kurve in Bild 8 ist, wird entsprechend
die Ausrundungsfliche kya®, und der Abstand vom rechten
Auflager ksa. Die Durchbiegung § in Balkenmitte ldsst sich
etwas einfacher anschreiben, wenn der Balken als in der
Mitte eingespannt (horizontale Tangente) betrachtet wird.
Die Verschiebung des Auflagers ist dann nach der Mohr'-
schen Analogie gleich dem statischen Moment der ®-Flédche
bezliglich dem Auflager. Fiir den dargestellten Fall P > P,
wird:

a 2 . b
(3) rS_tb,,?%—a—{—dJ,.b(.a—i—?)—}—
My, —M, b 2 )
+TI?( + 3 b)—|—k1a¢,,k._>a
v /

Das letzte Glied stellte den Beitrag der Ausrundung des
M-d-Diagramms dar. Je nach der Grosse der Eigenspan-
nungen variiert seine Bedeutung. Mit den eingefiihrten Ab-
kiirzungen und der Beziehung

Pyl Myl2
48 EI 12 EI
wird Gleichung (3) als Funktion von 8 = M,,/M, > 1
(5)
8/, =

(4) ‘Sp:

1 3 1 E

— |14 21 g —1) (22— B —1)+3kk

gi I+ g B =D + 55 (B-D@E—p-D+ ik
Die entsprechende Kurve ist in Bild 12 fiir die folgenden

Zahlenwerte aufgetragen:

a = &,/P, = 12 ky =1/5
E/E, = 30 ko =9/10

Sie gelten angendhert fiir einen I-Trédger aus Stahl 37 euro-
piischer oder Stahl ASTM-A 7 amerikanischer Herkunft, Im
wesentlichen zerfillt die Durchbiegungskurve in eine steile
elastische Gerade und in eine wesentlich flachere Gerade fiir
den Verfestigungsbereich. Im Gebiete von M = M, tritt eine
Ausrundung als stetiger Uebergang ein, die von der Grosse
und Verteilung der Eigenspannungen im Profil beeinflusst

. n |P>Pp i

| 2 1 2 i
3T & e ]
N *6 . e 5

P/ Prac Moment M
. 2
04- S| (S S —u
: 7 . =zh
! )
e )
/ | 1 4
[P
——————1
0,51
' 1 Verbundtrdger  [EMPA -Bericht 149, Abb. 53 ]
|
i 2 Rechteck [EMPA -Bericht 162,Abb. 238] Krimmung ¢ dy=edy
i
| 3 Plattenbalken  [EMPA-Bericht 162,Abb. 290]
. .‘ b Vorgesvp‘ Balken [EMPA r:lchl verdffentlicht ] ‘6/6'
0 1 2 3 4 5
Bild 10. Last-Durchbiegungskurven verschiedener Triger in normierter Bild 11. Kriimmungsverlauf in einem ein-
Darstellung fachen Balken unter Einzellast
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M +—— Gleichung (6)
F/Mp “— Gleichung (5)
46 Versuch [6] Abb.5.4

1 P
I bt
¥ =

E ME/MP 14WF36 A
i L 456m

1 /’ Mp=fWS;
b 2
Pp=iMy/L 8p=MpL/1zEI

0 'l ' 5 ‘ ‘ ' 1ﬁ é/ép

Bild 12. Last-Durchbiegungskurve eines einfachen Balkens unter
Einzellast

ist. Da die komplizierte Gleichung (5), giiltig fiir 8 > 1, prak-
tisch auf eine Gerade fiihrt, liegt es auf der Hand, dafiir
eine Ndherung zu bestimmen.

Fiir die obigen Zahlenwerte gibt

(6) &8/8p=1+ z (B—1)

recht gute Resultate, wie Bild 12 zeigt. Ebenfalls eingetra-
gen ist das Resultat eines Versuches ([6], Fig. 5.4, Seite 24)
an einem Walzprofil von 35 cm Hohe (amerikanische Profil-
Bczeichnung 14 WF 38). Anfénglich folgt der Versuch der
theoretischen Kurve ziemlich gut. Bei einer Durchbiegung
von §/§, = 6 beginnt jedoch die Last langsam abzufallen, ver-
ursacht durch seitliches Auskippen des Trédgers.

Es ist festzuhalten, dass im Fall von konzentrierter Be-
lastung die Last P sowohl theoretisch wie praktisch iiber die
errechnete Traglast P, ansteigen kann. Jedoch ist dic Zu-
nahme relativ gering und von grossen Deformatioiien beglei-
tet. Weiter ist sie praktisch beschriankt durch Kippen des Tri-
gers oder lokales Beulen des Druckflansches. Daher wird in
den plastischen Berechnungsmethoden dieser Anstieg ver-
nachldssigt, da er praktisch nicht zur Auswirkung kommen
kann (siehe Bilder 17 bis 20). Zur Interpretation von Ver-
suchen mit Einzellasten muss jedoch der Verfestigungs-
bereich zur Kldrung des Verhaltens herangezogen werden,
inshesondere wenn die Versuche an kompakten und kurzen
Trigern durchgefiihrt werden (siehe Bild 21).

4. Das plastische Berechnungsverfahren
Nach diesem Abriss iiber das unelastische Verhalten von

Biegetrédgern, insbesondere iiber den Zusammenhang zwi-
schen Biegemoment und Kriimmung, soll nun das plastische
Berechnungsverfahren an Hand von ein-
fachen Beispielen kurz beschrieben werden.

Im wesentlichen sind im Fall von auf
Biegung beanspruchten Tragwerken vier
Voraussetzungen notwendig:

so ist ein vorzeitiges Versagen infolge Knicken, Kippen oder
Beulen ausgeschlossen.

Die letzten zwei, in vielen Féllen sehr einschridnkenden
Voraussetzungen, konnen jedoch gelockert werden. So ist es
moglich, den Einfluss von Normal- und Schubkridften zu
beriicksichtigen. Durch konstruktive Massnahmen kann auch
Instabilitdt vermieden werden. Die Kldrung dieser Neben-
bedingungen war sehr wesentlich, um den plastischen Me-
thoden Anwendung in der Praxis zu verschaffen (siehe z. B.
[6] fiir eine zusammenfassende Darstellung auf dem Gebiete
des Stahlhochbaues).

Unter diesen Voraussetzungen lassen sich nun verschie-
dene Typen von Tragkonstruktionen recht einfach berechnen.

Beispiel 1

Bild 14 zeigt einen {iber drei Felder durchlaufenden
Balken. Der Wert des plastischen Biegewiderstandes sei kon-
stant gleich M, liber die ganze Lénge. Unter der Einzellast P
werdew sich in einer ersten elastischen Phase die beiden Stiit-
zcnmomente Mo, und My und das Feldmoment M3 in einem
ganz bestimmten Verhiltnis ausbilden. Das Moment M3 wird
zuerst die elastische Grenze My (Fliessbeginn infolge Last-
plus Eigenspannung), dann das Fliessmoment Mp = Wop
und schliesslich das plastische Moment M, = fWoy erreichen.
Es bildet sich also allméhlich ein plastisches Gelenk aus
(Plastifizierung des Querschnittes), so dass die Stiitzen-
momente einen immer grosseren Anteil der Last zu tragen
haben (Momentenausgleich). Schliesslich wird der Zustand
erreicht, wo neben dem Feldmoment M3 auch die Stiitzen-
momente My und M4 den Wert M, erreicht haben. Nach der
einfachen plastischen Theorie (keine Verfestigung nach dem
Fliessen) ist eine weitere Laststeigerung nicht mehr méglich.
Somit fiihrt die einfache Gleichgewichtsiiberlegung, wie sie
Bild 14 (b) zeigt, zur theoretischen Traglast P,. Das Mo-
ment des einfachen Balkens M = P,l/4 wird je zur Hilfte
auf Feld- und Stilitzenmoment aufgeteilt:

P)7l/4 = Mp ~+ M[r
(7) P, =8M,l

Neben dieser sehr anschaulichen «Gleichgewichtsme-
thode» wird die sogenannte «Mechanismus-Methode» verwen-
det. Sie bietet besonders fiir die Berechnung komplizierter
Tragwerke bedeutende Vorteile. Betrachtet sei die Situation,
wie sie nach der Ausbildung der plastischen Gelenke in den
Punkten (2), (3) und (4) vorliegt. Theoretisch kann sich
das Tragwerk ohne Steigerung der Last weiter durchbiegen.
Es hat sich also ein «Mechanismus» mit einem Freiheitsgrad
ausgebildet. Das Gleichgewicht des Systems kann sehr ein-
fach durch das Prinzip der virtuellen Verschiebungen ausge-
driickt werden. Dieses Prinzip sagt aus, dass die Arbeit eines
Gleichgewichtssystems infolge einer virtuellen Verschiebung

1. Die Beziehung zwischen Biegemoment
und Kriimmung folgt dem in Bild 13 (oder
auch in Bild 8) dargestellten Verhalten, d. h.

die Kriimmung néhert sich asymtotisch dem
plastischen Moment M,. Praktisch ist ein
Kriimmungswert von &/, = 4 ausreichend,
um einen vollen Momentenausgleich zu er-
reichen.

2. Die Verformungen des Tragwerkes sind
klein gegeniiber seinen Abmessungen. Folg-
lich kénnen die Gleichgewichtsbedingungen
am undeformierten System formuliert wer-
den. Es wird daher eine «Theorie erster
Ordnung» gebraucht, wie sie ebenfalls in
der elastischen Baustatik tiblich ist.

3. Die Belastung erfolgt proportional, d.h.
alle Lasten werden proportional bis zum Er-
reichen der Traglast P, gesteigert.

4. Der Einfluss von Normal- und Schub-
kriften kann vernachlissigt werden, Eben-

Bild 14 (rechts).
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Mechanismus und Trag-
last eines Dreifeldtrigers unter Einzellast

M/M R
1,0 2 Lp 4
1 P
Q) A A 3 ‘ A SL
, oy b
1 4 kL
1,0 ®p=Mp/EI M / lP[
P 4Py
~MpsM < Mp
Bild 13. Beziehung zwischen Moment und
Kritmmung in normierter Darstellung
g
C) & =37 2

Prinzip der virt. Arbeit : Az + Aj=0

Pp%a?l=Mp(19+21?+1?)
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verschwinden muss. Wahlt man nun die virtuelle Verschie-
bung bewusst so, dass innere Arbeit 4; nur an den Stellen
geleistet wird, in denen sich plastische Gelenke ausgebildet
haben, daher der Wert des Biegemomentes hekannt ist, dann
liefert das Prinzip auf sehr einfache Weise die Grosse der
Traglast P,. Die virtuelle Verschiebung sei durch den strich-
lierten Linienzug dargestellt, so dass sich Rotationen in den
Punkten (2) und (4) von der Groésse & und an der Stelle (3)
von 2+ ergeben. Die Einsenkung der Last P, betrdgt ent-
sprechend #7/2. Somit ist die innere Arbeit:

(8)

A;
Gelenke :

—OM, -29M, -9 M,
(2) (3) (4)
Das negative Vorzeichen fiir die Glieder der rechten
Seite von Gl. (8) riihrt davon her, dass die Rotation gegen
den Wirkungssinn von M, erfolgt. Die dussere Arbeit setzt

sich zusammen aus dem Produkt der Last P, und dem Weg
91/2 oder:

(9)

A,=P,012

Nach dem Prinzip der virtuellen Verschiebung folgt nun

(10) Ag=—4;
Somit: P,#1/2=4% M, , schliesslich:
(11) P,=8M,/l

Es ist zu beachten, dass wenn das Prinzip in Form der
Gleichung (10) angeschrieben wird, alle Glieder der rechten
Seite immer einen positiven Wert haben, solange die virtuelle
Verschiebung so gewdhlt wird, dass innere Arbeit nur in
den plastischen Gelenken geleistet wird.

Das Resultat (11) bestétigt den schon gefundenen Wert
fiir die Traglast P,. Es sei noch festgestellt, dass P, unab-
hingig von der Grosse der Seitendffnungen kI ist. Selbst-
verstdndlich hidngt aber die Grosse der Durchbiegung direkt
von diesem Verhiltnis ab. Auf diesen Punkt wird spéter bei
der Besprechung von Versuchsresultaten noch weiter ein-
gegangen werden.

Zusammenfassend zeigt es sich, dass eine plastische Lo-
sung folgende drei Bedingungen erfiillen muss:

1. Gleichgewicht

2. Plastizitdtsbedingung, d.h. in keinem Schnitt darf das
Biegemoment M den plastischen Biegewiderstand I, iiber-
schreiten:

12) |M| =M,
3. Mechanismusbedingung, d.h. es muss sich eine genii-
gende Anzahl plastischer Gelenke aussgebildet haben, so dass
das ganze Tragwerk oder nur ein Teil davon zu einem Me-
chanismus reduziert ist.

Zur dritten Bedingung sei noch bemerkt, dass friiher oft
die Forderung aufgestellt wurde, ein n-fach statisch unbe-
stimmtes Tragwerk miisse (n + 1) plastische
Gelenke aufweisen, bis die Traglast erreicht
sei. Es ist aber leicht einzusehen, dass im eben
behandelten Beispiel das Hinzufligen von wei-
teren Oeffnungen links und rechts den Me-
chanismus (drei plastische Gelenke) und damit

Aa - 4Ai
1 1
(13) 5 Pyl +Pydl+ Py dl+ 5 Pyl =
Last (2) (3) (4) (5)
3 3

=M, +3M,5 8+ M, + M9
Gelenk (1) (3) (5) (6)
Daraus folgt:

16 M,

(T =g

Das zugehorige Momentendiagramm ldsst sich leicht
berechnen, da das System dank der Gelenke statisch be-
stimmt geworden ist. Wie Bild 15 (c) zeigt, sind alle Mo-
mente kleiner oder gleich dem Wert des plastischen Biege-
widerstandes, d.h. die Plastizitdtsbedingung ist erfiillt. Da
ferner auch das Gleichgewicht und die Mechanismusbe-
dingung erfiillt sind, entspricht die angenommene Ld&sung
der tatsidchlichen Losung. Wire zum Beispiel anfédnglich ein
plastisches Gelenk im Schnitt (4) statt (3) gewéhlt worden,
so hétte die Rechnung einen grosseren Wert fiir die Traglast
geliefert. Anderseits hétte aber die Kontrolle des Biege-
momentes im Schnitt (3) einen Wert grosser als 3 M, er-
geben. Somit wire diese Annahme als Losung ausgeschieden.
Dieser Sachverhalt kann ganz allgemein formuliert werden
und fiihrt zu den sogenannten «Extremal-S&dtzen» der pla-
stischen Berechnungsmethoden, auf die hier nur hingewiesen
sei ([10] und [6], Seite 6).

Beispiel 3

Zum Schluss sei noch die Anwendung der Methode auf
die Berechnung einer Platte, Bild 16, angefiihrt, Die quadra-
tische Platte ist eingespannt lings dem Rand AC, einfach
gelagert ldngs AB und BD und frei ldngs CD. Der Wert des
plastischen Momentes sei einheitlich liber die ganze Platte
m, pro Einheitsbreite (mkg/m). Die gleichméssig verteilte
Belastung q wird schliesslich eine Gelenklinien-Figur aus-
bilden, wie sie im Bild eingezeichnet ist. Es kann gezeigt
werden, dass die Gelenklinien (oft auch «Bruchlinien» ge-
nannt) Gerade sind und in kinematischer Hinsicht noch wei-
tere Bedingungen erfiillen miissen [11]. Die Lage der Linien
ist durch die beiden Parameter ¢ und 7 festgelegt. Nun kon-
nen fiir die drei Plattenteile (1) bis (3) drei Gleichgewichts-
bedingungen angeschrieben werden. Fiir Teil (1) wird 4C
als Bezugsaxe gewdhlt, damit die Auflagerreaktionen in der
Momentengleichgewichtsbedingung nicht auftreten. Der Bei-
trag des platischen Momentes lings AC ist m,a, lings der
Gelenklinie zwischen (1) und (2) m, 7 a unter Beriicksichti-
gung der Projektion auf die Bezugsaxe AC, und ldngs der
Linie zwischen (1) und (3) mp (1—9) a. Zusammen mit
dem Moment aus dem Lastanteil auf Teil (1) ergibt sich:

[TTTTTTITTITTTTITITI 8

a

[

Al 'B

die Traglast nicht verdndern wird. Es ist
durchaus moglich, dass sich nur ein lokaler
Mechanismus entwickelt.

Beispiel 2
Der Rahmen gemiéss Bild 15 hat zwei
Stiitzen mit einem Biegewiderstand M, und

™

N

(1-mla

einen Riegel mit dem Widerstand 3 M ,. Eswird
angenommen, dass die angebrachte horizontale
und vertikale Belastung den in Bild 15 (b) ge-
zeigten Mechanismus mit plastischen Gelenken
in den Punkten (1), (3), (5) und (6) erzeugt.
Zur Bestimmung der Traglast ist die virtuelle
Verschiebung mit dem Parameter ¢ gewédhlt

D
(1-¢)a ga

Bild 16. Mechanismus fiir gleich-
missig belastete Platte

worden, Die entsprechenden Rotationswinkel
und Verschiebungen sind im Bild eingetragen.
Somit ldsst sich sowohl die dussere wie innere
Arbeit berechnen,

868

Bild 15 (links).
und Momentendiagramm
Rechteckrahmen

Mechanismus
fiir
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(15) m,

a+t+na+ (1—-—n)a|l—

1 1
- Qqp ,-2‘(1—5)202— E‘(l—&)‘l na?2| =0
Analog folgen die beiden Momentengleichgewichtsbedin-
gungen fiir die Teile (2) um Bezugsaxe 4B und (3) um BD:

1
(16) mya— 5 a3 n2 =20

it p 1 I
(17) "1))a‘“qlra3[7$2(1——77)+F$277J:0

Das System dieser drei Gleichungen mit den drei Unbe-
kannten £ % und g, ldsst sich sehr einfach l6sen. Daraus
folgt der Wert fiir die Traglast

(18) q, =187 m,/a?

Der Zweck dieser drei Beispiele war, die Einfachheit des
plastischen Berechnungsverfahrens zu zeigen. Natiirlich ist
flir das Versténdnis und die richtige Anwendung ein Stu-
dium der Grundlagen unentbehrlich. Die Methode ist heute
sauber fundiert und verschiedene Verfahren sind ausgear-
beitet worden 5). Aus den angefiihrten Beispielen kann er-
sehen werden, dass die Methode durch ihre Einfachheit und
Anschaulichkeit das wesentliche Verhalten eines Tragwerkes
direkt zeigt. Um ihre Leistungsfahigkeit zu beweisen, miissen
natiirlich die Resultate durch Versuchsergebnisse und Be-
obachtungen an ausgefiihrten Tragwerken belegt werden.

Schluss folgt

5) Ein ausfiihrliches Literaturverzeichnis findet sich in [6],
Appendix III.

Expresstrassen im Stadtorganismus ox 717

Die Diskussion um die Expresstrassen im Stadtorganis-
mus ist nun allenthalben entbrannt. Wie nicht anders zu er-
warten war, hat der Aufsatz von H. Marti in Heft 31 dieses
Jahrganges unterschiedliche Reaktionen ausgelost. Direktor
Dr. Robert Ruckli verzichtet mit Brief vom 9. August 1961
auf eine Antwort in unserer Zeitschrift. Er verweist auf sei-
nen im Rahmen der Staatsbiirgerlichen Gesellschaft in Saas-
F'ee gehaltenen Vortrag, der nun in Heft 11 der Zeitschrift
«Strasse und Verkehry erschienen ist, In einem Punkte muss
er H. Marti entschieden widersprechen: «Ich habe ihm nie
das Recht abgesprochen, sich in der SBZ und in der Oeffent-
lichkeit iiber Stddtebau zu dussern, wie er auf Seite 541 am
Ende des dritten Absatzes behauptet. Im Gegenteil, ich habe
geschrieben: Es steht ihm (Herrn Marti) frei, sich dariiber
seine Meinung zu bilden und sie auch offentlich zu ver-
treten.’»

An der Tagung des Schweizerischen Autostrassenvereins
vom 26. August in Solothurn wurde herumgeboten, Arch. H.
Marti kenne Prof. O. Sill in Hamburg gar nicht. Dies gibt
uns Anlass zur Verotffentlichung des nachstehenden Brief-
wechsels.

Hamburg, den 24. August 1961
Sehr geehrter Herr Jegher!

Von Kollegen aus der Schweiz werde ich auf eine Dis-
kussion in Ihrer Zeitschrift unter dem Stichwort: «Machen
Sie diesen Blddsinn nicht» aufmerksam gemacht. Ausgelost
wurde die Diskussion durch einen Aufsatz unter dieser
Ueberschrift von Herrn Hans Marti, der im Heft 19 vom
11. Mai 1961 erschienen ist. Tn diesem Aufsatz wird mein
Name genannt und mir u.a. der obengenannte Satz in den
Mund gelegt. Ich sehe mich daher gendtigt, hierzu wie folgt
Stellung zu nehmen:

Wie ich inzwischen festgestellt habe, sass ich im April
d. J. bei einem Essen aus Anlass des Besuches einer ziirche-
rischen Gemeinderatskommission in Hamburg neben Herrn
Hans Marti. Im Verlaufe des Tischgespridchs erzidhlte mir
Herr Marti, in der Schweiz wiirde man die geplanten Auto-
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bahnen, die unseren Bundesfernstrassen entspridchen, iiberall
mitten durch die Stddte planen, und fragte, ob ich mir eine
solche Losung vorstellen konne. Soweit ich mich bis jetzt er-
innere, erwiderte ich hierauf, dass ich das schweizerische
Nationalstrassenprogramm nicht kenne und deshalb dazu
nichts zu sagen vermdéchte; in Deutschland seien wir im Ge-
gensatz zu den ersten Autobahnplanungen in der Vorkriegs-
zeit (z. B. Berliner und Miinchner Autobahnring) heute be-
strebt, die Bundesautobahnen mdglichst nahe an den Kern
der grossen Stddte heranzufiihren. Es sei bei uns aber im
Hinblick auf den schnellen Personenwagen- und den schwe-
ren Lastwagenverkehr auf den Bundesautobahnen nicht
denkbar, diese Bundesfernstrassen mitten durch die Stadt-
kerne zu fiihren. Ich muss aber ausdriicklich erkldren, dass
ich weitere Ausfiihrungen in der in diesem Aufsatz wiederge-
gebenen Form und Art lber Verkehrsplanungen in der
Schweiz, die ich Uiberhaupt nicht kenne, niemals gemacht
habe.

Aus diesem Anlass habe ich auch die Entgegnungen zu
den Worten von Hans Marti liber die Expresstrassen unter
der selben Ueberschrift, erschienen im Heft 23 vom 8, Juni
1961, und die weitere Stellungnahme von Hans Marti unter
der Ueberschrift «Expresstrassen im Stadtorganismus», er-
schienen im Heft 31 vom 3. August 1961, durchgesehen und
daraus entnommen, dass bei Ihnen in der Schweiz die selbe
heftige Auseinandersetzung im Gange ist, wie sie fast iliber-
all entbrennt, wenn es darum geht, die Losung der schwie-
rigen Verkehrsprobleme in unseren eng besiedelten Stidten
anzupacken. Das beweist aber nur wieder einmal, wie ausser-
ordentlich schwer es ist, den Stadtverkehr von heute oder
gar von morgen verniinftig zu ordnen. Sicher ist, dass es da-
flir keine Patentlosung gibt, die fiir jede Stadt passen
konnte, sondern es muss in jedem Einzelfall nach dem Ab-
wigen aller Umstédnde eine optimale Losung gesucht werden.
Sicher ist auch, dass dabei gewisse Beeintrédchtigungen an
sich berechtigter Interessen nicht zu vermeiden sind. Fiir
mich ist es aber auch ebenso sicher, dass wir keine Zeit mehr
haben, die notwendigen verschiedenen Massnahmen nach
einer Rang- und Reihenfolge nacheinander anzupacken. So
wichtig zum Beispiel der 6ffentliche Personenverkehr fiir die
Stadt, vor allem zur Bewiltigung des Berufsverkehrs ist, so
geht es dennoch nicht an, etwa den Ausbau des Strassen-
netzes solange zuriickzustellen, bis der 6ffentliche Personen-
verkehr vielleicht eines Tages iiberall eigene Verkehrswege
(z. B. Hoch- oder Untergrundbahnen) bekommen hat. Der
gesamte Stadtverkehr, also auch der o6ffentliche Personen-
verkehr, wiirde sonst schon lange vorher véllig erliegen.

So sind wir z. B. in Hamburg gezwungen, gleichzeitiy
das Netz der Stadtstrassen nicht nur zu unterhalten und in-
standzusetzen, sondern auch durch Ausbau entscheidend zu
verbessern, das Netz unserer Schnellbahnen fiir den &ffent-
lichen Personenverkehr (S-Bahn und U-Bahn) planmissig
auszubauen und den Bau eines weitmaschigen Netzes von
Stadtautobahnen (Expresstrassen) als Verbindung zu den
Bundesfernstrassen und zur Entlastung unserer Stadtstras-
sen vom Binnenverkehr mit lingeren Fahrwegen vorzuberei-
ten und anzufangen,

Daneben gilt es, durch verniinftige stddtebauliche Ord-
nung der Bebauung, und zwar sowohl in den Wohn-, Ge-
schéfts- wie Arbeitsgebieten dafiir zu sorgen, dass eine all-
zugrosse Ballung der Verkehrsstrome auf einzelnen Ver-
kehrswegen oder in einzelnen Stadtkernen vermieden wird.
Dazu gehort vor allem auch eine Beschrdnkung der baulichen
Ausnutzung von Grundstiicken in den Baugebieten.

Wirtschaft und Verkehr einer Stadt konnen also auf die
Dauer nur gewéhrleistet sein, wenn nicht nur ein neuzeitli-
cher Ausbau der Verkehrswege, sondern auch eine verkehrs-
gerechte Ordnung der Bebauung erfolgt.

Im Hinblick auf die Erwihnung meines Namens im ein-
gangs genannten Aufsatz mochte ich Sie bitten, meine vor-
stehende Aeusserung in Threr Zeitschrift zu verdffentlichen.

Mit freundlichen Griissen
Otto Sill,
Erster Baudirektor der Freien
und Hansestadt Hamburg
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