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79. Jahrgang Heft 48 SCHWEIZERISCHE BAUZEITUNG
30. November 1961

OR6AN DE8 SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER 6ESELLSCHAFT EHEMALISER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE 6.E.P.

Grundsätzliches zu den plastischen Berechnungsverfahren DK 624.04:539.374

Von Prof. Dr. Bruno Thürlimann, ETH, Zürich1)

1. Einleitung
Die Aufgabe des Bauingenieurs ist es, brauchbare und

ästhetisch befriedigende Bauwerke zu schaffen. Dabei ist es

für den Ingenieur unerlässlich, zu wissen, unter welchen

Umständen die Brauchbarkeit eines Bauwerkes beeinträchtigt

wird oder ganz verloren geht. Schematisch können

folgend« Fälle des Versagens unterschieden werden:
1. Bruch, verursacht durch a) statische Belastung oder b)

Ermüdung unter wiederholter Belastung.
2. Untolerierbare Verformungen, die als a) Durchbiegungen,

b) Schwingungen, c) Risse, oder als Kombinationen dieser

Zustände auftreten können.
Die statische Berechnung und die Ueberwachung der

Bauausführung haben zum Ziel, eine genügende Sicherheit

in das Tragwerk einzubauen, damit das Eintreten solcher

Zustände nach menschlichem Ermessen vermieden wird. Es

ist ganz klar, dass das Mass der Sicherheit durch Unsicherheiten

bezüglich der Lastannahmen, Materialeigenschaften,
Qualität der Ausführung, Vereinfachungen in der statischen

Berechnung usw. wesentlich beeinflusst wird. Erfreulicherweise

sind gosuerdings Bestrebungen im Gange, diesen ganzen
Fragenkomplex statistisch zu bearbeiten (siehe etwa [1],
[2], [3] 2).

Einen ganz wesentlichen Faktor in der rechnerischen

Bestimmung der Sicherheit bildet aber die BeraSehnung der

statischen Tragfähigkeit einer Konstruktion. Leider muss

festgestellt werden, dass gerade in dieser Beziehung unsere

klassischen elastischen Methoden sehr wenig leistungsfähig
sind. Es drängt sich ganz natürlich das Suchei^nach einem

neuen Verfahren auf, mit dem man auf Ißifache und

zuverlässige Weise die Tragfähigkeit berechnen kann. Es sei

hier deutlich betont, dass die anderen Kriterien bezüglich
der Sicherheit keineswegs ausgeschaltet werden dürfen. Im
Hochbau, für den Fall von ruhender Belastung, stellt aber

die statische Tragfähigkeit sicher das wichtigste und
meistens auch ausschlaggebende Kriterium dar.

Bevor auf eine Beschreibung dieser neuen Methode

eingegangen wird, soll noch auf einige Fälle hingewiesen werden,

für welche die elastischen Berechnungsmethoden keine

befriedigende Antwort geben können.

2. Unzulänglichkeiten der elastischen Berechnungsmethoden

Als erstes Beispiel sei der Zweifeldträger mit konstanter

i) Vortrag, gehalten
an der Fachtagung der
S. I. A.-Faehgruppe für
Brückenbau und Hochbau

am 12. Nov. 1960.

z) Die Zahlen in ek-
kiger Klammer beziehen
sich auf die Literaturangaben

am Ende des

Aufsatzes. "si~t<M *¦_£;* l
128

Gelenk

0.172

Bild 1. Vergleich eines
Zweifeldträgers mit
einem Gerber-Träger

b)
ME--0,0858 q2l2

q>

1250

858
.1,46

Biegefestigkeit EI nach Bild 1 betrachtet *). Im Fall (a)
verursacht die gleichmässig verteilte Belastung q ein
massgebendes Stützenmoment __T_r_. Anderseits ist durch
geschickte Wahl eines Gelenkes im Fall (b) ein natürlicher
Momentenausgleich zwischen Stützenmoment Mg2 und
Feldmoment erreicht worden. Nach der elastischen Theorie ist die

Beanspruchung eines Tragwerkes durch das Eintreten von
Fliessen in der höchst beanspruchten Faser begrenzt. Ist
nun der Biegewiderstand der Träger in beiden Fällen gleich,
d. h. Mgi __Tg_, so ergibt sich für den Fall (b) eine

Erhöhimg der rechnerischen Maximallast um nicht weniger als

46 %. Dieses Resultat widerspricht offen_5ichtlich unserer
unvoreingenommenen Erwartung. Erstens ist der Balken mit
Gelenk weniger steif. Zweitens bedeutet das Zerschneiden

des Trägers und Einsetzen eines Gelenkes doch unzweideutig
eine Schwächung. Die elastische Berechnung führt uns daher

zur paradoxen Antwort, dass eine Schwächung eines
Tragwerkes zu einer Erhöhung seiner Tragfähigkeit führen soll.

Als Gegenstück kann sofort ein Beispiel angeführt werden,

für das eine Verstärkung des Tragwerkes eine
Herabsetzung der Tragfähigkeit verursachen soll. Bild 2 zeigt
einen einfachen Rechteck-Rahmen. Für den Fall (a) sind die

Steifigkeiten der Stützen und des Riegels so abgestimmt,
dass Feld- und Eckmoment gleiche Grösse haben. Wird nun
aus irgend einem Grund die Biegesteifigkeit der Stützen
verdoppelt, Fall (b), so erhöht sich das elastisch errechnete
Eckmoment. Der Vergleich der beiden Fälle führt zu einem
Verhältnis der Lasten q-tjq2 0,875, also zu einer vermeintlichen

Verminderung der Tragfähigkeit. Sicher steht dieses

Resultat ebenfalls im Widerspruch zu unserer Erwartung.
Eine Verstärkung der Stützen sollte doch auf keinen Fall
zu einer Verminderung der Tragfähigkeit des gesamten
Rahmens führen.

Zwei folgende Beispiele sollen zeigen, dass bei der
elastischen Berechnung von Tragwerken sehr oft Armahmen

getroffen werden, die dazu führen, dass die berechneten
Schnittkräfte oder Spannungen keineswegs mehr den tat-
sächlich auftretenden Grössen entsprechen, sondern nur noch

einen nominellen Wert haben können. Nach Bild 3 wird ein

eingespannter Plattentoalken aus Stahlbeton untersucht.
Entsprechend der allgemein üblichen Annahme wurde zur
Berechnung der 3||i_ittkräfte der volle Betonquerschnitt ohne

Stahleinlagen berücksichtigt, d.h. mit der Biegesteifigkeit
EI konstant gerechnet. Die angegebenen Armierungs-
gehalte gelten für volle Ausnützung von Stahl und Beton im
Stützenquerschnitt und Ausnützung der Stahlspannung im
Feldquerschnitt. Mit diesen Einlagen sind dann die Steifigkeiten

der gerissenen Querschnitte (Stadium 4) gerechnetund
die entsprechende Verteilung der Biegemomente bestimmt
worden. Das Bild zeigt, dass die beiden Annahmen zu
verschiedenen Resultaten mit nicht unbeträchtlichen
Unterschieden führen. Damit sei festgehalten, dass die Benützung
der Biegesteifigkeit EI des Betonquerschnittes wohl zu einer
möglichen, sicher aber nicht zur tatsächlichen Verteilung der

'^KMttkräfte führt.
In den meisten Fällen werden die Eigenspannungen im

Spannungsnachweis unberücksichtigt geladen. In Bild 4 sind
gemessene Eigenspannungen in Axialrichbung eines Walz-

:™5rfiles und einer geschwedssten Stütze aufgetragen [4]. Sie

»Wen als durchaus typisch für solche Querschnitte
angesprochen werden. Im Walzträger erreichen sie die Hälfte der
Fliesspannung, op, im geschweissten Träger sogar die
Fliessgrenze. Sie entstehen in einem Walzprofil durch die schnelle

•) Entsprechend amerikanischer (und z. T. auch deutscher, s.

Taschenbuch Schleicher) Gepflogenheit bezeichnen wir das axiale
Trägheitsmoment mit 1, sodass J der Bezeichnung des polaren Trägheitsmomentes

vorbehalten bleibt.
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Bild 3. Beeinflussung der Momentenverteilung

infolge verschiedener Steifigkeiten
eines Stahlbetonbalkens

Bild 2 (links). Momentenverteilung in einem Rahmen

für zwei verschiedene Stützensteifigkeiten

_, _»•„geschweisst

Bild 4. Eigenspannungen eines
Walzprofils und einer geschweiss-
ten Stütze

Abkühlung der Flanschspitzen und des Steges gegenüber
der massigen Verbindungszone dieser Teile. Die Schrumpfungen

der Schwedssnähte verursachen in zusammengesetzten
Profüen noch höhere Eigenspannungen. In einem
Spannungsnachweis werden nun diese Eigenspanääjungen ohne
Zögern vernachlässigt. Die Erfahrung hat gezeigt, dass dieses
Vorgehen durchaus gerechtfertigt istlgei Zug- und
Biegeträgern. Im Fall von Dr3e|?|t«eii_flu3sen sie aber die Knicklast

ganz wesentlich im äfebergangsbereich zwischen
elastischem Knicken und Fliessen, wie erst kürzlich sowohl
theoretisch als auch experimentell nachgewiesen wurde [4], [5J.

Die zwei letzten Beispiele zeigen, dass erstens die
errechneten Spannungen im allgemeinen nur einen nominellen
Wert haben, der sehr oft von den tats§g||||ä|ßn Spannungen
abweicht. Zweitens bestätigt uns aber die Erfahrung, dass
trotz dieser Diskrepanz meistens keine schädlichen Folgen
an den so berechneten Tragwerken auftreten. Es drängt sich
daher ganz natürlich die Suche nach einer logischen und
einfachen Erklärung dieses Verhaltens auf.

Die praktischen Fälle, in denen die Elastizitätstheorie
mehr oder weniger grob verlet__f|§"_rd, sind viel häufiger,
als allgemein angenommen wird. ||um Beispiel sind die
zulässigen durchschnittlichen Spannungswerte von Niet-,
Schrauben- und SchweisgraFbindungen aus Bruchversuchen
hergeleitet. Schon unter Gebrauchslast können Spannungsspitzen

auftreten, die die Fliessgrenze überschreiten Weiter
soll hier auf die Berechnung von Decken mit unregelmässigan
Auflagerbedingungen und Aussparungen hingewiesen werden.

Man darf wohl ruhig bepaupten, dass solche Platten in
den wenigsten Fällen nach der elastischen jll.ttentheorie
gerechnet werden In Fachwerkträgern werden die Nebenspannungen

vernachlässigt, die sich aus der Formänderung Tllffe
Systemnetzes ergeben. In allen diesen Fällen, für die die
elastische Theorie keine oder eine unverantwortlich komplizierte

Lösung liefert, wird sehr grosszügig die sogenannte
«Selbsthilfe:, des Materials angerufenlSkuf Grund der
Tatsache, dass praktisch alle Baumaterialien eine beträchtliche
Zähigkeit aufweisen, wird mit Recht angenommen, dass durch
plastische Verformungen die Spannungsspitzen abgetj&Sr-
werden. Es ist das Ziel der «plastischen Methoden» 3), diese
«Selbsthilfe» des Materials direkt in Rechnung zu steHen und
sie nicht nur als notwendige Entschuldigung zu gebrauchen.

3. Biegewiderstand von Stahl- und Stahlbetonträgern
Im folgenden soll die; Auswirkung der Berücksichtigung

der plastischen Verformungen auf den Widerstand und die

Formänderungen von Biegeträgern dargestellt werden. In
Bild 5 sind die Spannungs-Dehnungs-Kurven verschiedener
Stahlsorten masstäblich aufgetragen und zwar für (1)
normalen Baustahl ST 37, (2) naturharten, hochwertigen Bau-
und Armierungsstahl ST 52, (3) kaltgereckten Armierungsstahl,

(4) Sonderstahl USS T-l amerikanischer Herkunft und
(5) gezogenen patentierten Vorspanndraht. Zu beachten ist,
dass alle diese Stähle eine sehr bedeutende plastische
Dehnung zeigen. Dabei ist im Bild die Dehnung nur bis zu 2 %
aufgetragen. Stahl (1) und (2) zeigen eine scharfe
Fliessgrenze, ap, anschliessend einen ausgesprochenen Fliessbereich,
wobei die Dehnung von der Fliessdehnung eF bis zum
Verfestigungsbereich ev unter konstanter Fliesspannung um
etwa das 10- bis löfache zunimmt. Im Verfestigungsbereich
nimmt die Spanung nochmals zu, wobei aber der anfängliche
Tangentenmodul im Verfestigungsbereich, __V da/de, etwa
30mal kleiner als der Elastizitätsmodul __ ist. Schliesslich
wird die Zerreissfestigkeit ßz erreicht. Der Bruch erfolgt bei
einer Dehnung von über 25 %, gemessen über eine Messlänge
von 5mal dem Durchmesser des Probestückes.

8) Terminologisch ist der Ausdruck «plastische Methode» eine
Abkürzung für «Methode, die das plastische Materialverhalten
berücksichtigt». Im englischen Sprachgebrauch hat sich «Plastic
Design» eingebürgert.

5 kg/mm2

140 ¦

120 -

100-
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20
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(1) - St 37

(2) - St 52

(3) - Kalt
(4) - USS T

(5) - Spann I70

Bild 5. Spannungdehnungsdiagramme verschiedener Bau-
und Armierungsstähle
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Bild 6 (links). Spannungsdehnungs-
diagramm von Beton I -E,

Bild 7 (rechts). Plastisches
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In den plastischen Berechnungsverfahren wird im
allgemeinen nur der Fliessbereich berücksichtigt, dagegen der
Verfestigungsbereich aus folgenden Gründen vernachlässigt:
1. Die Verformungen sind beim Erreichen des Verfestigungsbereiches

schon recht gross.
2. Die Querschnittabmessungen normaler Stahlprofile (im
speziellen Flanschbreite zu Flanschdicke und Steghöhe zu
Stegdicke) sind so, dass es nicht möglich ist, diese Profile
wesentlich über e7 hinaus zu beanspruchen, ohne dass lokales
Ausbeulen oder Auskippen eintreten wird [5], [6].
3. In Stahlbeton-Querschnitten erfolgt bei den üblichen
Armierungsgehalten die Stauchung derBetondruckzone, Ibevor
der Verfestigungsbereich des Armierungsstahls erreicht ist.

Zur Interpretation von Versuchsresultaten ist es
hingegen oft nötig, den Verfestigungsbereich zu berücksichtigen,

um eine befriedigende Erklärung des Verhaltens zu
erzielen.

Beton zeigt unter Druck ein plastisches Verformungsvermögen,

wie es in Bild 6 dargestellt ist. Die zwei Kurven
für die beiden Prismafestigkeiten ß 200 kg/cn_2 und
ß 320 kg/cm? sind in Kurzzeit-Versuchen bestimmt worden.

Somit sind sie nicht durch Schwinden und Kriechen
entstellt. Die maximale Bruchstauchung unter exzentrischem
Druck beträgt etwa 3/1000. Für axialen Druck reduziert sich
dieser Wert auf etwa 2/1000.

Es sollen nun der Biegewiderstand eines I-Querschnittes
und eines Stahlbetonbalkens untersucht werden. Dabei werden

die zwei Voraussetzungen getroffen, dass die Dehnungen
propomonal zum Abstand von der neutralen Axe sind
(Hypothese von Navier-Bernoulli) und die Beziehung
zwischen Spannung und Dehnung gleich wie im Axialversuch
ist, d. h. aus Bild 5 und 6 entnommen werden kann. In einem
Walzprofll ohne Eigenspannungen verursacht ein
Biegemoment kein iniessen, bis das Fliessmoment MF Wop
erreicht ist (Bild 7). Die entsprechende Dehnung der Randfaser

beträgt ep und die zugehörige Krümanung, d. h. der
Verdrehungswinkel pro Längeneinheit, *j.. Wird die
Beanspruchung weiter gesteigert, so wachsen wohl die
Randdehnung und die Krümmung, die Randspannung ap hingegen
bleibt konstant und Fliessen pflanzt sich vom Rand her
gegen die neutrale Axe fort. Als Grenzwert wird schliesslich
nahezu volles Fliessen sowohl der Druck- als auch der
Zugzone erreicht, wenn man berücksichtigt, dass erst für
8 v _ss 15 ep Verfestigung der Randzone eintritt. Das resul¬

tierende Moment im Zustand der vollen Plastifizierung des
Querschnittes ist gleich dem «Plastischen Moment» oder

(1) Mp fWap fMF Zop
wobei: W — Widerstandsmoment, ap Fliesspannung, /
Formfaktor, Z plastisches Widerstandsmoment.

Der Formfaktor / hängt nur von der Querschnittsform
ab. Er gibt direkt das Verhältnis MP/MF an. In Tabelle 1
ist der Wert von / für einige Querschnitte zusammengestellt.

Tabelle 1

Querschnitt .' I-Profil Rohr
Rechteck,
I-ProFil

\—h

Kreis
Parallelogramm

FormFakror f: 1,13 1,27 1,50 1,70 2,00

Bild 8 gibt den Zusammenhang zwischen Moment M und
Krümmung <i> für einen I-Querschnitt in normierter
Darstellung. Das Moment M ist durch das plastische Moment
Mp und die Kxümniung <t> durch die Bezugskrtbnmung
<i>p Mp/EI dividiert. Der Vorteil dieser Darstellung ist
offensichtlich, da er für beliebige I-Querschnitte und besonders

auch für beliebige Fliessparmungen gilt. Hervorzuheben

ist die Ausrundung der Kurve durch die
Berücksichtigung der Eigenspannungen im Bereich von &/$p 1.
Unelastisches Vorhalten tritt ein, wenn die Summe der
Lastspannung und der Eigenspannung gleich der Fliesspannung
wird. Das entsprechende Moment ist im Bild mit Ms
bezeichnet. Nach Erreichen des Verfestigungsbereiches, <_v s15 *p, wächst das Biegemoment wieder langsam an mit einer
rund 30fach kleineren Steigung gegenüber dem elastischen
Bereich. Die zwei Parameter fci und fca sind für die spätere
Benützung ebenfalls eingetragen. Dabei ist fci gleich der
schraffierten Fläche, also ein Mass für die Ausrundung der
M — *-Kurve Infolge Eigenspannungen; fca dagegen ist der
Schwerpunktsabstand dieser Fläche. Durchschnittliche Werte
sind etwa &i 1/5, fc2 9/10.

Die Verhältnisse für einen Stahlbetonquerschnitt sind in
Bild 9 dargestellt. Wird die Beanspruchung über die
Fliessdehnung <rP des Stahles hinaus gesteigert, so bleibt die
Stahlspannimg konstant gleich aF. Gleichzeitig rückt aber

M/M, (3) Vereinfacht
(2) Ohne Eigenspannungen
(1) Mit Eigenspannungen

rVM

p lacheh

KIM

0.2

A

l\

I \
i \

\t \öl
VMp/EI

Bild 8 (links). Beziehung
zwischen Moment und Krümmung
eines I-Profils in normierter
Darstellung

0 2

Bild 9 (rechts). Plastisches
Moment eines Stahlbetonquerschnittes

j-
»

r-%

h

' Fe=/J-bh

._,>«,(i-£*)

3£f
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die neutrale Axe näher an den Druckrand heran und die
Verteilung der Betonspannungen bleibt nicht mehr linear. Als
Grenzzustand bildet sich eine nahezu rechteckige Verteilung
der Druckspannungen aus. Dass eine solche Annahme durchaus

genügend genaue Resultate liefert, haben neulich noch
einmal ausführliche statistische Untersuchungen von 1600
Versuchsresultaten gezeigt [7]. Aus den Gleichgewichts-
^Äingungen ergibt .sich der Wert des «plastischen
Momentes» *):

(2) M„ bh*i
2ß

Die Beziehung zwischen Moment und Krümmung ist auch in
diesem Fall sehr ähnlich zu jener eines Walzprofiles (Bild 8).
Es bildet sich ebenfalls im Stahlbeton-Träger ein plastisches
Gelenk aus, wenn keine übertriebene Armierung zu einer
vorzeitigen Stauchung der Betondruckzone führt. BUd 10
zeigt eine normierte Darstellung der Durchbiegung verschiedener

Igensuchsträger. Dabei ist die Last P durch die maximale

Versuchslast Pmax und die Durchbiegung 8 durch die
Bezugsdurfigjjiegung S' dividiert worden. Der Wert von 8'
wurde aus dem Schnittpunkt zwischen Anfangstangente und
Horizontale dural Pmax bestimmt, wie aus dem Bild ersichtlich

ist. Der Vorteil dieser Darstellungsart besteht wieder in
der Möglichkeit Resultate verschiedener Versuchsträger
miteinander vergletßj|en zu können. Wie das Bild zeigt,
nähert sich die Last asymptotisch der Maximallast. Vor
allem ist die grosse plastische Verformbarkeit bis zum Bruch
ersichtlich, was indirekt die progressive Ausbildung eines
plastischen Gelenkes bestätigt.

Schliesslich soll noch etwas ausführlicher auf die
Besonderheit im Falle der Belastung durch eine konzentrierte
Einzellast hingewiesen werden. In Bild 11 ist angenommen,
dass die Last P bereits einen WeflHP > Pp erreicht habe, so
dass das entsprechende Moment in Feldmitte Mm grösser als
das plastische Moment Mp isSj Um die Durchbiegung nach
der Analogie von Mohr zu berechnen, sind unter dem
Momentendiagramm die entsprechenden Krümmungen
abgetragen worden. Diese Krümmungen können einer Darstellung
wie etwa Bild 8 entnommen werden. Es werden folgende
Beziehungen eingeführt:

ß — Mm/Mp>l
MP/EI

(Mm- Mp)/EtI_= (ß-l)<i>pE/Ev
Ev — Verfestigungsmodul

kt _= Ausrundungsfläche im il_r-«_. Diagramm
in normierter Darstellung (Bild 8)

fc_ Schwerpunktsabstand von fc_

*) Die als «EMPA-Formel» bekannte Gleichung (2) ist von O. v.
Kazinczy auf Seite 1169 und von M. RoS auf Seite 1179 in [8]
angeführt. F. Stüssi hat in [9] eine sehr allgemeine Darstellung der
unelastischen Biegung gegeben.

P/H,

- 8

_ 7.2

DL5J

b

l Mp _ l
~2'lÖZL~"2ß
l l

2ß (0-1)
Diese Grössen sind ebenfalls in Bild 11 eingetragen. Die

Krümmung im Verfestigungöereich wurde durch die
Beziehung (Mm—MP)/EVI angenähert. Da die Kurve für * in
Bild 11 ähnlich der Kurve in BUd 8 ist, wird entsprechend
die Ausrundungsfläche kia$p und der Abstand vom rechten
Auflager k^a. Die Durchbiegung 8 in Balkenmitte lässt sich
etwas einfacher anschreiben, wenn der Balken als in der
Mitte eingespannt (horizontale Tangente) betrachtet wird.
Die Verschiebung des Auflagers ist dann nach der Mohr"-
schen Analogie gleich dem statischen Moment der <t>-Fläche

bezüglich dem Auflager. Für den dargestellten Fall P > Pp
wird:

(3) 8 *p|-|-a + *.b(a + T^ +
Mm - Mp b I 2 \ I

Das letzte Glied stellte den Beitrag der Ausrundung des
__r-<J>-Diagramms dar. Je nach der Grösse der Eigenspan-
nungettä3ra.riiert seine Bedeutung. Mit den eingeführten
Abkürzungen und der Beziehung

Ppl § Mpl*
1 482-7 ~~ 12 EI

wird Gleichung (3) als Funktion von ß M^JMp > 1

(5)

S/Sp=^[l-f-|c.(l82-l)-r-|-J-(j8-l)(2^_i8__i)+3fc1fc_j

Die entsprechende Kurve ist in Bild 12 für die folgenden
Zahlenwerte aufgetragen:

(4)

a — *B/*P 12

E/Ev 30

MB/MP 1/2

kn

1/5

9/10

Sie gelten angenähert für einen I-Träger aus Stahl 37
europäischer oder Stahl ASTM-A 7 amerikanischer Herkunft. Im
wesentlichen zerfällt die Durchbiegungskurve in eine steile
elastische Gerade und in eine wesentlich flachere Gerade für
den Verfestigungsbereich. Im Gebiete von M Mp tritt eine
Ausrundung als stetiger Uebergang ein, die von der Grösse
und Verteilung der Eigenspannungen im Profil beeinflusst

P>FL

pr ^iiinii^

Moment M

1 Verbundtrager [EMPA-Berichti49.Abb.53 ]

2 Rechteck [EMPA-Bericht l62.Abb.238j

3 Plattenbalken [EMPA-Bericht i62.Abb.290]

4 vbrgesp Balken [ehpa,nicht veröffentlicht w<i

Bild 10. Last-Durchbiegungskurven verschiedener Träger in normierter
Darstellung

*

K»a

k,o<J>

JpLl E_

K-%)/^

Krümmung <t> $v-a.

Bild 11. Krümmungsverlauf in einem
einfachen Balken unter Einzellast
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p/p„

1.0

M/M

M./M V Gleichung (6)
>-— Gleichung (5)
«6 Versuch [6] Abb. 5 4

Mg/Mp JA

Mp-fW6F

Pp-4Mp/l

T_
—1

i.-Mpf/12EI

Bild 12. I_ast-Durchbiegungs__jrve eines einfachen Balkens
Einzellast

ist. Da die komplizierte Gleichung (5), gültig für ß > 1,
tisch auf eine Gerade führt, liegt es auf der Hand,
eine Mfüierung zu bestimmen.
Für die obigen Zahlenwerte gibt

<^p

unter

prak-
dafür

(6) 8/Sp 1 + -=- (ß-1)
E
E~

recht gute Resultate, wie Bild 12 zeigt. Ebenfalls eingetragen
ist das Resilat eines Versuches ([6], Fig. 5.4, Seite 24)

an einem Walzprofil von 35 cm Höhe (amerikanische Profil-
Bezeichnung 14 WF 38). Anfänglich folgt der Versuch der
theoretischen Kurve ziemlich gut. Bei einer Durchbiegimg
von S/Sp 6 beginnt jedoch die Last langsam abzufallen,
verursacht durch seitliches Auskippen des Trägeriäg

Es ist festzuhalten, dass im Fall von konzentrierter
Belastung die Last P sowohl theoretJagh wie praktisch über die
errechnete Traglast Pp ansteigen kann Jedoch ist die
Zunahme relativ gering und von grossen Deformationen begGäj|2
tet. Weiter ist sie praktisch beschränkt durch Kippen des Trägers

oder lokales Beulen des Druckflansches. Daher wird in
den plastischen Berechnungsmethoden dieser Anstiäa§f
vernachlässigt, da er prakt§JH@ij||--t zur Auswirkung kommen
kann (siehe Bilder 17 bis 20). Zur Interpretation von
Versuchen mit Einzellasten muss jedoch der Verfestigungsbereich

zur Klärung des Verhaltens herangezogen werden,
insbesondere wenn die Versuche an kompakten und kurzen
Trägern durchgeführt werden (siehe Bild 21).

4. Das plastische Berechnungsverfahren
Nach diesem Abriss über das unelastische Verhalten von

Biegeträgern, insbesondere über den Zusammenhang
zwischen Biegemoment und Krümmung, soll nun das plastische
Berechnungsverfähren an Hand von
einfachen Beispielen kurz beschrieben werden.

Im wesentlichen sind im Fall von auf
Biegung beanspruchten Tragwerken vier
Voraussetzungen notwendig:
1. Die Beziehung zwischen Biegemoment
und Krümmung folgt dem in Bild 13 (oder
auch in Bild 8) dargestellten Verhalten, d. h.
die Krümmung nähert sich asymtotisch dem

so ist ein vorzeitiges Versagen infolge Knicken, Kippen oder
Beulen ausgeschlossen.

Die letzten zwei, in vielen Fällen sehr einschränkenden
Voraussetzungen, können jedoch gelockert werden. So ist es
möglich, den Einfluss von Normal- und Schubkräften zu
berücksichtigen. Durch konstruktive Massnahmen kann auch
Instabilität vermieden werden. Die Klärung dieser
Nebenbedingungen war sehr wesentlich, um den plastischen
Methoden Anwendung in der Praxis zu verschaffen (siehe z. B.
[6] für eine zusammenfassende Darstellung auf dem Gebiete
des Stahlhochbaues).

Unter diesen Voraussetzungen lassen sich nun verschiedene

Typen von Tragkonstruktionen recht einfach berechnen.

Beispiel 1

Bild 14 zeigt einen über drei Felder durchlaufenden
Balken Der Wert des plastischen Biegewiderstandes sei
konstant gleich Mp über die ganze Länge. Unter der Binzellast P
werdet, sich in einer ersten elastischen Phase die beiden Stüt-
senmomente M2 und Mi und das Feldmoment Ms in einem
ganz bestimmten Verhältnis ausbilden. Das Moment __T3 wird
zuerst die elastische Grenze ME (Fliessbeginn infolge Lastplus

Eigenspannung), dann das Fliessmoment Mp Wap
und schliesslich das plastischeJMoment Mp fWap erreichen.
Es bildet sich also allmählich ein plastisches Gelenk aus
(Plastifizierung des Querschnittes), so dass die
Stützenmomente einen immer grösseren Anteil der Last zu tragen
haben (Momentenausgleich). Schliesslich wird der Zustand
erreicht, wo neben dem Feldmoment Ms auch die
Stützenmomente M2 und M4 den Wert Mp erreicht haben. Nach der
einfachen plastischen Theorie (keine Verfestigung nach dem
Fliessen) ist eine weitere Laststeigerung nicht mehr möglich.
Somit führt die einfache Gleichgewichtsüberlegung, wie sie
Bild 14 (b) zeigt, zur theoretischen Traglast Pp. Das
Moment des einfachen Balkens M Ppl/i wird je zur Hälfte
auf Feld- und Stützenmoment aufgeteilt:

(7)

PpZ/4 Mp + Mp

Pp =8 Mp/l

Neben dieser sehr anschaulichen «Gleichgewichtsmethode»
wird die sogenannte «Mechanismus-Methode» verwendet.

Sie bietet besonders für die Berechnung komplizierter
Tragwerke bedeutende Vorteile. Betrachtet sei die Situation,
wie sie nach der Ausbildung der plastischen Gelenke in den
Punkten (W, (3) und (4) vorliegt. Theoretisch kann sich
das Tragwerk ohne Steigerung der Last weiter durchbiegen.
Es hat sich also ein «Mechanismus» mit einem Freiheitsgrad
ausgebildet. Das Gleichgewicht des Systems kann sehr
einfach durch das Prinzip der virtuellen Verschiebungen
ausgedrückt werden. Dieses Prinzip sagt aus, dass die Arbeit eines
GleichgewicMiSsystems infolge einer virtuellen Verschiebung

1,0 -
M/Mp

<t>/<t>p

1 J 1 |

-1,0 *p=Mp/EI

o)

b)

PP

1 2 Mp 4 5i_I—l
kl i kl^fh Ä jpjy"
V te ^w *v

Krümmungswert von */*p 4 ausreichend,
um einen vollen Momentenausgleich zu
erreichen.
2. Die Verformungen des Tragwerkes sind
klein gegenüber seinen Abmessungen. Folglich

können die Gleichgewichtsbedingungen
am undeformierten System formuliert werden.

Es wird daher eine «Theorie erster
Ordnung» gebraucht, wie sie ebenfalls in
der elastischen Baustatik üblich Ist.
3. Die Belastung erfolgt proportional, d. h.
alle Lasten werden proportional bis zum
Erreichen der Traglast Pv gesteigert.
4. Der Einfluss von Normal- und
Schubkräften kann vernachlässigt werden. Eben-

-Mp<M« Mp

Bild 13. Beziehung zwischen Moment und
Krümmung in normierter Darstellung

C) " ^fk1
¦Wi

<b2*

Prinzip der virt. Arbeit Aa + A; - 0

Pp^4h-Mp(i.+2i5-+£)

Bild 14 (rechts). Mechanismus und Traglast

eines Dreifeldträgers unter Einzellast
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verschwinden muss. Wählt man nun die virtuelle Verschiebung

bewusst so, dass innere Arbeit _lf nur an den Stellen
geleistet wird, in denen sich plastische Gelenke ausgebildet
haben, daher der Wert des Biegemomentes bekannt ist, dann
liefert das Prinzip auf sehr einfache Welse die Grösse der
Traglast Pp. Die virtuelle Verschiebung sei durch den strich-
lierten Idnienssug dargestellt, so dass sich Rotationen in den
Punkten (2) und (4) von der Grösse # und an der Stelle (3)
von 2& ergeben. Die Einsenkung der Last Pp beträgt
entsprechend &1/2. Somit ist die innere Arbeit:

(8) Ai
Gelenke:

- 9 Mp - 2 » Mp

(2) (3)
»Mp
(4)

Das negative Vorzeichen für die Glieder der rechten
Seite von GL (8) rührt davon her, dass die Rotation gegen
den Wirkungssinn von Mp erfolgt. Die äussere Arbeit setzt
sich zusammen aus dem Produkt der Last Pp und dem Weg
M/2 oder:

(9) Aa Pp&l/2
Nach dem Prinzip der virtuellen Verschiebung folgt nun

(10) Aa -Ai
Somit: Pp »1/2 4 & Mp schliesslich :

(11) Pp 8 Mp/l

Es ist zu beachten, dass wenn das Prinzip in Form der
Gleichung (10) angeschrieben wird, alle Glieder der rechten
Seite immer einen positiven Wert haben, solange die virtuelle
Verschiebung so geSfeKhlt wird, dass innere Arbeit nur in
den plastischen Gelenken geleistet wird.

Das Resultat (11) bestätigt den schon gefundenen Wert
für die Traglast Pp. Es sei noch festgestellt, dass Pp
unabhängig von der Grösse der Seitenöffnungen kl ist.
Selbstverständlich hängt aber die Grösse der Durchbiegung direkt
von diesem Verhältnis ab. Auf diesen Punkt wird später bei
der Besprechung von Versuchsresultaten noch weiter
eingegangen werden.

Zusammenfassend zeigt es sich, dass eine plastische
Lösung folgende drei Bedingungen erfüllen muss:
1. Gleichgewicht
2. Plast-zätätsbedingung, d.h. in keinem Schnitt darf das
Biegemoment M den plastischen Biegewiderstand Mp über-
schreiten:

(12) \M\ M„
3. Mechanlsmusbedingung, d. h. es muss sich eine
genügende Anzahl plastischer Gelenke aussgebildet haben, so dass
das ganze Tragwerk oder nur ein Teil davon zu einem
Mechanismus reduziert ist.

Zur dritten Bedingung sei noch bemerkt, dass früher oft
die Forderung aufgestellt wurde, ein w-fach statisch
unbestimmtes Tragwerk müsse (n + 1) plastische
Gelenke aufweisen, bis die Traglast erreicht
sei. Es ist aber leicht einzusehen, dass im eben
behandelten Beispiel das Hinzufügen von
weiteren Oeffnungen links und rechts den
Mechanismus (drei plastische Gelenke) und damit
die Traglast nicht verändern wird. Es ist
durchaus möglich, dass sich nur ein lokaler
Mechanismus entwickelt.

(13)

Last

At

¦Pp#l + Pp#l + P

(2) (3)

1

'T
(4)

&l

MP#

Gelenk (1)

Daraus folgt:

(14) Pp -

3_fpT. + Mp

(3) (5)

PP»l
(5)

Mp#

(6)

Mp_
l

Das zugehörige Momentendiagramm lässt sich leicht
berechnen, da das System dank der Gelenke statisch
bestimmt geworden ist. Wie Bild 15 (c) zeigt, sind alle
Momente kleiner oder gleich dem Wert des plastischen
Biegewiderstandes, d.h. die Plastizitätsbedingung ist erfüllt. Da
ferner auch das Gleichgewicht und die Mechanismusbedingung

erfüllt sinll|^iitsp_ächt die angenommene Lösung
der tatsächlichen Lösung. Wäre zum Beispiel anfänglich ein
plastisches Gelenk im Schnitt (4) statt (3) gewählt worden,
so hätte die Rechnung einen grösseren Wert für die Traglast
geliefert. Anderseits hätte aber die Kontrolle des
Biegemomentes im Schnitt (3) einen Wert grösser als 3 Mp
ergeben. Somit wäre diese Annahme als Lösung ausgeschieden.
Dieser Sachverhalt kann ganz allgemein formuliert werden
und führt zu den sogenannten «Extremal-Sätzen» der
plastischen Berechnungsmethoden, auf die hier nur hingewiesen
sei ([10] und [6], Seite 6).

Beispiel S

Zum Schluss sei noch die Anwendung der Methode auf
die Berechnung einer Platte, Bild 16, angeführt. Die quadratische

Platte ist eingespannt längs dem Rand AG, einfach
gelagert längs AB und BD und frei längs CD. Der Wert des
plastischen Momentes sei einheitlich über die ganze Platte
mp pro Einheitsbreite (mkg/m). Die gleichmässig verteilte
Belastung q wird schliesslich eine Gelenklinien-Figur
ausbilden, wie sie im Bild eingezeichnet Ist. Es kann gezeigt
werden, dass die Gelenklinien (oft auch «Bruchlinien» ge-
nanntK|xerade sind und in kinematischer Hinsicht noch weitere

Bedingungen erfüllen müssen [11]. Die Lage der Linien
ist durch die beiden Parameter | und -q festgelegt. Nun können

für die drei Plattenteile (1) bis (3) drei Gleichgewichtsbedingungen

angeschrieben werden. Für Teil (1) wird AG
als Bezugsaxe gewählt, damit die Auflagerreaktionen in der
MamentengleichgewStsbedingung nicht auftreten. Der
Beitrag des piatischen Momentes längs AG ist mpa, längs der
Gelenklinie zwischen (1) und (2) mp r) a unter Berücksichtigung

der lllpjektion auf die Bezugsaxe AG, und längs der
Linie zwischen (1) und (3) mp (1 — i?) o. Zusammen mit
dem Moment aus dem Lastantedl auf Teil (1) ergibt sich:

a)

l P>1 m
1 -, .zl 3 l 5

TP
l

,_ 1

Mp

3Mp

Mp
6

Beispiel 2
Der Rahmen gemäss Bild 15 hat zwei

Stützen mit einem Biegewiderstand Mp und
einen Riegel mit dem Widerstand 3 Mp. Es wird
angenommen, dass die angebrachte horizontale
und vertikale Belastung den In Bild 15 (b)
gezeigten Mechanismus mit plastischen Gelenken
in den Punkten (1), (3), (5) und (6) erzeugt.
Zur Bestimmung der Traglast ist die virtuelle
Verschiebung mit dem Parameter & gewählt
worden. Die entsprechenden Rotationswinkel
und Verschiebungen sind Im Bild eingetragen.
Somit lässt sich sowohl die äussere wie innere
Arbelt berechnen.

dl i>l ,M

b)

X \\ „it-"*£ _T*

© fja

CD ®
ri)a

C)

Ä±5"P

3M

(1-f)a <?a

Bild 16. Mechanismus für
gleichmässig belastete Platte

Bild 15 (links). Mechanismus
und Momentendiagramm für
Rechteckrahmen
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(15) mp \a + v a + (1 - y) a

- 1p (1 .)2as -g- (1 -1)2 v a* I =0

Analog folgen die beiden Momentengleichgewichtsbedin-
gungen für die Teile (2) um Bezugsaxe AB und (3) um BD:

(16) mpa-

(17)

aa ij*

9p «a _2(1 0

Das System dieser drei Gleichungen mit den drei
Unbekannten |, 17 und qp lässt sich sehr einfach lösen. Daraus
folgt der Wert für die Traglast

(18) : 18,7 7»p/a2

Der Zweck dieser drei Beispiele war, die Einfachheit des
plastischen Berechnungsverfahrens zu zeigen. Natürlich ist
für das Verständnis und die richtige Anwendung ein
Studium der Grundlagen unentbehrlich. Die Methode ist heute
sauber fundiert und verschiedene Verfahren sind ausgearbeitet

wordenB). Aus den angeführten Beispielen kann
ersehen werden, dass die Methode durch ihre Einfachheit und
Anschaulichkeit das wesentliche \^H_alten eines Tragwerkes
direkt zeigt. Um ihre Leistungsfähigkeit zu beweisen, müssen
natürlich die Resultate durch Versuchsergebnisse und
Beobachtungen an ausgeführten Tragwerken belegt werden.

Schluss folgt

5) Ein ausführliches Literaturverzeichnis findet sich in [61,
Appendix in.

Expresstrassen im Stadtorganismus dk 711.7

Die Diskussion um die Expresstrassen im Stadtorganismus
ist nun allenthalben entbrannt. Wie nicht anders zu

erwarten war, hat der Aufsatz von H. Marti In Heft 31 dieses
Jahrganges unterschiedliche Reaktionen ausgelöst. Direktor
Dr. Robert Ruckli verzichtet mit Brief vom 9. JÜagust 1961
auf eine Antwort in unserer Zeitschrift. Er verweist auf
seinen im Rahmen der Staatsbürgerlichen Gesellschaft in Saas-
Fee gehaltenen Vortrag, der nun in Heft 11 der Zeltschrift
«Strasse und Verkehr» erschienen Ist. In einem Punkte muss
er H. Marti entschieden widersprechen: «Ich habe ihm nie
das Recht abgesprochen, sich in der SBZ und in der GpSfent-
lichkeit über Städtebau zu äussern, wie er auf Seite 541 am
Ende des dritten Absatzes behauptet. Im Gegenteil, ich habe
geschrieben: ,Es steht ihm (Herrn Marti) frei, sich darüber
seine Meinung zu bilden und sie auch öffentlich zu
vertreten.'»

An der Tagung des Schweizerischen Autostrassenvereins
vom 26. August in Solothurn wurde herumgeboten, Arch. H.
Marti kenne Prof. O. Sill in Hamburg gar nicht. Dies gibt
uns Anlass zur Veröffentlichung des nachstehenden
Briefwechsels.

Hamburg, den 24. August 1961
Sehr geehrter Herr Jegher!

Von Kollegen aus der Schweiz werde Ich auf eine
Diskussion in Ihrer Zeitschrift unter dem Stichwort: «Machen
Sie diesen Blödsinn nicht» aufmerksam gemacht. Ausgelöst
wurde die Diskussion durch einen Aufsatz unter dieser
Ueberschrift von Herrn Hans Marti, der im Heft 19 vom
11. Mai 1961 erschienen ist. In diesem Aufsatz wird mein
Name genannt und mir u. a. der obengenannte Satz In den
Mund gelegt. Ich sehe mich daher genötigt, hierzu wie folgt
Stellung zu nehmen:

Wie ich inzwischen festgestellt habe, sass Ich im April
d. J. bei einem Essen aus Anlass des Besuches einer zürcherischen

Gemeinderatskommission in Hamburg neben Herrn
Hans Marti. Im Verlaufe des Tischgesprächs erzählte mir
Herr Marti, In der Schweiz würde man die geplanten Auto¬

bahnen, die unseren Bundesfernstrassen entsprächen, überall
mitten durch die Städte planen, und fragte, ob ich mir eine
solche Lösung vorstellen könne. Soweit ich mich bis jetzt
erinnere, erwiderte ich hierauf, dass ich das schweizerische
Nationalstrassenprogramm nicht kenne und deshalb dazu
nichts zu sagenfeermöchte; in Deutschland seien wir im Ge-
gensaÖHZU den ersten Autobahnplanungen in der Vorkriegszeit

(z. B. Berliner und Münchner Autobahnring) heute
bestrebt, die Bundesautobahnen möglichst nahe an den Kern
der grossen Städte heranzuführen. Es sei bei uns aber Im
Hinblick auf den schnellen Personenwagen- und den schweren

Lastwagenverkehr auf den Bundesautobahnen nicht
denkbar, diese Bundesfernstrassen mitten durch die Stadtkerne

zu führen. Ich muss aber ausdrücklich erklären, dass
ich weitere Ausführungen In der in diesem Aufsatz wiedergegebenen

Form und Art über Verkehrsplanungen in der
Schweiz, die ich überhaupt nicht kenne, niemals gemacht
habe.

Aus diesem Anlass habe ich auch die Entgegnungen zu
den Worten von Hans Marti über die Expresstrassen unter
der selben Ueberschrift, erschienen im Heft 23 vom 8. Juni
1961, und die weitere Stellungnahme von Hans Marti unter
der Ueberschrift «Expresstrassen im Stadtorganismus»,
erschienen im Heft 31 vom 3. August 1961, durchgesehen und
daraus entnommen, dass bei Ihnen in der Schweiz die selbe
heftige Auseinandersetzung im Gange ist, wie sie fast überall

entbrennt, wenn es darum geht, die Lösung der schwierigen

Verkehrsprobleme in unseren eng besiedelten Städten
anzupacken. Das beweist aber nur wieder einmal, wie
ausserordentlich schwer es ist, den Stadtverkehr von heute oder
gar von morgen vernünftig zu ordnen. Sicher ist, dass es
dafür keine Patentlösung gibt, die für jede Stadt passen
könnte, sondern es muss in jedem Einzelfall nach dem
Abwägen aller Umstände eine optimale Lösung gesucht werden.
Sicher ist auch, dass dabei gewisse Beeinträchtigungen an
sich berechtigter Interessen nicht zu vermeiden sind. Für
mich ist es aber auch ebenso sicher, dass wir keine Zeit mehr
haben, die notwendigen verschiedenen Massnahmen nach
einer Rang- und Reihenfolge nacheinander anzupacken. So
wichtig zum Beispiel der öffentliche Personenverkehr für die
Stadt, vor allem zur Bewältigung des __erst/_verkehrs ist, so
geht es dennoch nicht an, etwa den Ausbau des Strassen-
netzes solange zurückzustellen, bis der öffentliche Personenverkehr

vielleicht eines Tages überall eigene Verkehrswege
(z. B. Hoch- oder Untergrundbahnen) bekommen hat. Der
gesamte Stadtverkehr, also auch der öffentliche Personenverkehr,

würde sonst schon lange vorher völlig erliegen.
So sind wir z. B. in Hamburg gezwungen, gleichzeitig

das Netz der Stadtstrassen nicht nur zu unterhalten und in-
standzusetzen, sondern auch durch Ausbau entscheidend zu
verbessern, das Netz unserer Schnellbahnen für den öffent-
lichen Personenverkehr (S-Bahn und U-Bahn) planmässig
auszubauen und den Bau eines weitmaschigen Netzes von
Stadtautobahnen (Expresstrassen) als Verbindung zu den
Bundesfernstrassen und zur Entlastung unserer Stadtstrassen

vom Binnenverkehr mit längeren Fahrwegen vorzubereiten
und anzufangen.
Daneben gilt es, durch vernünftige städtebauliche

Ordnung der Bebauung, und zwar sowohl in den Wohn-,
Geschäfts- wie Arbeltsgebieten dafür zu sorgen, dass eine all-
zugrosse Ballung der Verkehrsströme auf einzelnen Ver-

;^Sbrswegen oder in einzelnen Stadtkernen vermieden wird.
Dazu gehört vor allem auch eine Beschränkung der baulichen
Ausnutzung von Grundstücken in den Baugebieten.

Wirtschaft und Verkehr einer Stadt können also auf die
Dauer nur gewährleistet sein, wenn nicht nur ein neuzeitlicher

Ausbau der -Verkehrswege, sondern auch eine verkehrsgerechte

Ordnung der Bebauung erfolgt.
Im Hinblick auf die Erwähnung meines Namens im

eingangs genannten Aufsatz möchte Ich Sie bitten, meine
vorstehende Aeusserung in Ihrer Zeitschrift zu veröffentlichen.

Mit freundlichen Grüssen
Otto Sill

Erster Baudirektor der Freien
und Hansestadt Hamburg
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