Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 79 (1961)

Heft: 3

Artikel: Zur Berechnung des vorgespannten Schienenstosses

Autor: Koroneos, Nik.-Joh. G.

DOI: https://doi.org/10.5169/seals-65452

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Von Dr.-Ing. Nik.-Joh. G. Koroneos, Assistent an den Technischen Hochschulen von Athen und München

1. Zum Problem des Schienenstosses

Der Stoss, der an der Verbindung zweier aufeinanderfolgender Schienen auftritt, wird durch drei Erscheinungen verursacht, nämlich durch die Stosslücke, die Stufenbildung und die Knickbildung.

Um bei der Schienenstossverbindung möglichst gleiche Bedingungen wie bei der endlosen Schiene zu schaffen, war es erforderlich, Stosstufe und Stossknick weitgehend zu verkleinern. Je geringer diese Grössen sind, desto weniger wird die Schiene an den Stosstellen beansprucht.

Der Stoss ist die schwächste Stelle des Gleises; daher müssen die Schienen so verbunden werden, dass die verschiedenen an der Stosslücke auftretenden Kräfte in zweckmässiger Weise aufgenommen werden. Bei starren Verbindungen mit Laschen hat sich gezeigt, dass durch die schwellende Belastung des Rollmaterials nach einiger Zeit eine Lockerung eintritt und somit eine einwandfreie Führung der Schiene nicht mehr gewährleistet ist. Untersuchungen haben ferner ergeben, dass Schienenbrüche an der Schienenstossverbindung in erster Linie durch Haarrisse hervorgerufen werden, die von den Rändern der Bohrungen in der Laschenkammer ausgehen.

Infolge der Stosslücke üben die darüberrollenden Räder mehr oder weniger starke Schläge auf die Schienenenden aus, wodurch die Kanten am Schienenkopf beschädigt werden können und auf das ganze Gleis zusätzliche Stosskräfte ausgeübt werden, welche in der Nähe der Stösse senkrechte Verbiegungen der Schienen und ein rascheres Einsinken des Gleises bewirken.

2. Der vorgespannte Schienenstoss

Der vorgespannte Schienenstoss stellt eine dynamische Schienenstossverbindung dar, die in ihrer Wirkungsweise dem lückenlosen Gleis sehr nahe kommt. Hiefür sind verschiedene Konstruktionen angewendet worden, von denen die Bilder 1 und 2 zwei neuere Ausführungsformen zeigen.

Das wesentliche Merkmal dieser neuen Verbindung ist eine Blattfeder, die in Längsrichtung an den Schienenfuss unter den Stoss gespannt ist. Das ganze System ist durch Schrauben und Bügel mit der Schiene verbunden. Durch die Federn will man im Stoss eine Stufen- oder Knickbildung bei überrollender Last verhindern. Weiter dient zur Führung der Schiene eine Kurzlasche, die mit einer einzigen hochfesten Stahlschraube gehalten wird. Durch sie entsteht ein Gelenk. Die Schienenenden erhalten lediglich halbkreisförmige Ausnehmungen, die keine Verminderung des Widerstandsmomentes im Schienensteg zur Folge haben. Durch die Ausbildung der Kurzlaschen werden die Wellenbewegungen der Schiene nicht unterbrochen. Die im Schienenstrang auftretenden Längsverschiebungen wirken sich auf den Blatt-

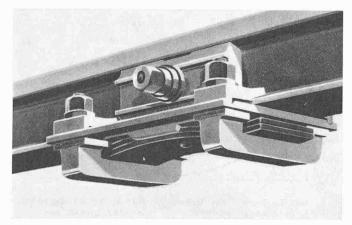


Bild 1. Typische Ausführung eines vorgespannten Schienenstosses

feder-Schienenstoss nicht aus, da die Federn über die Bügel gleiten können.

3. Der Zusammenhang zwischen den massgebenden Grössen

In der nachfolgenden rechnerischen Untersuchung wird der günstige Einfluss des Gelenkes und der Kurzlasche nicht berücksichtigt. Dieser kann nur experimentell festgestellt werden, da die theoretischen Untersuchungen wegen den Ungenauigkeiten dieser Verbindung und den sehr kleinen Verformungen kein befriedigendes Ergebnis liefern. Dagegen wird in der experimentellen Untersuchung auch die Lasche berücksichtigt.

Wir betrachten zuerst den Einfluss der äusseren Kräfte auf die Schiene und nehmen an, die Schienenenden seien frei beweglich (ohne Feder oder Lasche).

In Bild 3 sind A_1 und A_2 die Enden der zu stossenden Schienen, B_1 und B_2 die Stellen, an denen die Vorspann-Gegenkräfte von der Feder auf die Schienen übertragen werden. Nach Bestimmung der Einflusslinien für die Einsenkungen der Punkte A_1 , A_2 , B_1 , B_2 ist es möglich, die elastischen Linien von zwei gegeneinander liegenden Schienen für verschiedene Stellungen der Räder eines Zuges zu ermitteln. Im allgemeinen wird die Stosstelle durch die Räder asymmetrisch belastet, so dass die Einsenkungen δ_{A1} und δ_{A2} an den Schienenenden verschieden gross sind. Es ergibt sich eine Stufe von der

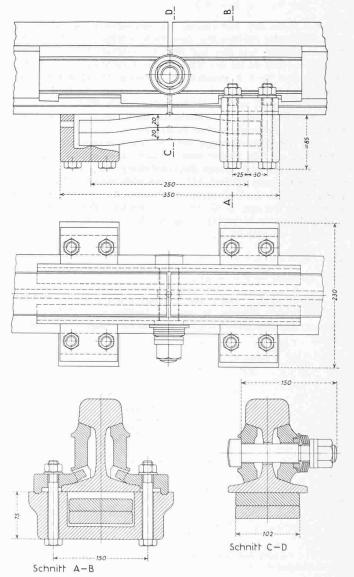


Bild 2. Konstruktive Durchbildung eines vorgespannten Schienenstosses, Masstab 1:6

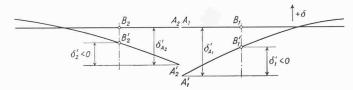


Bild 3. Elastische Linien der beiden Schienenenden ohne Stossverbindung, bei belasteten Schienen

Grösse $\delta_{A1}' - \delta_{A2}'$. Für die Lösung des Problems sind nur die Ordinaten der Biegelinie an den Punkten A_1 , A_2 , B_1 , B_2 von Bedeutung.

Wir betrachten jetzt den Einfluss einer Feder, die mit einer Kraft V_0 vorgespannt ist, wobei V_0 so gross gewählt werden muss, dass selbst im ungünstigsten Belastungsfall die Differenz $\delta_{\rm A1}{}'-\delta_{\rm A2}{}'=0$ wird. In Bild 4a sind die drei verschiedenen Belastungsfälle der Feder dargestellt, nämlich:

Fall (a): Freie Feder, V=0

Fall (b): Mit der Kraft V_0 vorgespannte Feder

Fall (c): Einfluss der äusseren Belastung (V > 0, Druck)

Wenn c die Federkonstante ist, dann gilt

$$V_0 = c f_0$$
, und $V = c (f_0 + f') = V_0 + c f'$.

Da aber $f' = h_0 - h'$ ist, so folgt

(1)
$$V = V_0 + c (h_0 - h')$$

Im Falle (c) verursacht die asymmetrische Belastung eine ungleiche Verteilung der Federkräfte auf die beiden Schienenenden, wie das auf Bild 4b dargestellt ist. Auf den Bildern 4c und 4d ist der Verlauf der Biegelinie bei einer Belastung von je 1 t gezeichnet. Werden die Ordinaten der elastischen Linie in Bild 4c mit V, diejenigen in Bild 4d mit ΔV multipliziert, und lagert man die beiden Fälle übereinander, so erhält man die elastische Linie der Schienen unter der in Bild 4b gezeichneten Belastung.

Soll die linke Schiene bei der ungünstigsten Belastung tangential an die Feder anschliessen, so muss $V - \Delta V \ge 0$ sein. Alsdann tritt weder Stufenbildung noch Knickbildung auf. Die Grössen V und ΔV lassen sich mittels Gl. (1) berechnen, wenn die Ordinaten der Punkte A_1 und A_2 als gleich angesehen werden, s. Gl. (9). Die endliche Differenz h' ergibt sich durch Ueberlagerung der Verformungen nach den Bildern 3, 4c und 4d zu:

(2)
$$h' = \delta_2' + V \eta' - \Delta V \zeta'$$

(3)
$$h' = \delta_1' + V \eta' + \Delta V \zeta'$$

Hierin sind η' und ζ' die Ordinaten der elastischen Linie für die in den Bildern 4c und 4d dargestellten Belastungen von 1 t. Aus den Gleichungen (2) und (3) folgt durch Gleichsetzen

(4)
$$\Delta V = \frac{\delta_{2}' - \delta_{1}'}{2\zeta'}$$

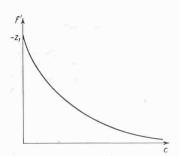


Bild 5. Verlauf der Grösse f' in Abhängigkeit von c

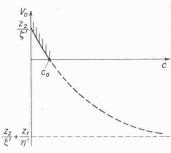


Bild 6. Abhängigkeit der Vorspannung V_0 von der Federkonstanten c

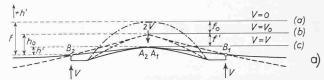
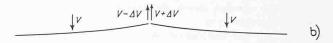
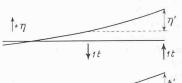


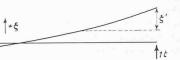
Bild 4a): Die drei typischen Belastungsfälle der Feder eines vorgespannten Schienenstosses



d)



b): Verteilung der Federkraft auf die beiden Schienenenden



c) und d): Elastische Linie des Schienenendes bei der eingezeichneten Belastung von 1 t

Wir bezeichnen

$$z_2\!=\!rac{\delta_2{}^\prime-\delta_1{}^\prime}{2}\!>\!0$$
 und $z_1\!=\!rac{\delta_2{}^\prime+\delta_1{}^\prime}{2}\!<\!0$

(4a)
$$\Delta V = \frac{z_2}{\zeta'}$$

Durch Einsetzen von (4) in (2) wird

$$h' = \delta_{2}' + V\eta' - \frac{\delta_{2}' - \delta_{1}'}{2} = V\eta' + \frac{\delta_{1}' + \delta_{2}'}{2}$$

ode

$$(5) \quad h' = V\eta' + z_1$$

Durch Einsetzen der Grösse V aus Gl. (1) in Gleichung (5) finden wir

(5a)
$$h' = V_0 \eta' + c h_0 \eta' - c h' \eta' + \frac{\delta_1' + \delta_2'}{2}$$

Im Fall (b) ist die Vorspannung $V=V_0$ und es sind $\delta_2'=0,\ \Delta V=0,$ dies in Gl. (2) eingesetzt ergibt:

$$(6) h_0 = V_0 \eta'$$

Aus (5a) folgt:

$$h' + c h' \eta' = h_0 + c h_0 \eta' + z_1$$

oder

(7)
$$h' = h_0 + \frac{z_1}{1 + c \, \eta'}$$

und

(7a)
$$h' = V_0 \eta' + \frac{z_1}{1 + c \eta'}$$

Durch Einsetzen der Grösse $h_0 - h'$ aus Gl. (7) in Gl. (1) erhält man

(8)
$$V = V_0 - \frac{z_1 c}{1 + c \eta'}$$

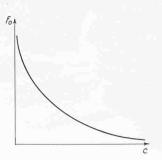


Bild 7. Verlauf der Grösse f_0 in Abhängigkeit von c

$$f_0 = \frac{V_0}{c} = \frac{z_2}{c\zeta'} + \frac{z_1}{1 + c\eta'}$$

Bild 8. Verlauf der Grösse f in Abhängigkeit von c

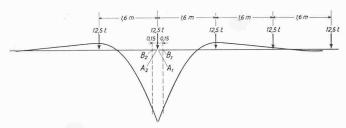


Bild 9. Darstellung der Lasten und der ungünstigsten Stellung des Lastzuges S1950

Aus der oben formulierten Bedingung $V-\Delta V \geq 0$ ergibt sich mit Hilfe der Gl. (4) und (8)

$$(9) V_0 \geqq \left(\frac{z_1 c}{1 + c \eta'} + \frac{z_2}{\zeta'}\right)$$

und durch Einsetzen von V_0 aus Gl. (9) in Gl. (7a) finden wir:

(10)
$$h' = z_2 \frac{\eta'}{\zeta'} + z_1$$

Aus Gl. (10) geht hervor, dass die Grösse h' unabhängig von der Federkonstanten c ist, vorausgesetzt, dass die Vorspannung V_0 nach Gl. (9) berechnet wird. In diesem Fall haben die beiden Schienenenden und die Feder im Berührungsbereich die gleiche Tangente.

4. Graphische Darstellung der gefundenen Beziehungen

Von besonderem Interesse ist die Beziehung zwischen der Federkonstanten c und den Variabeln f', V_0 , f_0 und f. Ihr prinzipieller Verlauf ist in den Bildern 5 bis 8 dargestellt.

a) Bild 5 zeigt die Funktion

$$f' = h_0 - h' = \frac{-z_1}{1 + c \, r'}$$

Es ist eine Hyperbel. Für $c\sim 0$ wird $f'\sim -z_1$, und für eine sehr harte Feder wird $f'\sim 0$.

b) Bild 6 stellt die Funktion

$$V_0 \ge rac{z_2}{\zeta'} + rac{z_1 \, c}{1 + c \, \eta'}$$

dar; auch sie ist eine Hyperbel. Für $c\sim 0$ wird $V_0\sim z_2/\zeta'$, während man für eine sehr harte Feder erhält

$$V_0 \sim rac{z_2}{\zeta'} + rac{z_1}{\eta'}$$

Die Vorspannkraft V_0 verschwindet, wenn

$$c_0 = -rac{z_2}{z_2\,\eta' + z_1\,\zeta'}$$

Die brauchbaren c-Werte liegen unterhalb diesem Grenzwert, also im schraffierten Bereich.

- c) In Bild 7 ist $f_0=V_0/c$ aufgetragen; auch f_0 ist eine Hyperbel. Bei $c\sim 0$ wird f_0 unendlich gross und bei sehr harter Feder verschwindend klein.
- d) Ebenfalls eine Hyperbel ist die auf Bild 8 aufgezeichnete Funktion

$$f = V_0 \left(\frac{1}{c} + \eta' \right) = \frac{z_2 (1 + c \eta')}{c \zeta'} + z_1$$

Bei $c\sim 0$ wird f unendlich, bei sehr harter Feder wird

$$f \sim \frac{z_2 \, \eta'}{\zeta'} + z_1 = h'$$

f wird 0, wenn $c=-rac{z_2}{z_2\,\eta'+z_1\,\zeta'}$

5. Beispiel

Wenn man in Gl. (9) die Grössen

$$z_1 = \frac{\delta_1{'} + \delta_2{'}}{2} < 0 \text{ und } z_2 = \frac{\delta_2{'} - \delta_1{'}}{2} > 0$$

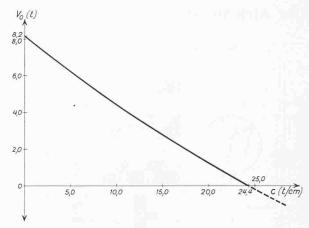


Bild 10. Verlauf der Gröss f_0 in Abhängigkeit von c bei den im Beispiel angegebenen Verhältnissen

einsetzt, so erhält man

$$(11) \quad V_0 = \frac{{\delta_1}'}{2} \Big(\frac{c}{1+c\,\eta'} - \frac{1}{\xi'} \Big) + \frac{{\delta_2}'}{2} \Big(\frac{c}{1+c\,\eta'} + \frac{1}{\xi'} \Big)$$

Die Grössen η' , ζ' , δ_1' , δ_2' , können aus der Einflusslinie berechnet werden. Die Grössen η' , ζ' sind für bestimmte Einsenkungsziffern konstant. Dabei sei unter Einsenkungsziffer die Belastung der Schwelle, dividiert durch ihre Einsenkung infolge der Last verstanden. Gleichung (11) stellt eine Beziehung zwischen der Vorspannung V_0 und der Federkonstanten c dar. Für die ungünstigste Einsenkungsziffer E=20 t/cm und für die grösste Last, d.h. für den schweren Lastenzug S 1950 in der ungünstigsten Stellung auf der Schiene entsprechend dem auf Bild 9 dargestellten Fall, erhalten wir die auf Bild 10 gezeichnete Kurve. Für die ausführliche Berechnung der Einflusslinie eignet sich die Methode von Dr. C. Popp [11].

6. Weitere Arbeiten

In der Versuchsanstalt des Institutes für Eisenbahnbau und Strassenbau in München werden die Grenzen, zwischen denen c und V_0 liegen muss, experimentell bestimmt. Die Ergebnisse der durchgeführten Rechnungen werden durch Versuche überprüft, wobei der günstige Einfluss der Lasche berücksichtigt wird. Sie sollen später veröffentlicht werden.

Literaturverzeichnis

- Grossmann: Der Schienenstoss. SBZ Bd. 118, H. 21, S. 250 (22. Nov. 1941).
- [2] Hanker, R.: Die Langträgerberechnung des Eisenbahnoberbaues. «Gleistechnik und Fahrbahnbau», 1941, H. 6/7, S. 16.
- [3] Schramm: Oberbauberechnungen, «Gleistechnik und Fahrbahnbau», 1942, H. 1/2 bis 5/6.
- [4] Halter: Betrachtungen zum Schienenstoss, «Gleistechnik und Fahrbahnbau», 1942, H. 13, S. 52 bis 53.
- [5] Tacke: 42 Jahre fester Gleisstoss, «Der Eisenbahnbau», 1951, H. 7.
- [6] Hanker, R.: Eisenbahnbau, Wien, Springer-Verlag, 1952.
- [7] Schröder: Der isolierte Schienenstoss, «Eisenbahntechnische Rundschau» 1953, H. 4, S. 165 bis 170.
- [8] Schlumpf, U.: Ueber eine bisher nicht berücksichtigte Beanspruchungsart von Eisenbahnschienen. SBZ 1954, Heft 1, S. 6.
- [9] Betzhold und Rubin: Spannungsmessungen an Stossachsen und Schienenbefestigungsmitteln im Gleis, «Eisenbahntechnische Rundschau», 1954, H. 9, S. 400 bis 408.
- [10] Rubin: Betrachtungen über Stosslücken im Gleis, «Der Eisenbahningenieur», 1955, H. 2. S. 31 bis 36.
- [11] Popp, C.: Zur genaueren Berechnung der Fahrbahn-Längsträger stählerner Eisenbahnbrücken. Forschungshefte aus dem Gebiet des Stahlbaues, Hefte 10 und 10a, 1954 bzw. 1957, Deutscher Stahlbau-Verband, Köln a. Rh.
- [12] Schramm, G.: Oberbautechnik Oberbauwirtschaft, Otto Elsener Verlagsgesellschaft, Darmstadt 1960.