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79. Jahrgang Heft 21 SCHWEIZERISCHE BAUZEITUNQ 25. Mai 1961

0R6AN DE8 SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS 8.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE S.E.I

Zugkraftmessung in Drahtseilen mit Transversalwellen

Fragen der Biegesteifigkeit und der grossen Spannweite

Von Prof. 0. Zweifel, ETH, Zürich

DK 669 — 427.4.001.4

Einleitung
Ueberall, wo Drahtseile nicht durch Gewichte gespannt

sind, besteht ein Bedürfnis, den Seilzug messen zu können.
Dazu ist immerhin zu bemerken, dass auch bei Gewichtsspannung

oft die Grösse des Spanngewichts nur mit
ungenügender Genauigkais bekannt ist und die Reibung auf den
Seilschuhen zusätzlich eine ebenfalls schwer erfassbajgj Rolle
spielt.

Sine besonders einfache Messmethodegfet die bekannte
liKkraftbest-mmung rrdläTransväpalwellen1). Dabei lässt
man eine schlagartig erzeugte Welle (Schlagwelle) von
einer Stütze bis zur nächsten laufen, wo sie reflektiert wird
und nach der totalen Laufzeit £_. wieder an den Ausgangsort
zurückkommt. Aus dieser Laufzeit schliesst man nach der
Theorie der Saitenschwingung auf den Seilzug. Dazu werden
allerdings noch die Feldabmessungen und das
Längeneinheitsgewicht q des Seiles benötigt. Komplizierte
Messapparaturen erübrigen sich, weil einzig Zeitmessungen
(Stoppuhr) gemacht werden müssen. Für kürzere Felder
wird hier vorgeschlagen, die Laufzeit indirekt durch
Eigenschwingungsmessungen zu bestimmen.

Im Rahmen dieses Aufsatzes werden zwei, u. W. bisher
in diesem Zusammenhang nicht bearbaSete Fragen gestellt,
nämlich die der Biegesteifigkeit und die der grossen Spannweite.

Was zunächst den Einfluss der Biegesteifigkeit
anbetrifft, so ergeben sich sehr interessante Zusammeöiänge,
weil die WellengeschwindighÄ, wie beispielsweise bei den
Wasserwellen, von der Wellenlänge abhängig ist. Da diese

Wellenlänge bei der einfachen Messung mit der Stoppuhr
allein aber unbekannt bM|||yirängt sich selbs^Srständlich
die Frage auf, wie weit die Seilzugbestimmung bei der allgemein

üblichen Vernachlässigung der Biegesteifigkeit
gefälscht werden kann. Die wirklichen Vorgänge in Drahtseilen

bei Schlagwellen werden deshalb theoretisch untersucht,

wobei der geringe Einfluss der Dämpfung unberücksichtigt

bleibt. Anhand von mit Oszillographen aufgenommenen

Messdiagrammen wird die Richtigkeit der theo-fäll
sehen Ueberlegungen belegt. Es erweist sich dabei, dass bei
dünneren Seilen eine Messfälschung unwahrscheinlich ist,
dass jedoch bei dickeren Seilen Vorsicht am Platze ist, weil
bei ungeschicktem Vorgehen Fehler möglich sind.

In bezug auf die zweite Frage muss sodann geklärt werden,

wie weit die Kettenlinienform der Seile bei grossen
Spannfeldern die Laufzeit beeinflusst. Unter Berücksichtigung

der Seilzugvariation in Funktion der geodätischen
Höhe gelingt es, die zu bestimmende Horizontalkraft (oder
den Seilzug am Feldende) als Reihenentwicklung der Laufzeit

anzuschreiben. Das erste Glied dieser Reihenentwicklung
entspricht dann der üblichen Näherungsrechnung, die bei
grossen Spannweiten ungenau werden kann.

An anderen Messmethoden sei hier Insbesondere die
direkte Kraftmessung mit Seilspannungsmessern (Amsler,
Schaffhausen) erwähnt. Sie hat einerseits den Vorteil, dass
die Feldabmessungen nicht bestimmt werden müssen, anderseits

ist man für die Auswertung auf Eichkurven angewiesen,

die für die verschiedenen Seile im Laboratorium
aufgenommen werden müssen. — Ferner wäre die Methode der
geodätischen Ausmessung der Seilkurve zu nennen, wobei
wie bei der Transversalwellenmethode die Feldabmessungen

1) Czitary: «Spannkraftermittlung In Seilen durch Schwingungsmessung»,

Wasserwirtschaft, Jg. 1931, S. 246.

und das Längeneinheitsgewicht bekannt sein müssen. Dabei
wird am besten von einer Stütze aus eine Tangente vermessen,

indem man den Theodoliten in oder unmittelbar neben
der Bahnebene aufstellt und den scheinbar tiefsten Punkt
des Seiles anvisiert. Auch die sehr einfache, aber nicht
immer sehr genaue Neigungsmessung am von der Stütze
ablaufenden Seil gehört hieher. Je kürzer das Feld ist und je
flacher damit die Seilkurve wird, desto ungenauer werden
allerdings die mit der geodätischen Methode bestimmten
Zugkräfte.

Es darf gesagt werden, dass die Transversalwellenmethode

neben den anderen Messmethoden unbedingt ihre
Vorzüge hat. Gewisse Schwierigkeiten treten allerdings auf,
wenn sich bei Tragseilen Seilreiter oder Kuppelstücke im
freien Feld befinden, an denen die Wellen teilweise reflektiert

werden. Beim Bau einfacher Seilbahnen, wie z. B. in
der Forstwirtschaft, steht das Messen mit Schlagwellen wohl
heute schon an erster Stelle, was damit zusammenhängen
mag, dass diese Seile einerseits nie Gewichtsspannung haben
und dass anderseits nur dünne Seile verwendet werden, die
gegen Fehlmessungen einigermassen narrensicher sein dürften.

Bei entsprechenden Vorsichtsmassnahmen kommt die
Transversalwellenmethode aber durchaus auch bei dickeren
Seilen in Frage.

2. Bezeichnungen

a) Transversalwelle

Symbol Bild Gleichung

2,3
3,4

4

3

y i/o Ausschlag
a Phasengeschwindigkeit
oto- o für unendliche Wellenlänge
Oo Gruppengeschwindigkeit

iäsSJS Wellenlänge
T= X/a Schwingungsdauer
Tw Wirkzeit einer Schlagkraft
t Zeit
tz Zerfallzeit, Schrittzeit
ti, (Hin- und Her-) Laufzeit
r dimensionslose halbe Laufzeit
i Anzahl Schwingungsbäuche der

Eigenschwingung

b) Kettenlinie

5
6,13
6a
10,12,14

9,11
16, 19, 25
20

16

Symbol Bild Gleichung

h b c Spannfeldabmessungen
x x,„ z Koordinaten
s Bogenlänge
£ ^° & IS Dimensionslose Längen

c) Kräfte, Momente

10
10

20,23

Symbol Bild Gleichung

£1 Seilzug
Sb Seilzug am Feldende
S" Mittlerer Seilzug (an der Stelle

grössten Durchhangs)
H Horizontalkraft
Q Querkraft
M Biegemoment
K Schlagkraft

1,10 6b, 17,18
28,29

10
2

2

24,26
26
2
1
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d) Seüdaten U-at)

Symbol Bild Gleichung

d Seildurchmesser
F 2 Drahtquerschnitte
J Flächenträgheitsmoment
E Elastizitätsmodul
y/g Drahtdichte
q/g Seilmasse je Längeneinheit
e Verseilungsfaktor q/(yF); bei

den Zahlenbeispielen dieser Arbeit
wurde _ 1,1 gesetzt

a_ Zugspannung

3. Bewegung unendlich langer Wellenzüge und Eigenschwingungen

In diesem Abschnitt soll untersucht werdeiSnit welcher
Geschwindigkeit (Phasengeschwindigkeit) a sich ein
(unendlich langer) Wellenzug der Wellenlänge X am biegungssteifen

Seil fortbewegt. Diese Bewegung bildet sowohl die
Grundlage für die Eigenschwingungen als auch für die später
behandelten Schlagwellen.

Der Einfachheit halber wird bei der folgenden Ableitung
die Schwerkraft als vernachlässigbar weggelassen; am
Schluss des Abschnittes soll aber noch erörtert werden, wie
weit die auf diese Weise abgeleiteten Beziehungen auch für
im Schwerefeld durchhängende Seile gültig bleiben.

Ein biegungssteifes, beliebig langes Seil sei durch die
Zugkraft S gespannt und habe infolge einer einmaligen
Störung kleine Auslenkungen (Bild 1) erhalten. Um die
Differentialgleichung der Bewegung ableiten zu können, greift

I | Bild 1. Durch die Zug¬
kraft S gespanntes Seil
mit kleinen Auslenkungen

aus der Gleich-
gewicHtElage

*y
Bild 2. Durch die
d'Alembert'sche
Trägheitskraft belastetes
Seilelement

0Q_... o'y q

_MM+^^dx

\m:
lvK|- dx ox

L

dx

man ein Seilelement (Bild 2) heraus, das durch die d'Alem-
bertsche Trägheitskraft belastet ist.

Die Differentialgleichung der elastischen Linie gibt hier
eine erste Beziehung zwischen dem Biegemoment M und der
Seilsteifigkeit JE:

(1) M J E
dx2

Eine weitere Gleichung ergibt sich aus der Ueberlegung,
dass der Zuwachs der Querkraft Q nur von der dAlembert-
schen Massenkraft herrühren kann (q/g Seilmasse je
Längeneinheit):

(2) .___
dx

¦ dx :
322/ q
3*2

dx

Schliesslich lautet die sich aus der Gleichgewichtsbedingung
für das Seilelement ergebende Momentengleichung:

(3)
dM
dx

¦ dx — Q dx — S -£- dx= 0
ex

Eliminiert man jetzt die Grössen Q und M aus diesen
Gleichungen, indem man vorerst (1) zwlfimal und (3) einmal
partiell nach dx ableitet, so findet man endgültig als
Differentialgleichung der Seilbewegung

q 3S_/ 34w
(4) — _4- + J E —=-1

j g 3(2 T dx* SS=»

i,y iosm

^
Bild 3. Sinusförmiger Wellenzug, der sich mit der
Phasengeschwindigkeit a nach rechts bewegt

Wirdsgain für einen sich beispielsweise nach rechts
bewegenden Wellenzug nach Bild 3 der Ausdruck

2tt
(5) ME= j/o sm —r— (* — «*)

X

angesetzt, so befriedigt dieser die Differentialgleichung, wenn
man für die Geschwindigkeit a schreibt:

(6) a:
« L B \ X |

worin
msss

(6a) a~- 3 / "Zg
1 ey

die Geschwindigkeit unendlich langer Wellen bedeutet. Ferner
ist <r_ die rechnerische Zugspannung S/F, F die Summe aller
Drahtquerschnitte, y/g die Drahtdichte und _ der Verseilungsfaktor

q/(yF).
Im Gegensatz zur schwingenden Saite ist also a von X

abhängig; man spricht in solchen Fällen in der Theorie der
Wellen2) von Dispersion wie in der Optik. Im speziellen
bewegen sich die kurzen Wellen rascher als die langen (anomale
Dispersion).

Die Zugkraft $ schreibt sich nach (6a)

(6b) S= — aMz

oder nach (6)

(6c) S-= — a*—JEm
Die Seilkraft £1 lässt sich somit berechnen, wenn a und

X gemessen worden sind und die Seilkennwerte q, J und E
als bekannt vorausgesetzt werden dürfen.

Die Messung von a und X kann z. B. an künstlich
erregten Eigenschwingungen erfolgen, die ja als Ueberlage-
rung gegeneinanderlaufender Wellenzüge aufgefasst werden
können. Die Wellenlänge X doppelte Knotendistanz) und
die Schwingungsdauer T«) können bei der Eigenschwingung
unmittelbar abgegriffen werden und dienen zur indirekten
Bestimmung von a X/T.

Dagegen ist der Wert der Biegungssteifigkeit JE im
allgemeinen unbekannt; er ist wegen der inneren Seilreibung
streng genommen nicht einmal konstant. Diese Schwierigkeit
kann aber vermieden werden, wenn man die Wellenlänge X

gross genug wählt. Nach (6) besteht ja der Einfluss der
Biegesteifigkeit in einer Geschwindigkeitserhöhung, die aber
um so geringfügiger ist, je grösser X wird.

Es erhebt sich deshalb die Frage, wie gross die Wellenlänge

zahlenmässig sein muss, damit der Einfluss der
Biegesteifigkeit JE vernachlässigt, d.h. in (6c) Null gesetzt werden

darf. Soll beispielsweise der Fehler für den Seilzug S
kleiner bleiben als 1 %, so muss

*) Vgl. z. B. Sommerfeld, Vorlesungen Über theoretische
Physik, Band II.

8) Die Schwingungsdauer T ist nicht zu verwechseln mit der
später verwendeten Laufzeit t^, mit der sie durch (16) in Abschnitt
5 verknüpft ist.
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•yr/ 2ir\2
(7) jeI——\ <0,01S oder X > 20

Rechnet man vorsichtigerweise mit unverschieblichen Drähten,

so ist in grober Näherung

/ d\2
(8)

Mit diesem Wert und S Faz ergibt sich aus (7) schliesslich

als minimale Wellenlänge:

(7a) X- 5 ir d E

In Tabelle 1 sind Zahlenangaben für Xm,-„ zusammengestellt,
wobei für E — 1,7 • IO3 t/cm2 eingesetzt wurde, was dem grössten

Wert entspricht, den Wyss *) für Zugversuche ganzer
Seile angibt. Für Biegung dürfte dieser Wert bei unver-
schieblichen Drähten eher etwas unterschritten werden. Bei
verschieblichen Drähten nähert sich E dem um 20 % höheren
Wert für den Einzeldraht, aber J sinkt gleichzeitig so viel
rascher, dass das Produkt JE auf alle Fälle kleiner wird.

Tabelle 1. Minimale Wellenlängen Xmm in m bei Eigenschwingungen

(j F(£2/16; e 1,1 ¦ IO» t/cm2; 1 % Fehler bezüglich S)

Seildurchmesser d in mm
10 20 40 80

Faustformel

6 t/cm2 2,6 5,3 11 21 X > 250 d
4 t/cm.2 3,2 6,5 13 26 X > 300 d

2 t/cmgK 4,5 9 18 37 X > 450 d

Werden bei Eigenschwingungen diese Bedingungen für
Xm£„ eingehalten, so dürfte im allgemeinen eine Vernachlässigung

der Biegesteifigkeit, d.h. der Gebrauch von (6b)
zulässig sein, wobei a ax gesetzt wird.

Bei den vorstehend durchgeführten Ableitungen wurde
vorausgesetzt, dass die Schwerkraft einen zu vernachlässigenden

Einfluss habe. Deshalb gelten die Beziehungen (6)
bis (6c) zunächst nur, wenn der Durchhang des wirklichen
Seiles klein bleibt. Dabei ist allerdings nicht der Durchhang
gegenüber der Sehne des ganzen Feldes massgebend,
sondern nur gegenüber der Sehne zwischen zwei benachbarten
Knotenpunkten der Wellen. Mit anderen Worten bleibt die
Gültigkeit für grosse Spannfelder bestehen, nicht aber ohne
weiteres für extrem lange Wellen, wie sie allerdings als
Störwellen auch gar nicht in Frage kommen. Ein solcher Einfluss
— der hier nicht weiter untersucht wird — ist erst zu
erwarten, wenn es sicjijjum die Eigenschwingung erster
Ordnung bei besonders tief ddrchhängenden Seilen handelt, wobei

dann auch Unterschiede auftreten dürften, je nachdem,
ob das Seil horizontal oder vertikal ausschwingt.

4. Theorie der Schlagwellen (Gruppengeschwindigkeit)

Unter einer Schlagwell^gei im folgenden eine Einzelwelle,

ein Wellenpaket oder eine Wellengruppe (im Gegensatz

zum unendlich langen Wellenzug) verstanden, die durch
eine kurzzeitige lokale Störung erzeugt wurde und sich längs
des Seiles fortbewegt. Sofern die Biegungssteifigkeit eine
Rolle spielt, zeigen solche Wellengruppen zwei merkwürdige,
aber aus der Theorie der Wellen wohlbekannte Eigenschaften:

Erstens bewegen sie sich rascher, als ihrer Wellenlänge
nach (6) entspricht, und zweitens erleiden sie ständige Ver-

Pqrmungen.
Am Beispiel eines aus etwa fünf Wellen bestehenden

Wellenpaketes nach Bild 4 mit der ausgeprägten Wellenlänge

X 2 m sei das vorerst rein beschreibend verdeutlicht.
Ein Beobachter, der einen Wellenberg A (schraffiert) ins
Auge fasst, wird zwar feststellen können, dass dieser sich
mit der nach (6) zu berechnenden Phasengeschwindigkeit o
fortbewegtsSaber zusehends kleiner wird und schliesslich

*) Th. Wyss, «Die Stahldrahtseile der Transport- und Förderanlagen

usw.», Schweizer Druck- und Verlagshaus AG, Zürich, 1956,

5. 118.

ganz verschwindet. Während dieser Zeit sind vor der Welle A
neue Wellen entstanden, hinter ihr andere abgeklungen. Das
Paket als Ganzes bewegt sich also rascher als die zu ihm
gehörenden Einzelwellen; man führt deshalb den Begriff der
Gruppengeschwmdigkeit aß ein, mit der sich das Gruppen-
(Energie-) ZenSim fortbewegt. Nach einem bestimmten
Zeitintervall (von hier 0,03 s) hat die Maximalamplitude den
Schritt von WellenbergÄ auf B bzw. B' vollzogen. Wir
geben diesem Zeitintervall vggerst den Namen Schrittzeit,
werden es aber in der Folge mit dem sehr bezeichnenden

Wort ZerfaUzeit tz benennen, weil innert dieser Zeit das
individuelle Merkmal (z. B. die maximale Amplitude) einer
bestimmten Welle zerfällt bzw. an die Nachbarwelle verloren
geht.

Eine Erklärimg für diese Zusammenhänge ergibt sich,
wenn die Wellengruppe als Fourlerentwicklung des ganzen
Wellenlängenspektrums von X 0 bis oo aufgefasst wird.
Alle Komponenten dieser Fourierentwicklung sind dann
unendlich lange Wellenzüge der Form (5), die sich mit ver-
schiedenen Geschwindigkeiten bewegen. Im Falle eines
Wellenpaketes nach Bild 4 haben diese Komponenten ein
ausgeprägtes Intensitätsmaximum bei X 2 m. Zur Zeit t 0

besitzen sie bei A gleiche Phasenlage und addieren sich, während

sie sich ausserhalb des Paketbereiches gegenseitig
aufheben. Dieser Punkt gleicher Phasenlage wandert nun
innerhalb der Schrittzeit tz zur Nachbarwelle B', was an Bild 5
näher untersucht werden soll (wobei die in Klammern
angegebenen Zahllll-sich auf das Beispiel von Bild 4 beziehen).

Links ist ein Stück der (ausgezogenen) Hauptwellenkomponente

I der Wellenlänge X (2 m) eingezeichnet, das
bei A gerade mit einer anderen Komponente H der um AX

(0,3 m) kleineren Wellenlänge X — AX (1,7 m) in Phase ist.
Die Komponente I bewege sich mit der Phasengeschwindigkeit

a (233 m/s), die Komponente H mit einer grösseren
a + Aa (243 m/s). Nach der Zeit tz (0,03 s) sind die beiden
weiter vorn liegenden Wellenberge bei B' in Phase gekommen,

d. h. die Welle H musste gerade die Strecke AX

(0,3 m) mehr zurücklegen als die Welle I, und es stand ihr
dafür die Relativgeschwindigkeit Aa (10 m/s) zur Verfügung.
Daraus ergibt sich die Schrittzeit t- AX/Ao (0,03 s).

Wäre a eine lineare Funktion von X, so würde sich für
alle Wellenlängen die gleiche Schrittzeit ergeben (wie das
stillschweigend für Bild 4 vorausgesetzt wurde), weil dann
AX/Aa eine Konstante ist. Folglich würden zur Zeit tt nicht
nur die Komponenten I und II bei B' in Phase sein, sondern
sämtliche Komponenten überhaupt, und die Wellengruppe
hätte in diesem Augenblick wieder genau das selbe
Aussehen wie für t 0. Im allgemeinen und insbesondere beim
biegungssteifen Seil gilt diese Linearität nur für einen

Wm\ i a°2_3m/5
a„s300m/s

Q-t, s7m

OG't* s9m

Bild 4. Wellenpaket am biegungssteifen Seil. Jede Einzelwelle
bewegt sich mit der Phasengeschwindigkeit a, das Gruppenzentrum
mit der grösseren Gruppengeschwindigkeit aa
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Tabelle 2. Berechnete Werte für Phasen- und Gruppengeschwindigkeit von Schlagwellen an 35 mm dickem Drahtseil maximaler Biege¬
steifigkeit (««, 200 m s; E 1,7-10* t/cm2; \ 1,1)

Wellenlänge 0 20 50 100

Phasengeschwindigkeit a oo

Gruppengeschwindigkeit ag oo

Schrittzeit, Zerfallzeit t_ 0

312 233 205,5 201,5 200,4 200,06 200,01 200 m/s
497 295 217 204,32 201,08 200,17 200,04 200 m/s

0,005 0,03 0,4 3,5 28 430 3500 oo s

schmalen Ausschnitt aus dem Wellenspekt^an, wie er etwa
zu Bild 4 gehört. Im Grenzfall wird die Schritt- oder Zer-
fallseit

(9) t_ - 3X

da

wobei das negative Vorzeichen gesetzt werden muss, weil
A\ ein negativer Zuwachs war.

Aus Bild 5 ergibt sich ferner, dass die vom Punkt
gleicher Phasenlage zurückgelegte Strecke agtz gerade um die
Wellenlänge X grösser ist als die Strecll <_._, um welche die
Welle I vorgerückt ist. Es ist also

agtz atz + ^

und man findet mit (9) die GruppengeschwindAgkeit

da
(10) a0. ¦ X-

-X

Mit den Zahlen unseres Beispieles wäre ag 233 + 2/0,03
300 m/s, also beträchtlich höher als die Phasengeschwindigkeit.

In Fällen, wo wie beim biegungsweichen Seil a eine
Konstante ist, bewegen sich alle Komponentenwellen gleich
rasch, und das Wellenpaket verschiebt sich ohne irgendwelche
Verformung mit aa a; die Schrittzeit oder Wellenzerfall-
zeit tz wird unendlich gross.

Für das biegungssteife Seil können (9) und (10) unter
Berücksichtigung der Beziehung (6) zwischen a und X wie
folgt angeschrieben werden:

(11) .*__--
3X qaX*
da

(12) «6 a |_

I J E (_gg
g

q<_2
¦ JE ffl]

AX

A

1
1

m -Ä^^. B7
at.

Bild 6. Zusammenhang zwischen Wellenlfinge X, Schrittzeit (Zerfallzeit) tz, Phasengeschwin
digkeit a und Gruppengeschwindigkeit aG

Die Grössenordnung von a, ag und tz wird am besten an
einem Zahlenbeispiel veranschaulicht, und zwar sei ein 35 mm
dickes Drahtseil mit sich nach Gl. (8) maximal auswirkender
Steifigkeit angenommen, das so gespannt ist, dass die
Phasengeschwindigkeit für unendlich lange Wellen o«, 200 m/s
betrage. Es ergeben sich dann nach (6), (11) und (12) die
in Tabelle 2 zusammengestellten Werte.

Mit Hilfe dieser Zahlen soll nun gezeigt werden, wie sich
eine Schlagwelle allgemeinster Art verhält, wie sie z. B. in
Bild 6 für t 0 dargestellt ist. Im Gegensatz zu der Wellen-
paketform von Bild 4 wird man bei einer Fourierentwicklung
einer solchen Form die Feststellung machen, dass ein sehr
breites Band des Wellenlängenspektrums beteiligt ist. In der
Mitte dieser Ausgangswelle sind zunächst alle Komponenten
in Phase. Durch horizontale Strecken (Bild 6, Mitte) ist von
dort aus für die verschiedenen X-Werte angegeben, welche
Distanzen in 1 s mit der Gruppengeschwindigkeit zurückgelegt

werden. So bedeutet der rechte Endpunkt der Strecke
für X 2 m bei 295 m, dass alle Wellenkomponenten von
etwa 2 m Wellenlänge nach einer Sekunde gerade an dieser
Stelle in Phase sind und dem Seil dort den Wellencharakter
von X 2 m einschliesslich der Phasengeschwindigkeit a
233 m/s aufdrücken.

Die langwelligen Komponenten von X oo bis etwa 10 m
sind kompakt beisammen geblieben und haben ini Gegensatz
zu kurzen Wellen eine sehr beständige Form, aus der die
kurzwelligen Komponenten bereits ausgewandert sind. Würde
man die Situation nach 10 s wieder ansehen, so wären
auch die 10-m-Komponenten ausgewandert, da ihre Phasen-
koinzidenz bis dann bereits 43 m nach vorne gerückt ist. Mit
anderen Worten spritzen aus der Schlagwelle vom ersten
Moment an ganz kurzwellige (und dann sukzessive immer
langwelligere) Elemente heraus und laufen ihr voraus.
Gleichzeitig verliert die Ausgangswelle an Spitzigkeit und
Amplitude. Die ausgetretene Schwingungsenergie verteilt

sich ständig über immer zunehmende
Gebiete, und zwar um so ausgedehnter,

je kürzer die Wellenlänge ist,
weshalb die kürzesten, an der Spitze
liegenden Wellen bald vollständig
verflacht sind.

Wie für die Eigenschwingungen
in Abschnitt 3 muss hier noch untersucht

werden, wie gross die
Langwelligkeit von Schlagwellen sein
muss, dass auch hier die Biegesteifigkeit

vernachlässigt werden darf.
Setzt man JE aus (11) und S aus

(6b) in (6) ein und entwickelt in Reihen,

so wird für längere Wellen

t^o (13) a sa» +
und mit (10)

1 X

2" 17

X-oo
100
50
20
10

5
2
1

(in m)

(14) a0

-^y\AAAAAAA/wwwwwvv-

i X Sm X«2m

X«oo
X'lm

Bild 6. Schlagwelle mit kurz- und langwelligen Komponenten. Auswanderung und Voreilen
der kurzwelligen Komponenten aus der Ausgangswelle

Aus diesen interessanten
Beziehungen sieht man zunächst, dass die
Gruppengeschwindigkeit a0 dreimal
mehr von ax abweicht als die
Phasengeschwindigkeit a (was auch aus
den Zahlen von Tabelle 2 hervorgeht).

Infolgedessen wird auch der
Fehler für die Zugkraft S dreimal
grösser, wenn mit a0 statt mit a ge-
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Tabelle 3. Minimalwerte für die Wellenlänge
wellen (J Fd^/X&; E _= 1.7-103 t/cm2 ;

(in m) und die Zerfallzeit tz (in s) bei Schlag-
1,1 ; 10/o Fehler bezüglich S)

Bild 7. Eigenschwingung
höherer Ordnung in grossem

Spannfeld. Die
Knotenpunkte liegen in den
hQheren Seilteilen weiter
auseinander als in den
unteren

rechnet wird. Da [vgl. Gl. (6c)] dieser Fehler aber mit X2

abnimmt, kann das dadurch kompensiert werden, dass Xmi„

gegenüber (7a) bzw. Tabelle 1 mit dem Faktor j/~3~ multipliziert

wird, wie das in Tabelle 3 ausgeführt ist.
Setzt man jetzt aK aus (14) in (6b) ein, so findet man

(immer für längere Wellen)

PI <z„ X-Werte hei d [mm] ..-Werte bei d [mm] Faustformeln *) für
t/cm2 m/s 10 20 40 80 10 20 40 80 X[m] U [s]

6 260 5 9 18 37 6 11 21 42 > 0,45 d > 0,5 d
4 210 6 11 22 45 8 16 32 63 > 0,55 d > 0,8 d
2 150 8 16 32 63 16 32 63 126 > 0,8 d >l,6d

*) d ist in mm einzusetzen, X wird in m, £_ in s erhalten.

(15) S ¦a0a
3X

aatz

Bei der für S zugrunde gelegten Genauigkeit von IM kann
also tz 300 X/ag zz 300 X/ax aus X„än bestimmt werden. Die
so für maximale Seilsteifigkeit berechneten Zerfallszeiten
sind ebenfalls in Tabelle 3 aufgeführt. Da die Wellenlänge
X nur mit komplizierten Messeinrichtungen gemessen werden
kann, sind diese Minimalwerte für die ZerÄlzeit ein wichtiges

Kriterium für reine Stoppuhimessungen. Behalten nämlich

Schlagwetten während dieser Zeiten ein regelmässiges
Verhalten bei, so darf wegen ihrer Formbeständigkeit direkt
auf eine ausreichende Langwelligkeit geschlossen werden.

Diese Zahlenangaben liegen übrigens auf der sicheren
Seite, da sich die Seilsteifigkeit gerade bei langen Wellen
nicht voll auszuwirken scheint. Zudem wird, wenn die Welle
während der Messung formbeständig bleibt, mit der Stoppuhr

immer ein und derselbe Wellenkopf verfolgt, so dass

man effektiv die Phasengeschwindigkeit a und nicht die
Gruppengeschwindigkeit Og misst, wodurch sich der Fehler
nochmals reduziert.

Wahrscheinlich dürften die X- und _2-Werte von
Tabelle 3 um 20 bis 30 % verringert werden; bei ihrer
Einhaltung liegt der Fehler für S unter 1 %.

5. Praktische Durchführung der Messungen

Bei den Messungen wird die Laufzeit einer Welle
bestimmt. Entweder geschieht das mit Schlagwellen, die für
einen Hin- und Hergang die Laufzeit ti, benötigen, oder mit
Eigenschwingungen, wo die Schwingungsdauer T (Reziprok-
wert der Frequenz) mit tr. über die Beziehung

(16) tL iT
zusammenhängt, worin i die Anzahl Schwingungsbäuche
bedeutet (Bild 7 beispielsweise i — 4). Da die Wellengeschwindigkeit

in den oberen Seilteilen wegen der höheren Spannung

grösser ist, liegen dort die Knotenpunkte weiter
auseinander als unten.

In beiden Fällen sei die Wellenlänge nach Tabelle 1 bzw.
3 so gross gewählt, dass die Biegungssteifigkeit vernachlässigt

werden darf. Dann kann für kleinere Seilfelder mit
tL und der Feldsehne c auf a„ ;__ 2 c/tL und damit nach (6b)
auf die mittlere Zugkraft ü? geschlossen werden. Es gilt dann

(17) B~ iqc"

Bei grösseren Spannwelten wird man aber besser mit den
im Anhang (Abschnitt 6) abgeleiteten Reihen arbeiten.
Entweder wird die Horizontalkraft H bzw. der Seilzug 8~ in
Feldmitte aus

(26) S H- iqc
~9 -L2 L ^U 2 C2J

_/2.L4
128 c2

bestimmt (Grössen b, c, h nach Bild 7), oder man berechnet
die Zugkraft Sg an den beiden Feldenden mit

(29) ~SS
qh 4 q c2 1+1 h? g*tL*

96 c2

Da als Messinstrument einzig eine Stoppuhr 3) verwendet

werden soll, dürfte mit einem Zeitablesefehler von etwa
+ 0,2 s zu rechnen sein. Will man vermeiden, dass der
dadurch verursachte Fehler in bezug auf den Seilzug 1 %
überschreitet, so muss die Beobachtungszeit mindestens 40 s
betragen. Sich mit dem Abstoppen eines einzigen Hin- und
Herganges einer Schlagwelle zu begnügen, ergibt also höchstens

In Feldern von mehreren Kilometern Länge eine
befriedigende Genauigkeit.

Grössenordnungsmässig beträgt die Laufzeit je 100 m
Feldlänge gerade 1 Sekunde. Dementsprechend ergibt sich
bei Eigenschwingungen beim Knotenabstand 100 m ebenfalls
eine Schwingungsdauer von 1 Sekunde. Erfolgt die
rhythmische Erregung mit eigener Hand, so können je nach
Geschicklichkeit noch Frequenzen von 3 bis 5 Hertz abgezählt
werden, so dass das Verfahren je nach Umständen noch in
ganz kurzen Feldern bis hinunter auf 20 bis 30 m Spannweite

angewendet werden kann.
Im allgemeinen ist in langen Feldern das Arbeiten mit

Schlagwellen einfacher als mit Eigenschwingungen. Wegen
der kleinen Dämpfung kann man die Hin- und Hergänge
dann oft minutenlang verfolgen. Bei kurzen Feldern liegen
die Verhältnisse insofern ungünstiger, als die Dämpfung mit
der wachsenden Anzahl von Reflexionen an den Feldenden
zunimmt. Während eine Welle innerhalb der als minimal
bezeichneten Beobachtungszeit von 40 s in einem 500-m-Feld
unter normalen Verhältnissen weniger als 20 mal reflektiert
wird, ergeben sich in Feldern von weniger als 100 m Länge
in der gleichen Zeit bald einmal mehr als 100 Reflexionen,
wodurch eine Schlagwelle für einfache Messmethoden zu
stark gedämpft wird.

Gerade in diesen kurzen Feldern eignet sich dann aber
die Eigenschwingungsmethode, bei der die Schwingungen ja
durch !lhythmlsche Störkräfte beliebig lange aufrechterhalten

werden können. Da die Knotendistanz bei der Schwingung

erster Ordnung allerdings gerade gleich derSpannweite,
also verhältnismässig gross wird, muss man sich fragen, ob
damit die Voraussetzungen für die in Abschnitt 3 abgeleiteten

Beziehungen noch gegeben sind, d. h. ob der Durchhang

des Seiles nicht bereits eine Rolle zu spielen beginnt.
Bei den hier in Frage kommenden kurzen Spannfeldern ist
das aber nicht der Fall; auch weisen die Eigenschwingungen
mit horizontalen und vertikalen Ausschlägen noch gleiche
Eigenfrequenzen auf11). Dabei sind die horizontalen Schwin-

*) Stoppuhren gehen oft weniger genau, als man glaubt. Man
tut gut, sie jeweils mit dem grossen Sekundenzeiger einer täglich
benutzten Uhr zu vergleichen. Selbst die TJngenauigkeit von
Armbanduhren liegt weit unter 1 %o (1 %o Fehler 1% Minuten im Tag).

°) Das ist nicht unbedingt zu erwarten: horizontal schwingt das
durchhängende Seil vorwiegend pendelartig aus, und vertikal handelt

es sich um eine elastische Schwingung, wo bei extremen
Durchhängen auch der Elastizitätsmodul eine Rolle spielt.
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gungen vom Feilende aus in der Regel leichter anzufachen
als die vertikalen. Bei der Eigenschwingungsmethode ist es
auch möglich, das Feld künstlich zu verkürzen, indem man
z. B. doppelt so rasch erregt und in der Feldmitte einen
Schwingungknoten erzeugt, der sich gut beobachten lässt.

Was schliesslich die Schlagwellenmethode anbetrifft, so
sollte darauf geachtet werden, dass ihre Wellenlänge gemäss
Tabelle 3 nicht zu kurz ausfällt und dass diese Wellenlänge
so rein wie möglich erzeugt wird, d. h. dass kurzwellige
Komponenten wlitgehend ausgeschaltet sind. Will man beispielsweise

eine Wellenlänge von X 20 m erzeugen, so ergreift
man das Seil am besten in 5 m X/4) Abstand vom Feldende

und drückt es kurzzeitig zur Seite. Die Wirkzeit Tw
dieser Störkraft muss aber etwa!» gross sein wie die Zeit
(T/4), die das Seil selbst bei einer 20-m-Welle braucht, um
vom Durchgang durch die Nullage auf den vollen Ausschlag
zu kommen, nämlich den vierten Teil der Schwingungsdauer
T X/a. Für a 200 m/s wäre h|_r T =Ml s und Tw
0,025 s. Wird die Wirkzeit wesentlichSkfirzer, entstehen die
unerwünschten kurzwelligen Komponenten. Mit anderen
Worten ist darauf zu achten, dass der Schlag nicht allzu
scharf geführt wird. Bei dünnen Seilen ist diese Bedingung
nicht schwer zu erfüllen: Wenn man ein 10 mm dickes Drahtseil

von Hand ruckartig auslenkt und sofort wieder loslässt,
werden die Wirkzeiten keinesfalls zu klein. Im Gegenteil
wird man darauf achten müssen, so scharf und plötzlich
wie möglich zu ziehen, da sonst der erzeugte Wellenbuckel
stumpf wird und seine Rückkehr nur unscharf beobachtet
werden kann. Uebrigens darf die Wellenlänge bei einem
10-mm-Seil gemäss Tabelle 3 auch wesentlich kürzer sein
als bei einem Seil von 40 oder 80 mm Durchmesser.

Bei dicken Seilen wird die Aufgabe viel schwieriger, da
für eine genügende Initialausbuchtung viel grössere Kräfte
ausgeübt werden müssen. Was passiert, wenn beispielsweise
mit einem Bleihammer auf ein 39 mm dickes, mit 39,5 t
gespanntes Drahtseil geschlagen wird, geht aus dem (oberen)
MesstreifenT) von Bild 8 hervor. Das aufgezeichnete
Wellenbild unterscheidet sich aber prinzipiell von der Darstellung

auf Bild 6, da es sich hier um Ausschlagsmessungen
an einer bestimmten Seilstelle (in 2,8 m Distanz vom
Feldende) in Funktion der Zeit handelt, während auf Bild 6 die
gesamte momentane Seilform zu bestimmten Zeiten
wiedergegeben ist. Der Moment des Schlages ist auf dem
Messstreifen markiert; der Ausschlag selbst ist nicht zu sehen,
weil der schreibende Lichtstrahl sich zu rasch bewegt. Bei

7) Die oszillographischen Messungen wurden unter freundlicher
Mitwirkung der beiden ETH-Institute für Geophysik und Flugzeugstatik

durchgeführt, was an dieser Stelle bestens verdankt sei.

der ersten Rückkehr hat sich die Schlagwelle in eine 1,6 s

dauernde Wellenfolge aufgelöst, die mit ihrer Amplitudenmodulation

in drei Wellenpakete A, B und C zerfällt. Solche
Amplitudenmodulationen sind in erster Linie auf die
ursprüngliche Form der Schlagstörung zurückzuführen, in
zweiter Linie hängen sie aber auch von der Lage der Messstelle

ab, weil die Nähe der Reflexionsstelle Interferenzer-
*jsgBginungen bewirken kann.

In Tabelle 4 sind die wichtigsten Grössen des
Messstreifens zusammengestellt. Der von Auge sichtbare
Ausschlag und die von Hand fühlbare Schüttelkraft müssten mit
der Frequenz umgerechnet werden, weil das benützte
Messinstrument geschwindigkeits-proportionale Ausschläge
registriert. Im allgemeinen ergeben Nachrechnungen, dass sich
die Biegesteifigkeit bei kurzen Wellen voll oder doch zu
einem hohen Prozentsatz auswirkt. Die langen Wellen eignen
sich für solche Nachrechnungen nicht, da der Einfluss der
Biegesteifigkeit dann zu klein ist, um analysiert zu werden.

Tabelle 4. Zahlenwerte zu Bild 8

Messtreifen 8a 8a 8a 8b

Wellenpaket A B C

Gruppengeschwindigkeit ag 285 223 — — m/s

Phasengeschwindigkeit a (235) (214) 210,5 209 m/s
Frequenz 1/T 90 37 14,3 11,6 Hz
Wellenlänge X 2,6 5,8 14,7 18 m
Seilzug, unrichtig
gerechnet mit
aa a Co73,5 45,0 40,1 39,6 t
rel. Ausschlag 5 62 100 — %
rel. Schüttelkraft 54 100 24 — %

Der ohne Rücksicht auf die Seilsteifigkeit aus ag bzw.
a berechnete Seilzug ergäbe mit der am heftigsten schüttelnden

Welle (Paket B) einen Fehler von 14 %, und mit den
zuerst ankommenden, vibrationsartigen Wellen (Paket A)
erhielte man so unsinnige Werte, dass man wohl kaum in
Versuchung käme, sie als richtig anzunehmen. Einzig die
Wellen mit der schwächsten Schüttelkraft (aber immerhin
mit dem grössten visuellen Ausschlag) ergeben einen Fehler
von bloss + 1,5 %. Auf dem Messtreifen kann man auch
feststellen, dass nur diese Wellen sich bei jeder weiteren
Wiederkehr individuell erkennen lassen. Die grösste von
ihnen (mit Pfeil bezeichnet) erscheint stets nach einem
ganzzahligen Vielfachen von tj, 4,68 s nach dem Schlag.

Die kurzwelligen Pakete bewegen sich mit der
Gruppengeschwindigkeit aa. Auf Bild 9 lässt sich ihre Lebensge-

Schlog

T-

1 s

B
c

B t

6

Schlag
T

**fyf*
j

Bild 8. Schlagwellenmessung an vollverschlossenem Tragseil von 89 mm Dicke, mittlere Zugkraft 39,5 t, Messtelle in 2,8 m Abstand vom
Feldende. Oben (a) Schlag mit Bleihammer in 2 m Abstand vom Feldende; unten b) Ruckartiger Zug mit vier Armen in 4 m Abstand vom
Feldende mittels Hanfseil
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Bild 9. Zerbersten der Schlagwelle in kurzwellige Wellenpakete.
Die auseinandergeschnittenen Teile des Messtreifens sind
untereinander angeordnet. (Gleiches Seil wie Bild 8, Schlag mit Holzklotz)

schichte — an einem anderen Versuch — besonders schön
verfolgen, weil dort der Messtreifen auseinandergeschnitten
und die Teilstücke derart untereinander angeordnet wurden,
dass der grösste Wellenkopf der 17-m-Welle jeweils senkrecht

unter den Schlagmoment zu liegen kommt: Rechts
davon erkennt man einen formbeständigen Teil, der die
Abstammung von der Urwelle im obersten Diagramm nicht
verleugnen kann. Nach links bersten explosionsartig die Wellenpakete

mit den kurzen Wellen heraus. Die Urwelle musste
auf Grund der kaum sichtbaren Diagrammspuren von Hand
ungefähr nachgezogen werden.

Als vollendetes Schulbeispiel darf die 10-m-Welle
bezeichnet werden, deren Entstehung aus der Urwelle von der
zweiten bis zur vierten Linie sehr hübsch verfolgt werden
kann. Man versteht auch, dass ein solches Paket (dessen
vordere und hintere Enden unterschiedliche Wellenlängen
aufweisen und sich mit verschiedenen Geschwindigkeiten
bewegen) sich ausdehnt, so dass seine Wellenzahl sich ver-
grössert.

Abgesehen davon, dass diese Diagramme schöne
Illustrationen zu den Ueberlegungen von Abschnitt 4 geben,
beweisen sie, dass bei dickeren Seilen vor Schlägen mit
festen Gegenständen gewarnt werden muss, und zwar auch
dann, wenn diese Schlagkörper eine gewisse, aber eben doch
unausreichende Elastizität besitzen, wie Holz, Plastik und
dgl. Die Initialwelle dürfte bei solchen Schlägen eine
Ausgedehntheit des Wellenspektrums aufweisen wie die Schlagwelle

von Bild 6. Je schärfer der Schlag geführt wird, um
so mehr kurzwellige Komponenten entstehen, die unter
Umständen zu Falschmessungen führen können.

Immerhin ist zu grosser Pessimismus fehl am Platze.
Selbst bei scharfen Schlägen werden nämlich immer auch
langwellige Komponenten miterzeugt, die -- trotzdem ihr
Anteil energiemässig oft klein ist — sich doch recht gut
beobachten lassen. Erstens handelt es sich dabei um die
deutlich fühlbare Schlusswelle der ganzen Wellenfolge, die
vibrationsartig beginnt und mit niederfrequenten Schwingungen

endet, und zweitens hat diese Schlusswelle wegen
ihrer Langwelligkeit die grösste Lebensdauer, so dass sie
schliesslich allein übrig bleibt.

Man kann aber ohne Schwierigkeit die Entstehung
von kurzen Wellen überhaupt vermeiden. Das einfachste
und sicherste Verfahren scheint dasjenige zu sein, auch
bei dicken Drahtseilen mit der menschlichen Armkraft
allein auszukommen. Reicht bei d 20 mm vielleicht
ein Arm gerade noch aus, so sind beim 40-mmm-SeH
vier und beim 80-mm-Seil 16 Arme notwendig. Man wird zu-
diesem Zwecke ein Hanfseil über das Drahtseil werfen und
ruckartig gemeinsam daran ziehen. Dabei ist darauf zu
achten, dass das Hanfseil vor dem Ruck nicht etwa locker,
sondern bereits leicht gespannt ist, weil sonst wiederum ein
hammerartiger Effekt entsteht. Dann aber — bei leicht
angespanntem Hanfseil — soll so scharf wie irgend möglich
gezogen werden, damit sich die zurückkommenden Schlagwellen

am hängenbleibenden Hanfseil deutlich von Hand
abfühlen lassen. Man merkt dabei sehr genau, ob die Ruckdosierung

richtig war.
Dass es bei einem solchen Vorgehen gelingt, zu kurze

Wellen wirklich zu vermeiden, sieht man auf dem unteren
Messtreifen von Bild 8 sowie an den zugehörigen Zahlen von
Tabelle 4. An dem 39 mm dicken Tragseil wurde in 4 m
Distanz vom Feldende mit vier Armen gezogen. Es sind
tatsächlich nur 18 m lange Wellen entstanden, und von der
ersten8) bis zur elften Schlagwellenrückkehr sind mit der
Stoppuhr 47,2 s gemessen worden, was mit dem gleichzeitig
aufgenommenen Diagramm tadellos übereinstimmt. Die
erreichte Messgenauigkeit lag in diesem Fall unter einem
halben Prozent, bezogen auf den berechneten Seilzug.

Die auf das Drahtseil ausgeübte Kraft dadurch ver-
grössern zu wollen, dass man sich mit dem ganzen
Körpergewicht kurz an das Hanfseil hängt, scheitert daran, dass
dadurch die Wirkzeit zu lang wird und die Messchärfe
darunter leidet. Ebenfalls an mangelnder Messchärfe leidet das
Verfahren, das Drahtseil statisch lokal zu belasten und die
angebrachte Last plötzlich zu entfernen.

Es ist anzunehmen, dass mit einem Schlag einer festen
Masse auf ein federndes Zwischenstück ebenfalls eine
geeignete Schlagdosierung erreicht werden könnte, wenn die
Elastizität dieses Zwischenstückes der gewünschten Wirkzeit

entsprechend genügend gross gewählt wird, d. h. wenn
die Eigenfrequenz von Federung und Masse grössenord-
nungsmässig bei 10 Hz liegt.

Bei dünnen, z. B. 1 cm dicken Seilen ist das Seil selbst
elastisch genug, dass sich für von Hand bewegte Schlagkörper

genügend lange Wirkzeiten ergeben; bei dicken Seilen
müssten sehr viel grössere Massen Verwendung finden, um
ohne Zusatzelastizität brauchbare Schlagwellen zu erzeugen.
Bei dünnen Seilen dürften deshalb kaum je Falschmessungen
vorkommen, während bei dicken mit Vorsicht vorzugehen ist.

Zum Abschluss dieser Ausführungen über die praktische
Messdurchführung muss die Frage der Reflexionen
aufgeworfen werden. An den Feldenden läuft das Tragseil
meistens tangential auf einen Seilschuh auf, so dass nicht von
einer theoretisch scharfen Reflexionsstelle gesprochen werden

darf. Diese Unscharfe liegt aber eine Grössenordnung
tiefer als die in Frage kommenden Wellenlängen und ist
deshalb wohl ohne praktische Bedeutung. Da diese Re-
flexionsstellen in der Vertikalebene durch die Seilaxe eine
Symmetrieebene besitzen, sind die vertikalen Schlagwellen
den horizontalen vorzuziehen. Die letzteren erhalten mit
jeder Reflexion zusätzliche Vertikalkomponenten bei einem
stärkeren Abklingen des horizontalen Ausschlages.

Bei Reflexionen an Fahrgestellen spielt das Fahrzeuggewicht

eine ausschlaggebende Rolle. Ist dieses gross, so ist
die Reflexion stets gut, auch wenn an den einzelnen Rollen
Teilreflexionen stattfinden, da die Rollenabstände verglichen
mit der Grösse einer 20-m-Welle klein sind. Ist das
Fahrzeuggewicht dagegen klein, so geht ein merklicher Teil der
Schwingungsenergie unreflektiert auf der anderen
Fahrzeugseite weiter und wird erst am eigentlichen Feldende
reflektiert, wodurch störende Effekte entstehen.

s) Im Interesse der Messgenauigkeit empfiehlt es sich, die
Stoppuhr frühestens bei der ersten Wiederkehr der Schlagwelle in
Gang zu setzen.
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Aehnlich störend wirken Seilreiter und Kuppelstücke
von Tragseilen, und man wird von Fall zu Fall ausprobieren
müssen, wie weit man die Teilreflexionen an ihnen von den

Hauptreflexionen am anderen Feldende unterscheiden kann.
In einem Fall von zwei parallelen, durch Reiter verbundenen
Tragseilen wurde beispielsweise eine Messung möglich,
indem (beiden Seilen gleichzeitig erteilte) Schlagwellen am
Feldende spürbar kräftigere Reflexionen erhielten als an den

Reitern. Immerhin muss darauf verzichtet werden, wiederholte

Durchgänge der Störungen beobachten zu wollen.
Befindet sich ein Fahrzeug irgendwo im Messfeld, so ist

neben dem Seilzug meistens auch der Abstand des

Fahrzeuges unbekannt. Da dieses aber im allgemeinen selbst als
gute Reflexionsstelle wirkt, lassen sich in beiden Teilfeldern
Schlagwellen- oder Eigenschwingungsmessungen durchführen,

aus denen sich beide Unbekannten bestimmen lassen.
Je nach den Gegebenheiten wird man dabei neben den am
Anfang dieses Abschnittes angegebenen Beziehungen die
Grössen der Teilsehnen usw. als Funktion des durch das
Fahrzeuggewicht bedingten Durchhanges zu berücksichtigen
haben 9).

6. Anhang. — Berücksichtigung der Kettenlinienform
Will man die Messung der Laufzeit ti von Störwellen

durch grosse Seilfelder zur Bestimmung des Seilzuges bzw.
der Horizontalkraft H benützen, so müssen Beziehungen
zwischen diesen Grössen aufgestellt werden, die berücks^^^E
gen, dass ph die Störungen entsprechend der Seilkraftvariation

mit veränderlicher Geschwindigkeit entlang einer
Kettenünie bewegen.

Da nach den Ausführungen der vorhergehenden
Abschnitte die Wellen sowieso nicht so kurz sein dürfen, dass
ihre Fortpflanzungsgeschwindigkeit merklich durch die
Biegesteifigkeit des Seiles beeinflusst wird, genügt es, sich
im folgenden auf lange Wellen zu beschränken und entsprechend

(6a) anzusetzen:

ds
~dt

\fä s

worin ds das Bogenelement des Seiles ist 10). BeHS biegimgs-
weichen Seil ist nun (Bild 10) ds (Sdx)/H, so dass sich
die Horizontalkomponente der Geschwindigkeit schrS^S

dx
ÜÜ H m 9

qS

Bild 10.
Seilkurve als
Kettenlinie

S. ds
H "dx

zh

*.;

cosh

S Z'Ob/2 b/2

Führt man hier noch die bekannte Kettenlinienbeziehung
für S ein

(18) S=H cosh -^xH
so findet man die Differentialgleichung

dt-. q q
——=- cosh -^ a; ax
gH H

Integriert man diese von 1 bis 2 und wieder zurück von
2 bis 1, so ergibt sich die totale Laufzeit tz,, in der die
Störwelle wieder zum Ausgangsort zurückkehrt

ö) Vgl. hierzu O.Zweifel: Seübahnberechnung bei beidseitig
verankerten Tragseilen; Schweiz. Bauzeltung 1960, Heft 1 und 2,
Gleichungen 8 bis 10.

1") Die Bogenlänge s tritt hier an die Stelle der in Bild 2

verwendeten Abszisse x; die Zugkraft S hat aber hier (lokal) wie dort
die selbe Bedeutung.

Xm+-

(19) tL=2 f& cosh -^ x dx
H

Um die mathematischen Ausdrücke nicht unübersichtlich
werden zu lassen, führt man vorübergehend folgende
dimensionslose Grössen ein:

(20) tl / 99
1 H 2

J<-~ •*'m/

______2H
q_

H¦x„

f (.o + {) ]/ cosh (|o + _) / (io) 1/cöshlo

Damit wird die dimensionslose halbe Laufzeit
+ ß +J8

(21) t fl/ cosh (&>+_) d. // (.0 + d.

nach Taylor entwickelt
+ ß

¦¦ i \f(io)+^rf'(.io

-ß

+ ^r/"(_o) + \dt

und schliessiph integriert

1
T 2J8/(|0)+-^-/"(-o) +

(22) t=2/. J/coshfo +-^-]/cosh|0 (l — -g-tgh2£0\ -|

Im piiStischen Fall ist allerdings Co bzw. xm gar nicht
gegeben, d.h. man kennt zwar die Koordinaten der Feldenden,
jedoch nicht die Lage des der Normalform der Kettenlinie
zugrunde liegenden Koordinatenkreuzes. Es ergibt sich aber
eine Bestimmungsgleichung für xm, wenn in Bild 10 die
Höhendifferenz h mit Hilfe der Kettenlinienfunktion
ausgedrückt wird:

h —

:j||^OSh-J(*m +-£•)-COSh M— T
Schreibt man diesen Ausdruck ebenfalls mit den dimensionslosen

Grössen nach Gl. (20), so wird

2 ß — i cosh (|0 + ß) —cosh(£o— ß) — 2sinh|oSii-hi8

wobei sich die letzte Form nach dem Additionstheorem der
Hyperbelfunktionen ergibt. Daraus erhält man

(23) sin£0:
h
b sinh ß

Damit ist fo bestimmt und kann in (22) eingesetzt werden.
In Reihen entwickelt, findet man dann

"i/-. L2 + (t 1 h*
TU* j82 +

Werden jetzt die dimensionslosen Grössen ß und t wieder
nach den Beziehungen (JE) durch die ursprünglichen Grössen

ersetzt, und führt man noch einen mittleren Seilzug 13

(24) ~S~ H

ein (was dem Seilzug an der Stelle des grössten Durchhanges

entspricht, Sfir näherungsweise in der Feldmitte auftritt),
so wird

(25) tIl—2c MH l h
Y~c \ 16P T

Diese Beziehung eignet sich insbesondere für den Fall der
Montage beidseitig verankerter Drahtselle, wo so lange ge¬
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spannt wird, bis eine Störwelle gerade die nach (25)
vorausberechnete Laufzeit braucht. In allen anderen Fällen, wo tL

gemessen wird und F bzw. H aus diesem Wert berechnet
werden soll, kehrt man die Reihe besser um und schreibt

(26) S H — iqc*
~gtrj

r /1 i h2\btk-JÄri g*tL*
128 c2 +

Wie rasch diese Reihenentwicklungen konvergieren, geht
daraus hervor, dass sogar bei einem ganz grossen Spannfeld

von beispielsweise b c 4 km und <r_ 4 t/cm2 das
zweite Glied in der eckigen Klammer in (26) nur 3 % und
in (25) 1,5 % beträgt. In Anbetracht der allgemeinen Mess-
ungenauigkeit kann deshalb wohl in allen praktisch vorkommenden

Fällen auf ein drittes Glied der Reihenentwicklungen
vflfzichtet werden. Im Gegenteil wird man bei Spannweiten

unter 1000 m auch das zweite Glied vernachlässigen
können und näherungsweise schreiben:

(27) aa
9 ti 2c

~~ä~Z
S H- Iqc*

gtjp-
Die Umrechnung des nach (26) bestimmten Wertes für ~B

oder H auf den Seilzug SE am oberen oder unteren Ende des
Feldes muÄhei grossen Spannweiten über die Kettenlinien-
beziehungekg erfolgen. Es ist zunächst nach (18) für
x xm ± 6/2

Se i H cosh -

H (*» ± 1)
und mit den dimensigbslosen Grössen von (20) gesehrieben

Sa Hcosh (£0 ± ß) H (cosh|ocosh ß ± sinhJfl-nh ß)

Setzt man hier wieder £0 aus (23) ein und entwickelt in
Reihen, so ergibt sich mit (20) und (24) für den Seilzug
am Feldende

(28) SR—±

1

384

q h
2

1 —

8 1 +
7.2

"cä"

¦19$
In dieser Reihenentwickfilig ist ein drittes Glied angegeben
(trotzdem es sogar für grosse Spannweiten sehr klein bleibt),
weil das zweite Glied verdächtig gross ist. Für h 0,
c 4 km, az 4 t/cm2 beträgt dieses immerhin 9 %.

Drückt man SB schliesslich mit (26) direkt durch die
gemessene Laufzeit ausB so wird

(29) H _+ 9Ä 4gcü[ 1 —.
5 Ä2\ g*ti*I 96 c2

Während die Grössen ~S und H, wie sie mit (26) bestimmt
werden, für vertikal hängende Seile unbrauchbar sind, kann
Gleichung (29) auch in diesem Fall angewendet werden.
Eine genaue Durchrechnung zeigt sogar, dass sie dann, also
für c h, zur exakten Gleichung wird und keine weiteren
Glieder noch hqSerer Ordnung hinzukommen.

7. Zusammenfassende Schlussfolgerungen
Die Zugkraftbestimmung in Drahtseilen mit Transversalwellen

lässt sich in einfachster Weise vornehmen und
dürfte bei korgekter Durchführung in den meisten
praktischen Anwendungsfällen eine ausreichende Genauigkeit
aufweisen. Am einen Ende des Seilfeldes werden Störwellen
eingeleitet und ihre Laufzeit tL durch das ganze Feld
gemessen. Bei langen Spannfeldern verursacht man am besten
einmalige Störungen oder sog. Schlagwellen, die dann
längere Zeit längs des Seiles hin- und herlaufen. Können diese
Wellen während mindestens 40 Sekunden gezählt werden, so
genügt die LaufZeitbestimmung mit einer Stoppuhr. Klingt
die Störung in kürzeren Feldern wegen der vielen Reflexionen

vorzeitig ab, so erregt man besser durch rhythmische
Störungen eine Eigenschwingung (stehende Wellen), wobei
sich die Laufzeit tL aus der Frequenz ergibt. Angaben über
die Auswertung sind zu Anfang von Abschnitt 5 zusammengestellt.

Für grosse Spannfelder werden dazu im Anhang

abgeleitete Beziehungen benützt, in denen die Seilzugvaria-
tion in Funktion der geodätischen Höhe und die wirkliche
Form der Kettenlinie berücksichtigt sind.

Bei allen Auswertungen wird vorausgesetzt, dass die
Seile als biegungsweich betrachtet werden können, d. h. dass
die Theorie der Saitenschwingung zugrunde gelegt werden
darf. Das ist aber nur zulässig, wenn die Wellenlänge ein
Minimalmass nicht unterschreitet, das bei normal gespann-

?t»jjjTragseilen das 300- bis 400-fache des Seildurchniessers
beträgt. Kürzere Wellen weisen infolge der Seilsteifigkeit
erhöhte Phasen- und Gruppengeschwindigkeiten auf und
sollten vermieden werden.

Solche kurze Wellen können beispielsweise entstehen,
wenn mit festen Gegenständen auf dicke Seile geschlagen
wird, wie anhand von Messdiagrammen gezeigt wird. Bei
dünnen Seilen ist allerdings gegen diese Art der
Schlagwellenerzeugung nichts einzuwenden.

Um in jedem Fall sicher zu gehen, wird empfohlen, die
Störungen ganz allgemein von Hand zu erzeugen, indem bei
dicken Seilen die Armkraft mehrerer Personen zur
Ausübung genügend grosser Kräfte zu Hilfe genommen werden
muss. Für die Kraftübertragung auf das Drahtseil wird ein
Hanfseil verwendet, an dem auch die zurückkommende
Störwelle fühlbar wird. Stellt man dabei fest, dass die immer
wiederkehrenden Impulse klein an Zahl sind und stets im
selben Rhythmus erfolgen, so darf angenommen werden,
dass die Langwelligkeit genügend gross ist. Das einfache
Abfühlen von Hand erlaubt auch, allzu kurze, vibrationsartige
Störwellen als solche zu erkennen

Adresse des Verfassers: Prof. Otto Zweifel, Maschinen-Laboratorium
ETH, Sonneggstr. 1, Zürich 6.

300 Jahre Wasserwaage dk 526.961.3

Die Wasserwaage ist im Jahre 1661 vom französischen
Astronomen Melchisedec Thevenot erfunden worden. Er füllte
ein Glasrohr beinahe ganz mit Weingeist, schmolz es dann
zu und schuf so die heute noch übliche Wasserwaage. Das
«instrumentum Thevenotianum», wie die Wasserwaage
ursprünglich hiess, wurde im Jahre 1775 durch Feiice Fontana
verbessert, der an Stelle der Luftblase einen luftleeren Raum
schuf. L. H. Tobiesen gab im Jahre 1798 an, die Glasröhre der
Wasserwaage soll nicht gerade, sondern «etwas gebogen
seyn», damit die Blase besser den höchsten Punkt in der

fSHtte finde.
IISIl älter als die hier beschriebene Form der Wasserwaage

ist die Schlauchwaage, denn früh schon scheint man
das Gesetz erkannt zu haben, dass in einer zusammenhängenden,

freien Wassermenge alle Teile der Oberfläche eine
Horizontalebene bilden. Heron der Aeltere aus Alexandrlen
beschreibt ums Jahr 110 nach Christus das Prinzip kommunizierender

Röhren, nach welchem in einer uförmig oder irgendwie
anders gebogenen Röhre das Wasser beider Schenkel

gleich hoch stehen muss. Eine der frühesten Abbildungen
einer solchen Schlauchwaage findet sich im Jahre 1629 bei
Giovanni Branca. Nach Einführung des vulkanisierten
Kautschuks verwendete man diesen zu Schläuchen. Diese Art der

JSSglmittlung der Höhenlage zweier Punkte, z. B. eines Hauses,
wurde erst auf der Pariser Weltausstellung von 1849 einer
breiten Oeffentlichkeit bekannt.

«fe

-*?^

^;1 -
— ^H^illj^iJ1^___3____

^_HW*___

Schlauchwaage, bestehend aus Lederschläuchen, die durch kurze
Metallrohre verbunden sind. Nach Giovanni Branca. Macchine, Rom
1629
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