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SCHWEIZERISCHE BAUZEITUNG

26. Mai 1961

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENOSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P.

Zugkraftmessung in Drahtseilen mit Transversalwellen

Fragen der Biegesteifigkeit und der grossen Spannweite

Von Prof. 0. Zweifel, ETH, Zurich

Einleitung

Ueberall, wo Drahtseile nicht durch Gewichte gespannt
sind, besteht ein Bediirfnis, den Seilzug messen zu konnen.
Dazu ist immerhin zu bemerken, dass auch bei Gewichts-
spannung oft die Grosse des Spanngewichts nur mit unge-
niigender Genauigkeit bekannt ist und die Reibung auf den
Seilschuhen zusitzlich eine ebenfalls schwer erfassbare Rolle
spielt.

Eine besonders einfache Messmethode ist die bekannte
Zugkraftbestimmung mit Transversalwellen!). Dabei lédsst
man eine schlagartig erzeugte Welle (Schlagwelle) von
einer Stiitze bis zur ndchsten laufen, wo sie reflektiert wird
und nach der totalen Laufzeit ¢, wieder an den Ausgangsort
zuriickkommt. Aus dieser Laufzeit schliesst man nach der
Theorie der Saitenschwingung auf den Seilzug. Dazu werden
allerdings noch die Feldabmessungen und das Léngen-
einheitsgewicht g des Seiles bendtigt. Komplizierte Mess-
apparaturen eriibrigen sich, weil einzig Zeitmessungen
(Stoppuhr) gemacht werden miissen. Fiir kiirzere Felder
wird hier vorgeschlagen, die Laufzeit indirekt durch Eigen-
schwingungsmessungen zu bestimmen.

Im Rahmen dieses Aufsatzes werden zwei, u. W. bisher
in diesem Zusammenhang nicht bearbeitete Fragen gestellt,
namlich die der Biegesteifigkeit und die der grossen Spann-
weite.

Was zunidchst den Einfluss der Biegesteifigkeit anbe-
trifft, so ergeben sich sehr interessante Zusammenhénge,
weil die Wellengeschwindigkeit, wie beispielsweise bei den
Wasserwellen, von der Wellenldnge abhédngig ist. Da diese
Wellenldinge bei der einfachen Messung mit der Stoppuhr
allein aber unbekannt bleibt, drédngt sich selbstverstéindlich
die Frage auf, wie weit die Seilzughestimmung bei der allge-
mein iiblichen Vernachldssigung der Biegesteifigkeit ge-
filscht werden kann. Die wirklichen Vorgidnge in Draht-
seilen bei Schlagwellen werden deshalb theoretisch unter-
sucht, wobei der geringe Einfluss der Ddmpfung unberiick-
sichtigt bleibt. Anhand von mit Oszillographen aufgenom-
menen Messdiagrammen wird die Richtigkeit der theoreti-
schen Ueberlegungen belegt. Es erweist sich dabei, dass bei
diinneren Seilen eine Messfilschung unwahrscheinlich ist,
dass jedoch bei dickeren Seilen Vorsicht am Platze ist, weil
bei ungeschicktem Vorgehen Fehler moéglich sind.

In bezug auf die zweite Frage muss sodann geklart wer-
den, wie weit die Kettenlinienform der Seile bei grossen
Spannfeldern die Laufzeit beeinflusst. Unter Berlicksich-
tigung der Seilzugvariation in Funktion der geodétischen
Hohe gelingt es, die zu bestimmende Horizontalkraft (oder
den Seilzug am Feldende) als Reihenentwicklung der Lauf-
zeit anzuschreiben. Das erste Glied dieser Reihenentwicklung
entspricht dann der iiblichen Niherungsrechnung, die bei
grossen Spannweiten ungenau werden kann.

An anderen Messmethoden sei hier insbesondere die
direkte Kraftmessung mit Seilspannungsmessern (Amsler,
Schaffhausen) erwidhnt, Sie hat einerseits den Vorteil, dass
die Feldabmessungen nicht bestimmt werden miissen, ander-
seits ist man fiir die Auswertung auf Eichkurven angewie-
sen, die fiir die verschiedenen Seile im Laboratorium auf-
genommen werden miissen. — Ferner wire die Methode der
geodidtischen Ausmessung der Seilkurve zu nennen, wobei
wie bei der Transversalwellenmethode die Feldabmessungen

1) Czitary: «Spannkraftermittlung in Seilen durch Schwingungs-
messungy», Wasserwirtschaft, Jg. 1931, S. 246.
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und das Léngeneinheitsgewicht bekannt sein miissen. Dabei
wird am besten von einer Stiitze aus eine Tangente vermes-
sen, indem man den Theodoliten in oder unmittelbar neben
der Bahnebene aufstellt und den scheinbar tiefsten Punkt
des Seiles anvisiert. Auch die sehr einfache, aber nicht
immer sehr genaue Neigungsmessung am von der Stiitze
ablaufenden Seil gehort hieher. Je kiirzer das Feld ist und je
flacher damit die Seilkurve wird, desto ungenauer werden
allerdings die mit der geodidtischen Methode bestimmten
Zugkrifte.

Es darf gesagt werden, dass die Transversalwellen-
methode neben den anderen Messmethoden unbedingt ihre
Vorziige hat. Gewisse Schwierigkeiten treten allerdings auf,
wenn sich bei Tragseilen Seilreiter oder Kuppelstiicke im
freien Feld befinden, an denen die Wellen teilweise reflek-
tiert werden. Beim Bau einfacher Seilbahnen, wie z.B. in
der Forstwirtschaft, steht das Messen mit Schlagwellen wohl
heute schon an erster Stelle, was damit zusammenhingen
mag, dass diese Seile einerseits nie Gewichtsspannung haben
und dass anderseits nur diinne Seile verwendet werden, die
gegen Fehlmessungen einigermassen narrensicher sein dirf-
ten. Bei entsprechenden Vorsichtsmassnahmen kommt die
Transversalwellenmethode aber durchaus auch bei dickeren
Seilen in Frage.

2. Bezeichnungen

a) Transversalwelle

Symbol Bild Gleichung
Y Yo Ausschlag 2,3 5
a Phasengeschwindigkeit 3,4 6,13
oo a flir unendliche Wellenldnge 6a
ag Gruppengeschwindigkeit 4 10, 12, 14
A Wellenldnge 3
T=\/a Schwingungsdauer
Tw Wirkzeit einer Schlagkraft
t Zeit
t: Zerfallzeit, Schrittzeit 4 9,11
tr, (Hin- und Her-) Laufzeit 16,19, 25
T dimensionslose halbe Laufzeit 20
i Anzahl Schwingungsbéduche der

Eigenschwingung 7 16
b) Kettenlinie
Symbol Bild Gleichung
hbec Spannfeldabmessungen 10
X Ly @ Koordinaten 10
s Bogenlinge
¢ & B Dimensionslose Lingen 20, 23
c) Krifte, Momente
Symbol Bild Gleichung
S Seilzug 1,10 6hb, 17,18
S Seilzug am Feldende 28, 29
S Mittlerer Seilzug (an der Stelle

grossten Durchhangs) 24, 26
H Horizontalkraft 10 26
Q Querkraft 2 2
M Biegemoment 2 1
K Schlagkraft
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d) Seildaten

Symbol Bild Gleichung
d Seildurchmesser
F Z Drahtquerschnitte
J Fldachentriagheitsmoment 8
E Elastizitdtsmodul
Y9 Drahtdichte
qlg Seilmasse je Lédngeneinheit
€ Verseilungsfaktor q/(y F'); bei
den Zahlenbeispielen dieser Arbeit
wurde ¢ = 1,1 gesetzt
0 Zugspannung

3. Bewegung unendlich langer Wellenziige und Eigenschwin-
gungen

In diesem Abschnitt soll untersucht werden, mit welcher
Geschwindigkeit (Phasengeschwindigkeit) a sich ein (un-
endlich langer) Wellenzug der Wellenlinge A am biegungs-
steifen Seil fortbewegt. Diese Bewegung bhildet sowohl die
Grundlage fiir die Eigenschwingungen als auch fiir die spiter
behandelten Schlagwellen.

Der Einfachheit halber wird bei der folgenden Ableitung
die Schwerkraft als vernachldssighar weggelassen; am
Schluss des Abschnittes soll aber noch erértert werden, wie
weit die auf diese Weise abgeleiteten Beziehungen auch fiir
im Schwerefeld durchhéngende Seile giiltig bleiben.

Ein biegungssteifes, beliebig langes Seil sei durch die
Zugkraft § gespannt und habe infolge einer einmaligen Sto-
rung kleine Auslenkungen (Bild 1) erhalten. Um die Diffe-
rentialgleichung der Bewegung ableiten zu konnen, greift

Bild 1. Durch die Zug-
kraft S gespanntes Seil
mit kleinen Auslenkun-

gen aus der Gleich-
gewichtslage
AY
Bild 2. Durch die b_odx: _ Py 94y
d'Alembert’'sche  Trig- 9x 312
heitskraft belastetes Q M
Seilelement M ox cx
S S
SS9y dx
1 dx 0x
|
ly  vardla
i X

man ein Seilelement (Bild 2) heraus, das durch die d’Alem-
bertsche Tréagheitskraft belastet ist.

Die Differentialgleichung der elastischen Linie gibt hier
eine erste Beziehung zwischen dem Biegemoment M und der
Seilsteifigkeit JE:

02y
1) M=J Em

Eine weitere Gleichung ergibt sich aus der Ueberlegung,
dass der Zuwachs der Querkraft @ nur von der d’Alembert-
schen Massenkraft herriihren kann (g/g = Seilmasse je Lén-
geneinheit):

(=9}
[
<

(2) "Q de—= —
ox

4 dx
g

D

W

t

Schliesslich lautet die sich aus der Gleichgewichtsbedin-
gung filir das Seilelement ergebende Momentengleichung:

oM oy o
(3) de— de—Sa—xdx—O

Eliminiert man jetzt die Grossen @ und M aus diesen
Gleichungen, indem man vorerst (1) zweimal und (3) einmal
partiell nach da ableitet, so findet man endgiiltig als Diffe-
rentialgleichung der Seilbewegung

q 0%

oly 2y
(4) g 0t2 +7 ot 0?2
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y y =Y, sin = (x—af)

-

1

|
= i A,
I/ \_/ b

Bild 8. Sinusférmiger Wellenzug, der sich mit der Phasen-
geschwindigkeit a nach rechts bewegt

Wird nun fiir einen sich beispielsweise nach rechts be-
wegenden Wellenzug nach Bild 3 der Ausdruck

2
(5) wy=wuyosin _}\1 (x — at)

angesetzt, so befriedigt dieser die Differentialgleichung, wenn
man fiir die Geschwindigkeit a schreibt:

. g8 JE (27 \2
o o JEFE)
1/ JE (27 \2
= il 2wl o u B
O |/ 145 ( s
worin
1/ 98 o.0
6a Aip — ==
(6a) G q &

die Geschwindigkeit unendlich langer Wellen bedeutet. Ferner
ist ¢, die rechnerische Zugspannung S/F, F die Summe aller
Drahtquerschnitte, y/g die Drahtdichte und & der Verseilungs-
faktor q/(y F).

Im Gegensatz zur schwingenden Saite ist also a von A
abhéingig; man spricht in solchen Féllen in der Theorie der
Wellen 2) von Dispersion wie in der Optik. Im speziellen be-
wegen sich die kurzen Wellen rascher als die langen (anomale
Dispersion).

Die Zugkraft S schreibt sich nach (6a)

q

(6D) § = a?

oder nach (6)

aT 2
6c) S=2a2_JE (E_)
q A

Die Seilkraft S ldsst sich somit berechnen, wenn a und
\ gemessen worden sind und die Seilkennwerte g, J und E
als bekannt vorausgesetzt werden diirfen.

Die Messung von a und A kann z.B. an Kkiinstlich er-
regten Eigenschwingungen erfolgen, die ja als Ueberlage-
rung gegeneinanderlaufender Wellenziige aufgefasst werden
konnen. Die Wellenldnge N (= doppelte Knotendistanz) und
die Schwingungsdauer T 3) konnen bei der Eigenschwingung
unmittelbar abgegriffen werden und dienen zur indirekten
Bestimmung von a = \/T.

Dagegen ist der Wert der Biegungssteifigkeit JE im all-
gemeinen unbekannt; er ist wegen der inneren Seilreibung
streng genommen nicht einmal konstant. Diese Schwierigkeit
kann aber vermieden werden, wenn man die Wellenldnge A
gross genug wihlt, Nach (6) besteht ja der Einfluss der
Biegesteifigkeit in einer Geschwindigkeitserhéhung, die aber
um so geringfiligiger ist, je grosser \ wird.

Es erhebt sich deshalb die Frage, wie gross die Wellen-
linge zahlenméssig sein muss, damit der Einfluss der Biege-
steifigkeit J E vernachlissigt, d. h. in (6c) Null gesetzt wer-
den darf. Soll beispielsweise der Fehler filir den Seilzug S
kleiner bleiben als 1 %, so muss

2) Vgl. z. B. theoretische
Physik, Band II.

3) Die Schwingungsdauer 7 ist nicht zu verwechseln mit der
spiter verwendeten Laufzeit t;, mit der sie durch (16) in Abschnitt
L verkniipft ist.

Sommerfeld, Vorlesungen {iber
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JE

S

- \2
(1) JE (27“) <0018 oder A>207

Rechnet man vorsichtigerweise mit unverschieblichen Dréh-
ten, so ist in grober Ndherung

8) J=F (;)2

Mit diesem Wert und § = Fo, ergibt sich aus (7) schliess-
lich als minimale Wellenldnge:

(7Ta) Apmin=057 dl/ =

gz

In Tabelle 1 sind Zahlenangaben fiir A, zusammengestellt,
wobei fiir E = 1,7 - 103 t/em2 eingesetzt wurde, was dem gross-
ten Wert entspricht, den Wyss+4) fiir Zugversuche ganzer
Seile angibt. Fiir Biegung diirfte dieser Wert bei unver-
schieblichen Dridhten eher etwas unterschritten werden. Bei
verschieblichen Drihten nidhert sich E dem um 20 % hoheren
Wert fiir den Einzeldraht, aber J sinkt gleichzeitig so viel
rascher, dass das Produkt JE auf alle Fille kleiner wird.

Tabelie 1. Minimale Wellenldngen Awmin in m bei Eigenschwingungen
(J = Fd2/16; E = 1,7-103 t/em?2; 1 % Fehler beziiglich S)

Seildurchmesser d in mm Faustformel
10 20 40 80
o; = 6 t/cm2 2,6 5,3 13 21 A> 250 d
4 t/cm2 3,2 6,5 13 26 A > 300 d
2 t/em2 4,5 9 18 37 N> 450 d

Werden bei Eigenschwingungen diese Bedingungen fiir
Amin €ingehalten, so diirfte im allgemeinen eine Vernachléassi-
gung der Biegesteifigkeit, d. h. der Gebrauch von (6b) zu-
ldssig sein, wobei a = a,, gesetzt wird.

Bei den vorstehend durchgefiihrten Ableitungen wurde
vorausgesetzt, dass die Schwerkraft einen zu vernachléssi-
genden Einfluss habe. Deshalb gelten die Beziehungen (6)
bis (6¢) zunichst nur, wenn der Durchhang des wirklichen
Seiles klein bleibt. Dabei ist allerdings nicht der Durchhang
gegeniiber der Sehne des ganzen Feldes massgebend, son-
dern nur gegeniiber der Sehne zwischen zwei benachbarten
Knotenpunkten der Wellen. Mit anderen Worten bleibt die
Giiltigkeit fiir grosse Spannfelder bestehen, nicht aber ohne
weiteres fiir extrem lange Wellen, wie sie allerdings als Stor-
wellen auch gar nicht in Frage kommen. Ein solcher Einfluss
— der hier nicht weiter untersucht wird — ist erst zu er-
warten, wenn es sich um die Eigenschwingung erster Ord-
nung bei besonders tief durchhéngenden Seilen handelt, wo-
bei dann auch Unterschiede auftreten diirften, je nachdem,
ob das Seil horizontal oder vertikal ausschwingt.

4. Theorie der Schlagwellen (Gruppengeschwindigkeit)

Unter einer Schlagwelle sei im folgenden eine Einzel-
welle, ein Wellenpaket oder eine Wellengruppe (im Gegen-
satz zum unendlich langen Wellenzug) verstanden, die durch
eine kurzzeitige lokale Storung erzeugt wurde und sich lings
des Seiles fortbewegt. Sofern die Biegungssteifigkeit eine
Rolle spielt, zeigen solche Wellengruppen zwei merkwirdige,
aber aus der Theorie der Wellen wohlbekannte Eigenschaf-
ten: Erstens bewegen sie sich rascher, als ihrer Wellenldnge
nach (6) entspricht, und zweitens erleiden sie stdndige Ver-
formungen.

Am Beispiel eines aus etwa fiinf Wellen bestehenden
Wellenpaketes nach Bild 4 mit der ausgepridgten Wellen-
linge A = 2 m sei das vorerst rein beschreibend verdeutlicht.
Ein Beobachter, der einen Wellenberg A (schraffiert) ins
Auge fasst, wird zwar feststellen konnen, dass dieser sich
mit der nach (6) zu berechnenden Phasengeschwindigkeit a
fortbewegt, aber zusehends kleiner wird und schliesslich

4) Th. Wyss, «Die Stahldrahtseile der Transport- und Férderan-
lagen usw.», Schweizer Druck- und Verlagshaus AG, Ziirich, 1956,
S. 118,
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ganz verschwindet. Wahrend dieser Zeit sind vor der Welle A
neue Wellen entstanden, hinter ihr andere abgeklungen. Das
Paket als Ganzes bewegt sich also rascher als die zu ihm
gehorenden Einzelwellen; man fiihrt deshalb den Begriff der
Gruppengeschwindigkeit ag ein, mit der sich das Gruppen-
(Energie-) Zentrum fortbewegt. Nach einem bestimmten
Zeitintervall (von hier 0,03 s) hat die Maximalamplitude den
Schritt von Wellenberg A auf B bzw. B’ vollzogen. Wir
geben diesem Zeitintervall vorerst den Namen Schrittzeit,
werden es aber in der Folge mit dem sehr bezeichnenden
Wort Zerfallzeit t, benennen, weil innert dieser Zeit das indi-
viduelle Merkmal (z.B. die maximale Amplitude) einer be-
stimmten Welle zerfillt bzw. an die Nachbarwelle verloren
geht.

Eine Erklirung fiir diese Zusammenhdnge ergibt sich,
wenn die Wellengruppe als Fourierentwicklung des ganzen
Wellenldingenspektrums von A = 0 bis oo aufgefasst wird.
Alle Komponenten dieser Fourierentwicklung sind dann un-
endlich lange Wellenziige der Form (5), die sich mit ver-
schiedenen Geschwindigkeiten bewegen. Im Falle eines Wel-
lenpaketes nach Bild 4 haben diese Komponenten ein ausge-
prigtes Intensitdtsmaximum bei X = 2 m. Zur Zeit ¢ = 0 be-
sitzen sie bei A gleiche Phasenlage und addieren sich, wéh-
rend sie sich ausserhalb des Paketbereiches gegenseitig auf-
heben. Dieser Punkt gleicher Phasenlage wandert nun in-
nerhalb der Schrittzeit ¢, zur Nachbarwelle B’, was an Bild 5
nidher untersucht werden soll (wobei die in Klammern an-
gegebenen Zahlen sich auf das Beispiel von Bild 4 beziehen).

Links ist ein Stiick der (ausgezogenen) Hauptwellen-
komponente I der Wellenldnge X\ (2 m) eingezeichnet, das
bei A gerade mit einer anderen Komponente II der um AX
(0,3 m) kleineren Wellenlinge A — A\ (1,7 m) in Phase ist.
Die Komponente I bewege sich mit der Phasengeschwindig-
keit @ (233 m/s), die Komponente II mit einer grdsseren
a + Aa (243 m/s). Nach der Zeit ¢, (0,03 s) sind die beiden
weiter vorn liegenden Wellenberge bei B’ in Phase gekom-
men, d.h, die Welle II musste gerade die Strecke A\
(0,3 m) mehr zuriicklegen als die Welle I, und es stand ihr
dafiir die Relativgeschwindigkeit Aa (10 m/s) zur Verfiigung.
Daraus ergibt sich die Schrittzeit ¢, = A\/Aa (0,03 s).

Wire a eine lineare Funktion von A\, so wiirde sich fiir
alle Wellenldngen die gleiche Schrittzeit ergeben (wie das
stillschweigend filir Bild 4 vorausgesetzt wurde), weil dann
AN Aa eine Konstante ist. Folglich wiirden zur Zeit ¢, nicht
nur die Komponenten I und II bei B’ in Phase sein, sondern
sdmtliche Komponenten iiberhaupt, und die Wellengruppe
hitte in diesem Augenblick wieder genau das selbe Aus-
sehen wie fiir £ = 0. Im allgemeinen und insbesondere beim
biegungssteifen Seil gilt diese Linearitdt nur flir einen

Bild 4. Wellenpaket am biegungssteifen Seil. Jede Einzelwelle
bewegt sich mit der Phasengeschwindigkeit a, das Gruppenzentrum
mit der grosseren Gruppengeschwindigkeit ag,
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Tabelle 2. Berechnete Werte fiir Phasen- und Gruppengeschwindigkeit von Schlagwellen an 35 mm dickem Drahtseil maximaler Biege-
steifigkeit (@ = 200 m/s; B = 1,7°10° t/cm2; ¢ = 1,1)

Wellenldnge A 0 1 2 10 20 50 100 o8] m
Phasengeschwindigkeit a o0 312 233 205,5 201,5 200,4 200,06 200,01 200 m/s
Gruppengeschwindigkeit ag [o'e} 497 295 217 204,32 201,08 200,17 200,04 200 m/s
Schrittzeit, Zerfallzeit Tz 0 0,005 0,03 3,5 28 430 3500 (s} S

schmalen Ausschnitt aus dem Wellenspektrum, wie er etwa
zu Bild 4 gehort. Im Grenzfall wird die Schritt- oder Zer-
fallzeit

o\
9  te=———
wobei das negative Vorzeichen gesetzt werden muss, weil
AX ein negativer Zuwachs war.

Aus Bild 5 ergibt sich ferner, dass die vom Punkt glei-
cher Phasenlage zuriickgelegte Strecke a;t, gerade um die
Wellenldnge \ grosser ist als die Strecke at,, um welche die
Welle I vorgeriickt ist. Es ist also

CL(;tz = atz + A

und man findet mit (9) die Gruppengeschwindigkeit

A da
Gg=a+—=—a—A\

(o) i Y

Mit den Zahlen unseres Beispieles wire ag; = 233 + 2/0,03 =
300 my/s, also betrdchtlich hoher als die Phasengeschwindig-
keit.

In Féllen, wo wie beim biegungsweichen Seil a eine
Konstante ist, bewegen sich alle Komponentenwellen gleich
rasch, und das Wellenpaket verschiebt sich ohne irgendwelche
Verformung mit a; = a; die Schrittzeit oder Wellenzerfall-
zeit t, wird unendlich gross.

Fiir das biegungssteife Seil kénnen (9) und (10) unter
Beriicksichtigung der Beziehung (6) zwischen ¢ und A\ wie
folgt angeschrieben werden:

o q a3
Pa  gJE (@272

(12) a(;:a[l-{— 9 JE(iT'_)Q]
q a? N

(11)

t,——

Die Grossenordnung von a, a; und t, wird am besten an
einem Zahlenbeispiel veranschaulicht, und zwar sei ein 35 mm
dickes Drahtseil mit sich nach Gl. (8) maximal auswirkender
Steifigkeit angenommen, das so gespannt ist, dass die Pha-
sengeschwindigkeit fiir unendlich lange Wellen a,, — 200 m/s
betrage. Es ergeben sich dann nach (6), (11) und (12) die
in Tabelle 2 zusammengestellten Werte.

Mit Hilfe dieser Zahlen soll nun gezeigt werden, wie sich
eine Schlagwelle allgemeinster Art verhilt, wie sie z. B. in
Bild 6 fiir ¢t = 0 dargestellt ist. Im Gegensatz zu der Wellen-
paketform von Bild 4 wird man bei einer Fourierentwicklung
einer solchen Form die Feststellung machen, dass ein sehr
breites Band des Wellenldngenspektrums beteiligt ist. In der
Mitte dieser Ausgangswelle sind zunichst alle Komponenten
in Phase. Durch horizontale Strecken (Bild 6, Mitte) ist von
dort aus fiir die verschiedenen \-Werte angegeben, welche
Distanzen in 1 s mit der Gruppengeschwindigkeit zuriickge-
legt werden. So bedeutet der rechte Endpunkt der Strecke
flir N =2 m bei 295 m, dass alle Wellenkomponenten von
etwa 2 m Wellenldnge nach einer Sekunde gerade an dieser
Stelle in Phase sind und dem Seil dort den Wellencharakter
von A = 2 m einschliesslich der Phasengeschwindigkeit a =
233 m/s aufdriicken.

Die langwelligen Komponenten von A = oo bis etwa 10 m
sind kompakt beisammen geblieben und haben im Gegensatz
zu kurzen Wellen eine sehr bestidndige Form, aus der die
kurzwelligen Komponenten bereits ausgewandert sind. Wiirde
man die Situation nach 10 s wieder ansehen, so wiren
auch die 10-m-Komponenten ausgewandert, da ihre Phasen-
koinzidenz bis dann bereits 43 m nach vorne geriickt ist. Mit
anderen Worten spritzen aus der Schlagwelle vom ersten
Moment an ganz kurzwellige (und dann sukzessive immer
langwelligere) Elemente heraus und laufen ihr voraus.
Gleichzeitig verliert die Ausgangswelle an Spitzigkeit und

Amplitude. Die ausgetretene Schwingungsenergie verteilt
sich stédndig liber immer zunehmende
X Gebiete, und zwar um so ausgedehn-

ax
b= ~
A |8 ' In

R e

weshalb die kiirzesten, an der Spitze
liegenden Wellen bald vollstdndig
verflacht sind.

Wie fiir die Eigenschwingungen
in Abschnitt 3 muss hier noch unter-
sucht werden, wie gross die Lang-
welligkeit von Schlagwellen sein
muss, dass auch hier die Biegesteifig-

—'; ter, je kiirzer die Wellenldnge ist
.

B

=
|
|
|
|
|
[

Bild 5. Zusammenhang zwischen Wellenldnge X\, Schrittzeit (Zerfallzeit) t,, Phasengeschwin-

digkeit @ und Gruppengeschwindigkeit ag

=1 keit vernachldssigt werden darf.

Setzt man JE aus (11) und S aus
(6b) in (6) ein und entwickelt in Rei-
hen, so wird filir lingere Wellen

1 A
t=0 (13) a ~a,»+7{_s
und mit (10)
x:ooi 3 A
|g8: ! (14) a(;:aoo+7t—:
20t '

or T Aus diesen interessanten Bezie-
fﬁ — = ‘ hungen sieht man zunidchst, dass die
(inm) | 200m R ‘f ! Gruppengeschwindigkeit a; dreimal
i ANANA A AW e f mehr von a, abweicht als die Pha-
\ ) ) sengeschwindigkeit @ (was auch aus
} A=5m A=2m A=im den Zahlen von Tabelle 2 hervor-
A= 00 geht). Infolgedessen wird auch der
Bild 6. Schlagwelle mit kurz- und langwelligen Komponenten. Auswanderung und Voreilen Fehler fiir die Zugkraft S dreimal

der kurzwelligen Komponenten aus der Ausgangswelle
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grosser, wenn mit a; statt mit a ge-
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Tabelle 3. Minimalwerte fiir die Wellenldnge A (in m) und die Zerfallzeit ¢. (in s) bei Schlag-
wellen (J = F d2/16 ; E = 1,7-103 t/cm? ;

e =1,1; 19/, Fehler beziiglich 8)

g a, A\-Werte bei d [mm] t-Werte bei d [mm] Faustformeln #*) fiir
t/cm2 m/s 10 20 40 80 10 20 40 80 A [m] I t- [s]
6 260 5 9 18 37 6 i 21 42 > 045 d >05d
4 210 6 11 22 45 8 16 32 63 > 055 d > 0,8d
Bild 7. Eigenschwingung 2 150 8 16 32 63 16 32 63 126 > 08 d >1,6d

héherer Ordnung in gros-
sem Spannfeld. Die Kno-
tenpunkte liegen in den
hoheren Seilteilen weiter
auseinander als in den un-
teren

rechnet wird. Da [vgl. Gl. (6c)] dieser Fehler aber mit A2
abnimmt, kann das dadurch kompensiert werden, dass Amin

gegeniiber (7a) bzw. Tabelle 1 mit dem Faktor V? multipli-
ziert wird, wie das in Tabelle 3 ausgefiihrt ist.

Setzt man jetzt a, aus (14) in (6b) ein, so findet man
(immer fiir 1angere Wellen)

3N
ag tz )
Bei der fiir 8 zugrunde gelegten Genauigkeit von 1% kann
also t, = 300 \/ag =~ 300 \/@ 4 AUS Apin bestimmt werden. Die
so fiir maximale Seilsteifigkeit berechneten Zerfallszeiten
sind ebenfalls in Tabelle 3 aufgefiihrt. Da die Wellenldnge
A nur mit komplizierten Messeinrichtungen gemessen werden
kann, sind diese Minimalwerte fiir die Zerfallzeit ein wich-
tiges Kriterium fiir reine Stoppuhrmessungen. Behalten ndm-
lich Schlagwellen wihrend dieser Zeiten ein regelmdssiges
Verhalten bei, so darf wegen ihrer Formbestindigkeit direkt
auf eine ausreichende Langwelligkeit geschlossen werden.

Diese Zahlenangaben liegen iibrigens auf der sicheren
Seite, da sich die Seilsteifigkeit gerade bei langen Wellen
nicht voll auszuwirken scheint. Zudem wird, wenn die Welle
wihrend der Messung formbestindig bleibt, mit der Stopp-
uhr immer ein und derselbe Wellenkopf verfolgt, so dass
man effektiv die Phasengeschwindigkeit ¢ und nicht die
Gruppengeschwindigkeit a; misst, wodurch sich der Fehler
nochmals reduziert.

Wahrscheinlich diirften die \- und ?.-Werte von Ta-
belle 3 um 20 bis 30 % verringert werden; bei ihrer Ein-
haltung liegt der Fehler fiir S unter 1 %.

(15) S = iaf;ﬁ (1_
g

5. Praktische Durchfithrung der Messungen

Bei den Messungen wird die Laufzeit einer Welle be-
stimmt. Entweder geschieht das mit Schlagwellen, die fiir
einen Hin- und Hergang die Laufzeit ¢; bendtigen, oder mit
Eigenschwingungen, wo die Schwingungsdauer T' (Reziprok-
wert der Frequenz) mit ¢, liber die Beziehung

(16) t, =1iT

zusammenhéngt, worin ¢ die Anzahl Schwingungsbduche be-
deutet (Bild 7 beispielsweise i = 4). Da die Wellengeschwin-
digkeit in den oberen Seilteilen wegen der hoheren Span-
nung grosser ist, liegen dort die Knotenpunkte weiter aus-
einander als unten.

In beiden Fillen sei die Wellenldnge nach Tabelle 1 bzw.
3 so gross gewihlt, dass die Biegungssteifigkeit vernach-
lissigt werden darf. Dann kann fiir kleinere Seilfelder mit
t;, und der Feldsehne ¢ auf a,, =~ 2 c¢/t;, und damit nach (6b)
auf die mittlere Zugkraft S geschlossen werden, Es gilt dann

- 4qc?
17 By ——x
i gt

Bei grosseren Spannweiten wird man aber besser mit den
im Anhang (Abschnitt 6) abgeleiteten Reihen arbeiten. Ent-

weder wird die Horizontalkraft H hzw. der Seilzug § in Feld-
mitte aus
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*) d ist in mm einzusetzen, A wird in m, t: in s erhalten.

= (s} 4qc? 1 1 h2\ g2t;2
S = — i} it 0 _
Hb gt,ﬁ[ +(3 2 02)12802+ ]

bestimmt (Gréssen b, ¢, h nach Bild 7), oder man berechnet
die Zugkraft Sp an den beiden Feldenden mit

(26)

h 4qc?
q+q

_ 5 h?2
29 Sp= =
[ 2 gtr? )

[1 (T o

Da als Messinstrument einzig eine Stoppuhr ) verwen-
det werden soll, diirfte mit einem Zeitablesefehler von etwa
+ 0,2 s zu rechnen sein., Will man vermeiden, dass der da-
durch verursachte Fehler in bezug auf den Seilzug 1 9, lber-
schreitet, so muss die Beobachtungszeit mindestens 40 s be-
tragen. Sich mit dem Abstoppen eines einzigen Hin- und
Herganges einer Schlagwelle zu begniigen, ergibt also hoch-
stens in Feldern von mehreren Kilometern Lénge eine be-
friedigende Genauigkeit.

Grossenordnungsméssig betridgt die Laufzeit je 100 m
Feldlinge gerade 1 Sekunde. Dementsprechend ergibt sich
bei Bigenschwingungen beim Knotenabstand 100 m ebenfalls
eine Schwingungsdauer von 1 Sekunde. Erfolgt die rhyth-
mische Erregung mit eigener Hand, so koénnen je nach Ge-
schicklichkeit noch Frequenzen von 3 bis 5 Hertz abgezéhlt
werden, so dass das Verfahren je nach Umstédnden noch in
ganz kurzen Feldern bis hinunter auf 20 bis 30 m Spann-
weite angewendet werden kann.

92ttt |
96 c2

Im allgemeinen ist in langen Feldern das Arbeiten mit
Schlagwellen einfacher als mit Eigenschwingungen. Wegen
der kleinen Ddmpfung kann man die Hin- und Hergédnge
dann oft minutenlang verfolgen. Bei kurzen Feldern liegen
die Verhiltnisse insofern ungiinstiger, als die Ddmpfung mit
der wachsenden Anzahl von Reflexionen an den Feldenden
zunimmt. Wihrend eine Welle innerhalb der als minimal be-
zeichneten Beobachtungszeit von 40 s in einem 500-m-Feld
unter normalen Verhiltnissen weniger als 20 mal reflektiert
wird, ergeben sich in Feldern von weniger als 100 m Lénge
in der gleichen Zeit bald einmal mehr als 100 Reflexionen,
wodurch eine Schlagwelle fiir einfache Messmethoden zu
stark geddmpft wird.

Gerade in diesen kurzen Feldern eignet sich dann aber
die Eigenschwingungsmethode, bei der die Schwingungen ja
durch rhythmische Storkrédfte beliebig lange aufrechterhal-
ten werden konnen. Da die Knotendistanz bei der Schwin-
gung erster Ordnung allerdings gerade gleich der Spannweite,
also verhidltnisméssig gross wird, muss man sich fragen, ob
damit die Voraussetzungen fiir die in Abschnitt 3 abgelei-
teten Beziehungen noch gegeben sind, d.h. ob der Durch-
hang des Seiles nicht bereits eine Rolle zu spielen beginnt.
Bei den hier in Frage kommenden kurzen Spannfeldern ist
das aber nicht der Fall; auch weisen die Eigenschwingungen
mit horizontalen und vertikalen Ausschligen noch gleiche
Eigenfrequenzen auf ¢). Dabei sind die horizontalen Schwin-

5) Stoppuhren gehen oft weniger genau, als man glaubt. Man
tut gut, sie jeweils mit dem grossen Sekundenzeiger einer téglich
beniitzten Uhr zu vergleichen. Selbst die Ungenauigkeit von Arm-
banduhren liegt weit unter 1% (1 %0 Fehler = 114 Minuten im Tag).

6) Das ist nicht unbedingt zu erwarten: horizontal schwingt das
durchhiingende Seil vorwiegend pendelartig aus, und vertikal han-
delt es sich um eine elastische Schwingung, wo bei extremen Durch-
hidngen auch der Elastizititsmodul eine Rolle spielt.
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gungen vom Feldende aus in der Regel leichter anzufachen
als die vertikalen. Bei der Eigenschwingungsmethode ist es
auch moglich, das Feld kiinstlich zu verkiirzen, indem man
z. B. doppelt so rasch erregt und in der Feldmitte einen
Schwingungknoten erzeugt, der sich gut beobachten lésst.

Was schliesslich die Schlagwellenmethode anbetrifft, so
sollte darauf geachtet werden, dass ihre Wellenldnge geméss
Tabelle 3 nicht zu kurz ausfillt und dass diese Wellenldnge
so rein wie moglich erzeugt wird, d. h. dass kurzwellige Kom-
ponenten weitgehend ausgeschaltet sind. Will man beispiels-
weise eine Wellenlinge von A\ = 20 m erzeugen, so ergreift
man das Seil am besten in 5 m (= \/4) Abstand vom Feld-
ende und driickt es kurzzeitig zur Seite. Die Wirkzeit Ty
dieser Storkraft muss aber etwa so gross sein wie die Zeit
(T/4), die das Seil selbst bei einer 20-m-Welle braucht, um
vom Durchgang durch die Nullage auf den vollen Ausschlag
zu kommen, nadmlich den vierten Teil der Schwingungsdauer
T = \Na. Fir ¢ = 200 m/s ware hier 77=0,1 s und Ty =
0,025 s. Wird die Wirkzeit wesentlich kiirzer, entstehen die
unerwiinschten kurzwelligen Komponenten. Mit anderen
Worten ist darauf zu achten, dass der Schlag nicht allzu
scharf gefiihrt wird. Bei diinnen Seilen ist diese Bedingung
nicht schwer zu erfiillen: Wenn man ein 10 mm dickes Draht-
seil von Hand ruckartig auslenkt und sofort wieder loslédsst,
werden die Wirkzeiten keinesfalls zu klein. Im Gegenteil
wird man darauf achten miissen, so scharf und plotzlich
wie moglich zu ziehen, da sonst der erzeugte Wellenbuckel
stumpf wird und seine Riickkehr nur unscharf beobachtet
werden kann. Uebrigens darf die Wellenlinge bei einem
10-mm-Seil gemiss Tabelle 3 auch wesentlich kiirzer sein
als bei einem Seil von 40 oder 80 mm Durchmesser.

Bei dicken Seilen wird die Aufgabe viel schwieriger, da
fiir eine geniigende Initialausbuchtung viel grossere Krifte
ausgelibt werden miissen. Was passiert, wenn beispielsweise
mit einem Bleihammer auf ein 39 mm dickes, mit 39,5 t ge-
spanntes Drahtseil geschlagen wird, geht aus dem (oberen)
Messtreifen 7) von Bild 8 hervor. Das aufgezeichnete Wel-
lenbild unterscheidet sich aber prinzipiell von der Darstel-
lung auf Bild 6, da es sich hier um Ausschlagsmessungen
an einer bestimmten Seilstelle (in 2,8 m Distanz vom Feld-
ende) in Funktion der Zeit handelt, wdhrend auf Bild 6 die
gesamte momentane Seilform zu bestimmten Zeiten wieder-
gegeben ist. Der Moment des Schlages ist auf dem Mess-
streifen markiert; der Ausschlag selbst ist nicht zu sehen,
weil der schreibende Lichtstrahl sich zu rasch bewegt. Bei

7) Die oszillographischen Messungen wurden unter freundlicher
Mitwirkung der beiden ETH-Institute fiir Geophysik und Flugzeug-
statik durchgefiihrt, was an dieser Stelle bestens verdankt sei.

der ersten Riickkehr hat sich die Schlagwelle in eine 1,6 s
dauernde Wellenfolge aufgeldst, die mit ihrer Amplituden-
modulation in drei Wellenpakete A, B und C zerfillt. Solche
Amplitudenmodulationen sind in erster Linie auf die ur-
spriingliche Form der Schlagstérung zuriickzufiihren, in
zweiter Linie hdngen sie aber auch von der Lage der Mess-
stelle ab, weil die Ndhe der Reflexionsstelle Interferenzer-
scheinungen bewirken kann.

In Tabelle 4 sind die wichtigsten Grossen des Mess-
streifens zusammengestelit. Der von Auge sichtbare Aus-
schlag und die von Hand fiihlbare Schiittelkraft mussten mit
der Frequenz umgerechnet werden, weil das beniitzte Mess-
instrument geschwindigkeits-proportionale Ausschlige regi-
striert. Im allgemeinen ergeben Nachrechnungen, dass sich
die Biegesteifigkeit bei kurzen Wellen voll oder doch zu
einem hohen Prozentsatz auswirkt. Die langen Wellen eignen
sich fiir solche Nachrechnungen nicht, da der Einfluss der
Biegesteifigkeit dann zu klein ist, um analysiert zu werden.

Tabelle 4. Zahlenwerte zu Bild 8

Messtreifen 8a 8a 8a 8b
Wellenpaket A B @

Gruppen-

geschwindigkeit ag 285 223 — — m/s
Phasen-

geschwindigkeit a (235) (214) 210,5 209 m/s
Frequenz 1/T 90 37 14,3 11,6 Hz
Wellenldnge A 2,6 5,8 14,7 18 m
Seilzug, unrichtig ge-

rechnet mit

g = @ = Gy 73,5 45,0 40,1 39,6

rel. Ausschlag 5 62 100 — Yo
rel. Schiittelkraft 54 100 24 — o

Der ohne Riicksicht auf die Seilsteifigkeit aus ag bzw.
a berechnete Seilzug ergidbe mit der am heftigsten schiitteln-
den Welle (Paket B) einen Fehler von 14 9, und mit den
zuerst ankommenden, vibrationsartigen Wellen (Paket A)
erhielte man so unsinnige Werte, dass man wohl kaum in
Versuchung kédme, sie als richtig anzunehmen. Einzig die
Wellen mit der schwéchsten Schiittelkraft (aber immerhin
mit dem grossten visuellen Ausschlag) ergeben einen Fehler
von bloss 4+ 1,5 %. Auf dem Messtreifen kann man auch
feststellen, dass nur diese Wellen sich bei jeder weiteren
Wiederkehr individuell erkennen lassen. Die grosste von
ihnen (mit Pfeil bezeichnet) erscheint stets nach einem
ganzzahligen Vielfachen von ¢, = 4,68 s nach dem Schlag.

Die kurzwelligen Pakete bewegen sich mit der Gruppen-
geschwindigkeit @;. Auf Bild 9 ldsst sich ihre Lebensge-

—Ae— A A A — A A A A
5 |
[ 1s :
Schlag
B ¢ ¢ ¢
l A "n"""’ : B * B ‘
ﬂ |l|!‘|l"'
— M\J i —l], v s TP
—r\ N\ N\ N\ ~\om r\, ( A\~ N\ -\ =\ N\ /~\ o\ N\ N\
i |
;___1,5*,.4:
Schlag
\ ! {
—N 1",, v A
Bild 8. Schlagwellenmessung an vollverschlossenem Tragseil von 39 mm Dicke, mittlere Zugkraft 39,6 t, Messtelle in 2,8 m Abstand vom

Feldende. Oben (a) Schlag mit Bleihammer in 2 m Abstand vom Feldende; unten b) Ruckartiger Zug mit vier Armen in 4 m Abstand vom

Feldende mittels Hanfseil
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Bild 9.
Die auseinandergeschnittenen

Zerbersten der Schlagwelle in kurzwellige Wellenpakete.
Teile des Messtreifens sind unter-
einander angeordnet. (Gleiches Seil wie Bild 8, Schlag mit Holzklotz)

schichte — an einem anderen Versuch — besonders schén
verfolgen, weil dort der Messtreifen auseinandergeschnitten
und die Teilstlicke derart untereinander angeordnet wurden,
dass der grosste Wellenkopf der 17-m-Welle jeweils senk-
recht unter den Schlagmoment zu liegen kommt: Rechts
davon erkennt man einen formbestédndigen Teil, der die Ab-
stammung von der Urwelle im obersten Diagramm nicht ver-
leugnen kann. Nach links bersten explosionsartig die Wellen-
pakete mit den kurzen Wellen heraus. Die Urwelle musste
auf Grund der kaum sichtbaren Diagrammspuren von Hand
ungefihr nachgezogen werden.

Als vollendetes Schulbeispiel darf die 10-m-Welle be-
zeichnet werden, deren Entstehung aus der Urwelle von der
zweiten bis zur vierten Linie sehr hiibsch verfolgt werden
kann. Man versteht auch, dass ein solches Paket (dessen
vordere und hintere Enden unterschiediiche Wellenldngen
aufweisen und sich mit verschiedenen Geschwindigkeiten be-
wegen) sich ausdehnt, so dass seine Wellenzahl sich ver-
grossert.

Abgesehen davon, dass diese Diagramme schéne Illu-
strationen zu den Ueberlegungen von Abschnitt 4 geben,
beweisen sie, dass bei dickeren Seilen vor Schligen mit
festen Gegenstdnden gewarnt werden muss, und zwar auch
dann, wenn diese Schlagkdrper eine gewisse, aber eben doch
unausreichende Elastizitdt besitzen, wie Holz, Plastik und
dgl. Die Initialwelle diirfte bei solchen Schligen eine Aus-
gedehntheit des Wellenspektrums aufweisen wie die Schlag-
welle von Bild 6. Je schidrfer der Schlag gefiihrt wird, um
so mehr kurzwellige Komponenten entstehen, die unter Um-
stdnden zu Falschmessungen fiihren konnen.

Immerhin ist zu grosser Pessimismus fehl am Platze.
Selbst bei scharfen Schligen werden ndmlich immer auch
langwellige Komponenten miterzeugt, die — trotzdem ihr
Anteil energiemissig oft klein ist — sich doch recht gut
beobachten lassen. Erstens handelt es sich dabei um die
deutlich fiihlbare Schlusswelle der ganzen Wellenfolge, die
vibrationsartig beginnt und mit niederfrequenten Schwin-
gungen endet, und zweitens hat diese Schlusswelle wegen
ihrer Langwelligkeit die grosste Lebensdauer, so dass sie
schliesslich allein {ibrig bleibt.
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Man kann aber ohne Schwierigkeit die Entstehung
von kurzen Wellen iiberhaupt vermeiden. Das einfachste
und sicherste Verfahren scheint dasjenige zu sein, auch
bei dicken Drahtseilen mit der menschlichen Armkraft
allein auszukommen. Reicht bei d = 20 mm vielleicht
ein Arm gerade noch aus, so sind beim 40-mmm-Seil
vier und beim 80-mm-Seil 16 Arme notwendig. Man wird zu-
diesem Zwecke ein Hanfseil iliber das Drahtseil werfen und
ruckartig gemeinsam daran ziehen. Dabei ist darauf zu
achten, dass das Hanfseil vor dem Ruck nicht etwa locker,
sondern bereits leicht gespannt ist, weil sonst wiederum ein
hammerartiger Effekt entsteht. Dann aber — bei leicht an-
gespanntem Hanfseil — soll so scharf wie irgend moglich
gezogen werden, damit sich die zuriickkommenden Schlag-
wellen am hédngenbleibenden Hanfseil deutlich von Hand ab-
fiihlen lassen. Man merkt dabei sehr genau, ob die Ruckdosie-
rung richtig war.

Dass es bei einem solchen Vorgehen gelingt, zu kurze
Wellen wirklich zu vermeiden, sieht man auf dem unteren
Messtreifen von Bild 8 sowie an den zugehorigen Zahlen von
Tabelle 4. An dem 39 mm dicken Tragseil wurde in 4 m
Distanz vom Feldende mit vier Armen gezogen. Es sind
tatsédchlich nur 18 m lange Wellen entstanden, und von der
ersten 8) bis zur elften Schlagwellenriickkehr sind mit der
Stoppuhr 47,2 s gemessen worden, was mit dem gleichzeitig
aufgenommenen Diagramm tadellos iibereinstimmt. Die er-
reichte Messgenauigkeit lag in diesem Fall unter einem
halben Prozent, bezogen auf den berechneten Seilzug.

Die auf das Drahtseil ausgeiibte Kraft dadurch ver-
grossern zu wollen, dass man sich mit dem ganzen Korper-
gewicht kurz an das Hanfseil hidngt, scheitert daran, dass
dadurch die Wirkzeit zu lang wird und die Messchirfe dar-
unter leidet. Ebenfalls an mangelnder Messchédrfe leidet das
Verfahren, das Drahtseil statisch lokal zu belasten und die
angebrachte Last plotzlich zu entfernen.

Es ist anzunehmen, dass mit einem Schlag einer festen
Masse auf ein federndes Zwischenstiick ebenfalls eine ge-
eignete Schlagdosierung erreicht werden konnte, wenn die
Elastizitdt dieses Zwischenstiickes der gewiinschten Wirk-
zeit entsprechend geniligend gross gewéihlt wird, d.h. wenn
die Eigenfrequenz von Federung und Masse grossenord-
nungsméssig bei 10 Hz liegt.

Bei diinnen, z. B. 1 cm dicken Seilen ist das Seil selbst
elastisch genug, dass sich fiir von Hand bewegte Schlag-
korper geniligend lange Wirkzeiten ergeben; bei dicken Seilen
miissten sehr viel grossere Massen Verwendung finden, um
ohne Zusatzelastizitit brauchbare Schlagwellen zu erzeugen.
Bei diinnen Seilen diirften deshalb kaum je Falschmessungen
vorkommen, wihrend bei dicken mit Vorsicht vorzugehen ist.

Zum Abschluss dieser Ausfiihrungen iiber die praktische
Messdurchfiihrung muss die Frage der Reflexionen aufge-
worfen werden. An den Feldenden lduft das Tragseil mei-
stens tangential auf einen Seilschuh auf, so dass nicht von
einer theoretisch scharfen Reflexionsstelle gesprochen wer-
den darf. Diese Unschérfe liegt aber eine Grdssenordnung
tiefer als die in Frage kommenden Wellenlingen und ist
deshalb wohl ohne praktische Bedeutung. Da diese Re-
flexionsstellen in der Vertikalebene durch die Seilaxe eine
Symmetrieebene besitzen, sind die vertikalen Schlagwellen
den horizontalen vorzuziehen. Die letzteren erhalten mit
jeder Reflexion zusétzliche Vertikalkomponenten bei einem
stdrkeren Abklingen des horizontalen Ausschlages.

Bei Reflexionen an Fahrgestellen spielt das Fahrzeug-
gewicht eine ausschlaggebende Rolle. Ist dieses gross, so ist
die Reflexion stets gut, auch wenn an den einzelnen Rollen
Teilreflexionen stattfinden, da die Rollenabstdnde verglichen
mit der Grosse einer 20-m-Welle klein sind. Ist das Fahr-
zeuggewicht dagegen Kklein, so geht ein merklicher Teil der
Schwingungsenergie unreflektiert auf der anderen Fahr-
zeugseite weiter und wird erst am eigentlichen Feldende
reflektiert, wodurch storende Effekte entstehen.

8) Im Interesse der Messgenauigkeit empfiehlt es sich, die
Stoppuhr frithestens bei der ersten Wiederkehr der Schlagwelle in
sang zu setzen.
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Aehnlich storend wirken Seilreiter und Kuppelstiicke
von Tragseilen, und man wird von Fall zu Fall ausprobieren
miissen, wie weit man die Teilreflexionen an ihnen von den
Hauptreflexionen am anderen Feldende unterscheiden kann.
In einem Fall von zwei parallelen, durch Reiter verbundenen
Tragseilen wurde beispielsweise eine Messung moglich, in-
dem (beiden Seilen gleichzeitig erteilte) Schlagwellen am
Feldende spiirbar kréftigere Reflexionen erhielten als an den
Reitern. Immerhin muss darauf verzichtet werden, wieder-
holte Durchginge der Storungen beobachten zu wollen.

Befindet sich ein Fahrzeug irgendwo im Messfeld, so ist
neben dem Seilzug meistens auch der Abstand des Fahr-
zeuges unbekannt. Da dieses aber im allgemeinen selbst als
gute Reflexionsstelle wirkt, lassen sich in beiden Teilfeldern
Schlagwellen- oder Eigenschwingungsmessungen durchfiih-
ren, aus denen sich beide Unbekannten bestimmen lassen.
Je nach den Gegebenheiten wird man dabei neben den am
Anfang dieses Abschnittes angegebenen Beziehungen die
Grossen der Teilsehnen usw. als Funktion des durch das
Fahrzeuggewicht bedingten Durchhanges zu beriicksichtigen
haben 9).

6. Anhang. — Beriicksichtigung der Kettenlinienform

Will man die Messung der Laufzeit ¢, von Storwellen
durch grosse Seilfelder zur Bestimmung des Seilzuges bzw.
der Horizontalkraft H beniitzen, so miissen Beziehungen zwi-
schen diesen Grossen aufgestellt werden, die beriicksichti-
gen, dass sich die Storungen entsprechend der Seilkraft-
variation mit verédnderlicher Geschwindigkeit entlang einer
Kettenlinie bewegen.

Da nach den Ausflihrungen der vorhergehenden Ab-
schnitte die Wellen sowieso nicht so kurz sein diirfen, dass
ihre Fortpflanzungsgeschwindigkeit merklich durch die
Biegesteifigkeit des Seiles beeinflusst wird, genligt es, sich
im folgenden auf lange Wellen zu beschridnken und entspre-
chend (6a) anzusetzen:

_ds 1/ g
Qoo — W = l/ ? S
worin ds das Bogenelement des Seiles ist 10). Beim biegungs-

weichen Seil ist nun (Bild 10) ds = (Sdx)/H, so dass sich
die Horizontalkomponente der Geschwindigkeit schreibt

dax / g
—— == -
dt / q
z4
Bild 10. Seil- S
kurve als Ket- %?1_:
tenlinie
" H
s on a
2 qcosh Hx
S=12zq

Fiihrt man hier noch die bekannte Kettenlinienbeziehung
fiir 8 ein

(18) S=H cosh%x

so findet man die Differentialgleichung

dt = ,/ qu cosh qu-x dx

Integriert man diese von 1 bis 2 und wieder zurlick von
2 bis 1, so ergibt sich die totale Laufzeit t;, in der die Stor-
welle wieder zum Ausgangsort zuriickkehrt

9) Vgl. hierzu O. Zweifel: Seilbahnberechnung bei beidseitig ver-
ankerten Tragseilen; Schweiz. Bauzeitung 1960, Heft 1 und 2, Glei-
chungen & bis 10.

10) Die Bogenldnge s tritt hier an die Stelle der in Bild 2 ver-
wendeten Abszisse x; die Zugkraft S hat aber hier (lokal) wie dort
die selbe Bedeutung.
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b
T+ —

2
(19) tL:Z_/ l/ qu cosh—%x dx
b

Tm——=

2

Um die mathematischen Ausdriicke nicht uniibersichtlich
werden zu lassen, flihrt man voriibergehend folgende dimen-
sionslose Grossen ein:

_1/ 99 _ba
@) =V 7 7 F=2m
E= % (x — wm) o= %xm

f (k044 =/ cosh (& + &) f (£0) = |/coshég
Damit wird die dimensionslose halbe Laufzeit
+ A +8
(21) 7= [}/cosh (G T & ag = [ (éo+ ©) as
—.8 —p
nach Taylor entwickelt
+.
r:f [f<zo>+1i,f'(su>+

e,
S 1) 4|

und schliesslich integriert

B3
Tzzﬁf(£0)+Tf"($o) e

S . R i |
(22) wr= ZBl/coshgo +BTI/COSh£0 (1—7tgh?§o)+

Im praktischen Fal] ist allerdings & bzw. x,, gar nicht ge-
geben, d. h. man kennt zwar die Koordinaten der Feldenden,
jedoch nicht die Lage des der Normalform der Kettenlinie
zugrunde liegenden Koordinatenkreuzes. Es ergibt sich aber
eine Bestimmungsgleichung fiir x,, wenn in Bild 10 die
Hohendifferenz 7 mit Hilfe der Kettenlinienfunktion ausge-
driickt wird:

h=gph—21 =

H q b q b
e —_ - — | — 1 _— m — ——
g Lcosh T (\x,,, 4 ) > cosh T (x : 3 )

Schreibt man diesen Ausdruck ebenfalls mit den dimensions-
losen Grossen nach Gl. (20), so wird

2 % = cosh (£ + B) —cosh(fo— B) = 2sinhfosinh g

wobei sich die letzte Form nach dem Additionstheorem der
Hyperbelfunktionen ergibt. Daraus erhdlt man

B

2 in({fg—m — ————
(23) sinb=- sinh 3

Damit ist ¢, bestimmt und kann in (22) eingesetzt werden.
In Reihen entwickelt, findet man dann

2 L A, hER
T—Bl/? [“(E*Z?)B‘Jf'”‘
Werden jetzt die dimensionslosen Grossen 3 und r wieder
nach den Beziehungen (20) durch die urspriinglichen Gros-

sen ersetzt, und fiihrt man noch einen mittleren Seilzug §

§:H£

(2d) b

cin (was dem Seilzug an der Stelle des grossten Durchhan-

ges entspricht, der ndherungsweise in der Feldmitte auftritt),
so wird

q 1 1 h2\ q2c2
25 t7; — 2 — |1 = =) ss 2
(25) tx cl/gSL+(3 20‘-’)16S2+ ]
Diese Beziehung eignet sich insbesondere fiir den Fall der
Montage beidseitig verankerter Drahtseile, wo so lange ge-
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spannt wird, bis eine Stérwelle gerade die nach (25) voraus-
berechnete Laufzeit braucht. In allen anderen Féillen, wo %y,

gemessen wird und S bzw. H aus diesem Wert berechnet
werden soll, kehrt man die Reihe besser um und schreibt

— 2 1 1 h2 2¢p4
sopgiodet (l_Lmen )

(26) b gtr2? 3 2 c¢2) 128 c2

Wie rasch diese Reihenentwicklungen konvergieren, geht
daraus hervor, dass sogar bei einem ganz grossen Spann-
feld von beispielsweise b = ¢ =4 km und ¢, = 4 t/cm2 das
zweite Glied in der eckigen Klammer in (26) nur 3 ¢, und
in (25) 1,5 9, betrdgt. In Anbetracht der allgemeinen Mess-
ungenauigkeit kann deshalb wohl in allen praktisch vorkom-
menden Féllen auf ein drittes Glied der Reihenentwicklun-
gen verzichtet werden. Im Gegenteil wird man bei Spann-
weiten unter 1000 m auch das zweite Glied vernachlédssigen
konnen und ndherungsweise schreiben:

o e 2¢ = C
2 =) =8 ti— S=H-—_-=
(27) (%) l/q L a, b

4 qc?
gtr?
Die Umrechnung des nach (26) bestimmten Wertes fiir S
oder H auf den Seilzug Sp am oberen oder unteren Ende des
Feldes muss bei grossen Spannweiten iiber die Kettenlinien-

beziehungen erfolgen. HEs ist zundchst nach (18) fiir
x=x, b2

b
Sy = H cosh % (ac,,, + 7)
und mit den dimensionslosen Gréssen von (20) geschrieben
Sp = Hcosh (¢ = ) = H (cosh{ycosh g + sinhg;sinh )

Setzt man hier wieder & aus (23) ein und entwickelt in
Reihen, so ergibt sich mit (20) und (24) fiir den Seilzug
am Feldende

(28)

Sg:i

a3 (-3 )5

1 6 h2 1 ht gc ¢
el w—Ew) +

In dieser Reihenentwicklung ist ein drittes Glied angegeben
(trotzdem es sogar fiir grosse Spannweiten sehr klein bleibt),
weil das zweite Glied verdichtig gross ist. Fiir h = 0,
¢ = 4 Km, o, = 4 t/cm?2 betrigt dieses immerhin 9 %.

Driickt man S schliesslich mit (26) direkt durch die ge-
messene Laufzeit aus, so wird

:+ﬂ 4 qc2 5 h2\ g2t;* )

N Be=sg +Wll+ (“?W)W ]
Wiéhrend die Grossen § und H, wie sie mit (26) bestimmt
werden, fiir vertikal hidngende Seile unbrauchbar sind, kann
Gleichung (29) auch in diesem Fall angewendet werden.
Eine genaue Durchrechnung zeigt sogar, dass sie dann, also
fiir ¢ = h, zur exakten Gleichung wird und keine weiteren
Glieder noch hoéherer Ordnung hinzukommen.

7. Zusammenfassende Schlussfolgerungen

Die Zugkraftbestimmung in Drahtseilen mit Transver-
salwellen ldsst sich in einfachster Weise vornehmen und
diirfte bei korrekter Durchfiihrung in den meisten prak-
tischen Anwendungsfillen eine ausreichende Genauigkeit
aufweisen. Am einen Ende des Seilfeldes werden Stérwellen
eingeleitet und ihre Laufzeit ¢, durch das ganze Feld ge-
messen. Bei langen Spannfeldern verursacht man am besten
einmalige Storungen oder sog. Schlagwellen, die dann lin-
gere Zeit lings des Seiles hin- und herlaufen. Kénnen diese
Wellen wihrend mindestens 40 Sekunden gezidhlt werden, so
geniigt die Laufzeitbestimmung mit einer Stoppuhr. Klingt
die Storung in kiirzeren Feldern wegen der vielen Reflexio-
nen vorzeitig ab, so erregt man besser durch rhythmische
Stérungen eine Eigenschwingung (stehende Wellen), wobei
sich die Laufzeit #;, aus der Frequenz ergibt. Angaben {iber
die Auswertung sind zu Anfang von Abschnitt 5 zusammen-
gestellt. Fiir grosse Spannfelder werden dazu im Anhang
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abgeleitete Beziehungen beniitzt, in denen die Seilzugvaria-
tion in Funktion der geodétischen Hohe und die wirkliche
Form der Kettenlinie bertiicksichtigt sind.

Bei allen Auswertungen wird vorausgesetzt, dass die
Seile als biegungsweich betrachtet werden konnen, d. h. dass
die Theorie der Saitenschwingung zugrunde gelegt werden
darf. Das ist aber nur zulidssig, wenn die Wellenldnge ein
Minimalmass nicht unterschreitet, das bei normal gespann-
ten Tragseilen das 300- bis 400-fache des Seildurchmessers
betrdgt. Kiirzere Wellen weisen infolge der Seilsteifigkeit
erhohte Phasen- und Gruppengeschwindigkeiten auf und
sollten vermieden werden.

Solche kurze Wellen konnen beispielsweise entstehen,
wenn mit festen Gegenstinden auf dicke Seile geschlagen
wird, wie anhand von Messdiagrammen gezeigt wird. Bei
diinnen Seilen ist allerdings gegen diese Art der Schlag-
wellenerzeugung nichts einzuwenden.

Um in jedem Fall sicher zu gehen, wird empfohlen, die
Storungen ganz allgemein von Hand zu erzeugen, indem bei
dicken Seilen die Armkraft mehrerer Personen zur Aus-
ubung geniigend grosser Krifte zu Hilfe genommen werden
muss. Fir die Kraftiibertragung auf das Drahtseil wird ein
Hanfseil verwendet, an dem auch die zuriickkommende
Storwelle fiihlbar wird. Stellt man dabei fest, dass die immer
wiederkehrenden Impulse klein an Zahl sind und stets im
selben Rhythmus erfolgen, so darf angenommen werden,
dass die Langwelligkeit geniigend gross ist. Dags einfache
Abfiihlen von Hand erlaubt auch, allzu kurze, vibrationsartige
Storwellen als solche zu erkennen.

Adresse des Verfassers: Prof. Otto Zweifel, Maschinen-Labora-
torium ETH, Sonneggstr. 1, Ziirich 6.

300 Jahre Wasserwaage DK 526.951.3

Die Wasserwaage ist im Jahre 1661 vom franzosischen
Astronomen Melchisedec Thevenot erfunden worden. Er fiillte
ein Glasrohr beinahe ganz mit Weingeist, schmolz es dann
zu und schuf so die heute noch tlibliche Wasserwaage. Das
«instrumentum Thevenotianum», wie die Wasserwaage ur-
spriinglich hiess, wurde im Jahre 1775 durch Felice Fontana
verbessert, der an Stelle der Luftblase einen luftleeren Raum
schuf. L. H. Tobiesen gab im Jahre 1798 an, die Glasrohre der
Wasserwaage soll nicht gerade, sondern «etwas gebogen
seyn», damit die Blase besser den hdéchsten Punkt in der
Mitte finde.

Viel dlter als die hier beschriebene Form der Wasser-
waage ist die Schlauchwaage, denn frith schon scheint man
das Gesetz erkannt zu haben, dass in einer zusammenhingen-
den, freien Wassermenge alle Teile der Oberfldche eine Hori-
zontalebene bilden. Heron der Aeltere aus Alexandrien be-
schreibt ums Jahr 110 nach Christus das Prinzip kommunizie-
render Rohren, nach welchem in einer uférmig oder irgend-
wie anders gebogenen Rohre das Wasser beider Schenkel
gleich hoch stehen muss. Eine der friihesten Abbildungen
einer solchen Schlauchwaage findet sich im Jahre 1629 bei
Giovanni Branca. Nach Einfiihrung des vulkanisierten Kaut-
schuks verwendete man diesen zu Schlduchen. Diese Art der
Ermittlung der Hohenlage zweier Punkte, z. B. eines Hauses,
wurde erst auf der Pariser Weltausstellung von 1849 einer
breiten Oeffentlichkeit bekannt.

=

Schlauchwaage, bestehend aus Lederschliuchen, die durch kurze

Metallrohre verbunden sind. Nach Giovanni Branca, Macchine, Rom
1629
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